2016-2017学年人教版九年级数学上册《圆》期中复习试卷含答案

合集下载

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离: (3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长. 【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD=⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.4.如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在y 轴的正半轴上,点A 在x 轴的正半轴上,点C 的坐标为(0,8),将△ABC 沿直线AB 折叠,点C 落在x 轴的负半轴D (−4,0)处.(1)求直线AB 的解析式;(2)点P 从点A 出发以每秒5AB 方向运动,过点P 作PQ ⊥AB ,交x 轴于点Q ,PR ∥AC 交x 轴于点R ,设点P 运动时间为t (秒),线段QR 长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点N 是射线AB 上一点,以点N 为圆心,同时经过R 、Q 两点作⊙N ,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42, 解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k bb+==,解得:1{23kb=-=,故直线AB的解析式为:y=-12x+3;(2)如图所示:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则22135,tan2OBOB OA BAOOA+=∠==,255OAcos BAOAB∠==,在Rt△PQA中,905APQ AP t∠=︒=,则AQ=10cosAPtBAO=∠,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=12AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=1522QR t=,∴1115151022224NT AT AQ TQ t t t==-=-=()(),分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。

人教版数学九年级上册 圆 几何综合综合测试卷(word含答案)

人教版数学九年级上册 圆 几何综合综合测试卷(word含答案)

人教版数学九年级上册 圆 几何综合综合测试卷(word 含答案)一、初三数学 圆易错题压轴题(难)1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切 【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得()()30103a =++,∴33a =. ∴()()313y x x =++,即 2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.2.如图,已知直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB , (1)求证:直线AB 是⊙O 的切线;(2)OA ,OB 分别交⊙O 于点D ,E ,AO 的延长线交⊙O 于点F ,若AB =4AD ,求sin ∠CFE 的值.【答案】(1)见解析;(25 【解析】 【分析】(1)根据等腰三角形性质得出OC ⊥AB ,根据切线的判定得出即可;(2)连接OC 、DC ,证△ADC ∽△ACF ,求出AF=4x ,CF=2DC ,根据勾股定理求出DC=355x ,DF=3x ,解直角三角形求出sin ∠AFC ,即可求出答案. 【详解】(1)证明:连接OC ,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC过O,∴直线AB是⊙O的切线;(2)解:连接OC、DC,如图2,∵AB=4AD,∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,∴∠DCF=90°,∵OC⊥AB,∴∠ACO=∠DCF=90°,∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,∴∠AFC=∠OCF,∴∠ACD=∠AFC,∵∠A=∠A,∴△ADC∽△ACF,∴122 AC AD DC xAF AC CF x====,∴AF=2AC=4x,FC=2DC,∵AD=x,∴DF=4x﹣x=3x,在Rt△DCF中,(3x)2=DC2+(2DC)2,解得:DC 35x,∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴DC EC=,∴∠CFE=∠AFC,∴sin∠CFE=sin∠AFC=DCDF=355535xx=.【点睛】本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.3.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.(1)求证:∠ECG=∠BDC.(2)当AB=6时,在点F的整个运动过程中.①若BF=22时,求CE的长.②当△CEG为等腰三角形时,求所有满足条件的BE的长.(3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出12SS的值.【答案】(1)详见解析;(2)①1825;②当BE为10,395或445时,△CEG为等腰三角形;(3)724.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;(2)根据勾股定理求得BD=10,①连接EF,根据圆周角定理得出∠CEF=∠BCD=90°,∠EFC=∠CBD.即可得出sin∠EFC =sin∠CBD,得出35CE CDCF BD==,根据勾股定理得到CF=62CE1825;②分三种情况讨论求得:当EG=CG时,根据等腰三角形的性质和圆周角定理即可得到∠GEC=∠GCE=∠ABD=∠BDC,从而证得E、D重合,即可得到BE=BD=10;当GE=CE时,过点C作CH⊥BD于点H,即可得到∠EGC=∠ECG=∠ABD=∠GDC,得到CG=CD=6.根据三角形面积公式求得CH=245,即可根据勾股定理求得GH,进而求得HE,即可求得BE=BH+HE=395;当CG=CE时,过点E作EM⊥CG于点M,由tan∠ECM=43EMCM=.设EM=4k,则CM=3k,CG=CE=5k.得出GM=2k,tan∠GEM=2142GM kEM k==,即可得到tan∠GCH=GH CH =12.求得HE=GH=125,即可得到BE=BH+HE=445;(3)连接OE、EF、AE、EF,先根据切线的性质和垂直平分线的性质得出EF=CE,进而证得四边形ABCD是正方形,进一步证得△ADE≌△CDE,通过证得△EHP∽△FBC,得出EH=1 6BF,即可求得BF=6,根据勾股定理求得CF=10,得出PE=106,根据勾股定理求得PH,进而求得PD,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB∥CD.∴∠ABD=∠BDC,∵∠ABD=∠ECG,∴∠ECG=∠BDC.(2)解:①∵AB=CD=6,AD=BC=8,∴BD=10,如图1,连结EF,则∠CEF=∠BCD=90°,∵∠EFC=∠CBD.∴sin∠EFC=sin∠CBD,∴35 CE CD CF BD==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16EH PEBF FC==,∴EH=16BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF=22BF BC+=10,∴PE=16FC=53,∴PH=224PE EH3-=,∴PD=47133+=,∴12773824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.4.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.5.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒5AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2). 【解析】试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解; 试题解析:(1)∵C (0,8),D (-4,0), ∴OC=8,OD=4, 设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a , 在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2, 则(8-a )2=a 2+42, 解得:a=3, 则OB=3, 则B (0,3), tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6, 则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= ,故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,则AQ=10cos AP t BAO=∠ , ∵PR ∥AC ,∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,∴∠BAO=∠APR ,∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR ,∴RP=RQ ,∴RQ=AR ,∴QR=12AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,∵EF=QR ,∴NS=NT ,∴四边形NTOS 是正方形, 则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。

(人教版)九年级上册数学《圆》单元测试题(含答案)

(人教版)九年级上册数学《圆》单元测试题(含答案)

一.选择1.(江苏东台实中)如右图,⊙ O的半径 OA等于 5,半径 OC⊥ AB于点 D,若 OD=3,则弦AB的长为 ()A.10B.8C.6 D .42.( 20XX?北京)如图,圆 O的直径 AB垂直于弦 CD,垂足是 E,∠ A=22.5°, OC=4,CD的长为()A.2B.4 C.4D.83.( 20XX?台州)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A B C D4.(20XX?临沂)如图,在⊙O中, AC∥OB,∠ BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【答案】 B5. ( 20XX ?宜宾)已知⊙的半径r =3,设圆心到一条直线的距离为d,圆上到这条直O O线的距离为 2 的点的个数为m,给出下列命题:①若 d>5,则 m=0;②若 d=5,则 m=1;③若1<d<5,则 m=3④若 d=1,则 m=2;⑤若 d<1,则 m = 4.其中正确命题的个数是()A.1 B.2C.3D.56 、如图,在△ ABC 中∠ A=25°,以点C 为圆心, BC为半径的圆交AB于点 D,交 AC于点 E,则的度数为.【答案】 C【考点】圆心角、弧、弦的关系;直角三角形的性质.7.(20XX ?泸州)如图,在平面直角坐标系中,⊙P 的圆心坐标是(3, a) ( a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为42,则a的值是()A.4B.32C.32D.33【解答】解:作 PC⊥x轴于 C,交 AB于 D,作 PE⊥AB 于 E,连结 PB,如图【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.8、( 20XX?内江)如图,⊙ O是△ ABC的外接圆,∠AOB=60°, AB=AC=2,则弦 BC的长为()A.B.3 C .2D.4【答案】 B【点评】本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得 AD⊥BC是解题的关键.9.( 20XX?温州)如图,在矩形 ABCD中, AD=8,E是边 AB 上一点,且 AE= AB.⊙O经过点F,且EG:E,与边 CD所在直线相切于点G(∠ GEB为锐角),与边 AB 所在直线交于另一点EF= :2.当边 AB或 BC所在的直线与⊙O 相切时, AB的长是().A.10B.11C.12D.13【答案】 C【考点】切线的性质;矩形的性质.【点评】本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.9.如图,半圆O的直径 AB=10cm,弦 AC=6cm,AD平分∠ BAC,则AD的长为()【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.10.(20XX?常德)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点 M 的位置可由∠ MOx的度数θ与OM的长度 m确定,有序数对(θ, m)称为 M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图 2 的极坐标系下,如果正六边形的边长为 2 ,有一边 OA 在射线 Ox 上,则正六边形的顶点 C的极坐标应记为()A.( 60°, 4)B.(45°,4)C .( 60°, 2 2 )D.(50°,22 )二.填空题11. (?台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、 B,并使 AB与车轮内圆相切于点D,做 CD⊥AB 交外圆于点C.测得 CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.【点评】本题考查了垂径定理的应用,解题的关键是正确添加辅助线。

人教版九年级上学期数学《圆》单元综合测试题带答案

人教版九年级上学期数学《圆》单元综合测试题带答案
20.如图,⊙O是△A B C的外接圆,A B为直径,OD∥B C交⊙O于点D,交A C于点E,连接A D,B D,C D,求证:A D=C D.
21.如图,已知在⊙O中,A B=4 ,A C是⊙O的直径,A C⊥B D于点F,∠A=30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OB D围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.
A. B.
C. D.
[答案]A
[解析]
试题分析:连接A B、OC,A B OC,所以可将四边形AOB C分成三角形A B C、和三角形AOB,进行求面积,求得四边形面积是 ,扇形面积是S= πr2= ,所以阴影部分面积是扇形面积减去四边形面积即 .故选A.
二、填空题(每小题4分,共32分)
11.用反证法证明“垂直于同一条直线的两条直线平行”时,第一个步骤是_____.
A.40°B.45°C.50°D.60°
[答案]A
[解析]
试题解析:
∵点C是 的中点,
故选A.
点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.
4.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M到坐标原点O的距离是( )
A.10;B.8 ;C.4 ;D.2 ;
[答案]垂直于同一条直线的两条直线相交
[解析]
试题分析:反证法有如下三个步骤:(1)提出反证,(2)推出矛盾,(3)肯定结论.所以第一步先提出反证垂直于同一条直线的两条直线相交.
12.如图,A B是⊙O的直径,点C是⊙O上的一点,若B C=6,A B=10,OD⊥B C于点D,则OD的长为______.
[答案]D
[解析]

人教版九年级数学中考复习圆(含答案)

人教版九年级数学中考复习圆(含答案)

人教版九年级数学中考复习圆一、选择题(本大题共10小题,每小题4分,满分40分)1.如图,四边形ABCD是☉O的内接正方形,P是CD上不同于点C的任意一点,则∠BPC的大小是()A.22.5°B.30°C.45°D.50°2.如图,AB为☉O的直径,AB=30,点C在☉O上,∠A=24°,则AC的长为()A.9πB.10πC.11πD.12π3.如图,已知☉O为四边形ABCD的外接圆,O为圆心.若∠BCD=120°,AB=AD=2,则☉O的半径长为()A.3√22B.√62C.32D.2√334.在平面直角坐标系中,圆心为坐标原点,☉O的半径为10,则点P(-8,6)与☉O的位置关系为()A.点P在☉O上B.点P在☉O外C.点P在☉O内D.无法确定5.如图,点A,B,C在半径为6的☉O上,AB的长为2π,则∠ACB的大小是()A.20°B.30°C.45°D.60°6.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =√3x +2√3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( ) A.3 B.2 C.√3 D.√27.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE.则图中阴影部分的面积是( )A.6√3-43πB.6√3-83πC.12√3-43πD.12√3-83π8.如图,半圆O 的直径AB =10 cm,弦AC =6 cm,D 是BC的中点,则弦AD 的长为( )A.4 cmB.3√5 cmC.4√5 cmD.5√5 cm9.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( ) A.√28B.√34C.√24D.√3810.如图,AB 是☉O 的直径,C ,D 是☉O 上的点,且O C∥BD,A D 分别与BC ,OC 相交于点E ,F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ;③CB 平分∠ABD ;④AF =DF ;⑤BD =2OF ;⑥△CEF ≌△BED.其中结论一定成立的是( ) A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥D.①③④⑤二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = °.x-3交x轴于点A,交y轴于点B,P是x轴上一动点,以点P为圆心,以1个12.如图,直线y=-34单位长度为半径作☉P,当☉P与直线AB相切时,点P的坐标是.13.如图,在Rt△OAB中,∠AOB=45°,AB=2,将Rt△OAB绕点O顺时针旋转90°得到Rt△OCD,则AB扫过的阴影部分的面积为.14.如图,在一个圆柱形铁桶内底面的点A处有一只飞虫,在其上边沿的点B处有一面包残渣.cm,铁桶的底面直径为40 cm,桶高已知C是点B正下方的桶内底面上一点,劣弧AC的长为40π360 cm,则该飞虫从点A到达点B的最短路径为 cm.三、(本大题共2小题,每小题8分,满分16分)15.如图,AB,CD是☉O的直径,弦CE∥AB,CE所对的圆心角的度数为50°,求∠AOC的度数.16.如图,已知AB是☉O的直径,点C,D在☉O上,∠D=60°且AB=6,过点O作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交☉O于点F,求阴影部分的面积S.四、(本大题共2小题,每小题8分,满分16分)17.如图,四边形ABCD是☉O的内接四边形,DB平分∠ADC,连接OC,OC⊥BD.(1)求证:AB=CD;(2)若∠A等于66°,求∠ADB的度数.18.如图,☉O为△ABC的内切圆,∠ACB=90°,AO的延长线交BC于点D,AC=4,CD=2,求☉O的半径.五、(本大题共2小题,每小题10分,满分20分)19.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作☉O,分别与AC,BC相交于点M,N.(1)过点N作☉O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.20.已知☉O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与☉O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交☉O于点E,连接OA,OE,CE.若∠ABC=30°,求证:四边形ACEO是菱形.六、(本题满分12分)21.如图,已知平面直角坐标系中一条圆弧经过正方形网格的格点A,B,C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若点A的坐标为(0,4),点D的坐标为(7,0),试验证点D是否在经过点A,B,C的圆上;(3)在(2)的条件下,求证:直线CD是☉M的切线.七、(本题满分12分)22.如图,已知点A,B,C,D均在☉O上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求☉O的半径;(2)求图中阴影部分的面积.八、(本题满分14分)23.小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中的位置).例如,图2是某巷子的俯视图,巷子路面宽4 m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE,CE的夹角都是45°时,连接EF,交CD 于点G,若GF的长度至少能达到车身宽度,则车辆能通过.(1)小平认为长8 m、宽3 m的消防车不能通过该直角转弯,请你帮他说明理由;(2)小平提出将拐弯处改为圆弧(MM'和NN'是以O为圆心,分别以OM和ON为半径的弧),长8 m、宽3 m的消防车就可以通过该弯道了,具体方案如图3,其中OM⊥OM',你能帮小平算出,ON 至少为多少时,这种消防车可以通过该巷子?答案一、选择题(本大题共10小题,每小题4分,满分40分)3.如图,四边形ABCD是☉O的内接正方形,P是CD上不同于点C的任意一点,则∠BPC的大小是A.22.5°B.30°C.45°D.50°4.如图,AB为☉O的直径,AB=30,点C在☉O上,∠A=24°,则AC的长为A.9πB.10πC.11πD.12π3.如图,已知☉O为四边形ABCD的外接圆,O为圆心.若∠BCD=120°,AB=AD=2,则☉O的半径长为A.3√22B.√62C.32D.2√334.在平面直角坐标系中,圆心为坐标原点,☉O的半径为10,则点P(-8,6)与☉O的位置关系为A.点P在☉O上B.点P在☉O外C.点P在☉O内D.无法确定5.如图,点A,B,C在半径为6的☉O上,AB的长为2π,则∠ACB的大小是A.20°B.30°C.45°D.60°6.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =√3x +2√3上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为 A.3 B.2 C.√3 D.√27.如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE.则图中阴影部分的面积是A.6√3-43πB.6√3-83πC.12√3-43πD.12√3-83π8.如图,半圆O 的直径AB =10 cm,弦AC =6 cm,D 是BC的中点,则弦AD 的长为A.4 cmB.3√5 cmC.4√5 cmD.5√5 cm提示:连接OC ,OD ,作DE ⊥AB 于点E ,OF ⊥AC 于点F.∴∠AFO =∠DEO =90°.∵CD=BD ,∴∠DOB =∠OAC =2∠BAD.∵OA =OD ,∴△AOF ≌△ODE (AAS),∴OE =AF =12AC =3 cm .在Rt△DOE 中,DE =√OD 2−OE 2=4 cm,在Rt△ADE 中,AD =√DE 2+AE 2=4√5 cm . 9.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是 A.√28B.√34C.√24D.√3810.如图,AB是☉O的直径,C,D是☉O上的点,且O C∥BD,A D分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED.其中结论一定成立的是A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=20°.x-3交x轴于点A,交y轴于点B,P是x轴上一动点,以点P为圆心,以1个12.如图,直线y=-34,0).单位长度为半径作☉P,当☉P与直线AB相切时,点P的坐标是(−7313.如图,在Rt△OAB中,∠AOB=45°,AB=2,将Rt△OAB绕点O顺时针旋转90°得到Rt△OCD,则AB扫过的阴影部分的面积为π.14.如图,在一个圆柱形铁桶内底面的点A处有一只飞虫,在其上边沿的点B处有一面包残渣.cm,铁桶的底面直径为40 cm,桶高已知C是点B正下方的桶内底面上一点,劣弧AC的长为40π360 cm,则该飞虫从点A到达点B的最短路径为40√3 cm.提示:如图,连接AB,OC,OA,AC,作OH⊥AC于点H.设∠AOC=n°.∵AC的长=40π3,∴nπ·20180=40π3,∴n=120.∵OA=OC,OH⊥AC,∴∠COH=∠AOH=60°,CH=AH,∴AC=2CH=2·OC·sin 60°=2×20×√32=20√3(cm).在Rt△ABC中,AB=√BC2+AC2=√602+(20√3)2=40√3(cm),∴该飞虫从点A到达点B的最短路径为40√3 cm.三、(本大题共2小题,每小题8分,满分16分)15.如图,AB,CD是☉O的直径,弦CE∥AB,CE所对的圆心角的度数为50°,求∠AOC的度数.解:连接OE.由已知可得∠COE=50°.∵OC=OE,∴∠OCE=∠OEC=12(180°-50°)=65°.∵CE∥AB,∴∠AOC=∠OCE=65°.16.如图,已知AB是☉O的直径,点C,D在☉O上,∠D=60°且AB=6,过点O作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交☉O于点F,求阴影部分的面积S.解:(1)∵∠D =60°,∴∠B =60°.∵AB 是☉O 的直径,∴∠ACB =90°,∠CAB =30°. 又∵AB =6,∴OA =3. ∵OE ⊥AC ,∴OE =12OA =32.(2)连接OC.易得△COE ≌△AFE ,∠COF =60°, ∴阴影部分的面积S =S 扇形FOC =60π×32360=32π.四、(本大题共2小题,每小题8分,满分16分)17.如图,四边形ABCD 是☉O 的内接四边形,DB 平分∠ADC ,连接OC ,OC ⊥BD. (1)求证:AB =CD ;(2)若∠A 等于66°,求∠ADB 的度数.解:(1)∵DB 平分∠ADC ,∴AB =BC . ∵OC ⊥BD ,∴BC =CD . ∴AB=CD ,∴AB =CD. (2)∵四边形ABCD 是☉O 的内接四边形, ∴∠BCD =180°-∠A =114°. ∵BC=CD ,∴BC =CD , ∴∠BDC =12×(180°-114°)=33°. ∵DB 平分∠ADC , ∴∠ADB =∠BDC =33°.18.如图,☉O为△ABC的内切圆,∠ACB=90°,AO的延长线交BC于点D,AC=4,CD=2,求☉O的半径.解:设☉O与AC的切点为M,圆的半径为r.连接OM.∵OM⊥AC,∠ACB=90°,∴OM∥DC,∴∠MOC=∠DCO.又∵∠MCO=∠DCO,∴∠MOC=∠MCO,∴CM=OM=r,由条件易得△AOM∽△ADC,∴OMCD =AMAC,即r2=4−r4,解得r=43.∴☉O的半径是43.五、(本大题共2小题,每小题10分,满分20分)19.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作☉O,分别与AC,BC相交于点M,N.(1)过点N作☉O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.证明:(1)连接ON.∵CD是Rt△ABC的斜边AB上的中线,∴AD=CD=DB,∴∠DCB=∠DBC.又∵OC=ON,∴∠DCB=∠ONC,∴∠ONC=∠DBC,∴ON∥AB.∵NE是☉O的切线,ON是☉O的半径,∴∠ONE=90°,∴∠NEB=90°,即NE⊥AB.(2)由(1)可知ON∥AB.BC.又∵OC=OD,∴CN=NB=12∵CD是☉O的直径,∴∠CMD=90°.又∵∠ACB=90°,∴MD∥BC.BC,∵D是AB的中点,∴MD=12∴MD=NB.20.已知☉O是△ABC的外接圆,∠CAD=∠ABC.(1)如图1,试判断直线AD与☉O的位置关系,并说明理由;(2)如图2,将直线AD沿直线AC翻折后交☉O于点E,连接OA,OE,CE.若∠ABC=30°,求证:四边形ACEO是菱形.解:(1)直线AD与☉O相切.理由:作直径AP,连接CP.∵∠APC=∠ABC,∠CAD=∠ABC,∴∠CAD=∠APC.∵AP是☉O的直径,∴∠ACP=90°,∴∠CAP+∠APC=90°,∴∠CAP+∠CAD=90°,即∠DAP=90°,∴AD⊥AP,∴直线AD与☉O相切.(2)连接OC.∵∠ABC=30°,∴∠CAE=∠CAD=∠ABC=30°,∴∠AOC=2∠ABC=60°,∠COE=2∠CAE=60°.∵OA=OC=OE,∴△AOC,△COE都是等边三角形,∴OA=AC=OC,OC=CE=EO,∴OA=AC=CE=EO,∴四边形ACEO是菱形.六、(本题满分12分)21.如图,已知平面直角坐标系中一条圆弧经过正方形网格的格点A,B,C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若点A的坐标为(0,4),点D的坐标为(7,0),试验证点D是否在经过点A,B,C的圆上;(3)在(2)的条件下,求证:直线CD是☉M的切线.解:(1)图略.(2)由点A(0,4),可得小正方形的边长为1,从而点B(4,4),C(6,2),M(2,0),则圆弧所在圆的半径为√22+42=2√5,点D到点M的距离为7-2=5>2√5,所以点D不在经过点A,B,C的圆上.(3)设过点C与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD.由(2)知小正方形的边长为1,所以CE=2,ME=4,ED=1,MD=5.在Rt△CEM中,MC2=ME2+CE2=42+22=20,在Rt△CED中,CD2=ED2+CE2=12+22=5,所以MD2=MC2+CD2,所以∠MCD=90°.因为MC为☉M的半径,所以直线CD是☉M的切线.七、(本题满分12分)22.如图,已知点A,B,C,D均在☉O上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求☉O的半径;(2)求图中阴影部分的面积.解:(1)∵AD∥BC,∠BAD=120°,∴∠ABC=60°.又∵BD 平分∠ABC ,AD ∥BC , ∴∠ABD =∠DBC =∠ADB =30°, ∴AB=AD =CD ,∴AB =AD =CD. ∵四边形ABCD 的周长为15,∴BC +3CD =15. 又∵在Rt△BDC 中,BC =2CD ,∴BC +32BC =15,∴BC =6, ∴☉O 的半径为3.(2)连接OA ,OD ,过点O 作OE ⊥AD 于点E. 在Rt△AOE 中,∠AOE =30°, ∴OE =OA ·cos 30°=3√32, ∴S △AOD =12AD ·OE =12×3×3√32=9√34, ∴S 阴影=S扇形AOD -S △AOD =60π×32360-9√34=6π−9√34. 八、(本题满分14分)23.小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中的位置).例如,图2是某巷子的俯视图,巷子路面宽4 m,转弯处为直角,车辆的车身为矩形ABCD ,CD 与DE ,CE 的夹角都是45°时,连接EF ,交CD 于点G ,若GF 的长度至少能达到车身宽度,则车辆能通过.(1)小平认为长8 m 、宽3 m 的消防车不能通过该直角转弯,请你帮他说明理由;(2)小平提出将拐弯处改为圆弧(MM'和NN '是以O 为圆心,分别以OM 和ON 为半径的弧),长8 m 、宽3 m 的消防车就可以通过该弯道了,具体方案如图3,其中OM ⊥OM',你能帮小平算出,ON 至少为多少时,这种消防车可以通过该巷子?解:(1)作FH ⊥EC ,垂足为H.∵FH =EH =4,∴EF =4√2,且∠GEC =45°. ∵GC =4,∴GE =GC =4,∴GF=4√2-4<3,即GF的长度未达到车身宽度,∴消防车不能通过该直角转弯.(2)若点C,D分别与点M',M重合,则△OGM为等腰直角三角形,如图所示.∴OG=4,OM=4√2,∴OF=ON=OM-MN=4√2-4,∴FG=8-4√2<3,∴点C,D在MM'上.设ON=x,连接OC.在Rt△OCG中,OG=x+3,OC=x+4,CG=4,由勾股定理,得OG2+CG2=OC2,即(x+3)2+42=(x+4)2,解得x=4.5.答:ON至少为4.5 m时,这种消防车可以通过该巷子.。

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

九年级圆测试题附参考答案一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD<∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知⊙O 的半径为,点是直线上一点,长为,则直线与的位置关系为( )A .相交B .相切C .相离D .相交.相切.相离都有可能2.已知两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,则另一圆的半径是( )A .16厘米B .10厘米C .6厘米D .4厘米3.如图,在中,,,,以点为圆心,以的长为半径作圆,则与的位置关系是()A .相离B .相切C .相交D .相切或相交4.如图,正方形ABCD 内接于⊙O ,直径MN ∥AD ,则阴影面积占圆面积 ( )A .12 B .14C .16D .185.如图所示,ABC ∆内接于O ,若28OAB ∠=︒,则C ∠的大小是( )3cm P l OP 5cm l O Rt ABC △90C ∠=︒30B ∠=︒4BC cm =C 2cmCABMNA .56︒B .62︒C .28︒D .32︒ 6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面10AB =米,净高7CD =米,则此圆的半径OA =( )A .5B .7C .375 D .3777.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A 的半径为2.下列说法中不正确的是( ) A .当5a <时,点B 在A 内 B .当5a 1<<点B 在A 内 C .当a <1时,点B 在A 外 D .当5a >时,点B 在A 外8.已知矩形ABCD 的边6,8AB AD ==.如果点A 为圆心作A ,使,,BCD 三点中在圆内和在圆外都至少有一个点,那么A 的半径r 的取值范围是( )A . 6<10r <B .810r <<C .610r <≤D .68r <≤ 9.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A .0.4米B .0.5米C .0.8米D .1米D10.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则ABE 面积的最小值是A .2B .1C .D .二 、填空题(本大题共5小题,每小题3分,共15分)11.若圆锥的侧面展开时一个弧长为l6π的扇形,则这个圆锥的底面半经是 .12.如图,半径为5的P 与y 轴交于点M (0,-4),N (0,-10),函数ky x=()0x <的图像上过点P ,则k = .13.一个圆锥的底面半径为4cm ,将侧面展开后所得扇形的半径为5cm ,那么这个圆锥的侧面积等于 cm 2(结果保留π).14.如图7,在Rt ABC ∆中,9042C AC BC ∠=︒==,,分别以AC BC ,为直径画半圆,则图中阴影部分的面积为 .(结果保留)△222-22B (0,2)yxA (2,0)EODC (-1,0)y xPNM O π15.已知:如图,直角ABC ∆中,90ACB ∠=︒,1AC BC ==,DEF 的圆心为A ,如果图中两个阴影部分的面积相等,那么AD 的长是 (结果不取近似值).三 、解答题(本大题共7小题,共55分)16.圆内接四边形ABCD ,AC BD ⊥,AC 交BD 于E ,EG CD ⊥于G ,交AB 于F .求证:AF BF =.17.如图,已知O 的半径2,弦BC的长为A 的弦BC 所对优弧上任意一点(B 、C 两点除外). (1)求BAC ∠的度数; (2)求ABC ∆面积的最大值.18.已知:如图,内接于,是过的一条射线,且.求证:是的切线.FC BGEFABC DABC ∆O AD A B CAD ∠=∠AD O19.如图,的直径,弦.过点作直线,使.延长交于点,求的长.20.如图,在中,直径垂直于弦,垂足为,连接,将沿翻折得到,直线与直线相交于点.若,求的长.21.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC 、AC 于点D 、E ,连结EB 交OD 于点F . (1)求证:OD ⊥BE ; (2)若DE =25,AB =25,求AE 的长.O 13AC =12BC =A MN 12BAM AOB ∠=∠CB MN D AD NM DCAO AB CD E AC ACD △ACACF △FC ABG 2OB BG ==CD22.如图,已知ABC ∆内接于O ⊙,AD 、BD 为O ⊙的切线,作DE BC ∥,交AC 于E ,连结EO 并延长交BC 于F ,求证:BF FC =.BA人教版九年级上册数学《圆》单元测试卷答案解析一 、选择题1.D;∵垂线段最短,∴圆心到直线的距离小于等于.此时和半径的大小不确定,则直线和圆相交.相切.相离都有可能.故选. 【点评】判断直线和圆的位置关系,必须明确圆心到直线的距离. 特别注意:这里的不一定是圆心到直线的距离.2.D;∵两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,∴10﹣6=4(厘米),∴另一圆的半径是4厘米.故选D .【解析】由两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,根据两圆位置关系与圆心距d ,两圆半径,的数量关系间的联系即可求得另一圆的半径.【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距,两圆半径,的数量关系间的联系是解此题的关键.3.B;作于点.∵,,∴,等于半径.∴与相切.4.B;【解析】阴影部分的面积即为OCD S 扇形 5.B【解析】本题是利用圆周角定理解题的典型题目,题目难度不大,正确添加辅助线是解题关键,在解题和圆有关的题目是往往要添加圆的半径.53D 5R r d R r CD AB ⊥D 30B ∠=︒4BC cm =2CD cm =ABC6.D;解:CD AB ⊥,根据垂径定理和勾股定理可得.由垂径定理得5AD =米,设圆的半径为r ,则结合勾股定理得222OD AD OA +=,即222(7)5r r -+=,解得377r =米. 【解析】考查了垂径定理、勾股定理.特别注意此类题经常是构造一个由半径、半弦、弦心距组成的直角三角形进行计算. 7.A;由图可知B .当5a 1<<时点B 在A 内;当5a =或1时点B 在A 上;当a <1或5a >,点B 在A 外8.A;解:∵6,8,10,AB AD AC ==∴=∴点C 一定在圆外,点B 一定在圆内,∴A的半径r 的值范围是:610r <<.9.D;解:设半径为r ,则半径,弦心距,弦得一半组成的直角三角形,222(0.2)0.4r r =-+,解得0.5r =,所以直径为1【解析】考查垂径定理的应用;勾股定理的应用.此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.DCB A10.C;【解析】过点作,ABE 面积的最小值,即最小,故最小,最大,即为的切线,∵,故二 、填空题11.8.【解析】利用底面周长=展开图的弧长可得. 16π=2πr 解得r=8.【点评】本题考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后求值. 12.28k =-;【解析】过点P 作PA ON ⊥,6MN =,3AM =,5PM =,根据勾股定理, ∴4AP =,故P 点的坐标为(-4,-7),故28k =-13.20π【解析】侧面展开后所得扇形的半径即为圆锥的母线长,那么圆锥的侧面积=π×底面半径×母线长=π×4×5=20πcm 2. 【点评】本题考查圆锥侧面积的求法.E EH AB ⊥△EH BAE ∠EAO ∠AD C ADC AOE △∽△1222ABE OE BE S BE AO ==⋅=,,△14.542π-【解析】观察图形可知:图中阴影部分面积可分隔成两部分求解.设C 点到AB 的距离为CD ,第一部分:半圆AC 的面积-ACD S ∆,第二部分:半圆BC 的面积-BCD S ∆,最后两部分求和即可.【解析】利用ABC ADF S S =扇形△三 、解答题16.证法一:如图,∵90CDB GCE ∠+∠=︒,90CEG GCE ∠+∠=︒,∴CDB CEG ∠=∠.又EAF CDB ∠=∠,AEF CEG ∠=∠,∴EAF AEF ∠=∠, ∴AF EF =,同理BF EF =.∴AF BF =.证法二:如图,过F 作FH AE ⊥于H . ∵GDE HAF ∠=∠,GEC HEF ∠=∠, ∴Rt Rt GEC HAF ∆∆∽,Rt Rt GEC HEF ∆∆∽.∴AH HF DG GE =,HE HFGE GC=, 两式相除得:2AH DG GCHE GE ⋅=. 而GE 是Rt DEC ∆斜边上的高,∴2GE DG GC =⋅. ∴1AHHE=,即AH HE =. 又∵BE AE ⊥,FH AE ⊥, ∴FH BE ∥.∴AF BF =.证法三:如图,过A 作AH AE ⊥交EF 的延长线于H ,连接BH . ∵Rt Rt AEH GEC ∆∆∽,∴EH AEEC GE=, ∴AE ECEH GE⋅=, 又∵BE ED AE EC ⋅=⋅,∴AE EC ED BE ⋅=,∴EH BEED GE=. ∵HEB DEG ∠=∠, ∴BEH GED ∆∆∽, ∴90EBH EGD ∠=∠=︒, ∴AHBE 是矩形.∴AF BF =.17.(1)60︒ (2)解:(1)方法一:如图,连结OB 、OC ,过O 作OE BC ⊥交BC 于点E .,OE BC BC ⊥=,BE EC ∴==Rt OBE ∆中,2OB =,sin 2BE BOE OB ∠==,160,120,602BOE BOC BAC BOC ∴∠=︒∴∠=︒∴∠=∠=︒方法二:如图,连结BO 并延长,交O 于点D ,连结.CDBD 是直径,4,90BD DCB ∴=∠=︒.在Rt DBC ∆中,sin BC BDC BD ∠===60,60BDC BAC BDC ∴∠=︒∴∠=∠=︒.DC BAFEGHG EABCD(2)因为ABC ∆的边BC 的长不变,所以当BC 边上的高最大时,ABC ∆的面积最大,此时点A 应落在优弧BC 的中点处.如图,过O 作OE BC ⊥于点E ,延长EO 交于点A ,则A 为优弧BC 的中点.连结AB ,AC ,则AB AC =,1302BAE BAC ∠=∠=︒.在Rt ABE ∆中,3,30,BE BAE =∠=︒3,tan 303BEAE ∴===︒132ABC S ∆∴=⨯=.【解析】考查学生的应用能力,圆中求角(线段)常转化为直角三角形解决.利用垂径定理的构造直角三角形,把已知条件结合在一块.(1)连结OB 、OC ,过O 作OE BC ⊥与点E .解Rt OBE ∆,求,BOE BOC ∠∠的度数,1.2A BOC ∠=∠或连结BO 并延长,交O 于D ,连结CD ,解Rt BCD ∆,求D ∠. (2)ABC S ∆12BC h =⨯(h 是BC 边上的高),BC 不变,当h 最大时,ABC S ∆最大,此时点A 应落在优弧BC 的中点处,然后再求h .18.如图,过作的直径,连接∵为直径,∴,∴, 又∵, ∴,∴,即, ∴ ∴为切线.点评:若已知直线与圆有公共点时,则连接圆心和公共点,只要证明这条直线垂直于经过这个公共点的半径(有时候过这个公共点作直径更方便)即可. 19.∵=∵ ∴ ∴, ∴ 【解析】先证明为的切线,然后利用相似 20.连接∵,∴.由翻折得,,. ∴,∴. ∴. ∴直线与相切. 在中,, ∴.A O 'AB 'CB 'AB O '90ACB ∠=︒''90B B AC ∠+∠=︒'B B ∠=∠B CAD ∠=∠'B CAD ∠=∠'90CAD B AC ∠+∠=︒'90B AD ∠=︒OA AD ⊥AD O 12BAM AOB ∠=∠ACB ∠90ABC ABD ∠=∠=︒ABC DBA △∽△AB AD BC AC =51213AD=6512AD =AD OCO OA OC =12∠=∠13∠=∠90F AEC ∠=∠=︒23∠=∠OC AF ∥90OCG F ∠=∠=︒FC O Rt OCG △1cos 22OC OC COG OG OB ∠===60COG ∠=︒在中,. ∵直径垂直于弦, ∴.【解析】连接,证即可.根据题意,证可得,从而,得证;根据垂径定理可求后求解.在中,根据三角函数可得.结合求,从而得解. 【点评】此题考查了切线的判定、垂径定理、解直角三角形等知识点,难度中等.21.(1)连结AD . ∵ AB 是⊙O 的直径,∴∠ADB =∠AEB =90°.∵ AB =AC ,∴DC=DB .∵OA =OB ,∴OD ∥AC .∴∠OFB =∠AEB =90°. ∴OD ⊥BE .(2)设AE =x ,由(1)可得∠1=∠2, ∴BD = ED=25. ∵OD ⊥EB ,∴FE=FB .∴OF=AE 21=x 21,DF=OD -OF =x 2145-.在Rt △DFB 中, 22222)2145()25(x DF DB BF --=-=.在Rt △OFB 中, 2222251()()42BF OB OF x =-=-.∴22)2145()25(x --22)21()45(x -=. 解得23=x ,即23=AE . 22.连结AO 、BO 、DO .Rt OCE△sin 602CE OC =⋅︒==ABCD 2CD CE ==OC OC FG ⊥AF FG ⊥FAC ACO ∠=∠OC AF ∥OC FG ⊥CE Rt OCG △60COG ∠=︒2OC =CEBA显然,Rt Rt AOD BOD ∆∆≌ ∴AOD BOD ∠=∠12C AOB AOD ∠=∠=∠∵DE BC ∥,∴AED C ∠=∠,AED AOD ∠=∠ 即A 、E 、O 、D 四点共圆 ∴FEC ADO ∠=∠,∴ADO FEC ∆∆∽ ∴90EFC DAO ∠=∠=︒,∴EF BC ⊥ ∵EF 过圆心O ,所以BF CF =.。

新人教版初中数学九年级上册第22章圆检测题和解析答案

新人教版初中数学九年级上册第22章圆检测题和解析答案

第二十四章圆检测题一、选择题(每小题3分,共30分)1.如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是( )A.35°B.140°C.70°D.70°或140°2.如图,⊙O的直径AB=8,点C在⊙O上,∠ABC=30°,则AC的长是( )A.2B.22C.23D.43.如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于( )A.2B.3C.22D.234.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,若∠P=40°,则∠ACB 的度数是( )A.80°B.110°C.120°D.140°5.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )A.2rB.3rC.rD.2r6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A.25πB.65πC.90πD.130π7.下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有( )A.1个B.2个C.3个D.4个8.如图,AB 是⊙O 的直径,CD 是弦,AB ⊥CD ,垂足为点E ,连接OD 、CB 、AC ,∠DOB=60°,EB=2,那么CD 的长为( )A.3B.23C.33D.439.如图,Rt △AB ′C ′是Rt △ABC 以点A 为中心逆时针旋转90°而得到的,其中AB=1,BC=2,则旋转过程中弧CC ′的长为( )A.25π B.25π C.5πD.5π10.如图所示,直线CD 与以线段AB 为直径的圆相切于点D ,并交BA 的延长线于点C ,且AB=2,AD=1,P 点在切线CD 上移动.当∠APB 的度数最大时,∠ABP 的度数为( ) A.15°B.30°C.60°D.90°二、填空题(每小题4分,共24分)11.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为_____12.如图,点A 、B 、C 、D 分别是⊙O 上四点,∠ABD=20°,BD 是直径,则∠ACB=_____ 13.如图,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB 为0.8 m ,则排水管内水的深度为_____14.小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5 cm ,弧长是6π cm ,那么这个圆锥的高是_____15.如图,在Rt△ABC中,∠C=90°,∠A=60°,BC=4 cm,以点C为圆心,以3 cm长为半径作圆,则⊙C与AB的位置关系是_____16.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为_____三、解答题(共46分)17.(8分)在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.18.(8分)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12. 求线段EF的长.19.(10分)如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为弧BC的中点.(1)求证AB=BC;(2)求证四边形BOCD是菱形.20.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线;(2)若∠BAC=30°,DE=2,求AD的长.21.(10分)ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.(1)求圆心O到CD的距离;(2)求由弧AE,线段AD,DE所围成的阴影部分的面积.(结果保留π和根号)。

初三上册数学期中试题及答案

初三上册数学期中试题及答案

【导语】学业的精深造诣来源于勤奋好学,只有好学者,才能在⽆边的知识海洋⾥猎取到真智才学,只有真正勤奋的⼈才能克服困难,持之以恒,不断开拓知识的领域,武装⾃⼰的头脑,成为⾃⼰的主宰,让我们勤奋学习,持之以恒,成就⾃⼰的⼈⽣,让⾃⼰的青春写满⽆悔!搜集的《初三上册数学期中试题及答案》,希望对同学们有帮助。

【篇⼀】 ⼀、选择题(每⼩题3分,共30分) 1.已知x=2是⼀元⼆次⽅程(m-2)x2+4x-m2=0的⼀个根,则m的值为(C) A.2B.0或2C.0或4D.0 2.(2016•葫芦岛)下列⼀元⼆次⽅程中有两个相等实数根的是(D) A.2x2-6x+1=0B.3x2-x-5=0C.x2+x=0D.x2-4x+4=0 3.(2017•⽟林模拟)关于x的⼀元⼆次⽅程x2-4x-m2=0有两个实数根x1,x2,则m2(1x1+1x2)=(D) A.m44B.-m44C.4D.-4 4.若抛物线y=(x-m)2+(m+1)的顶点在第⼀象限,则m的取值范围为(B) A.m>2B.m>0C.m>-1D.-1<m<0 5.如图,在长70m,宽40m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路⾯积占总⾯积的18,则路宽x 应满⾜的⽅程是(B) A.(40-x)(70-x)=350 B.(40-2x)(70-3x)=2450 C.(40-2x)(70-3x)=350 D.(40-x)(70-x)=2450 6.把⼆次函数y=12x2+3x+52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是(C) A.(-5,1)B.(1,-5)C.(-1,1)D.(-1,3) 7.已知点A(-3,y1),B(2,y2),C(3,y3)在抛物线y=2x2-4x+c上,则y1,y2,y3的⼤⼩关系是(B) A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y3>y1 8.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是(C) A.抛物线开⼝向上B.抛物线的对称轴是直线x=1 C.当x=1时,y的值为-4D.抛物线与x轴的交点为(-1,0),(3,0) 9.在同⼀坐标系内,⼀次函数y=ax+b与⼆次函数y=ax2+8x+b的图象可能是(C) 10.(2016•达州)如图,已知⼆次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac-b2<8a;④13 A.①③B.①③④C.②④⑤D.①③④⑤ ⼆、填空题(每⼩题3分,共24分) 11.⽅程2x2-1=3x的⼆次项系数是__2__,⼀次项系数是__-3__,常数项是__-1__. 12.把⼆次函数y=x2-12x化为形如y=a(x-h)2+k的形式为__y=(x-6)2-36__. 13.已知抛物线y=ax2+bx+c过(-1,1)和(5,1)两点,那么该抛物线的对称轴是直线__x=2__. 14.已知整数k<5,若△ABC的边长均满⾜关于x的⽅程x2-3kx+8=0,则△ABC的周长是__6或12或10__. 15.与抛物线y=x2-4x+3关于y轴对称的抛物线的解析式为__y=x2+4x+3__. 16.已知实数m,n满⾜3m2+6m-5=0,3n2+6n-5=0,且m≠n,则nm+mn=__-225__. 17.如图,四边形ABCD是矩形,A,B两点在x轴的正半轴上,C,D两点在抛物线y=-x2+6x上,设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为__l=-2m2+8m+12__. 18.如图,在⽔平地⾯点A处有⼀球发射器向空中发射球,球飞⾏路线是⼀条抛物线, 在地⾯上落点为B,有⼈在直线AB上点C(靠点B⼀侧)竖直向上摆放若⼲个⽆盖的圆柱形桶.试图让球落⼊桶内,已知AB =4⽶,AC=3⽶,球飞⾏⾼度OM=5⽶,圆柱形桶的直径为0.5⽶,⾼为0.3⽶(球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶⾄少__8__个时,球可以落⼊桶内. 三、解答题(共66分) 19.(8分)⽤适当的⽅法解⽅程: (1)x2-4x+2=0;(2)(2x-1)2=x(3x+2)-7. 解:x1=2+2,x2=2-2解:x1=2,x2=4 20.(6分)如图,已知抛物线y1=-2x2+2与直线y2=2x+2交于A,B两点. (1)求A,B两点的坐标; (2)若y1>y2,请直接写出x的取值范围. 解:(1)A(-1,0),B(0,2) (2)-1<x<0 21.(7分)已知关于x的⼀元⼆次⽅程x2-(2k+1)x+k2+k=0. (1)求证:⽅程有两个不相等的实数根; (2)若△ABC的两边AB,AC的长是这个⽅程的两个实数根,第三边BC的长为5,当△ABC是等腰三⾓形时,求k的值. 解:(1)∵Δ=(2k+1)2-4(k2+k)=1>0,∴⽅程有两个不相等的实数根 (2)⼀元⼆次⽅程x2-(2k+1)x+k2+k=0的解为x1=k,x2=k+1,当AB=k,AC=k+1,且AB=BC时,△ABC是等腰三⾓形,则k=5;当AB=k,AC=k+1,且AC=BC时,△ABC是等腰三⾓形,则k+1=5,解得k=4,所以k的值为5或4 22.(7分)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3). (1)求抛物线的解析式和顶点坐标; (2)请你写出⼀种平移的⽅法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式. 解:(1)抛物线解析式为y=-x2+4x-3,即y=-(x-2)2+1,∴顶点坐标(2,1)(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0)落在直线y=-x上 23.(8分)(2016•济宁)某地2014年为做好“精准扶贫”,投⼊资⾦1280万元⽤于异地安置,并规划投⼊资⾦逐年增加,2016年在2014年的基础上增加投⼊资⾦1600万元. (1)从2014年到2016年,该地投⼊异地安置资⾦的年平均增长率为多少? (2)在2016年异地安置的具体实施中,该地计划投⼊资⾦不低于500万元⽤于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地⾄少有多少户享受到优先搬迁租房奖励? 解:(1)设该地投⼊异地安置资⾦的年平均增长率为x,根据题意得1280(1+x)2=1280+1600,解得x1=0.5,x2=-2.5(舍去),则所求年平均增长率为50% (2)设今年该地有a户享受到优先搬迁租房奖励,根据题意得1000×8×400+(a-1000)×5×400≥5000000,解得a≥1900,则今年该地⾄少有1900户享受到优先搬迁租房奖励 24.(8分)如图,已知⼆次函数经过点B(3,0),C(0,3),D(4,-5). (1)求抛物线的解析式; (2)求△ABC的⾯积; (3)若P是抛物线上⼀点,且S△ABP=12S△ABC,这样的点P有⼏个?请直接写出它们的坐标. 解:(1)y=-x2+2x+3 (2)由题意得-x2+2x+3=0,解得x1=-1,x2=3,∴A(-1,0),∵AB=4,OC=3,∴S△ABC=12×4×3=6(3)点P有4个,坐标为(2+102,32),(2-102,32),(2+222,-32),(2-222,-32) 25.(10分)⼤学毕业⽣⼩王响应国家“⾃主创业”的号召,利⽤银⾏⼩额⽆息贷款开办了⼀家饰品店,该店购进⼀种今年新上市的饰品进⾏销售,饰品的进价为每件40元,售价为每件60元,每⽉可卖出300件.市场调查反映:调整价格时,售价每涨1元每⽉要少卖10件;售价每下降1元每⽉要多卖20件,为了获得更⼤的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每⽉饰品销量为y(件),⽉利润为w(元). (1)直接写出y与x之间的函数解析式; (2)如何确定销售价格才能使⽉利润?求⽉利润; (3)为了使每⽉利润不少于6000元应如何控制销售价格? 解:(1)由题意可得y=300-10x(0≤x≤30)300-20x(-20≤x<0) (2)由题意可得w=(20+x)(300-10x)(0≤x≤30),(20+x)(300-20x)(-20≤x<0),即w=-10(x-5)2+6250(0≤x≤30),-20(x+52)2+6125(-20≤x<0),由题意可知x应取整数,故-20≤x<0中,当x=-2或x=-3时,w=6120;0≤x≤30中,当x=5时,w=6250,故当销售价格为65元时,利润,利润为6250元(3)由题意w≥6000,令w =6000,即6000=-10(x-5)2+6250,6000=-20(x+52)2+6125,解得x1=10,x2=0,x3=-5,∴-5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每⽉利润不少于6000元 26.(12分)如图,在平⾯直⾓坐标系xOy中,A,B为x轴上两点,C,D为y轴上的两点,经过点A,C,B的抛物线的⼀部分C1与经过点A,D,B的抛物线的⼀部分C2组合成⼀条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,-32),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点. (1)求A,B两点的坐标; (2)“蛋线”在第四象限上是否存在⼀点P,使得△PBC的⾯积?若存在,求出△PBC⾯积的值;若不存在,请说明理由; (3)当△BDM为直⾓三⾓形时,求m的值. 解:(1)y=mx2-2mx-3m=m(x-3)(x+1),∵m≠0,∴当y=0时,x1=-1,x2=3,∴A(-1,0),B(3,0) (2)C1:y=12x2-x-32.如图,过点P作PQ∥y轴,交BC于Q,由B,C的坐标可得直线BC的解析式为y=12x-32.设P(x,12x2-x-32),则Q(x,12x-32),PQ=12x-32-(12x2-x-32)=-12x2+32x,S△PBC=12PQ•OB=12×(-12x2+32x)×3=-34(x-32)2+2716, 当x=32时,S△PBC有值,S=2716,此时12×(32)2-32-32=-158,∴P(32,-158) (3)y=mx2-2mx-3m=m(x-1)2-4m,顶点M的坐标为(1,-4m).当x=0时,y=-3m,∴D(0,-3m).⼜B(3,0),∴DM2=(0-1)2+(-3m+4m)2=m2+1,MB2=(3-1)2+(0+4m)2=16m2+4,BD2=(3-0)2+(0+3m)2=9m2+9.当△BDM为直⾓三⾓形时,有DM2+BD2=MB2或DM2+MB2=BD2,①DM2+BD2=MB2时,有m2+1+9m2+9=16m2+4,解得m=-1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时,有m2+1+16m2+4=9m2+9,解得m=-22(m =22舍去).综上,m=-1或-22时,△BDM为直⾓三⾓形 【篇⼆】 ⼀、选择题(每题3分,共18分) 1.⼀元⼆次⽅程x(x﹣1)=0的根是() A.1B.0C.0或1D.0或﹣1 2.已知⊙O的半径为10,圆⼼O到直线l的距离为6,则反映直线l与⊙O的位置关系的图形是() A.B.C.D. 3.某款⼿机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x,则依题意列出的⽅程为() A.1185x2=580B.1185(1﹣x)2=580C.1185(1﹣x2)=580D.580(1+x)2=1185 4.如图,⊙O为△ABC的外接圆,∠A=30°,BC=6,则⊙O的半径为() A.6B.9C.10D.12 5.边长分别为5、5、6的三⾓形的内切圆的半径为() A.B.C.D. 6.在Rt△ABC中,∠ACB=90°,CD是△ABC的⾼,E是AC的中点,ED、CB的延长线相交于点F,则图中相似三⾓形有()A.3对B.4对C.5对D.6对 ⼆、填空题:(每题3分,共30分) 7.已知,则=. 8.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于. 9.已知是⼀元⼆次⽅程x2﹣2x﹣1=0的两根,则=. 10.如图,⼀个正n边形纸⽚被撕掉了⼀部分,已知它的中⼼⾓是40°,那么n=. 11.已知75°的圆⼼⾓所对的弧长为5,则这条弧所在圆的半径为. 12.已知点C是AB的黄⾦分割点(AC<BC),AB=4,则BC的长为.(保留根号) 13.圆锥的底⾯的半径为3,母线长为5,则圆锥的侧⾯积为. 14.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,则∠E+∠F =. 15.如图,P为⊙O外⼀点,PA与⊙O相切于点A,PO交⊙O于点B,BC⊥OP交PA于点C,BC=3,PB=4,则⊙O的半径为. 16.已知Rt△ABC中,∠ACB=90°,中线BD、CE交于G点,∠BGC=90°,CG=2,则BC=. 三、解答题:(共102分) 17.(本题满分10分) 解⽅程:(1)(2) 18.(本题满分8分) 已知,关于x的⽅程x2﹣2mx+m2﹣1=0. (1)不解⽅程,判断此⽅程根的情况; (2)若x=2是该⽅程的⼀个根,求代数式的值. 19.(本题满分8分) 如图所⽰的格中,每个⼩⽅格都是边长为1的正⽅形,B点的坐标为(﹣1,﹣1). (1)把格点△ABC绕点B按逆时针⽅向旋转90°后得到△A1BC1,请画出△A1BC1,并写出点A1的坐标; (2)以点A为位似中⼼放⼤△ABC,得到△AB2C2,使放⼤前后的⾯积之⽐为1:4请在下⾯格内画出△AB2C2. 20.(本题满分10分) 如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°. (1)求BD的长; (2)求图中阴影部分的⾯积. 21.(本题满分10分) 如图,在⊙O的内接四边形ABCD中,AB=AD,E在弧AD上⼀点. (1)若∠C=110°,求∠E的度数; (2)若∠E=∠C,求证:△ABD为等边三⾓形. 22.(本题满分10分) 某商场将进货价为每只30元的台灯以每只40元售出,平均每⽉能售出600只.调查表明,这种台灯的售价每上涨1元,其⽉销售量将减少10只.当这种台灯的售价定为多少元时,每个⽉的利润恰为10000元? 23.(本题满分10分) 李华晚上在两根相距40m的路灯杆下来回散步,已知李华⾝⾼AB=1.6m,灯柱CD=EF=8m. (1)若李华距灯柱CD的距离DB=16m,求他的影⼦BQ的长. (2)若李华的影⼦PB=5m,求李华距灯柱CD的距离. 24.(本题满分10分) 已知∠ADE=∠C,AG平分∠BAC交DE于F,交BC于G. (1)△ADF∽△ACG;(2)连接DG,若DG∥AC,,AD=6,求CE的长度. 25.(本题满分12分) 如图,正⽅形ABCD中,对⾓线AC、BD交于点P,O为线段BP上⼀点(不与B、P重合),以O为圆⼼OA为半径作⊙O交直线AD、AB于E、F. (1)求证:点C在⊙O上; (2)求证:DE=BF; (3)若AB=,DE=,求BO的长度. 26.(本题满分14分) 已知,在平⾯直⾓坐标系中,A点坐标为(0,m)(),B点坐标为(2,0),以A点为圆⼼OA为半径作⊙A,将△AOB绕B 点顺时针旋转⾓(0°<<360°)⾄△A/O/B处. (1)如图1,,=90°,求O/点的坐标及AB扫过的⾯积; (2)如图2,当旋转到A、O/、A/三点在同⼀直线上时,求证:O/B是⊙O的切线; (3)如图3,,在旋转过程中,当直线BO/与⊙A相交时,直接写出的范围. 2016—2017学年度第⼀学期期中考试 九年级数学试题参考答案 ⼀、选择题(每题3分,共18分)1.C2.B3.B4.A5.B6.B ⼆、填空题:(每题3分,共30分) 7.8.30°9.210.911.1212.13.14.80°15.616. 三、解答题:(共102分) 17.(1).......(5分)(2).......(10分) 23.(1),所以⽅程两个不相等的实数根;.......(4分) (2)3.......(8分) 24.(1)如图.......(2分),(-4,3).......(4分)(2)如图.......(8分)(每图2分) 25.(1);.......(5分)(2).......(10分) 21.(1)125°.......(5分)(2)因为四边形ABCD是⊙O的内接四边形,所以∠BAD+∠C=180°,因为四边形ABDE是⊙O的内接四边形,所以∠ABD+∠E=180°,⼜因为∠E=∠C,所以∠BAD=∠ABD,所以AD=BD,.......(8分) 因为AB=AD,所以AD=BD=AD,所以△ABD为等边三⾓形........(10分) 22.设这种台灯的售价定为x元时,每个⽉的利润恰为10000元. ................................(5分) 解之得................................(9分) 答:这种台灯的售价定为50或80元时,每个⽉的利润恰为10000元......(10分) 23.(1)4m.................(5分)(2)20m.................(10分) 24.(1)因为AG平分∠BAC,所以∠DAF=∠CAG,⼜因为∠ADE=∠C,所以△ADF∽△ACG;...............(5分) (2)求到AC=15........(7分)求到AE=4.........(9分)CE=11.......(10分) 25.(1)连接OC,因为正⽅形ABCD,所以BD垂直平分AC,所以OC=OA,所以点C在⊙O上;...............(4分) (2)连接CE、CF,因为四边形AFCE是⊙O的内接四边形,所以∠BFC+∠AEC=180°,因为∠DEC+∠AEC=180°,所以∠BFC=∠DEC,因为CD=BC,∠ADC=∠FBC=90°, 所以△FBC≌△EDC,所以DE=BF;...............(8分) (3)3...............(12分) 26.(1)(2,2)...............(2分)...............(4分) (2)证AO/=AO即可;...............(10分) (3)0°<<90°或180°<<270°...............(14分) 【篇三】 ⼀、选择题(每⼩题3分,共30分) 1.下列⽅程中,⼀定是关于x的⼀元⼆次⽅程的是()A.ax2+bx+c=0B.2(x-x2)-1=0C.x2-y-2=0D.mx2-3x=x2+2 【答案】B 【解析】试题解析:A、不是⼀元⼆次⽅程,故此选项错误; B、是⼀元⼆次⽅程,故此选项正确; C、不是⼀元⼆次⽅程,故此选项错误; D、不是⼀元⼆次⽅程,故此选项错误. 故选B. 2.剪纸艺术是中华⽂化的瑰宝,下列剪纸图案中,既不是中⼼对称图形也不是轴对称图形的是() A.B.C.D. 【答案】B 3.⼀元⼆次⽅程x2﹣2x﹣3=0的⼆次项系数、⼀次项系数、常数项分别是()A.1,2,﹣3B.1,﹣2,3C.1,2,3D.1,﹣2,﹣3 【答案】D 【解析】⼀元⼆次⽅程的⼀般式为ax2+bx+c=0,⼆次项系数a,⼀次项系数b,常数项c,由题:x2﹣2x﹣3=0知:a=1,b=−2,c=−3, 4.在平⾯直⾓坐标系中,有A(2,﹣1)、B(﹣1,﹣2)、C(2,1)、D(﹣2,1)四点.其中,关于原点对称的两点为(). A.点A和点BB.点B和点CC.点C和点DD.点D和点A 【答案】D. 【解析】 试题分析:根据关于原点对称,横纵坐标都互为相反数即可得出答案.A(2,﹣1)与D(﹣2,1)关于原点对称. 故选:D. 考点:关于原点对称的点的坐标. 5.将抛物线y=2x2平移后得到抛物线y=2x2+1,则平移⽅式为()A.向左平移1个单位B.向右平移1个单位C.向上平移1个单位D.向下平移1个单位 【答案】C 点睛: 本题考查了⼆次函数图象平移的相关知识.⼆次函数图象向上或向下平移时,应将平移量以“上加下减”的⽅式作为常数项添加到原解析式中;⼆次函数图象向左或向右平移时,应先以“左加右减”的⽅式将⾃变量x和平移量组成⼀个代数式,再⽤该代数式替换原解析式中的⾃变量x.要特别注意理解和记忆⼆次函数图象左右平移时其解析式的相关变化. 6.在数1、2、3和4中,是⽅程+x﹣12=0的根的为(). A.1B.2C.3D.4 【答案】C. 【解析】 试题分析:解得⽅程后即可确定⽅程的根.⽅程左边因式分解得:(x+4)(x﹣3)=0,得到:x+4=0或x﹣3=0,解得:x=﹣4或x=3, 故选:C. 考点:⼀元⼆次⽅程的解. 7.若关于的⼀元⼆次⽅程的两个根为,,则这个⽅程是() A.B.C.D. 【答案】B. 考点:根与系数的关系. 8.某经济开发区今年⼀⽉份⼯业产值达到80亿元,第⼀季度总产值为275亿元,问⼆、三⽉平均每⽉的增长率是多少?设平均每⽉的增长率为x,根据题意所列⽅程是()A.80(1+x)2=275B.80+80(1+x)+80(1+x)2=275C.80(1+x)3=275D.80(1+x)+80(1+x)2=275 【答案】B 【解析】∵某经济开发区今年⼀⽉份⼯业产值达到80亿元,平均每⽉的增长率为x, ∴⼆⽉份的⼯业产值为80×(1+x)亿元, ∴三⽉份的⼯业产值为80×(1+x)×(1+x)=80×(1+x)2亿元, ∴可列⽅程为:80+80(1+x)+80(1+x)2=275, 【点睛】求平均变化率的⽅法:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到第⼀季度总产值的等量关系是解决本题的关键. 9.如图,在Rt△ABC中,∠BAC=90°,AB=AC,将△ABP绕点A逆时针旋转后,能与△重合,如果AP=3,那么的长等于(). A.B.C.D. 【答案】A 【解析】 试题分析:根据旋转图形的的性质可得:△APP′为等腰直⾓三⾓形,则PP′=3 考点:旋转图形 10.⼆次函数()的图像如图所⽰,下列结论:①;②当时,y随x的增⼤⽽减⼩;③;④;⑤,其中正确的个数是()A.1B.2C.3D.4 【答案】B 第II卷(⾮选择题) 评卷⼈得分 ⼆、填空题(每⼩题3分,共30分) 11.在平⾯直⾓坐标系内,若点A(a,﹣3)与点B(2,b)关于原点对称,则a+b的值为. 【答案】1 【解析】 试题分析:根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,进⽽可得a+b的值. 解:∵点A(a,﹣3)与点B(2,b)关于原点对称, ∴a=﹣2,b=3, ∴a+b=1. 故答案为:1. 考点:关于原点对称的点的坐标. 12.已知关于x的⽅程x2+mx﹣6=0的⼀个根为2,则这个⽅程的另⼀个根是. 【答案】﹣3 考点:根与系数的关系. 13.如图所⽰的风车图案可以看做是由⼀个直⾓三⾓形通过五次旋转得到的,那么每次需要旋转的最⼩⾓度为. 【答案】72° 【解析】 根据所给出的图,5个⾓正好构成⼀个周⾓,且5个⾓都相等,求出即可. 解:设每次旋转⾓度x°, 则5x=360, 解得x=72, 故每次旋转⾓度是72°. 故答案为:72°. 14.⼀元⼆次⽅程(x+1)(3x-2)=8的⼀般形式是. 【答案】3x2+x-10=0 【解析】 试题分析:⾸先进⾏去括号可得:+x-2=8,则转化成⼀般式可得:+x-10=0. 考点:⽅程的⼀般式 15.⽤配⽅法解⽅程x2﹣4x=5时,⽅程的两边同时加上,使得⽅程左边配成⼀个完全平⽅式. 【答案】4 考点:解⼀元⼆次⽅程-配⽅法 16.如图,在直⾓△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到,则∠=. 【答案】70°. 【解析】 试题分析:直接根据图形旋转的性质进⾏解答即可.∵将△OAB绕点O逆时针旋转100°得到,∠AOB=30°,∴△OAB≌,∴∠=∠AOB=30°.∴∠=∠﹣∠AOB=70°. 故答案为:70. 考点:旋转的性质. 17.已知抛物线的顶点为(1,-1),且过点(2,1),求这个函数的表达式为. 【答案】 【解析】 试题分析:由题意可得,设抛物线的解析式为,将点代⼊即可求出的值,化成⼀般式即可. 考点:利⽤顶点式求抛物线解析式. 18.关于x的⼀元⼆次⽅程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是. 【答案】k≥ 【解析】 试题分析:由于已知⽅程有实数根,则△≥0,由此可以建⽴关于k的不等式,解不等式就可以求出k的取值范围. 解:由题意知△=(2k+1)2+4(2﹣k2)=4k+9≥0,∴k≥. 考点:根的判别式. 19.如图所⽰,在⼀块正⽅形空地上,修建⼀个正⽅形休闲⼴场,其余部分(即阴影部分)铺设草坪,已知休闲⼴场的边长是正⽅形空地边长的⼀半,草坪的⾯积为147m2,则休闲⼴场的边长是m. 【答案】7. 【解析】 试题解析:设正⽅形休闲⼴场的边长为xm,则正⽅形空地的边长为2xm,根据题意列⽅程得, (2x)2-x2=147, 解得x1=7,x2=-7(不合题意,舍去); 故休闲⼴场的边长是7m. 考点:⼀元⼆次⽅程的应⽤. 20.⼆次函数y=ax2+bx+c(a≠0)的部分对应值如下表: 则⼆次函数y=ax2+bx+c在x=2时,y=. 【答案】-8 【解析】试题解析:∵x=-3时,y=7;x=5时,y=7, ∴⼆次函数图象的对称轴为直线x=1, ∴x=0和x=2时的函数值相等, ∴x=2时,y=-8. 考点:⼆次函数图象上点的坐标特征. 评卷⼈得分 三、解答题(共60分) 21.(本题6分)解⽅程: (1)(⽤配⽅法解) (2)3x(x-1)=2-2x(⽤适当的⽅法解) 【答案】(1)(2) 考点:解⼀元⼆次⽅程 22.(本题6分)如图所⽰的正⽅形格中,△ABC的顶点均在格点上,请在所给直⾓坐标系中按要求画图和解答下列问题: (1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1. (2)作△ABC关于坐标原点成中⼼对称的△A2B2C2. (3)求B1的坐标C2的坐标. 【答案】(1)(2)图解见解析(3)(﹣1,2),(4,1) 【解析】 试题分析:(1)根据关于x轴对称的点的坐标特征和点平移后的坐标规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1; (2)根据关于原点对称的点的坐标,写出点A、B、C的对应点A2、B2、C2的坐标,然后描点得到△A2B2C2; (3)由(1)可得B1的坐标,由(2)得C2的坐标. 解:(1)如图,△A1B1C1为所作; (2)如图,△A2B2C2为所作; (3)B1(﹣1,2)C2(4,1). 故答案为(﹣1,2),(4,1).。

人教版九年级数学上《圆》期中复习试卷含答案解析初三数学

人教版九年级数学上《圆》期中复习试卷含答案解析初三数学

北京市海淀区-九年级(上)期中数学复习试卷(圆)(解析版)一、填空题1.如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=度.2.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=.3.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是.4.(秋•海淀区期中)已知AB是直径,∠C等于15度,∠BAD的度数=.5.(秋•海淀区期中)如图,PA,PB分别与相⊙O切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.6.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外7.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定8.已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为.9.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.10.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.11.(秋•海淀区期中)如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.12.(秋•陇西县期末)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.13.(秋•海淀区期中)已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP 垂直平分线段AB.14.(秋•海淀区期中)已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O 交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.15.(秋•海淀区期中)已知:⊙O的半径OA=1,弦AB、AC的长分别为,,求∠BAC的度数.16.(秋•海淀区期中)已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.-学年北京市海淀区九年级(上)期中数学复习试卷(圆)参考答案与试题解析一、填空题1.如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=度.【考点】垂径定理;圆周角定理.【分析】本题关键是理清弧的关系,找出等弧,则可根据“同圆中等弧对等角”求解.【解答】解:由垂径定理可知,又根据在同圆或等圆中相等的弧所对的圆周角也相等的性质可知∠ABD=∠CEA=28度.故答案为:28.【点评】本题综合考查了垂径定理和圆周角的求法及性质.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.2.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=.【考点】垂径定理;勾股定理.【分析】根据垂径定理可以得到CE的长,在直角△OCE中,根据勾股定理即可求得.【解答】解:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.∴CE=CD=4.在直角△OCE中,OE===3.则AE=OA﹣OE=5﹣3=2.故答案为:2.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.3.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是.【考点】切线的性质.【分析】根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=50°,∴∠COD=180°﹣90°﹣50°=40°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=40°,∴∠A=20°.故答案为:20°.【点评】本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.4.(秋•海淀区期中)已知AB是直径,∠C等于15度,∠BAD的度数=.【考点】圆周角定理.【分析】连接BD,根据圆周角定理得到∠B=∠C=15°,根据直角三角形的性质计算即可.【解答】解:连接BD,∠B=∠C=15°,∵AB是直径,∴∠ADB=90°,∴∠BAD=90°﹣15°=75°,故答案为:75°.【点评】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.5.(秋•海淀区期中)如图,PA,PB分别与相⊙O切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.【考点】切线的性质.【分析】利用切线长定理得出PA=PB,再利用等边三角形的判定得出△PAB是等边三角形,即可得出答案.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=5,故答案为:5.【点评】此题主要考查了切线长定理以及等边三角形的判定与性质,得出△PAB是等边三角形是解题关键.6.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【考点】点与圆的位置关系.【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.7.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径是5,OP的长为7,5<7,∴点P在圆外.故选C.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.8.已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为.【考点】扇形面积的计算.【分析】直接根据扇形的面积公式进行计算即可.【解答】解:∵扇形的圆心角为120°,其半径为3,==3π.∴S扇形故答案为:3π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.9.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.【考点】圆内接四边形的性质.【分析】由∠BOD=138°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A的度数,又由圆的内接四边四边形的性质,求得∠BCD的度数,继而求得∠DCE的度数【解答】解:∵∠BOD=138°,∴∠A=∠BOD=69°,∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故答案为:69°.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单,解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半与圆内接四边形的对角互补定理的应用.10.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.【考点】点与圆的位置关系.【分析】解答此题应进行分类讨论,点P可能位于圆的内部,也可能位于圆的外部.【解答】解:当点P在圆内时,则直径=6+2=8cm,因而半径是4cm;当点P在圆外时,直径=6﹣2=4cm,因而半径是2cm.所以⊙O的半径为4或2cm.故答案为:4或2.【点评】考查了点与圆的位置关系,解决本题的关键是首先要进行分类讨论,其次是理解最长距离和最短距离和或差的意义.11.(秋•海淀区期中)如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.【考点】圆内接四边形的性质;圆周角定理.【分析】先根据圆内接四边形的性质推出∠ADC=50°,再根据圆周角定理推出∠AOC=100°,然后根据等腰三角形的性质及三角形内角和定理即可得出∠OAC的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABC=130°,∴∠ADC=180°﹣∠ABC=50°,∴∠AOC=2∠ADC=100°.∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=(180°﹣∠AOC)=40°.【点评】本题主要考查圆内接四边形的性质、圆周角定理、等腰三角形的性质及三角形内角和定理,关键在于求出∠AOC的度数.12.(秋•陇西县期末)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.【考点】切线的判定.【分析】(1)连接OC,根据三角形内角和定理可得∠DCG=180°﹣∠D﹣∠G=120°,再计算出∠GCO的度数可得OC⊥CG,进而得到CG是⊙O的切线;(2)设EO=x,则CO=2x,再利用勾股定理计算出EO的长,进而得到CO的长,然后再计算出FG的长即可.【解答】(1)证明:连接OC.∵OC=OD,∠D=30°,∴∠OCD=∠D=30°.∵∠G=30°,∴∠DCG=180°﹣∠D﹣∠G=120°.∴∠GCO=∠DCG﹣∠OCD=90°.∴OC⊥CG.又∵OC是⊙O的半径.∴CG是⊙O的切线.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=3.∵在Rt△OCE中,∠CEO=90°,∠OCE=30°,∴EO=CO,CO2=EO2+CE2.设EO=x,则CO=2x.∴(2x)2=x2+32.解得x=(舍负值).∴CO=2.∴FO=2.在△OCG中,∵∠OCG=90°,∠G=30°,∴GO=2CO=4.∴GF=GO﹣FO=2.【点评】此题主要考查了切线的判定,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.13.(2015秋•海淀区期中)已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.【考点】切线的性质.【分析】由PA与PB为圆的两条切线,根据切线长定理得到PA=PB,且PO平分两切线的夹角,进而得到三角形PAB为等腰三角形,根据三线合一得到PC为高,PC为中线,可得出OP垂直平分线段AB,得证.【解答】证明:∵PA,PB分别为⊙O的切线,∴PA=PB,PO为∠APB的平分线,∴PO⊥AB,C为AB的中点,则OP垂直平分线段AB.【点评】此题考查了切线的性质,涉及的知识有:切线长定理,以及等腰三角形的性质,熟练掌握切线长定理是解本题的关键.14.(2015秋•海淀区期中)已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.【考点】切线的判定.【分析】连接OF,CF,利用等边对等角即可证得OF⊥EF,从而证得EF是圆的切线.【解答】证明:连接OF,CF.∵AC是直径,∴∠AFC=90°,∴∠BFC=90°,又∵E是BC的中点,∴EF=EC,∴∠EFC=∠ECF,∵OC=OF,∴∠OFC=∠FCO,∵∠ACB=∠FCO+∠ECF=90°,∴∠EFC+∠OFC=90°,即∠EFO=90°,∴OF⊥EF,∴EF是⊙O的切线.【点评】本题考查了切线的判定,直角三角形的性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决本题的关键是正确作出辅助线.15.(2015秋•海淀区期中)已知:⊙O的半径OA=1,弦AB、AC的长分别为,,求∠BAC的度数.【考点】垂径定理;解直角三角形.【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,∴AE=AC=,AD=AB=,∴sin∠AOE===,sin∠AOD==,∴∠AOE=60°,∠AOD=45°,∴∠BAO=45°,∠CAO=90°﹣60°=30°,∴∠BAC=45°+30°=75°,或∠BAC′=45°﹣30°=15°.∴∠BAC=15°或75°.【点评】本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解.16.(2015秋•海淀区期中)已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB ∥CD.求这两条平行弦AB,CD之间的距离.【考点】垂径定理;勾股定理.【分析】分情况进行讨论,(1)如图,AB和CD再圆心的同侧,连接OB,OD,作OM ⊥AB交CD于点N,由AB∥CD,即可推出ON⊥CD,则MN为AB,CD之间的距离,通过垂径定理和勾股定理即可推出OM和ON的长度,根据图形即可求出MN=OM﹣ON,通过计算即可求出MN的长度,(2)AB和CD在圆心两侧,连接OB,OD,做直线OM⊥AB交CD于点N,由AB∥CD,即可推出MN⊥CD,则MN为AB,CD之间的距离,通过垂径定理和勾股定理即可推出OM和ON的长度,根据图形即可求出MN=OM+ON,通过计算即可求出MN的长度.【解答】解:(1)如图1,连接OB,OD,做OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM﹣ON,∴MN=8cm,(2)如图2,连接OB,OD,做直线OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM+ON,∴MN=22cm.∴平行弦AB,CD之间的距离为8cm或22cm.【点评】本题主要考查垂径定理和勾股定理的运用,平行线间的距离的定义,平行线的性质等知识点,关键在于根据题意分情况进行讨论,正确的做出图形,认真的做出辅助线构建直角三角形,熟练运用垂径定理和勾股定理推出OM和ON的长度,利用数形结合的思想即可求出结果.。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知的面积为,若点到直线的距离为,则直线与的位置关系是( )A .相交B .相切C .相离D .无法确定2.如图,四个边长为1的小正方形拼成一个大正方形, A 、B 是小正方形顶点,O 的半径为1,P 是O 上的点,且位于右上方的小正方形内,则APB ∠等于 ( ) A .30︒ B .45︒ C .60︒ D .90︒3.四边形ABCD 为⊙O 的内接四边形,若∠BCD=110°,则∠BAD 为( )A .140︒B .110︒C .90︒D .70︒ 4.若有两圆相交于两点,且圆心距离为13公分,则下列哪一选项中的长度可能为此两圆的半径( )A .25公分,40公分B .20公分,30公分C .1公分,10公分D .5公分,7公分5.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .O 29cm πO l cm πl OAAOB 12024πcm 26πcm 29πcm 212πcm OBA6cm120°6.如图,在直角梯形中,,,且,是的直径,则直线与的位置关系为( )A .相离B .相切C .相交D .无法确定7.如图,AB 是O 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O 的直径为( )A .5B .6C .8D .108.如图,35BAC ∠=︒,40CED ∠=︒,则BOD ∠的度数是( )A .75︒B .80︒C .150︒D .135︒9.如图,在中,,,,经过点且与边相切的动圆与、分别相交于点、,则线段长度的最小值是( ) A .B .C .D .8ABCD AD BC ∥90C ∠=︒AB AD BC >+AB OCDOBACABC △15AB =12AC =9BC =C AB CB CA E F EF 51236515210.如图,六边形是正六边形,曲线……叫做“正六边形的渐开线”,其中,,,,,,……的圆心依次按点循环,其弧长分别记为,….当时,2021l 等于( )A .20212πB .20213πC .20214πD .20216π二 、填空题(本大题共5小题,每小题3分,共15分)11.如图,与相切于点,线段与弦垂直于点,,,则切线 .12.如图,在以AB 为直径的半圆O 中,C 点是它的中点,若2AC =,则ABC ∆的面积是13.某盏路灯照射的空间可以看成如图所示的圆锥,它的高=8米,底面半径=6米,则圆锥的侧面积是 平方米(结果保留π).ABCDEF 1234567FK K K K K K K 1FK 12K K 23K K 34K K 45K K 56K K A B C D E F ,,,,,123456l l l l l l ,,,,,1AB =K 7K 6K 5K 4K 3K 2K 1FE D CB A AB O ⊙B OA BCD 60AOB ∠=︒4cm BC =AB =cmCBAO OB14.如图,BAC ∠所对的(图中BC )的度数为120︒,O 的半径为5,则弦BC的长为15.如图,多边形ABDEC 是由边长为2的等边三角形和正方形BDEC 组成,O 过A 、D 、E 三点,则O 的半径等于 .三 、解答题(本大题共7小题,共55分)16.如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.17.如图,有一个圆和两个正六边形,.的6个顶点都在圆周上,的BAAPEC BAO 1T 2T 1T 2T6条边都和圆相切(我们称分别为圆的内接正六边形和外切正六边形).(1)设的边长分别为圆的半径为,求及的值; (2)求正六边形的面积比的值.18.如图是某城市一个主题雕塑的平面示意图,它由置放于地面l 上两个半径均为2米的半圆与半径为4米的构成.点分别是两个半圆的圆心,分别与两个半圆相切于点长为8米.求的长.19.在Rt ABC ∆中,90C ∠=︒,12cm AC =,16cm BC =,以点C 为圆心,r 为半径的圆和AB 有怎样的位置关系?为什么? (1)9cm r =;(2)10cm r =;(3)9.6cm r =.20.如图,四边形内接于,是的直径,,垂足为,平分.(1)求证:是的切线;(2)若,求的长.O 12T T ,O 12T T ,a b ,O r :r a :r b 12T T ,12:S SA B C 、A E F BC 、、EF CBF E A DCBAABCD O BD O AE CD ⊥E DA BDE ∠AE O 301cm DBC DE ∠==,BD21.如图,已知AB 是O 的弦,半径20,120,OA cm AOB =∠=︒求AOB ∆的面积.22.如图1,O 中AB 是直径,C 是O 上一点,45ABC ∠=︒,等腰直角三角形DCE中DCE ∠是直角,点D 在线段AC 上. (1)证明:B C E 、、三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN ; (3)将DCE △绕点C 逆时针旋转α(090α︒<<︒)后,记为11D CE △(图2),若1M 是线段1BE 的中点,1N 是线段1AD的中点,111M N =是否成立?若是,请证明;若不是,说明理由.1人教版九年级上册数学《圆》单元测试卷答案解析一 、选择题1.C;【点评】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当时相离;当 时相切;当 时相交.2.B;考察同弧所对的圆周角是圆心角的一半.9045AOB APB ∠=︒∴∠=︒3.D4.B;设两圆半径分别为和,圆心距为,∵两圆相交与两点, ∴, ∵,∴根据选项知,半径为20公分和30公分的两圆符合条件,故选. 【解析】首先根据题意知,两圆相交,可知两圆圆心距大于两圆半径之差,小于两圆半径之和,结合选项得出正确答案.【点评】本题主要考查圆与圆的位置关系的知识点,解答本题的关键是根据圆心距和两圆半径之间的关系进行着手解答,本题比较简单. 5.D;【解析】此题考查的是扇形的面积公式:2360n R S π=︒,把题中的已知条件带入求解即可. 6.C作于.∵,,, ∴, 又, ∴. ∴. 又, ∴, r d <r d =r d >R r d R r d R r -<<+13d =B OE CD ⊥E AD BC ∥90C ∠=︒OE CD ⊥AD OE BC ∥∥OA OB =DE CE =2AD BCOE +=AB AD BC >+2ABOE <即圆心到直线的距离小于圆的半径,则直线和圆相交.7.D;重点是构造直角三角形,连接OC ,∵弦CD AB ⊥,142CE CD ∴==,由勾股定理得5OC ==, 10AB ∴=8.D;35BAC ∠=︒,40CED ∠=︒.BC ∴所对圆心角为70︒.CD 所对的圆心角为80︒.∴150BOD ∠=︒ .【解析】考查同弧所对圆周角是圆心角的一半. 9.B;取中点,作于点点,连接,当连接,根据三边关系∵,当三点共线时,直径取得最小值,∴10.B;16011=1803L ⋅=ππ 26022=1803L ⋅=ππ36033=1803L ⋅=ππ46044=1803L ⋅=ππBAEF O OG AB ⊥G CO CG COG △CG CO OG <+C O G 、、EF 365AC BC EF AB ⋅==按照这种规律可以得到:=3n n L π∴20216020212021=1803L ⋅=ππ 【解析】利用弧长公式,分别计算出……的长,寻找其中的规律,确定2021l 的长.二 、填空题11.412.2;90ACB ∴∠=︒,1, 2.2ABC AC BC AC BC S ∆=∴==∴=⨯2⨯2=2【解析】考查直径所对圆周角为90︒, 13..【解析】根据勾股定理求得,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法,求得答案即可. 【答案】∵米,米,∴米, ∴圆锥的底面周长=米, ∴(平方米)【点评】本题考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.;连结OB OC 、,过O 作OD BC ⊥于D .BAC ∠所对的BC 的度数为120︒,120BOC ∴∠=︒.180120,302OB OC OBD ︒-︒=∴∠==︒. 又5,OB =∴在Rt OBD ∆中,cos 530522BD OB OBD coc =∠=⨯︒=⨯=由垂径定理得弦222BC BD ==⨯= 15.2;【解析】连接OA 、OD 、OB ,作OM BD ⊥于M ,设OM 的长为x ,根据22OD OA =,123L L L ,,60πBO 12S lr =8AO =6OB =10AB =2612ππ⨯⨯=11=12106022S lr ππ=⨯⨯=扇形(2212x x +=-+;解得,x =2OA =三 、解答题16.⑴∵AB 是直径,C 在半圆上,∴90ACB ∠=︒,∵106AB BC ==,,∴8AC =. ⑵ ∵PE AB ⊥,∴90APE ∠=︒, ∵PAE CAB ∠=∠,∴APE ACB ∆∆∽, ∴AP PEAC BC=,即110286PE ⨯=, ∴154PE =. 17.(1)连接圆心和的6个顶点可得6个全等的正三角形.所以;连接圆心和相邻的两个顶点,得以圆半径为高的正三角形, 所以;(2),所以.【解析】(1)根据圆内接正六边形的半径等于它的边长,则; 在由圆的半径和正六边形的半边以及正六边形的半径组成的直角三角形中,根据锐角三角函数即可求得其比值;(2)根据相似多边形的面积比是相似比的平方.由(1)可以求得其相似比,再进一步求得其面积比.【点评】计算正多边形中的有关量的时候,可以构造到由正多边形的半径、边心距、半边组成的直角三角形中,根据锐角三角函数进行计算.注意:相AO 1T :1:1r a =O 2T O :2r b =12:T T 2()212::3:4S S a b ==:1:1r a =似多边形的面积比即是其相似比的平方.18.∵分别与两个半圆相切于点、,点分别是三个圆的圆心, ∴米,米,米. 则在和中,,, ∴. 故,则(米). 【解析】由各圆的半径可得到,.则由两边对应成比例,且夹角相等得到.故.则可求得的值.【点评】本题主要考查了圆与圆的位置关系以及相似三角形的判定和性质. 19.(1)当9cm r =时,AB 与O ⊙相离;(2)当10cm r =时,AB 与O ⊙相交;(3)当9.6cm r =时,AB 与O ⊙相切. 【解析】过C 作CD AB ⊥于D , 则1122ABC S AC BC AB CD ∆=⋅=⋅. ∵12cm AC =,16cm BC =,90C ∠=︒,∴20(cm)AB ==, ∴1112162022CD ⨯⨯=⨯⨯. ∴9.6(cm)CD =.(1)当9cm r =时,CD r >,∴AB 与O ⊙相离; (2)当10cm r =时,CD r <,∴AB 与O ⊙相交; (3)当9.6cm r =时,CD r =,∴AB 与O ⊙相切.20.(1)证明:连接,∵平分,∴.∵,∴.∴.∴.∵,∴, ∴. ∴是的切线.(2)∵是直径,∴.A E F ABC 、、4AE AF ==2BE CF ==6AB AC ==AEF △ABC △EAF BAC ∠=∠4263AE AF AB AC ===AEF ABC △∽△EF AE BC AB =216833AE EF BC AB =⋅=⨯=4AE AF ==26BE CF AB AC ====,AEF ABC △∽△EF AE BC AB=EF OA DA BDE ∠BDA EDA ∠=∠OA OD =ODA OAD ∠=∠OAD EDA ∠=∠OA CE ∥AE DE ⊥90AED ∠=︒90OAE DEA ∠=∠=︒AE OA ⊥AE O BD 90BCD BAD ∠=∠=︒∵,∴.∵平分,∴∴.在中,,,∴.在中,,,∴.∵的长时,∴的长是.21.解:作OC AB⊥于点C,则有1,602AC CB AOC AOB=∠=∠=︒.在Rt AOC∆中,20OA cm=,所以,10AC OC cm==,所以21)2AOBS AB OC cm∆==分析:作OC AB⊥于C,则1,2AOBAC BC AB OCS∆==.22.(1)证明:∵AB是直径,∴90BCA∠=︒,而等腰直角三角形DCE中DCE∠是直角,∴9090180BCA DCE∠+∠=︒+︒=︒,∴B C E、、三点共线;(2)连接BD,AE,ON,延长BD交AE于F,如图,30DBC∠=︒60BDC∠=︒120BDE∠=︒DA BDE∠60BDA EDA∠=∠=︒30ABD EAD∠=∠=︒Rt AED△90AED∠=︒30EAD∠=︒2AD DE=Rt ABD△90BAD∠=︒30ABD∠=︒24BD AD DE== DE1cm BD4cm1∵CB CA CD CE ==,∴Rt BCD Rt ACE ≌△△, ∴BD AE =,EBD CAE ∠=∠,∴90CAE ADF CBD BDC ∠+∠=∠+∠=︒,即BD AE ⊥,又∵M 是线段BE 的中点,N 是线段AD 的中点,而O 为AB 的中点,∴1122ON BD OM AE ON BD AE OM ==,,∥,∥; ∴ON OM ON OM =⊥,,即ONM △为等腰直角三角形, ∴MN ; (3)成立.理由如下:和(2)一样,易证得11Rt BCD Rt ACE ≌△△,同里可证11BD AE ⊥,11ON M △为等腰直角三角形,从而有111M N =.【解析】(1)根据直径所对的圆周角为直角得到90BCA ∠=︒,DCE ∠是直角,即可得到9090180BCA DCE ∠+∠=︒+︒=︒;(2)连接BD AE ON ,,,延长BD 交AE 于F ,先证明Rt BCD Rt ACE ≌△△,得到BD AE =,EBD CAE ∠=∠,则90CAE ADF CBD BDC ∠+∠=∠+∠=︒,即BD AE ⊥,再利用三角形的中位线的性质得到12ON BD =,12OM AE =,ON BD ∥,AE OM ∥,于是有ON OM =,ON OM ⊥,即ONM △为等腰直角三角形,即可得到结论;(3)证明的方法和(2)一样.【点评】本题考查了直径所对的圆周角为直角和三角形中位线的性质;也考查了三角形全等的判定与性质、等腰直角三角形的性质以及旋转的性质.。

人教版九年级数学上册 圆 几何综合单元试卷(word版含答案)

人教版九年级数学上册 圆 几何综合单元试卷(word版含答案)

人教版九年级数学上册 圆 几何综合单元试卷(word 版含答案)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ; (2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值. (2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC∴△OBC 是等边三角形 ∴∠BOC=60° ∵点D 是BC 的中点 ∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x 4+=∴AE=3312AF +=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=- 解得:331x 4-=∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.3.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC 与⊙O 相切于点D ,连接AO ,OD ,则AO=OD=MN . 在Rt △ABC 中,BC==5;由(1)知△AMN ∽△ABC , ∴,即,∴MN=x ∴OD=x ,过M 点作MQ ⊥BC 于Q ,则MQ=OD=x , 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴△BMQ ∽△BCA , ∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O 与直线BC 相切; 当x <时,⊙O 与直线BC 相离; x >时,⊙O 与直线BC 相交.考点:圆的综合题.4.四边形ABCD 的对角线交于点E ,有AE =EC ,BE =ED ,以AB 为直径的O 过点E .(1)求证:四边形ABCD 是菱形.(2)若CD 的延长线与圆相切于点F ,已知直径AB =4.求阴影部分的面积.【答案】(1)证明见解析;(2)513π- 【解析】试题分析:(1)先由AE=EC 、BE=ED 可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于Q ,分别求出扇形BOE 、△AOE、半圆O 的面积,即可得出答案. 试题解析:(1)AE =EC ,BE =ED∴ABCD 四边形为平行四边形 ∵90AB AEB ∠∴=︒是直径 ∴ABCD 平行四边形是菱形(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于QCF 切O 于点F∴90OFC ∠=︒ ∵ABCD 四边形是菱形,∴,90CD AB BOF OFD DPO ∠∠∠∴===︒ ∴FOPD DP OF ∴=四边形是矩形ABCD 四边形是菱形,AB AD ∴=∵11,3022OF AB DP AD DAB ∠=∴=∴=︒ ∴ABCD 四边形是菱形∴1152CAB DAB ∠=∠=︒ ∴180215150AOE ∠=︒-⨯︒=︒ ∴3090EOB EQO ∠∠=︒=︒∴112EQ OE == 21502360S 阴影π⨯∴=-1521123π⨯⨯=- 点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.5.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)210 . 【解析】 【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解; (2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径 ∴90AEB =︒∠∵AE BE = ∴AE BE = ∴45B ∠=︒ 又∵CD AB ⊥于H∴45HFB ∠=︒ ∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC = ∴2210BG BC ==.【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.6.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==.延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠,∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌, ∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒,∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形,∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,227PE OP OE =-=在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+- ∴257PH =. 【点睛】 本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.7.已知AB 是O 的一条弦,点C 在O 上,联结CO 并延长,交弦AB 于点D ,且CD CB =.(1)如图1,如果BO 平分ABC ∠,求证:AB BC =;(2)如图2,如果AO OB ⊥,求:AD DB 的值;(3)延长线段AO 交弦BC 于点E ,如果EOB ∆是等腰三角形,且O 的半径长等于2,求弦BC 的长.【答案】(1)证明见解析;(23351和22【解析】【分析】(1)由题意利用弦心距即可求证结果,(2)此题关键先求出AO ,做辅助线构造特殊三角形,并求证出∠AOD ,再根据平行线分线段成比例求出比值即可,(3)分情况讨论两种情况:OE=BE 时或OB=BE 时两种情况,利用三角形相似即△COE ~△CBO 找到相似比,利用相似比求解即可.【详解】(1)过点O作OP⊥AB,垂足为点P;OQ⊥BC,垂足为点Q,∵BO平分∠ABC,∴OP=OQ,∵OP,OQ分别是弦AB、BC 的弦心距,∴AB= BC;(2)∵OA=OB,∴∠A=∠OBD,∵CD=CB,∴∠CDB =∠CBD,∴∠A+∠AOD =∠CBO +∠OBD,∴∠AOD =∠CBO,∵OC=OB,∴∠C =∠CBO,∴∠DOB =∠C +∠CBO = 2∠CBO = 2∠AOD,∵AO⊥OB,∴∠ AOB =∠AOD +∠BOD =3∠AOD = 90°,∴∠AOD=30°,过点D作DH⊥AO,垂足为点H,∴∠AHD=∠DHO=90°,∴tan∠AOD =HDOH3∵∠AHD=∠AOB=90°,∴HD‖OB,∴DA OBH AHO=,∵OA=OB,∴HD=AH,∵HD‖OB,∴3AH HDOH OAHDB H===;(3)∵∠C=∠CBO ,∴∠OEB =∠C+∠COE >∠CBO ,∴OE≠OB ;若OB = EB =2时,∵∠C=∠C ,∠COE =∠AOD =∠CBO ,∴△COE ~△CBO , ∴CO CE BC CO =, ∴222BC BC =-, ∴2BC -2BC -4=0,∴BC =舍去)或,∴;若OE = EB 时,∵∠EOB =∠CBO ,∵∠OEB =∠C+∠COE =2∠C =2∠CBO 且∠OEB +∠CBO +∠EOB = 180°,∴4∠CBO=180°,∠CBO=45°,∴∠OEB=90°,∴cos ∠CBO=EB OB =, ∵OB=2,∴ ,∵OE 过圆心,OE ⊥BC ,∴.【点睛】此题考查圆的相关知识:圆心距及圆内三角形相似的相关知识,属于综合题型,难度较高.8.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度【答案】(1)证明见解析;(2)证明见解析;(3)2410MN =. 【解析】【分析】(1)由垂径定理即可证明; (2)利用等弧所对的圆周角相等和三角形外角性质即可得到结论;(3)由∠MPC=∠NQD 可得:∠BGL=∠BLG ,BL=BG ,作BR ⊥MN ,GT ⊥AF ,HK ⊥AB ,证明:GH 平分∠AGT ,利用相似三角形性质和角平分线性质求得△AGT 三边关系,再求出HK 与GH ,OS ⊥MN ,再利用相似三角形性质求出OS ,利用勾股定理求MN 即可.【详解】解:()1证明:∵BC BD =,AB 为直径,∴AB ⊥CD∴∠AEC=90°;()2连接,OM ON ,∵点M 是弧AC 的中点,点N 是弧DF 的中点,∴AM CM =,FN DN =,∴,OM AC ON FD ⊥⊥,∵OM=ON ,∴M N ∠=∠,∵90M MPC N NQB ∠+∠=∠+∠=︒,MPC NQD ∴∠=∠;()3如图3,过G 作GT ⊥AF 于T ,过H 作HK ⊥AB 于K ,过B 作BR ⊥MN 于R ,过O 作OS ⊥MN 于S ,连接OM ,设BG=m ,∵△ABH 的面积等于8,AG=6 ∴HK=166m +, ∵BC BD =,∴∠BAC=∠BFD ,由(2)得∠MPC=∠NQD∴∠AGM=∠FLN∴∠BGL=∠BLG∴BL=BG ,∵BR ⊥MN∴∠ABR=∠FBR∵GH ⊥MN∴GH ∥BR∴∠AGH=∠ABR∵AB 是直径,GT ⊥AF∴∠AFB=∠ATG=90°∴GT ∥BF ,又∵GH ∥BR∴∠TGH=∠FBR∴∠AGH=∠TGH ,又∵HK ⊥AG ,HT ⊥GT , ∴HT=HK=166m +, ∵FH=BG=m , ∴FT=16(8)(2)66m m m m m +--=++, ∵GT ∥BF , ∴AT AG FT BG=, ∴6(8)(2)(6)m m AT m m +-=+,616m AH m -=,48(6)(38)m KG TG m m ==+-, ∵222AT TG AG +=,代入解得:m=4;∴AB=10,OM=5,GK=245,HK=85,OG=1∴GH=8105,∵OS⊥MN∴∠OSG=∠GKH=90°,GH∥OS ∴∠HGK=∠GOS∴△HGK∽△GOS,∴OS GK OG GH=,∴310 OS=,∴222410MG OM OG=-=,∴2410 MN=;【点睛】本题考查了圆的性质,圆周角定理,垂径定理,相似三角形判定和性质,勾股定理等,综合性较强,尤其是第(3)问难度很大,计算量大,解题的关键是熟练掌握所学的知识,正确作出辅助线,运用数形结合的思想进行解题.9.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB 与⊙O 相切 ,理由见解析;(2)433PB =;(3)6565r ≤< 【解析】【分析】 (1)连接OB ,有∠OPB=∠OBP ,又AC=AB ,则∠C=∠ABP ,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC ,利用勾股定理先求出半径,作OH ⊥BP 与H ,利用相似三角形的判定和性质,即可求出PB 的长度;(3)根据题意得出OE=12AC=12AB=2216r 2-,利用OE=22162r r -≤,即可求出取值范围.【详解】解:(1)连接OB ,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴23PH =, ∴4323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤,∴65r ≥ 又∵圆O 与直线AC 相离,∴r <6,656r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.10.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 3)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:3l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD === 则点D 到⊙O1-,即直线:l y b =+上的点到⊙O的最小值为1-要使直线:l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点M 到⊙O1-1;点S 到⊙O 的最小11则1418≥≤,解得:1m ≤≤或1m ≤≤- 故当1m 时,m的取值范围为31m ≤≤④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O 的最小值为2211 m+-,最大值为2211m++则224118mm-≥⎧⎪⎨+-≤⎪⎩,解得:454m-≤≤-当正方形MNST处于4号正方形位置时则顶点S和T的坐标为(1,2),(,2)S m T m+此时,点N到⊙O的最小值为22(1)11m++-,最大值为22(1)11m+++;点T到⊙O的最小值为2221m+-,最大值为2221m++则2222(1)114218mm⎧+++≥⎪⎨+-≤⎪⎩,解得:77122m-≤≤--或22177m-≤≤(舍去)故当2m<-时,m的取值范围为774m-≤≤-综上,m的取值范围为3771m≤≤-或774m-≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.。

人教版九年级数学上册 圆 几何综合单元复习练习(Word版 含答案)

人教版九年级数学上册 圆 几何综合单元复习练习(Word版 含答案)

人教版九年级数学上册 圆 几何综合单元复习练习(Word 版 含答案)一、初三数学 圆易错题压轴题(难)1.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F . (1)若⊙O 半径为2,求线段CE 的长; (2)若AF =BF ,求⊙O 的半径;(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)CE =42;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6 【解析】 【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r-= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GEAB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE 切⊙O 于E , ∴∠OEC =90°,∵AC=8,⊙O的半径为2,∴OC=6,OE=2,∴CE=2242OC OE-=;(2)设⊙O的半径为r,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC=22AB A C-=6,∵AF=BF,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关2.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC⊥CD,∴△OCD是直角三角形.(3)连接OC交半圆O于点P,则点P即为所确定的点的位置.理由如下:连接CD,梯形ACDB的面积=()(26)41622AC DB AB+⨯+⨯==为定值,要使点P的关联图形的面积最大,就要使△PCD的面积最小,∵CD为定长,∴P到CD的距离就要最小,连接OC,设交半圆O于点P,∵AC⊥OA,AC=OA,∴∠AOC=45°,过C作CF⊥BD于F,则ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴OC⊥CD,OC=2∴PC在半圆外,设在半圆O上的任意一点P′到CD的距离为P′H,则P′H+P′O>OH>OC,∵OC=PC+OP,∴P′H>PC,∴当点P运动到半圆O与OC的交点位置时,点P的关联图形的面积最大.∵CD=42CP=222,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==,∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+.考点:圆的综合题.3.在直角坐标系中,⊙C 过原点O ,交x 轴于点A (2,0),交y 轴于点B (0,).(1)求圆心C 的坐标.(2)抛物线y=ax 2+bx+c 过O ,A 两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C 作平行于x 轴的直线DE ,交⊙C 于D ,E 两点,试判断D ,E 两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P (x 0,y 0),满足∠APB 为钝角,求x 0的取值范围.【答案】(1)圆心C 的坐标为(1,);(2)抛物线的解析式为y=x 2﹣x ;(3)点D 、E 均在抛物线上; (4)﹣1<x 0<0,或2<x 0<3. 【解析】试题分析:(1)如图线段AB 是圆C 的直径,因为点A 、B 的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.4.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM =∠EOH ,∠BMP =∠OHP ∴PM =PB ∴PM +PH =PB +OP ∴HM =OB =5在Rt △OBF 中,根据勾股定理可得BF =4 ∴BC =8,sin ∠OBC =35∵∠A +∠ABO =∠DEB +∠ABO =90° ∴∠AKB +∠CKB =90° ∴OK ⊥ACAC =2CK ,CK =BC •sin ∠OBC =245∴AC =485【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.5.四边形ABCD 的对角线交于点E ,有AE =EC ,BE =ED ,以AB 为直径的O 过点E .(1)求证:四边形ABCD 是菱形.(2)若CD 的延长线与圆相切于点F ,已知直径AB =4.求阴影部分的面积.【答案】(1)证明见解析;(2)513π- 【解析】试题分析:(1)先由AE=EC 、BE=ED 可判定四边形为平行四边形,再根据∠AEB=90°可判定该平行四边形为菱形;(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于Q ,分别求出扇形BOE 、△AOE、半圆O 的面积,即可得出答案. 试题解析:(1)AE =EC ,BE =ED∴ABCD 四边形为平行四边形 ∵90AB AEB ∠∴=︒是直径 ∴ABCD 平行四边形是菱形(2)连接OF ,过点D 作DP ,AB P E EQ AB ⊥⊥于过点作于QCF 切O 于点F∴90OFC ∠=︒∵ABCD 四边形是菱形,∴,90CD AB BOF OFD DPO ∠∠∠∴===︒∴FOPD DP OF ∴=四边形是矩形ABCD 四边形是菱形,AB AD ∴=∵11,3022OF AB DP AD DAB ∠=∴=∴=︒ ∴ABCD 四边形是菱形∴1152CAB DAB ∠=∠=︒ ∴180215150AOE ∠=︒-⨯︒=︒∴3090EOB EQO ∠∠=︒=︒ ∴112EQ OE == 21502360S 阴影π⨯∴=-1521123π⨯⨯=- 点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.6.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC 和△ABD 中,AB=AB ,AC=AD ,∠B=∠B ,则△ABC 和△ABD 是“同族三角形”.(1)如图2,四边形ABCD 内接于圆,点C 是弧BD 的中点,求证:△ABC 和△ACD 是同族三角形;(2)如图3,△ABC 内接于⊙O ,⊙O 的半径为32AB=6,∠BAC=30°,求AC 的长; (3)如图3,在(2)的条件下,若点D 在⊙O 上,△ADC 与△ABC 是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)33+3;(3)ADCD=622+或62.【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵2,AB=6,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°,∵∠BAC=30°,∴BE=AB=3,∴22AB BE-3,∵CE=BE=3,∴3(3)解:∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB时,∠DAC=∠BAC=30°,∴∠ACD=75°, ∴AD=AC=33+3,CD=BC=2BE=32, ∴AD 333CD 32+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴DF=CD•sin60°=6×323 ∴2DF=36∴AD 36CD ==62综上所述:AD CD =622或62 【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.7.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC .(1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)62【解析】【分析】(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.【详解】解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,∴12EA2+12CF2=12EF2,∴S△AGE+S△CFH=S△EFK,∴S△AGE+S△CFH+S五边形BGEFH=S△EFK+S五边形BGEFH,即S△ABC=S矩形BGKH,∴12S△ABC=12S矩形BGKH,∴S△GBH=S△ABO=S△CBO,∴S△BGM=S四边形COMH,S△BMH=S四边形AGMO,∵S四边形AGMO:S四边形CHMO=8:9,∴S△BMH:S△BGM=8:9,∵BM平分∠GBH,∴BG :BH =9:8, 设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =32,∴CF =2(k+3),EF =2(8k ﹣3),∵EA 2+CF 2=EF 2,∴222(32)[2(3)][2(83)]k k ++=-,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣17(舍去),k 2=1. ∴AB =12,∴AO =22AB =62, ∴⊙O 的半径为62.【点睛】本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.8.已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.(1)如图1,求证:弧AB =弧AD ;(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且222EH BE DH =+,求CAG ∠的度数;(3)如图3,在(2)的条件下,圆O 上一点M 与点C 关于BD 对称,连接ME ,交AB 于点N ,点P 为弧AD 上一点,PQ BG ∥交AD 于点Q ,交BD 的延长线于点R ,AQ BN =,ANE 的周长为20,52DR =O 半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=62【解析】【分析】(1)证∠ABD=∠ACB 可得;(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合,证△ALE ≌△AHE ,利用勾股定理逆定理推导角度;(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD.先证△AEN≌△QUD,再证△NVE≌△RKU,可得到NV=KR=DK,进而求得OB的长.【详解】(1)∵∠CED是△BEC的外角,∴∠CED=∠EBC+∠BCA∵∠ABC=∠ABD+∠EBC又∵∠CED=∠ABC∴∠ABD=∠ACB∴弧AB=弧AD(2)如下图,△AHD绕点A旋转至△ALE处,使得点D与点B重合∵△ALB是△AHD旋转所得∴∠ABL=∠ADB,AL=AH设∠CAG=a,则∠CBG=a∵BG⊥AC∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH,AE=AE∴△ALE≌△AHE,∴LE=EH∵HD=LB,222EH BE DH=+∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n,则∠SER=∠BEC=∠MEB=90°-n ∴∠AEN=2n∵SQ⊥AC∴∠TAS=∠AQS=∠DQR,AN=QD∵QU=AE∴△AEN≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE,∵△ANE的周长为20∴QD+QR=20在△DQR中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE≌△RKU∴NV=KR=DK=2 2∴BN=5∴22r=【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形9.如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,cos45B=,点O是边BC上的动点,以OB为半径的O与射线BA和边BC分别交于点E和点M,联结AM,作∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r = ∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠ 又∵CMN BAM ∠=∠ ∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形 ∴2528AF BM r === ∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠ ∴AMB CNM ∠=∠又∵AMB MAD ∠=∠ ∴MAD CNM ∠=∠又∵AFM NFD ∠=∠ ∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.10.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 322)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y =x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:3l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD ===则点D 到⊙O 1-,即直线:l y b =+上的点到⊙O 的最小值为1-要使直线:3l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点M 到⊙O1-1;点S 到⊙O 的最小11则1418≥≤,解得:1m ≤≤或1m ≤≤- 故当1m 时,m的取值范围为31m ≤≤④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O的最小值为11则418m -≥⎧≤,解得:4m -≤≤- 当正方形MNST 处于4号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点N 到⊙O11;点T 到⊙O11则2222(1)114218m m ⎧+++≥⎪⎨+-≤⎪⎩,解得:77122m -≤≤--或22177m -≤≤(舍去) 故当2m <-时,m 的取值范围为774m -≤≤-综上,m 的取值范围为3771m ≤≤-或774m -≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.。

【最新】2016-2017学年新课标人教版九年级(上册)期中数学试卷及答案

【最新】2016-2017学年新课标人教版九年级(上册)期中数学试卷及答案

2016-2017学年九年级(上)期中数学试卷一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=22.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)3.如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.364.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣18.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x29.二次函数y=ax2+bx+c的部分对应值如下表:x …﹣2 ﹣1 0 1 2 3 …y … 5 0 ﹣3 ﹣4 ﹣3 0 …当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A .B .C .D .二、填空题(每小题3分,共18分)11.已知△ABC ∽△A 1B 1C 1,AB :A 1B 1=2:3,则S △ABC 与S △A1B1C1之比为.12.在Rt △ABC 中,∠C=90°,BC :AC=3:4,则cosA= .13.点A (x 1,y 1)、B (x 2,y 2)在二次函数y=x 2﹣4x ﹣1的图象上,若当1<x 1<2,3<x 2<4时,则y 1与y 2的大小关系是y 1y 2.(用“>”、“<”、“=”填空)14.二次函数y=m 2x 2+(2m+1)x+1的图象与x 轴有两个交点,则m 取值范围是.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC ”,小红说“添加AB=DC ”.你同意的观点,理由是.16.如图,在平面直角坐标系xOy 中,二次函数y=﹣x 2﹣2x 图象位于x 轴上方的部分记作F 1,与x轴交于点P 1和O ;F 2与F 1关于点O 对称,与x 轴另一个交点为P 2;F 3与F 2关于点P 2对称,与x 轴另一个交点为P 3;….这样依次得到F 1,F 2,F 3,…,F n ,则其中F 1的顶点坐标为,F 8的顶点坐标为,F n 的顶点坐标为(n 为正整数,用含n 的代数式表示).三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.18.已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.19.如图,?ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面 3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= ;(2)若τ(1,2)=(0,﹣2),则a= ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.25.动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.(可以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 2 3 4 …y …m …则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其他性质(一条即可):.27.如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.28.已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;②抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是;(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n﹣5的最大值为﹣1,求m,n的值.2016-2017学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各题均有四个选项,其中只有一个是符合题意的.)1.抛物线y=(x﹣1)2+2的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=2【考点】二次函数的性质.【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出对称轴是x=h.【解答】解:∵抛物线的顶点式为y=(x﹣1)2+2,∴对称轴是x=1.故选B.【点评】要求熟练掌握抛物线解析式的各种形式的运用.2.若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【考点】二次函数图象与几何变换.【分析】先确定出原抛物线的顶点坐标,再根据向左平移横坐标减,向下平移,纵坐标减解答即可.【解答】解:抛物线y=2x2的顶点坐标为(0,0),∵向左平移2个单位,向下平移1个单位,∴新抛物线的顶点坐标是(﹣2,﹣1).故选:B.【点评】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.3.(2015秋?北京校级期中)如图,在△ABC中,DE∥BC,AD:AB=1:3,若△ADE的面积等于4,则△ABC的面积等于()A.12 B.16 C.24 D.36【考点】相似三角形的判定与性质.【分析】由条件证明△ADE∽△ABC,且相似比为,再利用相似三角形的性质可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,∵S△ADE=2,∴=,解得S△ABC=36.故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4.如图,在4×4的正方形网格中,tanα的值等于()A.B.C.D.【考点】锐角三角函数的定义.【专题】网格型.【分析】直接根据锐角三角函数的定义即可得出结论.【解答】解:∵AD⊥BC,AD=3,BD=2,∴tanα==.故选C.【点评】本题考查的是锐角三角函数的定义,熟记锐角三角函数的定义是解答此题的关键.5.如图,在平面直角坐标系中,以P(4,6)为位似中心,把△ABC缩小得到△DEF,若变换后,点A、B的对应点分别为点D、E,则点C的对应点F的坐标应为()A.(4,2) B.(4,4) C.(4,5) D.(5,4)【考点】位似变换.【专题】数形结合.【分析】根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F点的坐标.【解答】解:∵△DEF∽△ABC,且F点在CP的连线上,∴可得F点位置如图所示:故P点坐标为(4,4).故选B.【点评】本题考查位似的定义,难度不大,注意掌握两位似图形的对应点的连线都经过同一点,这一点即是位似中心.6.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是()A.BC,∠ACB B.DE,DC,BC C.EF,DE,BD D.CD,∠ACB,∠ADB【考点】相似三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据即可解答.【解答】解:此题比较综合,要多方面考虑,A、因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;B、无法求出A,B间距离.C、因为△ABD∽△EFD,可利用,求出AB;D、可利用∠ACB和∠ADB的正切求出AB;据所测数据不能求出A,B间距离的是选项B;故选:B.【点评】本题考查相似三角形的应用和解直角三角形的应用;将实际问题转化为数学问题是解决问题的关键.7.将抛物线y=2x2+1绕原点O旋转180°,则旋转后的抛物线的解析式为()A.y=﹣2x2B.y=﹣2x2+1 C.y=2x2﹣1 D.y=﹣2x2﹣1【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求解则可.【解答】解:根据题意,可得﹣y=2(﹣x)2+1,得到y=﹣2x2﹣1.故旋转后的抛物线解析式是y=﹣2x2﹣1.故选D.【点评】此题主要考查了根据二次函数的图象的变换求抛物线的解析式.8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【专题】压轴题.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.9.二次函数y=ax2+bx+c的部分对应值如下表:x …﹣2 ﹣1 0 1 2 3 …y … 5 0 ﹣3 ﹣4 ﹣3 0 …当函数值y<0时,x的取值范围是()A.﹣2<x<0 B.﹣1<x<0 C.﹣1<x<3 D.0<x<2【考点】二次函数的性质.【分析】根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),且图象开口向上,结合图象可以得出函数值y<0时,x的取值范围.【解答】解:根据图表可以得出二次函数的顶点坐标为(1,﹣4),图象与x轴的交点坐标为(﹣1,0),(3,0),如右图所示:∴当函数值y<0时,x的取值范围是:﹣1<x<3.故选C.【点评】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值的取值范围.数形结合是这部分考查重点,同学们应熟练掌握.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.二、填空题(每小题3分,共18分)11.已知△ABC∽△A1B1C1,AB:A1B1=2:3,则S△ABC与S△A1B1C1之比为4:9 .【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方即可得到答案.【解答】解:∵△ABC∽△A1B1C1,AB:A1B1=2:3,∴.【点评】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12.(2007?眉山)在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA= .【考点】锐角三角函数的定义.【专题】压轴题.【分析】根据BC:AC=3:4,设BC:AC的长,再根据勾股定理及直角三角形中锐角三角函数的定义求解.【解答】解:∵Rt△ABC中,∠C=90°,BC:AC=3:4,∴设BC=3x,则AC=4x,∴AB=5x,∴cosA===.【点评】本题利用了勾股定理和锐角三角函数的定义,比较简单.13.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1<y2.(用“>”、“<”、“=”填空)【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【解答】解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x=2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.14.二次函数y=m2x2+(2m+1)x+1的图象与x轴有两个交点,则m取值范围是m>﹣且m≠0 .【考点】抛物线与x轴的交点.【专题】二次函数图象及其性质.【分析】题目考查二次函数图象与x轴的交点个数与二次函数系数之间的关系,当图象与x轴有两个交点时,△>0,当图象与x轴有一个交点时,△=0,当图象与x轴没有交点时,△<0,同时不要遗漏二次函数二次项系数不为零.【解答】解:∵二次函数y=m2x2+(2m+1)x+1的图象与x轴有两个交点,∴△>0即b2﹣4ac>0代入得:(2m+1)2﹣4×m2×1>0解得:m>﹣∵二次函数二次项系数大于零,∴m2>0∴m≠0综上所述:【点评】题目考查二次函数定义及二次函数图象与x轴交点个数与△的关系,在计算△>0取值范围后,不要忘记二次函数不为零的前提.题目较简单.15.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意小明的观点,理由是一组对边平行且相等的四边形是平行四边形.【考点】平行四边形的判定.【分析】根据一组对边平行且相等的四边形是平行四边形可得小明正确.【解答】解:四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形,应添加AD=BC,根据一组对边平行且相等的四边形是平行四边形,因此小明说的对;小红添加的条件,也可能是等腰梯形,因此小红错误,故答案为:小明;一组对边平行且相等的四边形是平行四边形.【点评】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.16.如图,在平面直角坐标系xOy中,二次函数y=﹣x2﹣2x图象位于x轴上方的部分记作F1,与x 轴交于点P1和O;F2与F1关于点O对称,与x轴另一个交点为P2;F3与F2关于点P2对称,与x轴另一个交点为P3;….这样依次得到F1,F2,F3,…,F n,则其中F1的顶点坐标为(﹣1,1),F8的顶点坐标为(13,﹣1),F n的顶点坐标为[2n﹣3,(﹣1)n+1] (n为正整数,用含n的代数式表示).【考点】二次函数图象与几何变换.【分析】根据抛物线的解析式来求F1的顶点坐标;根据该“波浪抛物线”顶点坐标纵坐标分别为1和﹣1即可得出结论.【解答】解:∵y=﹣x2﹣2x=﹣(x+1)2+1,∴F1的顶点坐标为(﹣1,1).又y=﹣x2﹣2x=﹣x(x+2),∴P1(﹣2,0),∴根据函数的对称性得到:F2的顶点坐标为(1,﹣1),P2(2,0),F3的顶点坐标为(3,1),P3(4,0),…F的顶点坐标为(13,﹣1),8的顶点坐标为[2n﹣3,(﹣1)n+1].Fn故答案是:(﹣1,1);(13,﹣1);[2n﹣3,(﹣1)n+1].【点评】本题考查了二次函数图象与几何变换.解题的关键是找到F n的顶点坐标变换规律.三、解答题(本题共72分,第17-21题,每小题6分,第22-25题,每小题6分,第26题7分,第27题7分,第28题8分)17.计算:3tan30°+2cos45°﹣sin60°﹣2sin30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+2×﹣﹣2×=+﹣1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.(2015秋?北京校级期中)已知:二次函数y=ax2+bx+c的图象经过(﹣3,0)、(1,0)、(0,﹣3)三点,(1)求:二次函数的表达式;(2)求:二次函数的对称轴、顶点坐标,并画出此二次函数的图象.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【专题】计算题.【分析】(1)设交点式二次函数解析式为:y=a(x﹣1)(x+3),然后把(0,﹣3)代入求出a即可;(2)把(1)中解析式配成顶点式,然后根据二次函数的性质得到二次函数的对称轴、顶点坐标,然后利用描点法画函数图象.【解答】解:(1)∵二次函数的图象经过(﹣3,0)、(1,0)两点∴设二次函数解析式为:y=a(x﹣1)(x+3)又∵图象经过(0,﹣3)点,∴﹣3=a(0﹣1)(0+3)解得a=1∴二次函数解析式为:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴二次函数图象的对称轴为直线x=﹣1;顶点坐标为:(﹣1,﹣4);如图,【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象.19.如图,?ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)利用平行四边形的性质:对角相等和对边平行可得∠B=∠D和∠FCD=∠E,有两对角相等的三角形相似可判定△EBC∽△CDF;(2)有(1)可知:△EBC∽△CDF,利用相似三角形的性质:对应边的比值相等即可求出AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠FCD=∠E,∴△EBC∽△CDF;(2)解:∵△EAF∽△EBC,∴,即.解得:AF=2.【点评】本题考查了平行四边形的性质以及相似三角形的判定和相似三角形的性质,难度不大,属于基础性题目.20.已知:如图,在△ABC中,CD⊥AB,sinA=,AB=13,CD=12,求AD的长和tanB的值.【考点】解直角三角形;锐角三角函数的定义.【分析】由sinA=,CD=12,根据三角函数可得AC=15,根据勾股定理可得AD=9,则BD=4,再根据正切的定义求出tanB的值.【解答】解:∵CD⊥AB,∴∠CDA=90°…(1分)∵sinA=∴AC=15.…(2分)∴AD=9.…∴BD=4.…(4分)∴tanB=…【点评】考查了解直角三角形和锐角三角函数的定义,要熟练掌握好边角之间的关系.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面 3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?【考点】二次函数的应用.【专题】应用题.【分析】(1)以拱桥最顶端为原点,建立直角坐标系,根据题目中所给的数据写出函数解析式.(2)计算出本问可用两种方法求得,求x=3米时求出水面求出此时y的值,A、B点的横坐标减去y 此时的值到正常水面AB的距离与 3.6相比较即可得出答案.【解答】解:(1)设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),n=102?a=100a,n+3=52a=25a,即,解得,∴;(2)∵货轮经过拱桥时的横坐标为x=3,∴当x=3时,∵﹣(﹣4)>3.6∴在正常水位时,此船能顺利通过这座拱桥.答:在正常水位时,此船能顺利通过这座拱桥.【点评】此题考查了坐标系的建立,以及抛物线的性质与求值.22.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30°方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)首先作PC⊥AB于C,利用∠CPA=90°﹣45°=45°,进而利用锐角三角函数关系得出PC的长,即可得出答案;(2)首先求出OB的长,进而得出OB>50,即可得出答案.【解答】解:(1)作PC⊥AB于C.(如图)在Rt△PAC中,∠PCA=90°,∠CPA=90°﹣45°=45°.∴.在Rt△PCB中,∠PCB=90°,∠PBC=30°.∴.答:B处距离灯塔P有海里.(2)海轮到达B处没有触礁的危险.理由如下:∵,而,∴.∴OB>50.∴B处在圆形暗礁区域外,没有触礁的危险.【点评】此题主要考查了解直角三角形的应用,利用数形结合以及锐角三角函数关系得出线段PC的长是解题关键.23.如图,在四边形ABCD中,∠C=60°,∠B=∠D=90°,AD=2AB,CD=3,求BC的长.【考点】解直角三角形.【分析】延长DA、CB交于点E,解直角三角形求出DE、EC,求出∠E=30°,解直角三角形求出EB,即可求出答案.【解答】解:延长DA、CB交于点E,∵在Rt△CDE中,tanC==,cosC==,∴DE=3,EC=6,∵AD=2AB设AB=k,则AD=2k,∵∠C=60°,∠B=∠D=90°,∴∠E=30°,∵在Rt△ABE中,sinE==tanE==,∴AE=2AB=2k,EB=AB=k,∴DE=4k=3,解得:k=,∴EB=,∴BC=6﹣=.【点评】本题考查了解直角三角形的应用,主要考查学生进行计算的能力,是一道比较好的题目,关键是构造直角三角形.24.在平面直角坐标系xOy中,点P(x,y)经过变换τ得到点P′(x′,y′),该变换记作τ(x,y)=(x′,y′),其中(a,b为常数).例如,当a=1,且b=1时,τ(﹣2,3)=(1,﹣5).(1)当a=1,且b=﹣2时,τ(0,1)= (﹣2,2);(2)若τ(1,2)=(0,﹣2),则a= ﹣1 ,b= ;(3)设点P(x,y)是直线y=2x上的任意一点,点P经过变换τ得到点P′(x′,y′).若点P与点P′重合,求a和b的值.【考点】一次函数综合题.【分析】(1)将a=1,b=﹣2,τ(0,1),代入,可求x′,y′的值,从而求解;(2)将τ(1,2)=(0,﹣2),代入,可得关于a,b的二元一次方程组,解方程组即可求解;(3)由点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,可得τ(x,y)=(x,y).根据点P(x,y)在直线y=2x上,可得关于a,b的二元一次方程组,解方程组即可求解.【解答】解:(1)当a=1,且b=﹣2时,x′=1×0+(﹣2)×1=﹣2,y′=1×0﹣(﹣2)×1=2,则τ(0,1)=(﹣2,2);(2)∵τ(1,2)=(0,﹣2),∴,解得a=﹣1,b=;(3)∵点P(x,y)经过变换τ得到的对应点P'(x',y')与点P重合,∴τ(x,y)=(x,y).∵点P(x,y)在直线y=2x上,∴τ(x,2x)=(x,2x).∴,即∵x为任意的实数,∴,解得.∴,.故答案为:(﹣2,2);﹣1,.【点评】考查了一次函数综合题,关键是对题意的理解能力,具有较强的代数变换能力,要求学生熟练掌握解二元一次方程组.25.(2015秋?北京校级期中)动手操作:小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P.(可以利用图1中的等距平行线)①在图3中作出点P,使得PM=PN;②在图4中作出点P,使得PM=2PN.【考点】作图—应用与设计作图.【分析】(1)作法:①在e上任取一点C,以点C为圆心,AB长为半径画弧交b于点D,交d于点E,交c于点F;②以点A为圆心,CE长为半径画弧交AB于点P1,再以点B为圆心,CE长为半径画弧交AB于点P2;则点P1、P2为线段AB的三等分点;(2)①以O为圆心,任意长为半径画弧,交OA于M,交OB于N;在d上任取一点C,以点C为圆心,MN长为半径画弧交b于点D,交c于点E;以点M为圆心,CE长为半径画弧交MN于点P;则P 点为所求;②以O为圆心,任意长为半径画弧,交OA于M,交OB于N;在d上任取一点C,以点C为圆心,MN 长为半径画弧交a于点D,交c于点E,交b于点F;②以点M为圆心,CF长为半径画弧交MN于点P;则P点为所求.【解答】解:(1)如下图所示,点P1、P2为线段AB的三等分点;(2)①如下图所示,点P即为所求;②如下图所示,点P即为所求.【点评】本题考查了作图﹣应用与设计作图,学生的阅读理解能力及知识的迁移能力,理解等距平行线的含义及平行线分线段成比例定理是解题的关键.26.小东同学在学习了二次函数图象以后,自己提出了这样一个问题:探究:函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是x≠1 ;(2)下表是y与x的几组对应值.x …﹣2 ﹣1 0 2 3 4 …y …m …则m的值是;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;。

人教版九年级上册数学《圆》单元综合测试卷(带答案)

人教版九年级上册数学《圆》单元综合测试卷(带答案)
【答案】A
【解析】
【详解】连OA,OB,则△AOB为等边三角形,由直角三角形中30°角所对的直角边等于斜边的一半可得:PA=5,再由勾股定理得OA= ,从而得AB= (cm).故选A.
10.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的面积为( )
A. B. C. D.
11.小丽要制作一个圆锥模型,要求圆锥的母线长为9cm,底面圆的直径为10cm,那么小丽要制作的这个圆锥的侧面展开扇形的纸片的圆心角度数是()
A.150°B.200°C.180°D.240°
12. 如图,⊙O是△ABC 内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )
【详解】∵⊙O是等边三角形ABC的外接圆,∴∠A=∠ABC=∠ACB=60°,∴∠BDC=∠A=60°.故答案为60°.
【点睛】本题主要考查了圆周角定理和等边三角形的性质.解题的关键是熟练掌握圆周角定理.
二.选择题
9.如图,直线 是 的两条切线, 分别为切点, , 厘米,则弦 的长为()
A. 厘米B.5厘米C. 厘米D. 厘米
【答案】4
【解析】
【分析】
根据题意得到:扇形的弧长,即圆锥的母线长是:16cm,弧长即圆锥底面周长,即可求出底面半径.再由圆锥的高线,底面半径,锥高正好构成直角三角形的三边,根据勾股定理即可得到结论.
【详解】设圆锥的底面半径为r,
则 =2πr,
解得:r=12,
根据勾股定理得到:圆锥高h= =4 cm.
7.如图,点A、B、C、D都在⊙O上,若∠A=65°,则∠D=______
8.如图,⊙O是等边三角形ABC的外接圆,点D是⊙O上一点,则∠BDC=_____.

九上 期中复习 圆 必考题 含答案

九上 期中复习 圆 必考题 含答案

教学过程一、选择题1.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )A.4个B.3个C.2个D.1个2.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数是( )A.40°B.50°C.60°D.100°第2题图第3题图第4题图第5题图3.如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为( )A.4 B.5 C.8 D.104.如图,AB是⊙O的直径,CD切⊙O于点C,若∠BCD=25°,则∠B等于( ) A.25°B.65°C.75°D.90°5.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,连接AD,若∠ABC=45°,则下列结论正确的是( )A.AD=12BC B.AD=12AC C.AC>AB D.AD>DC6.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,若∠DEF=52°,则∠A 的度数是( )A.52°B.76°C.26°D.128°第6题图7.如图,⊙O与正方形ABCD的两边AB,AD相切,且DE与⊙O相切于点E.若⊙O的半径为5,且AB=11,则DE的长度为( )A.5 B.6 C.30 D.11 2第7题图第8题图第9题图第10题图8.如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是( )A.3.6 B.1.6 C.3 D.69.如图,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为( ) A.19 B.16 C.18 D.2010.如图,一个半径为r的圆形纸片在边长为a(a>23r)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是( )A.π3r2B.33-π3r2C.(33-π)r2D.πr2二、填空题11.如图,点A,B,C在⊙O上,AB∥CO,∠B=22°,则∠A=___________.第11题图第12题图12.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16 m,半径OA=10 m,则高度CD =_____m.13.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC =______________.第13题图第14题图14.如图,点A,B,C,D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是_____.15.如图,AB是⊙O的直径,BD,CD分别是过⊙O上过点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____.第15题图第16题图第18题图16.如图,将长为8 cm的铁丝AB首尾相接围成半径为2 cm的扇形,则S扇形=_____cm2. 17.直径为10 cm的⊙O中,弦AB=5 cm,则弦AB所对的圆周角是.18.如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是_____.三、解答题19.⊙O的半径r=10 cm,圆心O到直线l的距离OD=6 cm,在直线l上有A,B,C三点,且AD=6 cm,BD=8 cm,CD=5 3 cm,问:A,B,C三点与⊙O的位置关系各是怎样?20.如图,某公园的石拱桥的桥拱是圆弧形(弓形),其跨度AB=24 m,拱的半径R=13 m,求拱高CD.21.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°.(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.22.如图,点A ,B 在⊙O 上,直线AC 是⊙O 的切线,OC ⊥OB ,连接AB 交OC 于点D .(1)AC 与CD 相等吗?为什么?(2)若AC =2,AO =5,求OD 的长度.23.如图,在⊙O 中,AB 是直径,点D 是⊙O 上的一点,点C 是AD ︵的中点,弦CM 垂直AB 于点F ,连接AD ,交CF 于点P ,连接BC ,∠DAB =30°.(1)求∠ABC 的度数;(2)若CM =83,求AC ︵的长度.(结果保留π)24.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.25.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积.(结果保留π)答案一、选择题(每小题3分,共30分)1.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A .4个B .3个C .2个D .1个 2.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数是( B )A .40°B .50°C .60°D .100°第2题图 第3题图 第4题图 第5题图3.如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P (0,-3),那么经过点P 的所有弦中,最短的弦的长为( C )A .4B .5C .8D .10 4.如图,AB 是⊙O 的直径,CD 切⊙O 于点C ,若∠BCD =25°,则∠B 等于( B )A .25°B .65°C .75°D .90°5.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC 交⊙O 于点D ,连接AD ,若∠ABC =45°,则下列结论正确的是( A )A .AD =12BCB .AD =12AC C .AC >AB D .AD >DC6.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,若∠DEF =52°,则∠A 的度数是( B )A .52°B .76°C .26°D .128°第6题图 第7题图 第8题图 第9题图 第10题图)7.如图,⊙O 与正方形ABCD 的两边AB ,AD 相切,且DE 与⊙O 相切于点E .若⊙O 的半径为5,且AB =11,则DE 的长度为( B )A .5B .6C .30D .1128.如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是( A )A .3.6B .1.6C .3D .69.如图,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( D )A .19B .16C .18D .2010.如图,一个半径为r 的圆形纸片在边长为a (a >23r )的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是( C )A .π3r 2 B .33-π3r 2 C .(33-π)r 2 D .πr 2 二、填空题(每小题3分,共24分)11.如图,点A ,B ,C 在⊙O 上,AB ∥CO ,∠B =22°,则∠A =__44°___.第11题图 第12题图 第13题图 第14题图12.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16 m ,半径OA =10 m ,则高度CD =__4___m . 13.如图,OC 是⊙O 的半径,AB 是弦,且OC ⊥AB ,点P 在⊙O 上,∠APC =26°,则∠BOC =__52°___. 14.如图,点A ,B ,C ,D 都在⊙O 上,∠ABC =90°,AD =3,CD =2,则⊙O 的直径的长是__13___. 15.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上过点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A的度数是__35°___.第15题图 第16题图 第18题图16.如图,将长为8 cm 的铁丝AB 首尾相接围成半径为2 cm 的扇形,则S 扇形=__4___cm 2. 17.直径为10 cm 的⊙O 中,弦AB =5 cm ,则弦AB 所对的圆周角是__30°或150°___.18.如图,在△ABC 中,AB =6,将△ABC 绕点B 顺时针旋转60°后得到△DBE ,点A 经过的路径为弧AD ,则图中阴影部分的面积是__6π___.三、解答题(共66分)19.(6分)⊙O的半径r=10 cm,圆心O到直线l的距离OD=6 cm,在直线l上有A,B,C三点,且AD=6 cm,BD=8 cm,CD=5 3 cm,问:A,B,C三点与⊙O的位置关系各是怎样?解:点A在⊙O内,点B在⊙O上,点C在⊙O外20.(6分)如图,某公园的石拱桥的桥拱是圆弧形(弓形),其跨度AB=24 m,拱的半径R=13 m,求拱高CD.解:CD=8 m21.(8分)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°.(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.解:(1)证∠BAC=∠ABC=∠ACB=60°即可(2)OD=422.(8分)如图,点A,B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?为什么?(2)若AC=2,AO=5,求OD的长度.解:(1)AC=CD.理由:∵AC切⊙O于A,∴∠CAD+∠OAB=90°,∵OC⊥OB,∴∠ODB+∠B=90°,∵OA =OB ,∴∠OAB =∠B ,又∠CDA =∠ODB ,∴∠CAD =∠CDA ,∴AC =CD(2)在Rt △OAC 中,OC 2=AC 2+AO 2=4+5=9,∴OC =3,又CD =AC =2,∴OD =OC -CD =123.(8分)如图,在⊙O 中,AB 是直径,点D 是⊙O 上的一点,点C 是AD ︵的中点,弦CM 垂直AB 于点F ,连接AD ,交CF 于点P ,连接BC ,∠DAB =30°.(1)求∠ABC 的度数;(2)若CM =83,求AC ︵的长度.(结果保留π)解:(1)连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∵∠DAB =30°,∴∠ABD =90°-30°=60°.∵C 是AD ︵的中点,∴∠ABC =∠DBC =12∠ABD =30° (2)连接OC ,则∠AOC =2∠ABC =60°,∵CM ⊥直径AB 于点F ,∴CF =12CM =43,∴在Rt △COF 中,CO =233CF =233×43=8,∴AC ︵的长度为60π×8180=8π324.(9分)如图,已知等腰三角形ABC 的底角为30°,以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE ⊥AC ,垂足为E .(1)证明:DE 为⊙O 的切线;(2)连接OE ,若BC =4,求△OEC 的面积.解:(1)连接OD ,易证OD ∥AC ,得∠ODE =∠DEA =90°,∴DE 为⊙O 的切线 (2)连接CD ,易证△ODC 是等腰三角形,∴∠ODC =60°,∴∠CDE =30°.∵BC =4,∴DC =2.∵DE ⊥AC ,∴CE =1,DE =3,∴S △OEC=12CE ·DE =3225.(9分)如图,AB 是⊙O 的直径,点D 在⊙O 上,∠DAB =45°,BC ∥AD ,CD ∥AB .(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为1,求图中阴影部分的面积.(结果保留π)解:(1)直线CD 与⊙O 相切.理由:连接OD ,∵OA =OD ,∠DAB =45°,∴∠ODA =45°,∴∠AOD =90°.∵CD ∥AB ,∴∠ODC =∠AOD =90°,即OD ⊥CD .又∵点D 在⊙O 上,∴直线CD 与⊙O 相切(2)∵BC ∥AD ,CD ∥AB ,∴四边形ABCD 是平行四边形,∴CD =AB =2,∴S 梯形OBCD =(OB +CD )×OD 2=(1+2)×12=32,∴图中阴影部分的面积为S 梯形OBCD -S 扇形OBD =32-14×π×12=32-π426.(12分)如图,⊙O 的弦AD ∥BC ,过点D 的切线交BC 的延长线于点E ,AC ∥DE 交BD 于点H ,DO 及延长线分别交AC ,BC 于点G ,F .(1)求证:DF 垂直平分AC ;(2)求证:FC =CE ;(3)若弦AD =5 cm ,AC =8 cm ,求⊙O 的半径.解:(1)∵DF ⊥DE ,AC ∥DE ,∴DF ⊥AC ,∴DF 垂直平分AC (2)由(1)知AG =GC ,又∵AD ∥BC ,∴∠DAG =∠FCG ,又∠AGD =∠CGF ,∴△AGD ≌△CGF ,∴AD =FC .∵AD ∥BC 且AC ∥DE ,∴四边形ACED 是平行四边形,∴AD =CE ,∴FC =CE (3)连接AO ,∵AG =GC ,AC =8 cm ,∴AG =4 cm ,GD =25-16=3 (cm ).设圆半径为r ,则AO =r ,OG =r -3,由勾股定理有AO 2=OG 2+AG 2,∴r 2=(r -3)2+42,∴r =256cm。

人教版九年级数学上册期中复习测试带答案解析

人教版九年级数学上册期中复习测试带答案解析

人教版九年级数学上册期中复习测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“清明”、“谷雨”、“白露”、“大雪”,其中是中心对称图形的是()A.B.C.D.3.若方程x2−2x+m=0没有实数根,则m的值可以是()A.−1B.0C.1D.√34.一元二次方程(x+1)(x−1)=2x+3的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.在平面直角坐标系中,若直线y=−x+m不经过第一象限,则关于x的方程mx2+x+ 1=0的实数根的个数为()A.0个B.1个C.2个D.1或2个6.下列一元二次方程有实数解的是()A.2x2﹣x+1=0 B.x2﹣2x+2=0 C.x2+3x﹣2=0 D.x2+2=07.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA−PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4B.5C.6D.78.已知二次函数y=2x2−8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足S△ABP1=S△ABP2=S△ABP3=m,则m的值是()A.1 B.32C.2 D.49.如图,抛物线y=ax2+bx+c经过点(−1,0),与y轴交于点(0,2),抛物线的对称轴为直线x=1.关于此题,甲、乙、丙三人的说法如下:甲:a+c=b , 2a+b=0;乙:方程ax2+bx+c=0的解为−1和3;丙:c−a>2.下列判断正确的是()A.甲对,乙错B.甲和乙都错C.乙对,丙错D.甲、乙、丙都对10.如图,△ABC和四边形DEFG分别是直角三角形和矩形,∠A=90°,AB=4cm,AC=3cm,FG⊥BC于点B.若矩形DEFG从点B开始以每秒1cm的速度向右平移至点C,且矩形的边FG扫过△ABC的面积为S(cm2),平移的时间为t(秒),则S与t 之间的函数图象可能是()A.B.C.D.11.我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样的一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方步,其中长与宽和为60步,问长比宽多多少步?若设长比宽多.....x步.,则下列符合题意的方程是()A.(60 - x)x = 864 B.60−x2×60+x2= 864C.(60 + x)x = 864 D.(30 + x)(30 - x)= 86412.已知P1(x1,y1),P2(x2,y2)为抛物线y=−ax2+4ax+c(a≠0)图象上的两点,且x1<x2,则下列说法正确的是()A.若x1+x2<4,则y1<y2B.若x1+x2>4,则y1<y2C.若a(x1+x2−4)<0,则y1>y2D.若a(x1+x2−4)>0,则y1>y2二、填空题(本大题4个小题,每小题4分,共16分)13.二次函数y=ax2-3ax+c(a<0,a,c均为常数)的图象经过A(-2,y1)、B(2,y2)、C(0,y3)三点,则y1,y2,y3的大小关系是______.14.关于x的方程x2−x−1=0的两根分别为x1、x2,则x1+x2−x1x2的值为________.15.若二次函数y=ax2-bx+2有最大值6,则y=-a(x+1)2+b(x+1)+2的最小值为____.16.若等腰三角形的一边长是4,另两边的长是关于x的方程x2−6x+n=0的两个根,则n的值为______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.已知A=(1-2x+1)÷x2-2x+1x+1.(1)化简A;(2)若x是方程x(x+2)=x+2的解,求A的值.18.解方程:x2−16=2(x+4)19.已知关于x的方程x2 - 5x + m = 0(1)若方程有一根为- 1,求m的值;(2)若方程无实数根,求m的取值范围20.2022北京冬奥会期间,冰墩墩和雪容融受到人们的广泛喜爱.某网店以每套96元的价格购进了一批冰墩墩和雪容融,由于销售火爆,销售单价经过两次的调整,从每套150元上涨到每套216元,此时每天可售出16套冰墩墩和雪容融.(1)若销售价格每次上涨的百分率相同,求每次上涨的百分率;(2)预计冬奥会闭幕后需求会有所下降,需尽快将这批冰墩墩和雪容融售出,决定降价出售.经过市场调查发现:销售单价每降价10元,每天多卖出2套,当降价钱数m为多少元时每天的利润W(元)可达到最大,最大利润是多少?21.已知T=(x+2)2x2−4−xx−2.(1)化简T;(2)若点(x,0)在二次函数y=(x+1)(x+2)的图象上,求T的值.22.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?23.如图1是一架菱形风筝,它的骨架由如图2的4条竹棒AC,BD,EF,GH组成,其中E,F,G,H分别是菱形ABCD四边的中点,现有一根长为80cm的竹棒,正好锯成风筝的四条骨架,设AC=xcm,菱形ABCD的面积为ycm2.(1)写出y关于x的函数关系式:BD,那么当骨架AC的长为(2)为了使风筝在空中有较好的稳定性,要求25cm≤AC≤43多少时,这风筝即菱形ABCD的面积最大?此时最大面积为多少?24.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.(1)求猪肉粽和豆沙粽每盒的进价;(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.25.某旅游区的湖边有一个观赏湖中音乐喷泉的区域,该区域沿湖边有一条东西向的长为32m的栏杆,考虑到观景安全和效果,旅游区计划设置一个矩形观众席,该观众席一边靠栏杆,另三边用现有的总长为60m的移动围栏围成,并在观众席内按行、列(东西向为行,南北向为列)摆放单人座椅,要求每个座位占地面积为1m2(如图所示),且观众席内的区域恰好都安排了座位.(1)若观众席内有x行座椅,用含x的代数式表示每行的座椅数,并求x的最小值;(2)旅游区库存的500张座椅是否够用?请说明理由.参考答案:1.D【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是中心对称图形,不是轴对称图形,故此选项不合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、既是中心对称图形,也是轴对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.2.D【分析】根据中心对称图形的概念即可求解.【详解】解:A、是轴对称图形而不是中心对称图形,故本选项不符合题意;B、是轴对称图形而不是中心对称图形,故本选项不符合题意;C、是轴对称图形而不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形的概念:如果一个图形绕着某个定点旋转180°后能与原图重合,这样的图形叫做中心对称图形.解题关键是熟记中心对称图形的概念.3.D【分析】直接利用根的判别式进行判断,求出m的取值范围即可.【详解】解:由题可知:“△<0”,∴(−2)2−4m<0,∴m>1,故选:D.【点睛】本题考查了一元二次方程根的判别式,解决本题的关键是掌握当“△<0”时,该方程无实数根,本题较基础,考查了学生对基础知识的理解与掌握.4.D【分析】先把一元二次方程化为一般式,然后利用根的判别式求解即可.【详解】解:∵(x+1)(x−1)=2x+3,∴x2−1=2x+3,即x2−2x−4=0,∴Δ=b2−4ac=(−2)2−4×(−4)=20>0,∴方程有两个不相等的实数根,故选D.【点睛】本题主要考查了一元二次方程根的判别式,熟知判别式符号与一元二次方程根的关系式解题的关键.5.D【分析】直线y=−x+m不经过第一象限,则m=0或m<0,分这两种情形判断方程的根.【详解】∵直线y=−x+m不经过第一象限,∴m=0或m<0,当m=0时,方程变形为x+1=0,是一元一次方程,故有一个实数根;当m<0时,方程mx2+x+1=0是一元二次方程,且△=b2−4ac=1−4m,∵m<0,∴-4m>0,∴1-4m>1>0,∴△>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D.【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.6.C【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A选项中,△=b2−4ac=(−1)2−4⋅2⋅1=−7<0,故方程无实数根;B选项中,△=(−2)2−4⋅1⋅2=−4<0,故方程无实数根;C选项中,△=32−4⋅1⋅(−2)=17>0,故方程有两个不相等的实数根;D选项中,△=−8<0,故方程无实数根;故选C.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.7.C【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及AE=5,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC 的值.【详解】解:由图2可知,当P点位于B点时,PA−PE=1,即AB−BE=1,当P点位于E点时,PA−PE=5,即AE−0=5,则AE=5,∵AB2+BE2=AE2,∴(BE+1)2+BE2=AE2,即BE2+BE−12=0,∵BE>0∴BE=3,∵点E为BC的中点,∴BC=6,故选:C.【点睛】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.8.C【分析】由题意易得点P1,P2,P3的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解.【详解】解:假设点A在点B的左侧,∵二次函数y=2x2−8x+6的图象交x轴于A,B两点,∴令y=0时,则有0=2x2−8x+6,解得:x1=1,x2=3,∴A(1,0),B(3,0),∴AB=3−1=2,∵图象上有且只有P1,P2,P3三点满足S△ABP1=S△ABP2=S△ABP3=m,∴点P1,P2,P3的纵坐标的绝对值相等,如图所示:∵y=2x2−8x+6=2(x−2)2−2,∴点P1(2,−2),∴m=S△ABP1=12×2×2=2;故选C.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.9.D【分析】甲:把x=−1,y=0代入函数关系式即可求得a+c=b;根据对称轴为x=1,即可求出2a+b=0;乙:根据对称轴为x=1,抛物线与x轴的一个交点坐标为(-1,0),可以得出抛物线与x 轴的另外一个交点坐标为(3,0),即可得出方程ax2+bx+c=0的解为-1和3;丙:根据与y轴交于点(0,2),得出c=2,根据抛物线开口向下,可以得出a<0,即可得出结果.【详解】解:∵函数图象与x轴交于点(-1,0),∴a−b+c=0,∴a+c=b,∵抛物线的对称轴为x=1,∴−b2a=1,∴2a+b=0,故甲正确;∵抛物线的对称轴为x=1,与x轴的一个交点坐标为(-1,0),∴抛物线与x轴的一个交点坐标为(3,0),∴方程ax 2+bx +c =0的解为-1和3,故乙正确; ∵抛物线与y 轴交于点(0,2), ∴c =2,∵抛物线开口向下, ∴a <0,∴c −a >2,故丙正确;综上分析可知,甲、乙、丙都对,故D 正确. 故选:D .【点睛】本题主要考查了二次函数的图形和性质,熟练掌握二次函数图象和性质,对称轴公式x =−b2a ,是解题的关键. 10.A【分析】求出A 点之前和之后的面积表达式,发现都是二次函数,且165之前是开口向上的二次函数,165之后是开口向下的二次函数,再结合这两个函数图像得出答案.【详解】在A 点之前(0<t <165),FG 扫过的三角形面积为:12×t ×34t =38t 2在A 点之后(165<t <5),FG 扫过的面积为: 3×4×12−(5−t )(5−t )×43×12=6−(25−10t +t 2)×23=6−503+203t −23t 2=−23t 2+203t −323所以它的函数图形应该是: t 在0~165时,S =38t 2,a >0,所以图像是开口向上的抛物线; t 在165~5时,S =−23t 2+203t −323,所以图像是开口向下的抛物线.故选A .【点睛】本题考查二次函数在求面积中的应用,根据条件写出各个阶段的面积表达式即可大致判断图像得出正确选项. 11.B【分析】画图分析即可得,宽为60−x 2步,长为60+x 2步,根据面积关系即可得方程.【详解】画图如下:由图知:宽为60−x2步,长为60+x2步则可得方程为:60−x2×60+x2= 864故选:B【点睛】本题考查了一元二次方程的实际应用,弄懂题意并画图分析得到宽与长是关键.12.D【分析】根据函数解析式求出抛物线的对称轴直线,分类讨论a>0及a<0时各自的选项即可求解.【详解】∵y=−ax2+4ax+c(a≠0),∴y=−a(x−2)2+4a+c(a≠0),∴抛物线的对称轴直线为x=2,①当−a>0时,抛物线的开口向上,∵x1<x2,∴当x1+x2<4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的左侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离大,∴y1>y2,故选项A错误;②当−a<0时,抛物线的开口向下,∵x1<x2,∴当x1+x2>4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的右侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离小,∴y1>y2,故选项B错误;③若a(x1+x2−4)<0,当x1+x2<4时,a>0,则−a<0时,抛物线的开口向下,∵x1<x2,∴当x1+x2<4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的左侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离大,∴y1<y2;当x1+x2>4时,a<0,则−a>0时,抛物线的开口向上,∵x1<x2,∴当x1+x2>4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的右侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离小,∴y1<y2;故选项C错误;④若a(x1+x2−4)>0,当x1+x2<4时,a<0,则−a>0时,抛物线的开口向上,∵x1<x2,∴x1+x2<4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的左侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离大,∴y1>y2;当x1+x2>4时,a>0,则−a<0时,抛物线的开口向下,∵x1<x2,∴x1+x2>4时,点P1(x1,y1)与点P2(x2,y2)在对称轴的右侧,或点P1(x1,y1)在左侧,点P2(x2,y2)右侧,且点P1(x1,y1)离对称轴的距离比点P2(x2,y2)离对称轴的距离小,∴y1>y2;故选项D正确,故选:D【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质,二次函数与方程及不等式的关系.13.y1<y3<y2##y2>y3>y1【分析】将A(-2,y1)、B(2,y2)、C(0,y3)代入y=ax2-3ax+c,用a,c分别表示出y1,y2,y3,再根据a<0即可比较.【详解】将A(-2,y1)、B(2,y2)、C(0,y3)代入y=ax2-3ax+c中,可得:y1=a×(-2)2-3a×(-2)+c=10a+c,y2=a×22-3a×2+c=-2a+c,y3=a×02-3a×0+c=c,∵a<0,∴10a<0,-2a>0,∴10a+c<c,-2a+c>c,∴10a+c<c<-2a+c,∴y1<y3<y2,故答案为:y1<y3<y2.【点睛】本题主要考查了二次函数的图象与性质,将A(-2,y1)、B(2,y2)、C(0,y3)代入y=ax2-3ax+c,用a,c分别表示出y1,y2,y3,是解答本题的关键.14.2【分析】根据根与系数的关系可得出x1+x2=1,x1x2=−1,将其代入x1+x2−x1x2中即可求出结论.【详解】∵方程x2−x−1=0的两根分别为x1和x2,∴x1+x2=1,x1x2=−1,∴x1+x2−x1x2=1+1=2.故答案为:2.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.15.−2【分析】根据题意设二次函数y=ax2-bx+2的顶点坐标为(m,6),且开口向下,根据平移可知y=a(x+1)2-b(x+1)+2的顶点坐标为(m−1,6),根据关于y轴对称可知y=-a (x+1)2+b(x+1)-2的顶点坐标为(m−1,−6),且开口向上,有最小值,根据向上平移4个单位即可得到答案.【详解】解:∵二次函数y=ax2-bx+2有最大值6,∴设二次函数y=ax2-bx+2的顶点坐标为(m,6),平移可知y=a(x+1)2-b(x+1)+2的顶点坐标为(m−1,6),根据关于x轴对称可知y=-a(x+1)2+b(x+1)-2的顶点坐标为(m−1,−6),且开口向上,再向上平移4个单位得到:y=-a(x+1)2+b(x+1)+2此时顶点坐标为(m−1,−2),则最小值为−2故答案为:−2【点睛】本题考查了二次函数图象的平移,关于坐标轴对称的点的坐标特征,利用顶点坐标变换是解题的关键.16.8或9【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于x的方程x2−6x+n=0的一个根,因此有42−6×4+n=0,解得n=8,则方程为x2−6x+8=0,解得另一个根为x=2,此时等腰三角形的三边长分别为2,4,4,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于x的方程x2−6x+n=0有两个相等的实数根,因此,根的判别式Δ=36−4n=0,解得n=9,则方程为x2−6x+9=0,解得方程的根为x1=x2=3,此时等腰三角形的三边长分别为3,3,4,满足三角形的三边关系定理;综上,n的值为8或9,故答案为:8或9.【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.17.(1)1x−1(2)−13【分析】(1)A括号内两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)利用因式分解法求出方程的解,代入A中计算即可.(1)A=(x+1x+1−2x+1)÷(x−1)2x+1=x−1x+1·x+1(x−1)2=1x−1;(2)方程移项得:x(x+2)−(x+2)=0,因式分解得:(x−1)(x+2)=0,解得:x=1或x=-2,当x=1时,原式无意义;.当x=-2时,原式=−13【点睛】本题考查了分式化简和解一元二次方程,熟练掌握因式分解法解方程是解题的关键.18.x1=−4,x2=6【分析】运用因式分解法解一元二次方程即可.【详解】解:x2−16=2(x+4)去括号得:x2−16=2x+8,移项合并得:x2−2x−24=0,分解因式得:(x+4)(x−6)=0,∴x+4=0或x−6=0,∴x1=−4,x2=6【点睛】本题考查因式分解法解一元二次方程,注意用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根,正确掌握解一元二次方程的方法是解答本题的关键.19.(1)m的值为−6.(2)m>254【分析】(1)将x=−1代入原方程,即可求出m的值.(2)令根的判别式Δ<0,即可求出m的取值范围.【详解】(1)解:∵方程有一根为- 1,∴x=−1是该方程的根,∴(−1)2−5×(−1)+m=0,解得:m=−6,故m的值为−6.(2)解:∵方程无实数根∴Δ=b2−4ac=(−5)2−4×1×m<0,解得:m>25.4【点睛】本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.20.(1)20%(2)当降价钱数m为20元时,每天的利润W可达到最大,最大利润是2000元.【分析】(1)设每次上涨的百分率为x,根据“销售单价经过两次的调整,从每套150元上涨到每套216元,”列出方程,即可求解;(2)根据题意列出W 关于m 的函数关系式,再根据二次函数的性质,即可求解. (1)解:设每次上涨的百分率为x ,根据题意得: 150(1+x )2=216,解得:x 1=0.2,x 2=−2.2(不合题意,舍去), 答:每次上涨的百分率为20%; (2)解:根据题意得:W =(216−m −96)(2m 10+16)=−15m 2+8m +1920=−15(m −20)2+2000∴当m =20时,W 最大,最大值为2000,答:当降价钱数m 为20元时,每天的利润W 可达到最大,最大利润是2000元. 【点睛】本题主要考查了一元二次方程的应用,二次函数的应用,明确题意,准确得到等量关系是解题的关键. 21.(1)T =2x−2(2)T =−23【分析】(1)根据分式运算,化简求解即可得出答案;(2)将点代入二次函数表达式,可求出x ,在带入原式即可求出T . (1) 解:T =(x+2)2x 2−4−xx−2=(x +2)2(x +2)(x −2)−xx −2=x +2x −2−xx −2=2x−2. (2)解:∵点(x ,0)在二次函数y =(x +1)(x +2)的图象上,∴0=(x+1)(x+2),解得x1=−1或x2=−2,由(1)中分母可知x≠−2,故舍去,把x=−1代入,T=2x−2=2−1−2=−23;故答案为:T=−23.【点睛】本题考查分式的化简求值,二次函数的性质,仔细计算,注意分式有意义的条件.22.(1)y=−5x+550;(2)70元;(3)80元.【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量×(售价−成本)=4000”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.【详解】解:(1)∵依题意得y=50+(100−x)×12×10,∴y与x的函数关系式为y=−5x+550;(2)∵依题意得y(x−50)=4000,即(−5x+550)(x−50)=4000,解得:x1=70,x2=90,∵70<90∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x−50)=(−5x+550)(x−50)=−5x2+800x−27500∵−5<0,此图象开口向下∴当x=−8002×(−5)=80时,w有最大值为:−5×802+800×80−27500=4500(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.【点睛】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.23.(1)y=−14x2+20x;(2)32;最大面积为384cm2【分析】(1)E,F,G,H分别是菱形ABCD四边的中点,得出BD=40−12x,根据菱形面积公式求出y关于x的函数关系式;(2)求出x的取值范围,整理y=−14x2+20x=−14(x−40)2+400,函数图象开口向下,自变量x的取值在对称轴左侧,所以x取最大值时,面积有最大值;【详解】(1)解:∵E、F为AB、AD中点,∴EF=12BD,同理:GH=12BD,∵EF+BD+GH+AC=80,∴BD=40−12x,∵四边形ABCD是菱形,∴y=12(40−12x)x=−14x2+20x;(2)∵AC≤43BD,∴x≤43(40−12x),∴x≤32,∴25≤x≤32,∵y=−14x2+20x=−14(x−40)2+400,又∵−14<0,∴当x=32即AC为32cm时面积最大,此时最大面积为384cm2.【点睛】本题考查二次函数的实际应用,主要用菱形面积公式(菱形的面积等于对角线乘积的一半)列出函数关系式,解题关键是判断取值范围与对称轴的关系,得出最值对应的自变量的取值.24.(1)猪肉粽每盒进价40元,豆沙粽每盒进价30元;(2)y=−2x2+280x−8000(50≤x≤65),最大利润为1750元【分析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a−10)元,根据某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列方程计算即可;(2)根据题意当x =50时,每天可售100盒,猪肉粽每盒售x 元时,每天可售[100−2(x −50)]盒,列出二次函数关系式,根据二次函数的性质计算最大值即可. 【详解】解:(1)设猪肉粽每盒进价a 元,则豆沙粽每盒进价(a −10)元. 则8000a=6000a−10解得:a =40,经检验a =40是方程的解. ∴猪肉粽每盒进价40元,豆沙粽每盒进价30元. 答:猪肉粽每盒进价40元,豆沙粽每盒进价30元. (2)由题意得,当x =50时,每天可售100盒.当猪肉粽每盒售x 元时,每天可售[100−2(x −50)]盒.每盒的利润为(x −40) ∴y =(x −40)·[100−2(x −50)],=−2x 2+280x −8000配方得:y =−2(x −70)2+1800 当x =65时,y 取最大值为1750元.∴y =−2x 2+280x −8000(50≤x ≤65),最大利润为1750元.答:y 关于x 的函数解析式为y =−2x 2+280x −8000(50≤x ≤65),且最大利润为1750元.【点睛】本题主要考查分式方程的实际应用以及二次函数的实际应用,根据题意列出相应的函数解析式是解决本题的关键. 25.(1)14 (2)够用【分析】(1)表示出列的数量,根据列的长度不大于32求出x 的取值范围即可; (2)根据行与列的乘积等于总座椅数,求出总座椅数的最大值即可. (1)∵观众席内有x 行座椅,且三边用现有的总长为60m 的移动围栏围成 ∴观众席内座椅列数为60−2x ,∴依题意得:{1≤60−2x ≤32x ≥1 ,解得14≤x ≤30.5∴x 的最小值为14 (2)够用,理由如下:设总座椅数为y,则y=x(60−2x)=−2x2+60x=−2(x−15)2+450∵14≤x≤30.5∴当x=15时,y有最大值450;∴旅游区库存的500张座椅够用【点睛】本题考查二次函数的应用,属于围栏面积问题的变种,熟练掌握二次函数的性质是解本题的关键.答案第15页,共15页。

新人教版初三数学上册期中圆测试卷(含答案解析)

新人教版初三数学上册期中圆测试卷(含答案解析)

新人教版2019初三数学上册期中圆测试卷(含答案解析)新人教版2019初三数学上册期中圆测试卷(含答案解析)一. 选择题(每题3分,共21分)1.如图,在圆O中,∠AOB=60°,那么△AOB是();A.等腰三角形 B.等边三角形 C.不等边三角形 D.直角三角形2.如图,圆O中弦AB垂直于直径CD于点 E,则下列结论:①AE=BE;② ;③ ;④EO=ED其中正确的有()A.①②③④ B.①②③ C.②③④ D.①④3.如图,在圆O中,弦AB⊥直径CD,AB=6cm,CD=10cm,求OE的长A.3 B.4 C.5 D.84.如图,在圆O中,,,∠C的度数为().A. 20°B.35°C.140°D.70°5. 圆O的直径为12cm,圆心O到直线l的距离为7cm,则直线l与圆O的位置关系是()A.相交B.相切C.相离D.不能确定6.已知圆O的半径为5cm,PO=3cm,则点P与圆O的位置关系是()A.P在圆O上B.P在圆O内C.P在圆O外D.不能确定7. 如图,A,B是圆O上两点,AC是圆O的切线,∠B=65°,则∠BAC=()A.35° B.25° C.50° D.65°二.填空题(每空2分,共32分)8.如图,AB是直径,,则∠AOE=_______.9.如图,CB是圆O的直径,AC是弦,∠ACB=33°,则∠AOB=_____.10.如图,圆O为△ABC的外接圆,AB为直径,AC=BC=2,则∠A=_____,AB=_____.11.如图,已知圆心角∠AOB的度数为100°,则圆周角∠ACB=_______12.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm ,则它的外接圆的半径为________.13.在Rt△ABC中,∠C=90°,AC=3,B C=4,以C为圆心,2为半径的圆与AB的位置关系是______ ,以C为圆心,3为半径的圆和AB的位置关系是______,若圆C和AB相切,那么圆C的半径长应为___ ____.14.在半径为2cm的圆中,圆心角为120°的扇形的弧长是______,面积是_______.15.扇形的半径R=5,弧长是6π,则扇形所对的圆心角为_______,扇形面积为_______.16.如图,圆O是△ABC的内切圆,∠A=50°,∠B=70°,若连结AO,BO,则∠BOA=_____.17.如图,PA,PB分别切圆O于点A、B,若∠P=70°,则∠C=______第16、17题图在后方18.如图,圆A,圆B,圆C,圆D的半径都是2,顺次连结四个圆心得到四边形ABCD,则图中四个扇形(阴影部分)的面积之和等于________.三.解答题(共47分,19题7分)19.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,求该输水管的半径.20.如图,AB是圆O的直径,直线PQ过圆O上的点C,且PQ是圆O的切线,∠A=25°,求∠BCP的度数.21.水平放置的圆柱形排水管道的截面半径OA=6m,其中水面高3m.求截面有水部分的面积.22.如图,圆O是△ABC的内切圆,D,E,F为切点;(1)若AB=8,BC=9,AC=5,求EB的长;(2)若∠DEF=52°,求∠A的度数.2 3 .线段AB经过圆心O,交圆O与点A、C,∠BAD=∠B=30°,点D在圆O上.求证:BD是圆O的切线24.如图,圆O是△ABC的外接圆,AB是圆O的直径,D是AB延长线上的一点,AE⊥DC的延长线于点E,且AC平分∠EAB.求证:DE是圆O的切线.。

人教版九年级上册数学 圆 几何综合单元复习练习(Word版 含答案)

人教版九年级上册数学 圆 几何综合单元复习练习(Word版 含答案)

人教版九年级上册数学圆几何综合单元复习练习(Word版含答案)一、初三数学圆易错题压轴题(难)1.如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE//BD,交BC于点F,交AB于点E.(1)求证:∠E=∠C;(2)若⊙O的半径为3,AD=2,试求AE的长;(3)在(2)的条件下,求△ABC的面积.【答案】(1)证明见解析;(2)10;(3)48 5.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==2.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.3.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.4.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM=∠EOH,∠BMP=∠OHP∴PM=PB∴PM+PH=PB+OP∴HM=OB=5在Rt△OBF中,根据勾股定理可得BF=4∴BC=8,sin∠OBC=3 5∵∠A+∠ABO=∠DEB+∠ABO=90°∴∠AKB+∠CKB=90°∴OK⊥ACAC=2CK,CK=BC•sin∠OBC=24 5∴AC=48 5【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.5.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q 以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)(2)当线段FG长度达到最大时,求m的值;(3)在点P,Q整个运动过程中,①当m为何值时,⊙O与△ABC的一边相切?②直接写出点F所经过的路径长是.(结果保留根号)【答案】(1)2+m,m﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC的边相切.②点F 的运动路径的长为1136+572. 【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3cos30cos30FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos30FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯=== 3tan30(2)3EP AP m =⋅=+⋅533(2)m =+ ∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON ==4310AO ∴=- 4312AP ∴=-432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年九年级(上)期中数学复习试卷(圆)一、填空题1.如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=度.2.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=.3.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是.4.(2015秋•海淀区期中)已知AB是直径,∠C等于15度,∠BAD的度数=.5.(2015秋•海淀区期中)如图,PA,PB分别与相⊙O切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.6.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外7.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定8.已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为.9.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.10.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.11.(2014秋•海淀区期中)如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.12.(2014秋•陇西县期末)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G 在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.13.(2015秋•海淀区期中)已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.14.(2015秋•海淀区期中)已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.15.(2015秋•海淀区期中)已知:⊙O的半径OA=1,弦AB、AC的长分别为,,求∠BAC的度数.16.(2015秋•海淀区期中)已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB ∥CD.求这两条平行弦AB,CD之间的距离.2016-2017学年九年级(上)期中数学复习试卷(圆)参考答案与试题解析一、填空题1.如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠ABD=度.【考点】垂径定理;圆周角定理.【分析】本题关键是理清弧的关系,找出等弧,则可根据“同圆中等弧对等角”求解.【解答】解:由垂径定理可知,又根据在同圆或等圆中相等的弧所对的圆周角也相等的性质可知∠ABD=∠CEA=28度.故答案为:28.【点评】本题综合考查了垂径定理和圆周角的求法及性质.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.2.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=.【考点】垂径定理;勾股定理.【分析】根据垂径定理可以得到CE的长,在直角△OCE中,根据勾股定理即可求得.【解答】解:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.∴CE=CD=4.在直角△OCE中,OE===3.则AE=OA﹣OE=5﹣3=2.故答案为:2.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.3.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是.【考点】切线的性质.【分析】根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=50°,∴∠COD=180°﹣90°﹣50°=40°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=40°,∴∠A=20°.故答案为:20°.【点评】本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.4.(2015秋•海淀区期中)已知AB是直径,∠C等于15度,∠BAD的度数=.【考点】圆周角定理.【分析】连接BD,根据圆周角定理得到∠B=∠C=15°,根据直角三角形的性质计算即可.【解答】解:连接BD,∠B=∠C=15°,∵AB是直径,∴∠ADB=90°,∴∠BAD=90°﹣15°=75°,故答案为:75°.【点评】本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.5.(2015秋•海淀区期中)如图,PA,PB分别与相⊙O切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.【考点】切线的性质.【分析】利用切线长定理得出PA=PB,再利用等边三角形的判定得出△PAB是等边三角形,即可得出答案.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=5,故答案为:5.【点评】此题主要考查了切线长定理以及等边三角形的判定与性质,得出△PAB是等边三角形是解题关键.6.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【考点】点与圆的位置关系.【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.7.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径是5,OP的长为7,5<7,∴点P在圆外.故选C.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.8.已知扇形的半径为3,扇形的圆心角是120°,则该扇形面积为.【考点】扇形面积的计算.【分析】直接根据扇形的面积公式进行计算即可.【解答】解:∵扇形的圆心角为120°,其半径为3,==3π.∴S扇形故答案为:3π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.9.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.【考点】圆内接四边形的性质.【分析】由∠BOD=138°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A的度数,又由圆的内接四边四边形的性质,求得∠BCD的度数,继而求得∠DCE的度数【解答】解:∵∠BOD=138°,∴∠A=∠BOD=69°,∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故答案为:69°.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单,解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半与圆内接四边形的对角互补定理的应用.10.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.【考点】点与圆的位置关系.【分析】解答此题应进行分类讨论,点P可能位于圆的内部,也可能位于圆的外部.【解答】解:当点P在圆内时,则直径=6+2=8cm,因而半径是4cm;当点P在圆外时,直径=6﹣2=4cm,因而半径是2cm.所以⊙O的半径为4或2cm.故答案为:4或2.【点评】考查了点与圆的位置关系,解决本题的关键是首先要进行分类讨论,其次是理解最长距离和最短距离和或差的意义.11.(2014秋•海淀区期中)如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.【考点】圆内接四边形的性质;圆周角定理.【分析】先根据圆内接四边形的性质推出∠ADC=50°,再根据圆周角定理推出∠AOC=100°,然后根据等腰三角形的性质及三角形内角和定理即可得出∠OAC的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABC=130°,∴∠ADC=180°﹣∠ABC=50°,∴∠AOC=2∠ADC=100°.∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=(180°﹣∠AOC)=40°.【点评】本题主要考查圆内接四边形的性质、圆周角定理、等腰三角形的性质及三角形内角和定理,关键在于求出∠AOC的度数.12.(2014秋•陇西县期末)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G 在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.【考点】切线的判定.【分析】(1)连接OC,根据三角形内角和定理可得∠DCG=180°﹣∠D﹣∠G=120°,再计算出∠GCO的度数可得OC⊥CG,进而得到CG是⊙O的切线;(2)设EO=x,则CO=2x,再利用勾股定理计算出EO的长,进而得到CO的长,然后再计算出FG的长即可.【解答】(1)证明:连接OC.∵OC=OD,∠D=30°,∴∠OCD=∠D=30°.∵∠G=30°,∴∠DCG=180°﹣∠D﹣∠G=120°.∴∠GCO=∠DCG﹣∠OCD=90°.∴OC⊥CG.又∵OC是⊙O的半径.∴CG是⊙O的切线.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=3.∵在Rt△OCE中,∠CEO=90°,∠OCE=30°,∴EO=CO,CO2=EO2+CE2.设EO=x,则CO=2x.∴(2x)2=x2+32.解得x=(舍负值).∴CO=2.∴FO=2.在△OCG中,∵∠OCG=90°,∠G=30°,∴GO=2CO=4.∴GF=GO﹣FO=2.【点评】此题主要考查了切线的判定,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.13.(2015秋•海淀区期中)已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.【考点】切线的性质.【分析】由PA与PB为圆的两条切线,根据切线长定理得到PA=PB,且PO平分两切线的夹角,进而得到三角形PAB为等腰三角形,根据三线合一得到PC为高,PC为中线,可得出OP垂直平分线段AB,得证.【解答】证明:∵PA,PB分别为⊙O的切线,∴PA=PB,PO为∠APB的平分线,∴PO⊥AB,C为AB的中点,则OP垂直平分线段AB.【点评】此题考查了切线的性质,涉及的知识有:切线长定理,以及等腰三角形的性质,熟练掌握切线长定理是解本题的关键.14.(2015秋•海淀区期中)已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.【考点】切线的判定.【分析】连接OF,CF,利用等边对等角即可证得OF⊥EF,从而证得EF是圆的切线.【解答】证明:连接OF,CF.∵AC是直径,∴∠AFC=90°,∴∠BFC=90°,又∵E是BC的中点,∴EF=EC,∴∠EFC=∠ECF,∵OC=OF,∴∠OFC=∠FCO,∵∠ACB=∠FCO+∠ECF=90°,∴∠EFC+∠OFC=90°,即∠EFO=90°,∴OF⊥EF,∴EF是⊙O的切线.【点评】本题考查了切线的判定,直角三角形的性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决本题的关键是正确作出辅助线.15.(2015秋•海淀区期中)已知:⊙O的半径OA=1,弦AB、AC的长分别为,,求∠BAC的度数.【考点】垂径定理;解直角三角形.【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,∴AE=AC=,AD=AB=,∴sin∠AOE===,sin∠AOD==,∴∠AOE=60°,∠AOD=45°,∴∠BAO=45°,∠CAO=90°﹣60°=30°,∴∠BAC=45°+30°=75°,或∠BAC′=45°﹣30°=15°.∴∠BAC=15°或75°.【点评】本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解.16.(2015秋•海淀区期中)已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB ∥CD.求这两条平行弦AB,CD之间的距离.【考点】垂径定理;勾股定理.【分析】分情况进行讨论,(1)如图,AB和CD再圆心的同侧,连接OB,OD,作OM ⊥AB交CD于点N,由AB∥CD,即可推出ON⊥CD,则MN为AB,CD之间的距离,通过垂径定理和勾股定理即可推出OM和ON的长度,根据图形即可求出MN=OM﹣ON,通过计算即可求出MN的长度,(2)AB和CD在圆心两侧,连接OB,OD,做直线OM⊥AB交CD于点N,由AB∥CD,即可推出MN⊥CD,则MN为AB,CD之间的距离,通过垂径定理和勾股定理即可推出OM和ON的长度,根据图形即可求出MN=OM+ON,通过计算即可求出MN的长度.【解答】解:(1)如图1,连接OB,OD,做OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM﹣ON,∴MN=8cm,(2)如图2,连接OB,OD,做直线OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM+ON,∴MN=22cm.∴平行弦AB,CD之间的距离为8cm或22cm.【点评】本题主要考查垂径定理和勾股定理的运用,平行线间的距离的定义,平行线的性质等知识点,关键在于根据题意分情况进行讨论,正确的做出图形,认真的做出辅助线构建直角三角形,熟练运用垂径定理和勾股定理推出OM和ON的长度,利用数形结合的思想即可求出结果.。

相关文档
最新文档