北师大版数学九年级下册教案全册

合集下载

北师大版数学九年级下册1.2《30、45、60的三角函数值》教案

北师大版数学九年级下册1.2《30、45、60的三角函数值》教案

北师大版数学九年级下册1.2《30、45、60的三角函数值》教案一. 教材分析《30、45、60的三角函数值》是北师大版数学九年级下册第1章第2节的内容。

本节课主要让学生掌握特殊角度30°、45°、60°的三角函数值,并能够运用这些值解决实际问题。

这一内容是学生学习三角函数的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经学习了锐角三角函数的概念,对三角函数有一定的理解。

但是,对于特殊角度的三角函数值,学生可能还不太熟悉。

因此,在教学过程中,需要引导学生通过观察、实践、探究来发现和总结这些特殊角度的三角函数值,并能够熟练运用。

三. 教学目标1.知识与技能:使学生掌握特殊角度30°、45°、60°的三角函数值,能够运用这些值解决实际问题。

2.过程与方法:通过观察、实践、探究等活动,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:特殊角度30°、45°、60°的三角函数值。

2.难点:如何引导学生发现和总结这些特殊角度的三角函数值。

五. 教学方法1.引导发现法:通过引导学生观察、实践、探究,让学生自主发现和总结特殊角度的三角函数值。

2.小组合作学习:学生进行小组讨论和实践,培养学生的团队合作意识和沟通能力。

六. 教学准备1.教具:三角板、直尺、量角器。

2.教学素材:与特殊角度三角函数值相关的例题和练习题。

七. 教学过程1.导入(5分钟)利用复习提问的方式导入新课。

提问学生已知的锐角三角函数的概念和值,引导学生回忆已学知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示三角板,引导学生观察和发现特殊角度30°、45°、60°的三角函数值。

让学生亲自动手测量和观察,总结这些特殊角度的三角函数值。

北师大版九年级数学下册:1.5《三角函数的应用》教案

北师大版九年级数学下册:1.5《三角函数的应用》教案

北师大版九年级数学下册:1.5《三角函数的应用》教案一. 教材分析北师大版九年级数学下册第1.5节《三角函数的应用》主要介绍了正弦、余弦函数在实际问题中的应用。

通过本节课的学习,使学生了解三角函数在实际生活中的重要性,培养学生运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了三角函数的基本知识,对正弦、余弦函数有一定的了解。

但学生在应用三角函数解决实际问题方面还比较薄弱,需要通过本节课的学习,提高学生运用三角函数解决实际问题的能力。

三. 教学目标1.使学生掌握正弦、余弦函数在实际问题中的应用。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生对三角函数的兴趣,培养学生的创新意识。

四. 教学重难点1.重点:正弦、余弦函数在实际问题中的应用。

2.难点:如何运用三角函数解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究三角函数在实际问题中的应用。

2.利用案例分析法,分析实际问题中三角函数的运用。

3.采用小组合作讨论法,培养学生的团队协作能力。

六. 教学准备1.准备相关的实际问题案例。

2.准备三角函数的图像和公式。

3.准备投影仪和教学课件。

七. 教学过程1.导入(5分钟)利用投影仪展示一些实际问题,如测量高度、角度等,引导学生思考如何利用三角函数解决这些问题。

2.呈现(10分钟)呈现三角函数的图像和公式,让学生了解三角函数的基本性质。

同时,结合实际问题案例,讲解如何运用三角函数解决实际问题。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用三角函数进行解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)选取几组实际问题,让学生独立解决。

教师及时给予反馈,巩固学生对三角函数应用的掌握。

5.拓展(10分钟)引导学生思考如何将三角函数应用于其他领域,如工程、物理等。

让学生举例说明,培养学生的创新意识。

6.小结(5分钟)总结本节课所学内容,强调三角函数在实际问题中的应用。

北师大版 九年级数学下册 教案(全册优质教案精选)

北师大版 九年级数学下册 教案(全册优质教案精选)

北师大版九年级数学下册教案第一章直角三角形的边角关系1.1锐角三角函数第1课时正切教学目标1.经历探索直角三角形中某锐角确定后其对边与邻边的比值也随之确定的过程,理解正切的意义.2.能够用表示直角三角形中两边的比,表示生活中物体的倾斜程度,并能够用正切进行简单的计算.教学重点理解锐角三角函数正切的意义,用正切表示倾斜程度、坡度.教学难点从现实情境中理解正切的意义.教学过程一、创设情景明确目标我们都有过走上坡路的经验,坡面有陡有平,在数学上该如何衡量坡面的倾斜程度呢?如图所示,哪个坡面更陡一些?想一想:如图所示的两个坡面,哪个更陡一些?你是怎么做的?二、自主学习指向目标阅读预习教材第2页至第4页的内容;完成《名师学案》“课前预习”部分.三、合作探究达成目标探究点一正切的定义活动:1.想一想:当直角三角形的一个锐角的大小确定时,其对边与邻边比值会确定的吗?2.如图所示:在锐角A的一边上任意取点B,B1,B2,过这些点分别作CB⊥AC,C1B1⊥AC ,C 2B 2⊥AC ,垂足分别是C ,C 1,C 2.展示点评:证明:△ABC ∽△AB 1C 1,从而得出BC ∶B 1C 1=AC ∶AC 1,进一步转化成BC ∶AC =B 1C 1∶AC 1,同理可以证明:BC ∶AC =B 2C 2∶AC 2.反思小结:(1)通过以上论证,引导学生总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(2)直角三角形中边与角的关系:在直角三角形中,如果一个锐角确定,那么这个角的对边与邻边的比便随之确定.在Rt △ABC 中,锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边例题讲解:见教材例1.针对训练:教材第4页《课堂练习》第1题. 探究点二 坡度活动:阅读教材第4页内容.反思小结:坡面的铅直高度与水平宽度的比称为坡度(坡比),可以写成i =tan α. 针对训练:《名师学案》当堂练习部分. 四、总结梳理 内化目标本节课从梯子的倾斜程度谈起,通过探索直角三角形中边角关系,得出了直角三角形中的锐角确定后,它的对边比邻边的比也随之确定,在直角三角形中定义了正切的概念,接着,了解了坡面的倾斜程度与正切的关系.五、达标检测 反思目标1.如图所示,∠ACB =90°,CD ⊥AB ,垂足为D ,指出∠A 和∠B 的对边,邻边:(1)tan A =( )∶AC =CD ∶( ) (2)tan B =( )∶BC =CD ∶( ) 2.在Rt △ABC 中,∠C =90°.(1)AC =3,AB =6,求tan A 和tan B ; (2)BC =3,tan A =34,求34AC 和AB.3.在等腰△ABC 中,AB =AC =13,BC =10,求tan B.作业布置教材第4页习题1,2题. 教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________第2课时正弦和余弦教学目标1.经历探索知道直角三角形中某锐角确定后,它的对边、邻边和斜边的比值也随之确定,能够根据直角三角形中的边角关系,进行简单的计算.2.能够正确地运用sin A,cos A,tan A表示直角三角形中两边之比.教学重点正确地运用三角函数值表示直角三角形中两边之比.教学难点理解角度与数值之间一一对应的函数关系.教学过程一、创设情景明确目标1.锐角∠A的正切符号分别如何表示?2.它等于哪两边的比?3.求出如图所示的Rt△ABC中∠A的正切值.二、自主学习指向目标阅读教材第5页至第6页的内容;完成《名师学案》“课前预习”部分.三、合作探究达成目标探究点正弦和余弦的定义活动:(1)如图,当Rt△ABC中的一个锐角A确定时,它的对边与邻边的比随之确定.此时,其他边之间的比值也确定吗?(2)可以让学生再画一个Rt△ABC,使之与上图相似,然而再求出对边与斜边,邻边与斜边,比较与上图所求出对边与斜边,邻边与斜边的比相等吗?展示点评:两个相似三角形的对边与斜边之比相等,邻边与斜边的比也相等,据相似三角形的比例而得到的.反思小结:(1)在Rt△ABC中,如果锐角A确定时,那么∠A的对边与斜边的比,邻边与斜边的比也随之确定.(2)在Rt△ABC中,锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=∠A的对边斜边(3)在Rt △ABC 中,锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边(4)锐角A 的正弦,余弦和正切都是做∠A 的三角函数. 例题讲解:见教材例2.针对练习:教材随堂练习第1,2题. 四、总结梳理 内化目标 1.锐角三角函数定义:sin A =∠A 的对边斜边tan A =∠A 的对边∠A 的邻边cos A =∠A 的邻边斜边2.定义中应该注意的几个问题:(1)sin A ,cos A ,tan A 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形);(2)sin A ,cos A ,tan A 是一个完整的符号,表示∠A 的正弦,余弦,正切,习惯省去“∠”号;(3)sin A ,cos A ,tan A 是一个比值.注意比的顺序,且sin A ,cos A ,tan A 均﹥0,无单位; (4)sin A ,cos A ,tan A 的大小只与∠A 的大小有关,而与直角三角形的边长无关; (5)两个锐角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等. 五、达标检测 反思目标1.在Rt △ABC 中,锐角A 的对边和斜边同时扩大100倍,sin A 的值( ) A .扩大100倍 B .缩小100倍 C .不变 D .不能确定2.已知Rt △ABC 中,∠C =90°.(1)若AC =4,AB =5,求sin A 与sin B ; (2)若AC =5,AB =12,求sin A 与sin B ; (3)若BC =m ,AC =n ,求sin B.3.在Rt △ABC 中,∠C =90°,AB =15,sin A =513,求AC 和BC.4.如图:在等腰△ABC 中,AB =AC =5,BC =6.求:sin B ,cos B ,tan B. 提示:过点A 作AD 垂直于BC 于D.作业布置教材第6页习题1,4题. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.2 30°,45°,60°角的三角函数值教学目标1.能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数. 2.能熟练计算含有30°、45°、60°角的三角函数的运算式. 教学重点熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式.教学难点30°、45°、60°角的三角函数值的推导过程. 教学过程一、创设情景 明确目标1.一个直角三角形中是怎么定义一个锐角的正弦、余弦和正切的?2.在Rt △ABC 中,∠C =90°,若tan A =512,则sin A =________,cos A =________.二、自主学习 指向目标阅读教材第8页至第9页的内容,完成《名师学案》的“课前预习”部分. 三、合作探究 达成目标探究点一 30°,45°,60°的特殊值活动:(1)思考两块三角尺有几个不同的锐角?分别是多少度?(可以通过量角器去度量) (2)你通过两块直角的各边长分别求出几个锐角的正弦值,余弦值和正切值.展示点评:如图(1),∵a =12c ,即c =2a ,据勾股定理可得到b =3a ,∴sin 30°=a c =12,cos 30°=b c =32;tan 30°=a b =33,依次可以用45°,60°的三角函数值.以上均属于特殊角,例如在直角三角形中,30°角所对直角边等于斜边的一半,可以通过勾股定理求出它的邻边的长,即可求出30°的角所有三角函数值,同理45°,60°也可进行.反思小结:sin 30°=12,sin 45°=22,sin 60°=32,cos 30°=32,cos 45°=22,cos 60°=12,tan 30°=33,tan 45°=1,tan 60°= 3. 讲解例题:教材例1. 针对训练:(1)sin 30°=_______;cos 45°=_______;tan 30°=________;sin 60°=________;cos A =32,则∠A =________;tan A =33,则∠A =________;sin A =12,则∠A =________. (2)教材随堂练习1.探究点二 特殊值的应用活动:教材例2 例2:一个小孩荡秋千,秋千链子的长度为2.5m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0.01m ).展示点评:解:如图,据题意可知:∠AOD =12×60°=30°,OD =2.5m∴OC =OD·cos 30°=2.5×32≈2.165(m ),∴AC =2.5-2.165≈0.34(m ) 反思小结:利用通过锐角三角函数在实际中的应用,得到与特殊角的三角函数值,尽量取值接近准确值.针对训练:教材随堂练习2. 四、总结梳理 内化目标(1)熟练30°,45°,60°的特殊三角函数值.(2)准确应用锐角三角函数在实际生活中,特殊值在实际生活中有很大的用途. 五、达标检测 反思目标1.已知:Rt △ABC 中,∠C =90°,cos A =35,AB =15,则AC 的长是( )A .3B .6C .9D .12 2.下列各式中不正确的是( )A .sin 260°+cos 260°=1B .sin 30°+cos 30°=1C .sin 35°=cos 55°D .tan 45°>sin 45°3.计算2sin 30°-2cos 60°+tan 45°的结果是( ) A .2 B . 3 C . 2 D .14.已知∠A 为锐角,且cos A ≤12,那么( )A .0°<∠A ≤60°B .60°≤∠A <90°C .0°<∠A ≤30°D .30°≤∠A <90°5.在△ABC 中,∠A 、∠B 都是锐角,且sin A =12,cos B =32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定6.如图Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,BC =3,AC =4,设∠BCD =α,则tan α的值为( )A .34B .43C .35D .457.当锐角α>60°时,cos α的值( ) A .小于12 B .大于12C .大于32D .大于1 作业布置教材第10页习题1,2题. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.3 三角函数的计算教学目标1.熟练运用计算器,求出锐角的三角函数值,或是根据三角函数值求出相应的锐角. 2.能够进行简单的三角函数式的运算,理解正弦值与余弦值都在0与1之间. 教学重点学会应用计算器求三角函数值. 教学难点能够进行简单的三角函数式的运算. 教学过程一、创设情景 明确目标(1)让学生熟练写出30°,45°,60°的三角函数的特殊值.(2)如图,∠C =90°,∠A =16°,则∠B =________(74°). 16°,74°的三角函数值是特殊值吗?可以直接求出来吗?还有16°32′的三角函数值怎么求?二、自主学习指向目标阅读教材第12页至第14页的内容,完成《名师学案》的“课前预习”部分.三、合作探究达成目标探究点一用科学计算器求锐角三角函数值活动:像这样的问题:如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?如图,在Rt△ABC中,∠C=90°,BC=AB sin16°,你知道sin16°等于多少吗?我们可以借助科学计算器求锐角的三角函数值?怎样用科学计算器求锐角的三角函数值呢?请与同伴交流你是怎么做的.展示点评:(1)用科学计算器求16°的三角函数值(sin16°):(2)操作顺序如下:∴据上表则可以求得BC=AB·sin16°≈200×0.2756≈55.12反思小结:利用科学计算器求锐角的三角函数值按键的顺序为:第一步按sin或cos或tan,第二步按数键?,第三步按=,即可出来数据;一般题中无特例说明,数据一般精确到万分位.例题讲解:例:用科学计算器计算cos42°,tan85°和sin72°38′5″的值.(学生动手操作) 针对训练:教材随堂练习1.探究点二用科学计算器求锐角的度数活动:教材第13页[想一想]展示点评:已知三角函数值求角度,要用到sin cos tan键的第二功能sin-1cos-1 tan-1和SHIFT键.例已知三角函数值,用计算器求锐角A:sin A=0.9816,cos A=0.8607,tan A=0.1890,tan A=56.78上表的显示结果是以“度”为单位的,再按.,,,键即可显示以“度,分,秒”为单位的结果.请你求出想一想中∠A的度数.反思小结:已知三角函数值求角度,要用到科学计算器中的sin,cos,tan键的第二功能键sin-1cos-1tan-1和SHIFT键.针对训练:教材随堂练习4.四、总结梳理内化目标利用科学计算器求已知角的三角函数值和已知三角函数值求角度的步骤.注意区分以上两种计算方式的步骤;在计算时注意精确值.五、达标检测反思目标1.用计算器求下列各式的值:(1)sin56°;(2)sin15°49′;(3)cos20°;(4)tan29°;(5)tan44°59′59″;(6)sin15°+cos61°+tan76°2.根据下列条件求∠θ的大小:(1)tanθ=2.9888;(2)sinθ=0.3957;(3)cosθ=0.7850;(4)tanθ=0.89723.求图中避雷针的长度(结果精确到0.01m)作业布置教材第15页习题2,3,4. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.4 解直角三角形教学目标1.熟练掌握直角三角形除直角外五个元素之间的关系. 2.学会根据题目要求正确地选用这些关系式解直角三角形. 教学重点会利用已知条件解直角三角形. 教学难点根据题目要求正确选用适当的三角关系式解直角三角形. 教学过程一、创设情景 明确目标(1)直角三角形三边的关系:勾股定理a 2+b 2=c 2.直角三角形两锐角的关系:两锐角互余∠A +∠B =90°. *直角三角形边与角之间的关系:锐角三角函数sin A =a c ,cos A =b c ,tan A =a b(2)特殊角30°,45°,60°角的三角函数值.(3)直角三角形中有6个元素,三个角和三条边,那么至少知道几个元素就可以求其他元素.二、自主学习 指向目标阅读教材第16页至第17页的内容,完成《名师学案》中的“课前预习”部分. 三、合作探究 达成目标 探究点 解直角三角形活动:想一想:在Rt △ABC 中,∠C =90°,(1)根据∠A =60°,斜边AB =30,你能求出这个三角形的其他元素吗? (2)根据AC =2,BC =6,你能求出这个三角形的其他元素吗? (3)根据∠A =60°,∠B =30°,你能求出这个三角形的其他元素吗? 展示点评:(1)∠B =90°-∠A =30°;AC =sin B ·AB ;BC =sin A ·AB. (2)AB =AC 2+BC 2;tan A =BCAC;∠B =90°-∠A ,以上可以根据所给出的等量关系分别求出(1)(2)中的未知元素.(3)不可以求出各边长.反思小结:(1)在直角三角形中由已知的元素,求出所有未知的元素,叫解直角三角形.(2)解直角三角形中,除直角外,其他五个元素中需要知道两个元素(至少有一个为边)可以求到其他三个元素.例题讲解:教材例1,例2针对训练:(1)教材随堂练习.(2)《名师学案》中“当堂练习”部分.四、总结梳理内化目标本节课主要学习了如何利用已知条件,选用合适的三角关系式解直角三角形,这是需要我们熟练掌握的,为后面学习解决实际问题提供打下基础.五、达标检测反思目标1.在下列直角三角形中不能求解的是()A.已知一直角边一锐角B.已知一斜边一锐角C.已知两边D.已知两角2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.(1)已知∠B=45°,c=6解这个直角三角形(2)已知∠A=30°,b+c=30解这个直角三角形3.在Rt△ABC中,∠C=90°,AC=6,∠BAC的平分线AD=43,解此直角三角形.作业布置教材习题1.5第1,2题.教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________1.5三角函数的应用第1课时与方位角有关的实际问题教学目标1.理解航海方位角的概念,并学会画航行方位图,将航海问题转化成数学问题.2.通过航海问题的解决让学生体会船只在海上航行的实际情景,从而培养空间想象力.教学重点学会画航行的方位图,将航海问题转化成数学问题.教学难点将航海的实际情景用航行方位图表现出来.教学过程一、创设情景明确目标(1)回顾直角三角形边与角之间的关系.(2)让学生画出方位角的示意图,并给出定义.学生画图:二、自主学习指向目标阅读教材第19页图1-13有关的内容,并完成《名师学案》中的“课前预习”部分.三、合作探究达成目标探究点方位角的实际问题活动:出示幻灯片动画,动画内容如下:一渔船以20海里/小时的速度跟踪鱼群由西向东航行,在A处测得灯塔C在北偏东60°方向上,继续航行1小时到达B点,这时测得灯塔C在北偏东30°方向上,已知灯塔C的周围10海里范围内有暗礁,如果渔船不改变航线继续向东航行,有没有触礁的危险?展示点评:根据题中船的路径可以把它画成平面图,如图所示,根据实际问题,作CD⊥AD,在Rt△ACD中,求出CD的长度,然后比较CD与10海里的大小就可以确定此船有没有触礁的危险.解答如下:根据题意可知,∠BAC=30°,∠CBD=60°,AB=20×1=20(海里).则∠BAC=∠ACB=30°,故AB=BC=20海里.在直角三角形CBD中,∵sin60°=CD∶CB=3 2,∴CD=20×32=103>10所以,货轮继续向东航行途中没有触礁的危险.反思小结:(1)在这种航海问题上,首先通过方位角的定位画出平面示意图,用辅助线的方法把实际问题转化成数学问题(解直角三角形)(2)方位角的位置要精确.针对训练:《名师学案》中“当堂练习”部分.四、总结梳理内化目标本节课我们学习了航海方位角的概念,并学会根据航海实际情景来画航行方位图,将航海问题转化成数学问题来解决.五、达标检测反思目标如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)作业布置教材习题1.6第4题.教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________第2课时与仰角、俯角有关的实际问题教学目标1.了解仰角、俯角的概念,并弄清它们的意义.2.将实际问题转化成数学问题,并由实际问题画出平面图形,也能由平面图形想象出实际情景,再根据解直角三角形的方法来解决实际问题.教学重点将实际问题转化成数学问题且了解仰角、俯角的概念.教学难点实际情景和平面图形之间的转化.教学过程一、创设情景 明确目标(1)让学生熟练写出直角三角形中的边与角之间的关系:(①三边之间,②角之间,③锐角三角函数)(2)仰角与俯角 ①如图:②定义:在视线与水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.二、自主学习 指向目标阅读教材第19页中想一想的内容,完成《名师学案》中“课前预习”部分. 三、合作探究 达成目标探究点 仰角、俯角的实际问题 活动:出示幻灯动画,动画内容如下:小明想测量塔CD 的高度.他在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50m 至B 处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果精确到1m ).(1)你能完成这个任务吗?(2)请与同伴交流你是怎么想的? (3)准备怎么去做?展示点评:实物图可以建立成两个直角三角形模型,已知在Rt △ACD 中,AC =CD·tan 30°,同理BC =CD·tan 60°,于是AC -BC =AB ,可以得到关于CD 与已知量的关系,即可求出CD 的长.解答如下:解:如图,根据题意可知,∠A =30°,∠DBC =60°,AB =50m.求CD 的长设CD =x m ,则∠ADC =60°,∠BDC =30°,∵tan ∠ADC =AC x ,tan ∠BDC =BCx ,∴AC =xtan60°,BC =xtan30°,∴xtan60°-xtan30°=50.∴x =50tan60°-tan30°=503-33=253≈43(m )所以,该塔约有43m 高.反思小结:仰角、俯角的问题上的类型题,首先要据题意建立直角三角形模型,充分利用三角函数来解决此类实际问题.针对训练:《名师学案》中的“当堂练习”部分.四、总结梳理 内化目标本节课学习了解决实际问题的重要方法:实际问题数学化,由实际问题画出平面图形,也能由平面图形想象出实际情景,再根据解直角三角形的方法来解决实际问题.并且了解了仰角,俯角的概念.五、达标检测 反思目标两座建筑AB 及CD ,其地面距离AC 为50.4米,从AB 的顶点B 测得CD 的顶部D 的仰角β=25°,测得其底部C 的俯角α=50°,求两座建筑物AB 及CD 的高.(精确到0.1米)作业布置教材第21页习题2. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________第3课时 与坡角有关的实际问题教学目标1.加强对坡度、坡角、坡面概念的理解,了解坡度与坡面陡峭程度的关系. 2.能解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力. 教学重点对堤坝等关于斜坡的实际问题的解决. 教学难点对坡度、坡角、坡面概念的理解. 教学过程一、创设情景 明确目标1.修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.什么叫坡度(坡比)?2.坡度等于什么?用什么表示? 3.坡度和坡角之间有什么关系?坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比).记作i ,即i =hl.坡度通常写成l ∶m 的形式,如i =1∶6.坡面与水平面的夹角叫做坡角,记作α,有i =tan α=hl 显然,坡度越大,坡角α就越大,坡面就越陡.4.利用解直角三角形的方法解决实际问题时应注意什么? 二、自主学习 指向目标阅读教材第19页做一做内容,完成《名师学案》“课前预习”部分. 三、合作探究 达成目标探究点 倾斜角有关的实际问题活动:出示幻灯动画,动画内容如下:如图,水库大坝的截面是梯形ABCD ,坝顶AD =6m ,坡长CD =8m .坡底BC =30m ,∠ADC =135°.(1)求坡角∠ABC 的大小;(2)如果坝长100m ,那么修建这个大坝共需多少土石料(结果精确到0.01m 3).展示点评:作AF ⊥BC ,DE ⊥BC 建立直角三角形模型,首先在Rt △DCE 中,EC =DE =DC·tan 45°,又可以得到四边形AFED 为矩形,即AF =DE ,再解Rt △ABF ,其中BF =BC -CF ,tan ∠ABC =AF BF.解:略反思小结:有关坡度(坡角)或倾斜角的实际问题,首先要通过作垂线把平面几何图形转化一个或者几个直角三角形来解.在解直角三角形中中主要利用公式i =tan α=hl 求题目中未知条件.针对训练:《名师学案》中“当堂练习”部分. 四、总结梳理 内化目标本节课从对坡度、坡角、坡面概念的复习,了解坡度与坡面陡峭程度的关系.学会解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力.五、达标检测 反思目标 1.如图,拦水坝的横断面为梯形ABCD(图中i =1∶3是指坡面的铅直高度DE 与水平宽度CE 的比),根据图中数据求:(1)坡角α和β;(2)斜坡AB 的长(精确到0.1m )2.如图,燕尾槽的横断面是一个等腰梯形,其中燕尾角∠B =55°,外口宽AD =180mm ,燕尾槽的深度是70mm ,求它的里口宽BC(结果精确到1mm ).作业布置教材第21页习题3.教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________ 第二章二次函数2.1二次函数教学目标1.能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.2.注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯.教学重点能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.教学难点根据实际问题,列出二次函数关系式.教学过程一、创设情景明确目标(1)什么叫一次函数?什么叫反比例函数,它们的一般形式各有什么特点?有定义中分别要注意什么?(2)下列关系式中:y=2x+1,y=-x-4,y=2x,y=5x2,y=-4x,y=ax+1,其中一次函数有哪些?反比例函数有哪些?二、自主学习指向目标阅读教材第29页至30页内容,完成《名师学案》中的“课前预习”部分.三、合作探究达成目标探究点一二次函数的定义活动:请用适当的函数解析式表示下列问题情境中的两个变量y与x之间的关系:(1)圆的面积y(cm2)与圆的半径x(cm)________.(2)正方形的边长为a,如果边长增加2,新图形的面积S与a之间的函数关系式为________.(3)果园里有100棵橙子树,每一棵树平均结600个橙子,现在准备多种一些果树以提高果园产量,但多种果树,那么树之间的距离和每棵树所接受的阳光就会减少,根据经验估计,每多种1棵树,平均每棵树就会少结5个橙子,假设果园增种x 棵果树,那么果园共有_______棵橙子树,这时平均每颗橙子树结_______个橙子,如果用y 表示橙子的总产量,那么y 与x 之间的关系式是:________.展示点评:(1)y =πx 2;(2)S =(a +2)2; (3)y =-5x 2+100x +60000思考:上面第(1)(2)(3)题中函数表达式有什么共同点?展示点评:归纳:二次函数定义:一般地,若两个变量x ,y 之间的对应关系可以表示成y =ax 2+bx +c(a ,b ,c 为常数,a ≠0)的形式,则称y 是x 的二次函数.能否抛开“a ≠0”理解二次函数的概念?为什么?对于b ,c 它们可否等于0?反思小结:判断一个函数是否为二次函数,关键是看它是否符合二次函数的特征,若形式比较复杂,则要先化简,再作出判断.具体地可从如下几点进行:(1)自变量的最高次数是2;(2)二次项系数不为0;(3)右边是整式;(4)判断时首先将右边化成一般式,不要看表面形式.针对训练:(1)教材随堂练习1.(2)《名师学案》中“当堂练习”有关部分. 探究点二 列出实际问题中的二次函数表达式 活动:某小区要修建一块矩形绿地,设矩形的边长为x 米,宽为y 米,面积为S 平方米,(x>y).(1)如果用18米的建筑材料来修建绿地的边框(即周长),求S 与x 的函数关系,并求出x 的了取值范围.(2)根据小区的规划要求,所修建的绿地面积必须是18平方米,在满足(1)的条件下,矩形的长和宽各为多少米?展示点评:题目中蕴涵的公式是什么?(S =18-2x2·x =(9-x)·x =-x 2+9x)第(2)问就是已知S(函数值),求x(自变量)的问题;即当S =18时,求x 的值.反思:根据实际问题列二次函数关系式的一般步骤有哪些?求自变量的值或二次函数值与以前学过的哪些知识相关?反思小结:一般地,列实际问题中的二次函数关系式可以按如下步骤进行:(1)审清题意,找出实际问题中的已知量,并分析它们之间的关系,将文字或图形语言转化成数字符号语言;(2)根据实际问题中存在的等量关系或客观存在的某种数量关系(如学过的公式等),建立二次函数关系式,并将之整理成一般形式为y =ax 2+bx +c(a ≠0);(3)联系实际,写出需要标明的自变量的取值范围.已知二次函数值求自变量的值可以化为解一元二次方程,而已知自变量的值求二次函数值实际上就是求代数式的值.针对训练:(1)教材第30页随堂练习2.(2)《名师学案》中“当堂练习”有关部分. 四、总结梳理 内化目标(1)一次函数与二次函数的区别与联系.(2)二次函数的定义?在定义中需注意些什么?二次函数的一般形式是:y =ax 2+bx +c(a ≠0)其中ax 2是二次项,bx 为一次项,c 为常数项.。

北师大版数学九年级下册教案 最新(全)

北师大版数学九年级下册教案 最新(全)

第一章直角三角形的边角关系第1课时§1.1.1锐角三角函数教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算➢➢1、题。

这时通常1)(2)3)正弦、余弦的概念奠定基础。

2、想一想(比值不变)☆想一想书本P2想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、 正切函数(1) 明确各边的名称(2) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

a 、 1) 2) 若3) 若b 、 (34、 例1 例2 ➢ 5➢ 小结➢ 作业书本教学目标5、 6、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明 7、 能够运用三角函数表示直角三角形中两边的比8、 能够根据直角三角形中的边角关系,进行简单的计算 教学重点和难点重点:理解正弦、余弦函数的定义 难点:理解正弦、余弦函数的定义 教学过程设计➢ 从学生原有的认知结构提出问题上一节课,我们研究了正切函数,这节课,我们继续研究其它的两个函数。

✧ 复习正切函数ABC∠A 的对边∠A 的邻边斜边B➢师生共同研究形成概念6、引入书本P7顶7、正弦、余弦函数c、1)2)若3)若d、8、9、sinA10、例3例4➢11、A➢小结➢作业书本教学目标9、10、11、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小教学重点和难点重点:进行含有30°、45°、60°角的三角函数值的计算难点:记住30°、45°、60°角的三角函数值教学过程设计➢从学生原有的认知结构提出问题上两节课,我们研究了正切、正弦、余弦函数,这节课,我们继续研究特殊角的三角函数值。

北师大版九年级下册数学教案

北师大版九年级下册数学教案

北师大版九年级下册数学教案一一、学情分析:九年级(1)、(2)班成绩一般,两极分化严重,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习积极性有所提高,也有不少学生自知能力较差,特别是到了最后一学期,,最自己要求不严,甚至自暴自弃,这些都需要针对不同情况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。

二、本册教材教学目标:1、情感目标及价值观:通过学习交流、合作、讨论的方式,积极探索,激发学生的学习兴趣,改进学生的学习方式,提高学习质量,逐步形成正确的教学价值观,使学生的情感得到发展。

2、知识与技能理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,三视图,掌握圆的切线及与圆有关的角等概念和计算。

教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理的进行运算,逐步学会观察分析、综合、抽象、概括。

会用归纳演绎、类比进行简单的推理,提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,掌握初中数学教材、数学学科“基本要求”的知识点。

3、过程与方法:经历探索过程,让学生进一步体会数学来源与实践,又反应用于实践,通过探索、学习,使学生逐步学会正确、合理的进行运算,逐步学会观察、分析、综合、抽象、会用归纳、演绎、类比进行简单的推理,围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学主要内容进行专题复习,适时地进行分层教学,面向全体学生、培养学生、发展全体学生。

三、本册教材分析本学期的内容只剩两章,:圆与统计估计。

圆这一章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图,平行投影和中心投影,视图。

本章设涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念和定理。

垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。

新版北师大版数学九年级下册教案(全)

新版北师大版数学九年级下册教案(全)

第一章 直角三角形的边角关系第1课时§1.1.1 锐角三角函数教学目标1、 经历探索直角三角形中边角关系的过程2、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、 能够运用三角函数表示直角三角形中两边的比4、 能够根据直角三角形中的边角关系,进行简单的计算 教学重点和难点重点:理解正切函数的定义 难点:理解正切函数的定义 教学过程设计➢ 从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

➢ 师生共同研究形成概念1、 梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1) (重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡; 2) 如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡; 3) 如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、 想一想(比值不变)☆ 想一想 书本P 2 想一想 通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、 正切函数 (1) 明确各边的名称 (2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB ABCAB C∠A 的对边∠A 的邻边斜边ABC= ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; b 、 如图,在△ACB 中,tanA = 。

北师大版九年级数学下册教案

北师大版九年级数学下册教案

北师大版九年级数学下册教案北师大版九年级数学下册教案1理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比方,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特别二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,假如q≥0,方程的根是x=-p±q;假如q0,当b2-4ac≥0时,b2-4ac4a2≥0∴(x+b2a)2=(b2-4ac2a)2直接开平方,得:x+b2a=±b2-4ac2a即x=-b±b2-4ac2a∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解以下方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、稳固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4北师大版九年级数学下册教案2一、创设情境导入新课1、介绍七巧板师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?一千多年前,中国人创造了七巧板。

北师大版九年级下册数学全册教案设计

北师大版九年级下册数学全册教案设计

北师大版九年级下册数学全册教案设计北师大版数学九年级下册全册教案设计清风染绿叶第一章直角三角形的边角关系 1 锐角三角函数第1课时正切与坡度 1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系. 2.能用表示直角三角形中两直角边的比来表示物体的倾斜程度和坡度(坡比)等. 3.能根据直角三角形的边角关系,用正切进行简单的计算.重点理解正切、倾斜程度、坡度的数学意义,密切关注数学与生活的联系.难点理解正切的意义,并用它来表示两边的比.一、情境导入师:梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放得“陡”,那个梯子放得“平缓”,人们是如何判断的?课件出示下图,提出问题:(1)甲组中EF和AB哪个梯子比较陡?你是怎么判断的?有几种判断方法?(2)乙组中AB和EF哪个梯子比较陡?你是怎么判断的?甲组乙组二、探究新知引导学生阅读教材第2~4页的内容,完成以下问题:1.比较梯子的倾斜程度 (1)如图,这里摆放的三组梯子,每组梯子中哪一个更陡?梯子的倾斜程度与什么有关? (2)分别求出每组图中的与,想一想它们的比值与梯子的倾斜程度有什么关系? 2.如下图,小明想通过测量B1C1及 AC1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B2C2及 AC2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)Rt△AB1C1和Rt△AB2C2有什么关系? (2)和有什么关系? (3)如果改变B2在梯子上的位置呢?由此你得出什么结论? 3.正切是如何定义的? 4.梯子的倾斜程度与tan A的值有什么关系? 5.坡度是如何定义的?三、举例分析^p 例如图表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?甲乙(1)tan α和tan β 的值分别是多少? (2)你能比较tan α和tan β 的大小吗? (3)根据tan A的值越大,梯子越陡你能判断哪一个自动扶梯比较陡吗?四、练习巩固 1.在△ABC中,∠C=90°,则tan A等于( ) A. B. C. D.2.如图,在△ABC中,∠C=90°,BC=6,若tan A=,则AC=________.3.如图,Rt△ACB中,∠B=90°,BC=10,tan A=,求AB,AC.五、课堂小结 1.易错点:(1) tan A中常省略角的符号“∠”,用希腊字母表示角时也可省略,如:tan α,tan β 等.但用三个字母表示角和用阿拉伯数字表示角时,不能省略角的符号“∠”,要写成tan ∠BAC或tan ∠1,tan ∠2 等;(2) tan A没有单位,它表示一个比值;(3) tan A是一个完整的数学符号,不可分割,不表示“tan ”乘“A”. 2.归纳小结:(1)tan A=;(2)tan A的值越大,梯子越陡. 3.方法规律:(1)一个角的正切是在直角三角形中定义的,因此,tan A=只能在直角三角形中适用;(2)坡面与水平面的夹角称为坡角;坡面的铅垂高度与水平宽度的比称为坡度(或坡比).六、课外作业 1.教材第4页“随堂练习”第1、2题. 2.教材第4页习题1.1第1、2题.本课时结合学生身边的数学现象,依据初中学生身心发展的特点,通过比较梯子哪个更徒引入新课,激发了学生的求知欲.为了突破教学难点,教学活动中运用了直观教学、几何画板动态演示和验证、几何推理等方法,既直观地呈现了知识的内在联系,培养了学生的几何直观能力,又唤起和加深了学生对教学内容的体会和理解.本课中,对梯子的倾斜程度、坡角、坡度(坡比)的认识,让学生更进一步体验了数学的实用性,加深了数学和实际生活的联系.第2课时正弦和余弦 1.理解正弦、余弦及三角函数的意义. 2.能够运用sin A,cos A表示直角三角形两边的比. 3.根据直角三角形中的边角关系,进行简单的计算.重点理解正弦、余弦的定义,能根据直角三角形的边角关系进行简单计算.难点正弦、余弦的理解及应用.一、复习导入 1.在Rt△ABC中,∠C=90°,tan A=,AC=10,求BC,AB的长. 2.若梯子与水平面相交的锐角为∠A,∠A越大,梯子越________;tan A的值越大,梯子越________. 3.当Rt△ABC中的一个锐角A确定时,其他边之间的比值也确定吗?可以用其他的方式来表示梯子的倾斜程度吗?二、探究新知 1.正弦、余弦及三角函数的定义课件出示:(1)Rt△AB1C1和Rt△AB2C2的关系是什么? (2)和的关系是什么? (3)如果改变B2在斜边上的位置,则和的关系是什么?思考:从上面的问题可以看出:当直角三角形的一个锐角的大小经已确定时,它的对边与斜边的比值____________,根据是________________.它的邻边与斜边的比值呢? 2.梯子的倾斜程度与sin A和cos A的关系探究活动:梯子的倾斜程度与sin A和cos A之间有什么关系?如图,AB,A1B1表示梯子,CE表示支撑梯子的墙,AC在地面上. (1)梯子AB,A1B1哪个更陡? (2)梯子的倾斜程度与sin A和cos A有关系吗?三、举例分析^p 例如图,在Rt△ABC中,∠B=90°,AC=20__,sin A=0.6,求BC的长. (1)sin A等于图中哪两条边的比? (2)你能根据sin A=0.6写出等量关系吗? (3)根据等量关系你能求出BC的长吗?四、练习巩固 1.在Rt△ABC 中,若各边的长度同时都缩小4倍,则锐角A的正弦值( ) A.缩小4倍B.缩小2倍 C.保持不变D.不能确定 2.已知∠A,∠B为锐角. (1)若∠A=∠B,则sinA________sin B;(2)若sin A=sin B,则∠A ________∠B.3.如图,在Rt△ABC中,∠C=90°,AC=3,AB=6,求∠B的三个三角函数值.五、课堂小结 1.易错点:(1)sin A,cos A,tan A是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sin A,cos A,tan A是一个完整的符号,表示∠A的正弦、余弦、正切,习惯省去“∠”符号;(3)sin A,cos A,tan A都是一个比值,注意区别,且sin A,cos A,tan A均大于0,无单位;(4)sin A,cos A,tan A的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系. 2.归纳小结:(1)正弦的定义:在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sin A;(2)余弦的定义:在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠ A的余弦,记作cos A;(3)sin A越大,梯子越陡;cos A越小,梯子越陡. 3.方法规律:两个锐角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.六、课外作业 1.教材第6页“随堂练习”第1、2题. 2.教材第6~7页习题1.2第1、3、4、5题.本节课结合初中学生身心发展的特点,运用了类比教学法,加深学生对教学内容的体会和了解,很容易就掌握了正弦和余弦的概念和意义.同时,探究活动培养和发展了学生的观察、思维能力.本课时贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的基本认识规律,运用了这些直观教学,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.2 30°,45°,60°角的三角函数值1.经历探索30°,45°,60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义. 2.能够进行30°,45°,60°角的三角函数值的计算. 3.能够根据30°,45°,60°的三角函数值说明相应的锐角的大小.重点能够进行30°,45°,60°角的三角函数值的计算;能够根据30°,45°,60°角的三角函数值说出相应的锐角大小.难点通过探索特殊三角函数值的过程,培养学生进行有关推理的能力.一、复习导入 1.在Rt△ABC中,∠C =90°.(1)a,b,c三者之间的关系是什么?∠ A+∠ B等于多少度? (2)如何表示sin A,cos A,tan A,sin B,cos B,tan B? 2.观察一副三角尺,其中有几个锐角?它们分别等于多少度?二、探究新知课件出示:如图所示,在Rt△ABC中,∠ C=90°,∠ A=30°.(1)a,b,c三者之间有什么样的关系?(2)sin 30°等于多少?你是怎样得到的?与同伴交流.(3)cos 30°等于多少?tan 30°呢?(4)sin 60°,cos 60°,tan 60°呢?(5)45°角的三角函数值分别是多少呢?引导学生填写表格:三角函数值sin A cos A tan A 30° 45° 60°三、举例分析^p 例1 计算:(1) sin 30°+cos 45°;(2) sin 260°+cos 260°-tan 45°.处理方式:通过记忆特殊角的三角函数值求解,注意格式和过程.例2 (课件出示教材第9页例2) 引导学生思考如下问题:(1)你能根据题意画出图形吗? (2)你能根据所画图形构造直角三角形吗?(3)你能找到图形中的特殊角吗? (4)你能根据特殊角的三角函数值求出正确的结果吗?四、练习巩固 1.下列式子中成立的是 () A.cos 72°<sin 35°<tan 46° B.sin 35°<tan 46°<cos 72° C.tan 46°<cos 72°<sin 35° D.tan 46°<cos 40°<sin 35° 2.已知等腰△ABC的腰长为4 ,底角为30°,则底边上的高为________,周长为________. 3.若(tan A-3)2+=0,则△ABC按角分类是什么三角形?五、课堂小结 1.易错点:(1)能进行含30°,45°,60°角的三角函数值的计算;(2)能根据30°,45°,60°角的三角函数值,说出相应锐角的大小. 2.归纳小结:sin 30°=,sin 45°=,sin 60°=;cos 30°=,cos 45°=,cos 60°=;tan 30°=,tan 45°=1,tan 60°=.3.方法规律:在Rt△ABC中,若∠A+∠B=90°,则有:sin A=cos (90°-A);cos A=sin (90°-A) ;sin B=cos (90°-B);cos B=sin (90°-B).六、课外作业 1.教材第9页“随堂练习”第1、2题. 2.教材第10页习题1.3第1~4题.本节课课程设计中引入非常直接,由三角板引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.设计开门见山,节省了时间,为后面的教学提供了方便.在讲解特殊角的三角函数值时也很详细,可以说前部分的教学很成功,学生理解得很好.3 三角函数的计算 1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数的意义. 2.能用计算器由已知三角函数值求角度. 3.能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.重点熟悉计数器的使用,能熟练掌握按键顺序.难点非整数度的角的三角函数值的求法.一、情境导入课件出示:如图,当登山缆车的吊箱经过点A到达点B时,它走过了20__m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01m) 引导学生思考以下问题:(1)在Rt△ABC中,sin α如何表示? (2)你知道sin 16°是多少吗? (3)我们可以借助科学计算器求锐角的三角函数值,那么怎样用科学计算器求三角函数值呢?二、探究新知 1.已知角求三角函数值 (1)引导学生阅读教材第12页用计算器求三角函数值的操作过程,提出问题:①利用计算器求三角函数值用到哪些按键?②求值过程中按键使用的先后顺序是什么?③求整数角度和用“度、分、秒”表示的角度的区别是什么?④通过自学你能利用计算器求出sin 16°的数值吗? (2)课件出示:当缆车继续由点B到达点D时,他又走过了20__m,缆车由点B到点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?引导学生思考如下问题:①缆车从点B到点D通过的路程是多少?②缆车从点B到点D水平通过的路程是多少?③缆车从点B到点D垂直高度上升了多少? 2.已知三角函数值求角 (1)课件出示:为了方便行人推自行车过某天桥,市政府在10 m高的天桥两端修建了40 m 长的斜道,这条斜道的倾斜角是多少?引导学生思考如下问题:①在Rt△ABC中,sin A如何表示?②你能根据题目中的已知条件求出sin A的数值吗?③你能根据sin A的数值求出∠A吗? (2)引导学生阅读教材第13~14页用计算器求角的操作过程,提出问题:①利用计算器求角用到哪些按键?②求角过程中按键使用的先后顺序是什么?③如何利用计算器将求出的角度进行“度、分、秒”的换算?④你能利用计算器求出∠A的度数吗?三、练习巩固 1.用计算器计算cos 44°的结果(精确到0.01)是( ) A.0.90B.0.72C.0.69 D.0.66 2.用计算器求tan 35°的值,按键顺序是____________________. 3.在Rt△ABC中,若∠C=90°,BC=20,AC=12.5,求两个锐角的度数(精确到1°).四、课堂小结 1.易错点:(1)用计算器求三角函数值与用计算器求角的区别和联系;(2)求锐角的三角函数时,不同计算器的按键顺序是不同的. 2.归纳小结:(1)用计算器求三角函数值;(2)用计算器求角. 3.方法规律:(1)用计算器求三角函数值时,结果一般有10个数位,我们的教材中有一个约定:如无特别说明,计算结果一般精确到万分位;(2)求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;先输入数字后,再按三角函数键.五、课外作业 1.教材第14页“随堂练习”第1、2、3题. 2.教材第15页习题1.4第1~6题.本节课在教学过程中,力求从基本知识入手,尽可能地使计算简单化,然后逐步地加深提高.但从实际的效果上看,学生的基础知识较差,计算能力薄弱,虽然训练量在增加,但效果却不明显,始终对三角函数的性质运用很不熟练.在教学过程中,我深切感到自身知识面的不足,在讲解练习时很单调,不能进行适当地扩展.在以后的教学中,我还要继续加强自身的学习,不断钻研教材教法,力争做到讲课通俗易懂.4 解直角三角形 1.了解直角三角形的概念,掌握直角三角形的边角关系. 2.能运用直角三角形的角与角(两锐角互余)、边与边(勾股定理)、边与角的关系解直角三角形.重点直角三角形的解法.难点灵活运用三角函数解直角三角形.一、复习导入师:在图形的研究中,直角三角形是常见的三角形之一,因此经常会遇到求直角三角形的边长或角度等问题.为了解决这些问题,往往需要确定直角三角形的边或角.课件出示:如图,在直角三角形ABC中,∠C=90°,∠A,∠B,∠C的对边分别记作a,b,c.(1)直角三角形的三边之间有什么关系? (2)直角三角形的锐角之间有什么关系? (3)直角三角形的边和锐角之间有什么关系?师:直角三角形中有6个元素,分别是三条边和三个角.那么至少知道几个元素,就可以求出其他的元素呢?这就是我们本节课要研究的问题.二、探究新知 1.已知两边解直角三角形课件出示教材第16页例1,提出问题:(1)题目中已知几个元素?分别是什么? (2)解这个直角三角形需要求出哪些元素? (3)解这个直角三角形需要用到已学的哪些知识? (4)你能正确求解吗?教师给出解直角三角形的定义及其依据. 2.已知一边和一锐角解直角三角形课件出示教材第16~17页例2,提出问题:(1)题目中已知几个元素?分别是什么? (2)解这个直角三角形需要求出哪些元素? (3)解这个直角三角形需要用到已学的哪些知识? (4)你能仿照例1独立完成求解吗? 3.总结 (1)通过对上面例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗? (2)除直角外有5个元素(3条边、2个锐角),要知道其中的几个元素就可以求出其他的元素? (3)通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?归纳:解直角三角形,有下面两种情况(其中至少有一边) :(1)已知两条边(一直角边一斜边;两直角边);(2)已知一条边和一个锐角(一直边一锐角;一斜边一锐角).三、练习巩固1.在Rt△ABC中,∠C=90°,sin A=,AB=5,则边AC的长是( ) A.3 B.4C.D.2.已知在Rt△ABC中,∠C=90°,BC=6,sin A=,那么AB=________.3.在△ABC中,已知∠C=90°,b+c=30,∠A-∠B=30°,解这个直角三角形.四、课堂小结 1.易错点:(1)如何把实际问题转化为数学问题,进而把数学问题具体化;(2)至少需要一边,即已知两边或已知一边一锐角才能解直角三角形. 2.归纳小结:(1)“解直角三角形”是由直角三角形中已知的元素求出未知元素的过程;(2)解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角;(3)解直角三角形的方法:①已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);②已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;③已知一个锐角求另一个锐角时,用两锐角互余. 3.方法规律:已知斜边求直边,正弦余弦很方便;已知直边求直边,首选正切理当然;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要选好;已知锐角求锐角,互余关系要记好;已知直边求斜边,用除还需正余弦;计算方法要选择,能用乘法不用除.五、课外作业 1.教材第17页“随堂练习”. 2.教材第17~18页习题1.5第1~4题.本节课的重难点是直角三角形的解法,为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形、直角三角形中三边之间的关系、两锐角之间的关系、边角之间的关系.正确选用这些关系,是正确解直角三角形的关键.解直角三角形的方法灵活多样,学生可以自由选择解题方法.在处理例题时,首先让学生独立完成,培养学生分析^p 问题、解决问题的能力,同时渗透数形结合的思想,然后全班集体交流解法和心得,达到共同进步. 5 三角函数的应用 1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用. 2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.重点经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.难点灵活将实际问题转化为数学问题,建立数学模型,并选择适当的三角函数来解决.一、情境导入如图,海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续往东航行.你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.二、探究新知课件出示教材第19页“想一想”,提出问题:(1)什么是仰角? (2)在这个图中,30°的仰角、60°的仰角分别指哪两个角? (3)怎样求该塔的高度?处理方式:学生先独立思考解决问题的方法,再回答.解:(1)当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.(2)30°的仰角指∠DAC,60°的仰角指∠DBC.(3)∵CD是Rt△ADC和Rt△BDC的公共边,在Rt△ADC中,tan 30°=,即AC=.在Rt△BDC中,tan 60°=,即BC=,又∵AB=AC-BC=50 m,∴-=50.解得CD≈43 m.三、举例分析^p 例(课件出示教材第19页“做一做”) 引导学生思考:(1)你能根据题意将实际问题转化为数学问题吗? (2)你能根据题意画出示意图吗? (3)若AC代表原楼梯长,则楼高、楼梯所占地面的长度分别是多少?(4)40°和35°的角分别是哪个角? (5)在楼梯改造过程中,楼高是否发生了变化?(6)Rt△ABC中的哪条边不变?解:由条件可知,在Rt△ABC中,sin 40°=,即AB=4sin 40°,原楼梯占地长BC=4cos 40°.调整后,在Rt△ADB中,sin 35°=,则AD==,楼梯占地长DB=.∴调整后楼梯加长AD-AC=-4≈0.48(m).楼梯比原来多占DC=DB-BC=-4cos 40°≈0.61(m).四、练习巩固 1.一辆汽车沿坡角为α的斜坡前进500 m,则它上升的最大高度为() A.500sin α B.C.500cos α D.2.如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6 m,则斜坡上相邻两树间的坡面距离是________m.(结果保留根号) 3.如图,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,B为折断处最高点,树顶A落在离树根C的12 m处,测得∠BAC=30°,求BC的长.(结果保留根号) 五、课堂小结 1.易错点:(1)对于含有非基本量的直角三角形,比如有些条件中已知两边之和,中线、高线、角平分线长,角之间的关系,锐角三角函数值,周长、面积等等.对于这类问题,我们常用的解题方法是:将非基本量转化为基本量,或由基本量间关系通过列方程(组),然后解方程(组),求出一个或两个基本量,最终达到解直角三角形的目的;(2)在非直角三角形的问题中,往往是通过作三角形的高,构成直角三角形来解决,而作高时,常从非特殊角的顶点作高;对于较复杂的图形,往往通过“补形”或“分割”的方法,构造出直角三角形,利用解直角三角形的方法,实现问题的转化. 2.归纳小结:解直角三角形一般有以下几个步骤:(1)审题:认真分析^p 题意,根据题目中的已知条件,画出它的平面图,弄清已知和未知条件;(2)明确题目中的一些名词、术语的含义,如仰角、俯角、跨度、坡角、坡度及方向角;(3)若是直角三角形,根据边角关系进行计算;若不是直角三角形,应大胆尝试添加辅助线,把它们分割成一些直角三角形和矩形,把实际问题转化为直角三角形进行解决;(4)确定合适的边角关系,细心推理计算. 3.方法规律:(1)在解直角三角形中,正确选择关系式是关键:① 若求边:一般用未知边比已知边,求寻找已知角的某一个三角函数值;② 若求角:一般用已知边比已知边,去寻找未知角的某一个三角函数值;(2)求某些未知量的途径往往不唯一.选择关系式常遵循以下原则:一是尽量选可以直接应用原始数据的关系式;二是设法选择便于计算的关系式,若能用乘法计算就避免用除法计算.六、课外作业 1.教材第20页“随堂练习”第1、2题. 2.教材第21页习题1.6第1~4题.本节课尽可能站在学生的角度上思考问题,设计好教学的每一个细节.上课前多揣摩学生的认知特点,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,把课堂让给学生,让他们做课堂这个舞台的主角.教师尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作.不断总结课堂教学中的得失,不断进步,只有这样,才能真正提高课堂教学效率. 6 利用三角函数测高 1.能够对仪器进行调整和对测量结果进行矫正,能够对所得到的数据进行分析^p ,从而得出符合实际的结果. 2.能综合应用直角三角形的边角关系的知识解决实际问题.重点设计活动方案、自制仪器、运用仪器进行实地测量以及撰写活动报告.难点运用直角三角形的边角关系求物体的高.一、情境导入问题1:在现实生活中需要测量像旗杆、高楼、塔等较高且顶部不可到达的物体的高度,根据我们所学的知识,同学们有哪些测量方法?问题2:这些测量的方法都用到了什么知识?问题3:如何利用直角三角形的边角关系,测量底部不可以直接到达的物体的高度呢?二、探究新知 1.设计活动方案,自制仪器 (1)测倾器(或测角仪、经纬仪等)由哪几部分构成? (2)制作测角仪时应注意什么?处理方式:小组讨论总结测倾器的制作方法和使用步骤. 2.测量倾斜角 (1)把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置. (2)转动度盘,使度盘的直径对准目标M,记下此时铅垂线所指的度数.那么这个度数就是较高目标M的仰角.师:这样做的依据是什么? 3.测量底部可以到达的物体的高度要测物体MN的高度,可按下列步骤进行:(如下图) (1)在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.(2)量出测点A到物体底部N的水平距离AN=l.(3)量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).师:根据测量数据,你能求出物体MN的高度吗?解:在Rt△MEC中,∠MCE=α,AN=EC=l,∴tan α=,即ME=EC·tan a=l·tan α.∵NE=AC=a,∴MN=ME+EN=l·tan α+a.4.测量底部不可以到达的物体的高度要测量物体MN的高度,可按下列步骤进行:(1)在测点A处安置测角仪,测得此时物体MN的顶端M的仰角∠MCE=α.(2)在测点A与物体之间的B处安置测角仪(点A,B,N都在同一条直线上),此时测得M的仰角∠MDE=β.(3)量出测角仪的高度AC=BD=a,以及测点A,B之间的距离AB=b.师:根据测量数据,你能求出MN的高度吗?分析^p :根据测量的AB的长度,AC,BD的高度以及∠MCE,∠MDE的大小,根据直角三角形的边角关系.即可求出MN的高度.解:∵在Rt△MDE中,ED=,在Rt△MCE中,EC =,∴EC -ED=b.∴ =b.∴ ME=.∴ MN=+a.三、练习巩固 1.直升飞机在离地面2 000 m的上空测得上海东方明珠底部的俯角为30°,此时直升飞机与上海东方明珠底部之间的距离是( ) A.2 000 mB.2 000 m C.4 000 mD.4 000 m 2.20__年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为 ________米(精确到1米).(参考数据:sin 22.3°≈0.38,cos 22.3°≈0.93,tan 22.3°≈0.41) 3.九年级1班的同学为了了解教学楼前一棵树的生长情况,去年在教学楼前点A处测得树顶点C的仰角为30°,树高5 m,今年他们仍在原地A处测得大树顶点D的仰角为37°,问这棵树一年生长了多少米?(精确到0.01)(参考数据:sin37°≈0.6,cos 37°≈0.8,tan 37°≈0.75,≈1.732) 四、课堂小结 1.易错点:(1)支杆的中心线、铅垂线、0刻度线要重合,否则测出的角度就不准确;(2)测量底部不可以到达的物体的高度公式的推导. 2.归纳小结:(1)侧倾器的构成;(2)测量倾斜角;(3)测量底部可以到达的物体的高度;(4)测量底部不可以到达的物体的高度. 3.方法规律:(1)测量底部可以到达的物体的高度MN=l·tan α+a;(2) 测量底部不可以到达的物体的高度MN=+a.五、课外作业 1.教材第23页“议一议”. 2.教材第23页习题1.7第1、2、3题.本节课是一节活动课,课前应做好活动课的各项准备,提前预判活动课所需要的各种知识与能力上的、动手操作环节上等相关经验储备.不能把本节课当作简单的应用题讲解课.课堂是生命绽放的场所,由于不同学生有着不同的已有经验、不同的情感表达、不同的认知方式,因此老师在组织活动时要放弃齐步走、一刀切的观念,对结果也不要急于求成,应重视过程,让每个学生都参与方案。

教案 北师大版 初中 数学 九年级 下册《直线和圆的位置关系》

教案 北师大版 初中 数学 九年级 下册《直线和圆的位置关系》

教案北师大版初中数学九年级下册《直线和圆的位置关系》一. 教材分析北师大版初中数学九年级下册《直线和圆的位置关系》一课,主要让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念,并会运用这些概念解决实际问题。

这一内容是初中数学的重要知识,对学生形成数学思想有重要作用。

二. 学情分析九年级的学生已经掌握了基本的代数知识和几何知识,具备一定的逻辑思维能力。

但是,对于直线与圆的位置关系的理解,需要借助具体的图形和实际问题来帮助学生建立直观的认识。

三. 教学目标1.让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念。

2.培养学生运用直线与圆的位置关系解决实际问题的能力。

3.提高学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.教学重点:直线与圆的位置关系,直线与圆相交、相切、相离的概念。

2.教学难点:如何让学生理解并运用直线与圆的位置关系解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,以学生为主体,教师为引导,通过具体的图形和实际问题,引导学生探索直线与圆的位置关系。

六. 教学准备1.教学素材:直线与圆的位置关系的图形、实际问题案例。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)通过展示直线与圆的位置关系的图形,引导学生观察和思考直线与圆的位置关系,激发学生的学习兴趣。

2.呈现(10分钟)呈现直线与圆相交、相切、相离的定义,让学生理解直线与圆的位置关系。

通过具体的图形和实际问题,让学生感受直线与圆的位置关系在实际中的应用。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用直线与圆的位置关系进行解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生在课堂上展示自己的解题过程和答案,其他学生进行评价和提问。

教师总结学生的解题方法,并进行点评。

5.拓展(10分钟)让学生思考直线与圆的位置关系在生活中的应用,可以提出新的问题,进行讨论和解答。

北师大版九年级下册数学全册教学设计

北师大版九年级下册数学全册教学设计

北师大版九年级下册数学全册教学设计一. 教材分析北师大版九年级下册数学教材内容包括:反比例函数、二次函数、圆、概率、相似三角形、锐角三角函数、解三角形、三角恒等式、初等函数、导数、极限等。

这些内容是整个中学数学的基础,对于学生来说,既是重点,也是难点。

教材内容环环相扣,前后联系密切,需要学生扎实的基本功和良好的学习习惯。

二. 学情分析九年级的学生已经具备了一定的数学基础,对数学概念、公式、定理等有了一定的了解。

但同时,他们面临着中考的压力,学习任务较重,学习时间紧张。

因此,在教学过程中,要注重启发学生思维,提高学习效率,培养学生的数学素养。

三. 教学目标1.知识与技能:使学生掌握反比例函数、二次函数、圆、概率、相似三角形、锐角三角函数、解三角形、三角恒等式、初等函数、导数、极限等基本概念、性质、公式和应用。

2.过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学思维能力、问题解决能力和创新能力。

3.情感态度与价值观:激发学生对数学的兴趣,树立信心,培养严谨治学的态度,提高学生的数学素养。

四. 教学重难点1.反比例函数、二次函数的图像与性质。

2.圆的方程、相似三角形的判定与性质。

3.概率的基本概念、计算公式及应用。

4.锐角三角函数的定义、解三角形的方法。

5.三角恒等式的证明与变换。

6.初等函数的图像与性质。

7.导数的定义、计算公式及应用。

8.极限的概念及计算。

五. 教学方法1.启发式教学:通过提问、讨论等方式,激发学生的思维,引导学生主动探究。

2.案例教学:结合生活实例,让学生体会数学的应用价值。

3.小组合作:鼓励学生相互讨论、交流,培养团队合作精神。

4.实践操作:让学生动手实践,提高操作能力和解决问题的能力。

5.反馈评价:及时给予学生反馈,鼓励优点,指出不足,促进学生全面发展。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.教学素材:收集相关的生活实例、案例,用于教学实践。

第3章3.3垂径定理(教案)2023-2024学年九年级下册数学(教案)(北师大版)

第3章3.3垂径定理(教案)2023-2024学年九年级下册数学(教案)(北师大版)
3.重点难点解析:在讲授过程中,我会特别强调垂径定理的定义及其证明过程这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与垂径定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示垂径定理的基本原理。
5.培养学生养成良好的学习习惯,提高自主学习、探究学习的能力,形成终身学习的观念。
三、教学难点与重点
1.教学重点
-理解垂径定理的概念:垂径定理是圆的基本性质之一,对于圆的认识具有重要意义。教学过程中应重点讲解垂径定理的定义,使学生明确垂直于弦的直径平分弦,并且平分弦所对的两条弧。
-掌握垂径定理的证明方法:通过运用勾股定理和圆周角定理,引导学生理解并掌握垂径定理的证明过程,培养学生严谨的逻辑推理能力。
此外,在总结回顾环节,学生们能够较好地掌握垂径定理的基本概念和应用。但我也注意到,部分学生在提问环节显得较为拘况,我将在课堂上鼓励学生大胆提问,充分表达自己的观点,同时给予他们更多的肯定和鼓励。
最后,针对本节课的教学,我认为以下方面需要改进:
a.引导学生观察图形,发现垂径定理的规律。
b.分步骤解释证明过程,强调勾股定理和圆周角定理的应用。
c.通过提问和互动,了解学生在证明过程中遇到的难点,并针对性地进行解答。
d.组织学生进行小组讨论,共同解决证明过程中的问题,培养学生的团队合作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《垂径定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要找到圆中某个点,使得从这个点到圆周上某点的距离最短的情况?”(例如:如何在一张纸上剪出一个最大的圆)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索垂径定理的奥秘。

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。

这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。

但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。

四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。

如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。

请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。

例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。

3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。

例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。

4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。

北师大版数学九年级下册全部教案

北师大版数学九年级下册全部教案
活动效果:学生一般都能得到这些定理的证明,能规范地写出对于“等边三角形三个内角都相等并且每个内角都等于60°”的证明过程:
已知:如图,ΔABC中,AB=BC=AC.
求证:∠A=∠B=∠C=60°.
证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).
同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).
第五环节:课堂小结
活动内容:让学生畅谈收获,包括具体结论以及其中的思想方法等。
活动目的:形成及时总结语反思的意识与习惯,提高学生能力。
活动效果与注意事项:教师注意对学生的感想进行适当的引导,并在学生交流的基础上,明晰部分收获供学生共享,如:
1、具体有关性质定理;
2、通过折纸活动获得三个定理,均给予了严格的证明,为今后解决有关等腰三角形的问题提供了丰富的理论依据.
2、提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质,从而得到:等边三角形三个内角都相等并且每个内角都等于60°.
活动目的:和学生一起完成性质定理的证明,可以让学生自主经历命题的证明过程;明晰证明过程,意图给学生明晰一定的规范,起到一种引领作用;活动2,则是前面命题的直接推论,力图让学生形成拓广命题的意识,同时也是一个很好的巩固练习。
3、体会了证明一个命题的严格的要求,体会了证明的必要性.
第六环节:布置作业
P5习题1,2.
四、教学反思
本节关注学生已有活动经验的回顾过程,关注了“探索-发现-猜想-证明”的活动过程,关注了学生自主探究过程,学生学习的主体性发挥较好,应该说取得了较好的教学效果。当然,在具体活动中,如何在学生活动与规范表达之间形成一个恰当的平衡,具体各部分时间比例的分配可能还需要根据班级学生具体状况进行适度的调整。

第1章1.4解直角三角形(教案)2023-2024学年九年级下册数学(教案)(北师大版)

第1章1.4解直角三角形(教案)2023-2024学年九年级下册数学(教案)(北师大版)
五、教学反思
今天我们在课堂上一起探讨了解直角三角形的知识,回顾整个教学过程,我觉得有几个地方值得反思和总结。
首先,我在导入新课环节通过提出与生活相关的问题,激发了学生的兴趣。他们能够积极参与,提出自己在生活中遇到的实际问题,这有助于提高他们对本节课内容的学习兴趣。但在这一过程中,我也发现部分学生对直角三角形的概念理解不够深入,需要在后续教学中加强基础知识的巩固。
3.培养学生的空间想象力和几何直观,通过绘制直角三角形图形,加深对几何图形的理解。
4.激发学生的合作意识和团队精神,通过小组讨论、互动交流,共同解决问题,提升沟通能力。
5.培养学生勇于探索、积极思考的学习态度,形成自主学习、终身学习的观念。
三、教学难点与重点
1.教学重点
-理解并掌握直角三角形的定义和性质,特别是斜边、邻边和对边的关系。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,我会通过具体例子和比较来帮助大家理解如何运用这些函数解直角三角形。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解直角三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何使用测量工具和三角函数求解未知高度或距离。
3.成果分享:每个小组将选择一名代表来分享他们的讨பைடு நூலகம்成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、锐角三角函数的重要性和应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

最新北师大版九年级下册数学全册教案(Word版,47份打包)

最新北师大版九年级下册数学全册教案(Word版,47份打包)

1.1 锐角三角函数 第1课时 正切与坡度1.理解正切的意义,并能举例说明;(重点)2.能够根据正切的概念进行简单的计算;(重点)3.能运用正切、坡度解决问题.(难点)一、情境导入 观察与思考:某体育馆为了方便不同需求的观众,设计了不同坡度的台阶.问题1:图①中的台阶哪个更陡?你是怎么判断的?问题2:如何描述图②中台阶的倾斜程度?除了用∠A 的大小来描述,还可以用什么方法?方法一:通过测量BC 与AC 的长度算出它们的比,来说明台阶的倾斜程度; 方法二:在台阶斜坡上另找一点B 1,测出B 1C 1与AC 1的长度,算出它们的比,也能说明台阶的倾斜程度.你觉得上面的方法正确吗? 二、合作探究 探究点一:正切【类型一】 根据正切的概念求正切值分别求出图中∠A 、∠B 的正切值(其中∠C =90°).由上面的例子可以得出结论:直角三角形的两个锐角的正切值互为________.解析:根据勾股定理求出需要的边长,然后利用正切的定义解答即可. 解:如图①,tan ∠A =1612=43,tan ∠B =1216=34;如图②,BC =732-552=48,tan ∠A =4855,tan ∠B =5548.因而直角三角形的两个锐角的正切值互为倒数.方法总结:求锐角的三角函数值的方法:利用勾股定理求出需要的边长,根据锐角三角函数的定义求出对应三角函数值即可.变式训练:见《学练优》本课时练习“课后巩固提升” 第1题【类型二】 在网格中求正切值已知:如图,在由边长为1的小正方形组成的网格中,点A 、B 、C 、D 、E 都在小正方形的顶点上,求tan ∠ADC 的值.解析:先证明△ACD ≌△BCE ,再根据tan ∠ADC =tan ∠BEC 即可求解.解:根据题意可得AC =BC =12+22=5,CD =CE =12+32=10,AD =BE =5,∴△ACD ≌△BCE (SSS).∴∠ADC =∠BEC .∴tan ∠ADC =tan ∠BEC =13.方法总结:三角函数值的大小是由角度的大小确定的,因此可以把求一个角的三角函数值的问题转化为另一个与其相等的角的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升” 第3题【类型三】 构造直角三角形求三角函数值如图,在Rt △ABC 中,∠C =90°,BC =AC ,D 为AC 的中点,求tan ∠ABD 的值.解析:设AC =BC =2a ,根据勾股定理可求得AB =22a ,再根据等腰直角三角形的性质,可得DE 与AE 的长,根据线段的和差,可得BE 的长,根据正切三角函数的定义,可得答案.解:如图,过D 作DE ⊥AB 于E .设AC =BC =2a ,根据勾股定理得AB =22a .由D 为AC 中点,得AD =a .由∠A =∠ABC =45°,又DE ⊥AB ,得△ADE 是等腰直角三角形,∴DE =AE =2a 2.∴BE =AB -AE =32a2,tan ∠ABD =DE BE =13.方法总结:求三角函数值必须在直角三角形中解答,当所求的角不在直角三角形内时,可作辅助线构造直角三角形进行解答.变式训练:见《学练优》本课时练习“课后巩固提升”第7题探究点二:坡度【类型一】 利用坡度的概念求斜坡的坡度(坡比)堤的横断面如图.堤高BC 是5米,迎水斜坡AB 的长是13米,那么斜坡AB 的坡度是( )A .1∶3B .1∶2.6C .1∶2.4D .1∶2解析:由勾股定理得AC =12米.则斜坡AB 的坡度=BC ∶AC =5∶12=1∶2.4.故选C.方法总结:坡度是坡面的铅直高度h 和水平宽度l 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i =1∶m 的形式.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型二】 利用坡度解决实际问题已知一水坝的横断面是梯形ABCD ,下底BC 长14m ,斜坡AB 的坡度为3∶3,另一腰CD 与下底的夹角为45°,且长为46m ,求它的上底的长(精确到0.1m ,参考数据:2≈1.414,3≈1.732).解析:过点A 作AE ⊥BC 于E ,过点D 作DF ⊥BC 于F ,根据已知条件求出AE =DF 的值,再根据坡度求出BE ,最后根据EF =BC -BE -FC 求出AD .解:过点A 作AE ⊥BC ,过点D 作DF ⊥BC ,垂足分别为E 、F .∵CD 与BC 的夹角为45°,∴∠DCF =45°,∴∠CDF =45°.∵CD =46m ,∴DF =CF =462=43(m),∴AE =DF =43m.∵斜坡AB 的坡度为3∶3,∴tan ∠ABE =AE BE =33=3,∴BE =4m.∵BC =14m ,∴EF =BC -BE -CF =14-4-43=10-43(m).∵AD =EF ,∴AD =10-43≈3.1(m).所以,它的上底的长约为3.1m. 方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计正切与坡度1.正切的概念在直角三角形ABC 中,tan A =∠A 的对边∠A的邻边.2.坡度的概念坡度是坡面的铅直高度与水平宽度的比,也就是坡角的正切值.在教学中,要注重对学生进行数学学习方法的指导.在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会做题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目.通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解和掌握基本概念、基础知识B A 131.1 锐角三角函数 第1课时 正切与坡度教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。

北师大版九年级数学下全册详细教案(含答案)

北师大版九年级数学下全册详细教案(含答案)

第一章 直角三角形的边角关系1.1 锐角三角函数 第1课时 正切1.理解正切的定义,运用正切值的大小比较生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.(重点)2.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.阅读教材P2~4,完成预习内容. (一)知识探究1.在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA =∠A 的对边∠A 的邻边.2.tanA 的值越大,梯子越陡.3.坡面的竖直高度与水平距离的比称为坡度(或坡比). (二)自学反馈1.在Rt △ABC 中,∠C =90°,AC =12,BC =5,那么tanA 等于(C) A.513 B.1213 C.512 D.1252.如图,有一个山坡在水平方向上前进100 m ,在竖直方向上就升高60 m ,那么山坡的坡度i =tan α=35.活动1 小组讨论例 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?解:甲梯中,tan α=5132-52=512.乙梯中,tan β=68=34. 因为tan β>tan α,所以乙梯更陡.求正切值一定要在直角三角形中进行,并且一定要分清锐角的对边与邻边.活动2 跟踪训练1.如图,下面四个梯子最陡的是(B)2.如图,在边长为1的小正方形组成的网格中,点A 、B 、O 为格点,则tan ∠AOB =(A) A.12 B.23 C.105 D.533.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a =24,c =25,则tanA =247、tanB =724.4.如图,某人从山脚下的点A 走了300 m 后到达山顶的点B ,已知点B 到山脚的垂直距离为70 m ,求山的坡度0.24.(结果精确到0.01)活动3 课堂小结 1.正切的定义.2.梯子的倾斜程度与tanA 的关系(∠A 和tanA 之间的关系).3.数形结合的方法,构造直角三角形的意识.第2课时 锐角三角函数1.理解正弦函数和余弦函数的意义,能根据边长求出锐角的正弦值和余弦值,准确分清三种函数值的求法.(重点)2.经历探索直角三角形中边角关系的过程,进一步理解当锐角度数一定,则其对边、邻边、斜边三边比值也一定.能根据直角三角形中的边角关系,进行简单的计算.阅读教材P5~6,完成预习内容. (一)知识探究1.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ;∠A 的对边与斜边的比叫做∠A 的正弦,即sinA =a c .∠A 的邻边与斜边的比叫做∠A 的余弦,即cosA =bc.2.锐角A 的正弦、余弦、正切叫做∠A 的三角函数.3.sinA 的值越大,梯子越陡;cosA 的值越小,梯子越陡.锐角三角函数是在直角三角形的前提下.(二)自学反馈1.如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是(A) A.513 B.1213 C.512 D.1352.如图,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为(A)A.4B.2 5C.181313D.1213133.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3、b =4,则sinB =45,cosB =35,tanB =43.活动1 小组讨论例1 如图,在Rt △ABC 中,∠B =90°,AC =200,sinA =0.6,求BC 的长.解:在Rt △ABC 中, ∵sinA =BC AC ,即BC200=0.6,∴BC =200×0.6=120.例2 如图,在Rt △ABC 中,∠C =90°,AC =10,cosA =1213,求AB 的长及sinB.解:在Rt △ABC 中, ∵cosA =ACAB ,即10AB =1213,∴AB =656. ∴sinB =AC AB =cosA =1213.这里需要注意cosA =sinB.活动2 跟踪训练1.如图,某厂房屋顶呈人字架形(等腰三角形),已知AC =8,DB =43,CD ⊥AB 于点D ,求sinB 的值.解:∵△ABC 是等腰三角形,∴BC =AC =8. ∵CD ⊥AB ,∴∠CDB =90°,∴CD =BC 2-BD 2=82-(43)2=4, ∴sinB =CD BC =48=12.2.如图,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB +cosB的值.解:在Rt △ACD 中,∵CD =6,tanA =32,∴AD =4,∴BD =AB -AD =8.在Rt △BCD 中,BC =82+62=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =75.活动3 课堂小结学生试述:这节课你学到了些什么?1.2 30°,45°,60°角的三角函数值1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算,能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(重点)阅读教材P8~9,完成预习内容. 自学反馈完成下面的表格:sin α cos α tan α 30°12323345° 22 22 1 60°32123活动1 小组讨论 例1 计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°. 解:(1)原式=12+22=1+22.(2)原式=34+14-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.例2 一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)解:根据题意可知,∠AOD =12∠AOB =30°,AO =2.5 m.∴OD =OAcos30°=2.5×32=2.165(m). ∴CD =2.5-2.165≈0.34(m).∴最高位置与最低位置的高度差约为0.34 m. 活动2 跟踪训练 1.计算:(1)2sin30°+3tan30°+tan45°;(2)cos 245°+tan60°cos30°.解:(1)原式=2+ 3. (2)原式=2. 2.如图,某同学用一个有60°的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5 m 高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D ,B 的距离为5 m ,则旗杆AB 的高度大约是多少米?(精确到1 m ,3取1.73)解:由已知可得四边形CDBE 是矩形,∴CE =DB =5 m ,BE =CD =1.5 m. 在Rt △ACE 中,∵tan ∠ACE =AECE,∴AE =CE ·tan ∠ACE =5·tan60°=53,∴AB =53+1.5=8.65+1.5=10.15≈10 (m), 即旗杆AB 的高度大约是10 m. 活动3 课堂小结学生试述:这节课你学到了些什么?1.3 三角函数的计算1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.阅读教材P12~14,完成预习内容. 自学反馈1.已知tan α=0.324 9,则α约为(B)A.17°B.18°C.19°D.20°2.已知tan β=22.3,则β=87°25′56″.(精确到1″)活动1 小组讨论例1 如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01 m)解:在Rt △ABC 中,∠ACB =90°,∴BC =ABsin α=200×sin16°≈55.13(m).例2 为了方便行人推自行车过某天桥,市政府在10 m 高的天桥两端修建了40 m 长的斜到.这条斜道的倾斜角是多少?解:在Rt △ABC 中,sinA =BC AC =1040=14.∴∠A ≈14°28′.答:这条斜道的坡角α是14°28′.在直角三角形ABC 中,直接用正弦函数描述∠CBA 的关系式,再用计算器求出它的度数.活动2 跟踪训练1.用计算器计算:(结果精确到0.000 1) (1)sin36°; (2)cos30.7°;(3)tan20°30′; (4)sin25°+2cos61°-tan71°. 解:(1)0.587 8;(2)0.859 9;(3)0.373 9;(4)-1.512 0.2.在Rt △ABC 中,若∠C =90°,BC =20,AC =12.5,求两个锐角的度数(精确到1°). 解:∵∠C =90°,BC =20,AC =12.5, ∴tanB =AC BC =12.520=0.625,用计算器计算,得∠B ≈32°,∴∠A =90°-32°=58°. 活动3 课堂小结1.本节学习的数学知识:利用计算器求锐角的三角函数值或锐角的度数.2.本节学习的数学方法:培养学生一般化意识,认识特殊和一般都是事物属性的一个方面.3.求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,故数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.1.4 解直角三角形1.了解什么叫解直角三角形.2.掌握解直角三角形的根据,能由已知条件解直角三角形.(重点)阅读教材P16~17,完成预习内容. (一)知识探究1.在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.2.直角三角形中的边角关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°;边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b ,sinB =b c ,cosB =a c ,tanB =ba .3.在Rt △ABC 中,∠C =90°,已知∠A 与斜边c ,用关系式∠B =90°-∠A ,求出∠B ,用关系式sinA =ac求出a.(二)自学反馈1.在Rt △ABC 中,∠C =90°,sinA =35,则BC ∶AC =(A)A.3∶4B.4∶3C.3∶5D.4∶52.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为(B)A.5cos αB.5cos αC.5sin αD.5sin α活动1 小组讨论例1 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a =15,b =5,求这个三角形的其他元素.解:在Rt △ABC 中,a 2+b 2=c 2,a =15,b =5,∴c =a 2+b 2=(15)2+(5)2=2 5.在Rt △ABC 中,sinB =b c =525=12.∴∠B =30°.∴∠A =60°.例2 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°.∵sinB =b c ,b =30,∴c =bsinB≈71.∵tanB =b a ,b =30,∴a =b tanB =30tan25°≈64.活动2 跟踪训练1.根据下列条件解直角三角形.(1)在Rt △ABC 中,∠C =90°,c =43,∠A =60°. 解:∵∠A =60°,∴∠B =90°-∠A =30°.∵sinA =a c ,∴a =c ·sinA =43·sin60°=43×32=6,∴b =c 2-a 2=(43)2-62=2 3. (2)在Rt △ABC 中,∠C =90°,a =6,b =2 3.解:∵∠C =90°,a =6,b =23, ∴c =a 2+b 2=62+(23)2=4 3. ∵tanA =a b =623=3,∴∠A =60°,∴∠B =90°-∠A =90°-60°=30°.2.如图,在△ABC 中,AD ⊥BC 于点D ,AB =8,∠ABD =30°,∠CAD =45°,求BC 的长.解:∵AD ⊥BC 于点D , ∴∠ADB =∠ADC =90°.在Rt △ABD 中,∵AB =8,∠ABD =30°, ∴AD =12AB =4,BD =3AD =4 3.在Rt △ADC 中,∵∠CAD =45°,∠ADC =90°, ∴DC =AD =4,∴BC =BD +DC =43+4. 活动3 课堂小结学生试述:这节课你学到了些什么?1.5 三角函数的应用 第1课时 方位角问题能运用解直角三角形解决航行问题.阅读教材P19有关方位角问题,完成预习内容. 自学反馈1.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.2.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是250米.活动1 小组讨论例 如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?解:如图,过点A 作AD ⊥BC 交BC 的延长线于点D. 在Rt △ABD 中,∵tan ∠BAD =BDAD,∴BD =AD ·tan55°.在Rt △ACD 中,∵tan ∠CAD =CDAD ,∴CD =AD ·tan25°. ∵BD =BC +CD ,∴AD ·tan55°=20+AD ·tan25°. ∴AD =20tan55°-tan25°≈20.79>10.∴轮船继续向东行驶,不会遇到触礁危险.应先求出点A 距BC 的最近距离,若大于10则无危险,若小于或等于10则有危险.活动2 跟踪训练1.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为(A)A.402海里B.403海里C.80海里D.406海里2.如图所示,A 、B 两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB).经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50 km 为半径的圆形区域内,请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3≈1.732,2≈1.414)解:计划修筑的这条高速公路不会穿越保护区.理由如下:过点P 作PC ⊥AB ,C 是垂足. 则∠APC =30°,∠BPC =45°,AC =PC ·tan30°,BC =PC ·tan45°. ∵AC +BC =AB ,∴PC ·tan30°+PC ·tan45°=100, 即33PC +PC =100,(33+1)PC =100, ∴PC =33+3×100=50×(3-1.732)≈63.40>50.∴计划修筑的这条高速公路不会穿越保护区.解这类题目时,首先弄清楚方位角的含义;其次是通过作垂线构造直角三角形,将问题转化为解直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?第2课时仰角、俯角问题1.理解仰角、俯角等概念,并会把类似于测量建筑物高度的实际问题抽象成几何图形.2.能利用解直角三角形来解其他非直角三角形的问题.阅读教材P19想一想,完成预习内容.(一)知识探究1.仰角、俯角:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.2.解决实际应用问题时,常作的辅助线:构造直角三角形,解直角三角形.(二)自学反馈1.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞机飞行高度AC =1 200 m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(D)A.1 200 mB.1 200 2 mC.1 200 3 mD.2 400 m2.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(D)A.200米B.2003米C.2203米D.100(3+1)米活动1 小组讨论例如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =50 m.∴DC =BD ·sin60°=50×32=253≈43(m). 答:该塔高约为43 m. 活动2 跟踪训练1.我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB 水平距离60米(BD =60米)处有一居民住宅楼,该居民住宅楼CD 高15米,在该住宅楼顶C 处测得此危房屋顶A 的仰角为30°,请你通过计算说明在实施定向爆破危房AB 时,该居民住宅楼有无危险?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域,参考数据:2≈1.414,3≈1.732)解:没有危险,理由如下: 在△AEC 中,∵∠AEC =90°, ∴tan ∠ACE =AECE.∵∠ACE =30°,CE =BD =60, ∴AE =203≈34.64(米).又∵AB =AE +BE ,BE =CD =15, ∴AB ≈49.64(米).∵60>49.64,即BD>AB ,∴在实施定向爆破危房AB 时,该居民住宅楼没有危险.2.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB.(结果保留根号)解:作CF ⊥AB 于点F ,设AF =x 米, 在Rt △ACF 中,tan ∠ACF =AFCF,则CF =AF tan ∠ACF =x tan α=xtan30°=3x ,在直角△ABE 中,AB =x +BF =4+x(米),在直角△ABE 中,tan ∠AEB =AB BE ,则BE =AB tan ∠AEB =x +4tan60°=33(x +4)米.∵CF -BE =DE ,即3x -33(x +4)=3. 解得x =33+42.则AB =33+42+4=33+122(米).答:树高AB 是33+122米.活动3 课堂小结1.本节学习的数学知识:利用解直角三角形解决实际问题.2.本节学习的数学方法:数形结合、数学建模的思想.第3课时 坡度问题1.能运用解直角三角形解决斜坡问题.2.理解坡度i =坡面的铅直高度坡面的水平宽度=tan 坡角.阅读教材P19做一做,完成预习内容. 自学反馈1.如图所示,斜坡AB 和水平面的夹角为α.下列命题中,不正确的是(B) A.斜坡AB 的坡角为α B.斜坡AB 的坡度为BCABC.斜坡AB 的坡度为tan αD.斜坡AB 的坡度为BCAC2.如图,一人乘雪橇沿30°的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s =10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为(C)A.72 mB.36 3 mC.36 mD.18 3 m活动1 小组讨论例 某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m ,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01 m)解:根据题意可得图形,如图所示: 在Rt △ABD 中,sin40°=AD AB =AD4,∴AD =4sin40°=4×0.64=2.56, 在Rt △ACD 中,tan35°=AD CD =2.56CD ,CD = 2.56tan35°=3.66,tan40°=AD BD =2.56BD ,BD = 2.56tan40°≈3.055 m.∴CB =CD -BD =3.66-3.055≈0.61(m). ∴楼梯多占了0.61 m 长一段地面. AC =ADsin35°≈4.46 m.∴AC -AB =4.46-4=0.46(m). ∴调整后的楼梯会加长0.46 m. 活动2 跟踪训练1.如图,某公园入口处原有三级台阶,每级台阶高为18 cm ,深为30 cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是210cm.2.如图,水库大坝的横断面是梯形,坝顶宽6 m ,坝高23 m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i ′=1∶2.5,求斜坡AB 的坡角α,坝底宽AD 和斜坡AB 的长.(精确到0.1 m)解:如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F , 在Rt △ABE 和Rt △CDF 中,BE AE =13,CF FD =12.5,∴AE =3BE =3×23=69(m),FD =2.5CF =2.5×23=57.5(m). ∴AD =AE +EF +FD =69+6+57.5=132.5(m).∵斜坡的坡度i=13≈0.333 3,∴BEAE =0.333 3,即tan α=0.333 3.∴α≈18°26′. ∵BE AB =sin α,∴AB =BE sin α≈230.316 2≈72.7(m). 答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5 m ,斜坡AB 的长约为72.7 m.这类问题,首先要弄清楚坡度、坡角等名词的含义;其次,要将梯形予以分割,分割成特殊的四边形和直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?1.6 利用三角函数测高会利用直角三角形的边角关系测物体的高度.(重点)阅读教材P22~23,完成预习内容. 自学反馈1.测量倾斜角可用测倾器.简单的测倾器由度盘、铅锤和支杆组成.活动1 小组讨论例1 测量底部可以到达的物体的高度下面是活动报告的一部分,请填写“测得数据”和“计算”两栏中未完成的部分.课题测量旗杆高测量示 意图测得 数据 测量项目 第一次 第二次 平均值 BD 的长 24.19 m 23.97 m 24.08 m 测倾器的高 CD =1.23 m CD =1.19 m 1.21 m 倾斜角α=31°15′α=30°45′α=31°计算,旗杆高AB(精确到0.1 m)AB =AE +BE =CEtan31°+CD=24.08×tan31°+1.21=15.7(m) 例2 测量底部不可以到达的物体的高度.如图,小山上有一座铁塔AB ,在D 处测得点A 的仰角为∠ADC =60°,点B 的仰角为∠BDC =45°;在E 处测得A 的仰角为∠E =30°,并测得DE =90米,求小山高BC 和铁塔高AB(精确到0.1米).解:在△ADE 中,∠E =30°,∠ADC =60°, ∴∠E =∠DAE =30°. ∴AD =DE =90米.在Rt △ACD 中,∠DAC =30°,则CD =12AD =45米,AC =AD ·sin ∠ADC =AD ·sin60°=453米.在Rt △BCD 中,∠BDC =45°,则△BCD 是等腰直角三角形. BC =CD =45米,∴AB =AC -BC =453-45≈32.9米.答:小山高BC 为45米,铁塔高AB 约为32.9米. 活动2 跟踪训练为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树A B 的高度(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪一架,请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是①④. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a ,b ,c ,α,β等表示测得的数据a ·tan α+1.5.(4)写出求树高的算式:AB =AB =a ·tan α+1.5.解:实践一:∵∠CED =∠AEB ,CD ⊥DB ,AB ⊥BD , ∴△CED ∽△AEB , ∴CD AB =DE BE. ∵CD =1.6米,DE =2.7米,BE =8.7米, ∴AB =1.6×8.72.7≈5.2(m).实践二:(1)在距离树AB 的a 米的C 处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE ,求得树高出测角仪的高度AE ,则树高为AE +BE.(2)如图.活动3 课堂小结学生试述:这节课你学到了些什么?第三章圆3.1 圆1.回顾圆的基本概念.2.理解并掌握与圆有关的概念:弦、直径、半圆、等圆、等弧等.(重点)3.结合实例,理解平面内点与圆的三种位置关系.(难点)阅读教材P65~66,完成预习内容.(一)知识探究1.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.2.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.(二)自学反馈1.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个2.如图所示,图中共有2条弦.3.在平面内,⊙O的半径为5 cm,点P到圆心的距离为3 cm,则点P与⊙O的位置关系是点P在圆内.活动1 小组讨论例1 ⊙O的半径为2 cm,则它的弦长d的取值范围是0<d≤4_cm.直径是圆中最长的弦.例2⊙O中若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.与半径相等的弦和两半径构造等边三角形是常用数学模型.例3 已知AB=4 cm,画图说明满足下列条件的图形.(1)到点A和B的距离都等于3 cm的所有点组成的图形;(2)到点A和B的距离都小于3 cm的所有点组成的图形;(3)到点A的距离大于3 cm,且到点B的距离小于2 cm的所有点组成的图形.解:(1)如图1,分别以点A和B为圆心,3 cm为半径画⊙A与⊙B,两圆的交点C、D 为所求;图1 图2(2)如图1,分别以点A和点B为圆心,3 cm为半径画⊙A与⊙B,两圆的重叠部分为所求;(3)如图2,以点A为圆心,3 cm为半径画⊙A,以点B为圆心,2 cm为半径画⊙B,则⊙B中除去两圆的重叠部分为所求.活动2 跟踪训练1.已知⊙O的半径为4,OP=3.4,则P在⊙O的内部.2.已知点P在⊙O的外部,OP=5,那么⊙O的半径r满足0<r<5.3.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.4.如图,已知矩形ABCD的边AB=3 cm、AD=4 cm.(1)以点A为圆心,4 cm为半径作⊙A,则点B、C、D与⊙A的位置关系怎样?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)点B在⊙A内,点C在⊙A外,点D在⊙A上;(2)3<r<5.(2)问中B、C、D三点中至少有一点在圆内,是指哪个点在圆内?至少有一点在圆外是指哪个点在圆外?活动3 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?3.2 圆的对称性1.理解圆的轴对称性及其中心对称性.2.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系.(重难点)阅读教材P70~71,完成预习内容.(一)知识探究1.圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.在同圆或等圆中,如果两个圆心角,两条弦,两条弧中有一组量相等,那么它们所对应的其余各组量也相等.(二)自学反馈1.圆是轴对称图形,它有无数条对称轴,其对称轴是任意一条过圆心的直线.2.在⊙O 中,AB 、CD 是两条弦.(1)如果AB =CD ,那么AB ︵=CD ︵,∠AOB =∠COD ; (2)如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ; (3)如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.活动1 小组讨论例 如图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵=CE ︵.BE 与CE 的大小有什么关系?为什么?解:BE =CE.理由是:∵∠AOD =∠BOE ,∴AD ︵=BE ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.活动2 跟踪训练1.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =75°,则∠BAC =30°.2.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC.证明:∵AB ︵=AC ︵,∴AB =AC.又∵∠ACB =60°,∴△ABC 为等边三角形. ∴AB =AC =BC.∴∠AOB =∠BOC =∠AOC.3.如图,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD =80°,求∠AOB 的度数.解:∵AB ︵=DC ︵, ∴∠AOB =∠DOC. ∵∠AOD =80°,∴∠AOB =∠DOC =12(180°-80°)=50°.活动3 课堂小结圆心角、弧、弦是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.*3.3 垂径定理1.通过圆的轴对称性质的学习,理解垂径定理及其推论.(重点).2.能运用垂径定理及其推论计算和证明实际问题.(难点)阅读教材P74~75,完成预习内容. (一)知识探究1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A 、B 两点;②AB ⊥CD 交CD 于E ;那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.2.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (二)自学反馈1.如图,弦AB ⊥直径CD 于E ,相等的线段有:AE =EB ,CO =DO ;相等的弧有:AD ︵=DB ︵,AC ︵=BC ︵,CAD ︵=CBD ︵.2.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离OC 为3 cm ,则弦AB 的长为8_cm.活动1 小组讨论例 如图,一条公路的转弯处是一段圆弧(即图中CD ︵,点O 是CD ︵所在圆的圆心),其中CD =600 m ,E 为CD ︵上一点,且OE ⊥CD ,垂足为F ,EF =90 m ,求这段弯路的半径.解:连接OC.设弯路的半径为R m ,则OF =(R -90)m. ∵OE ⊥CD ,∴CF =12CD =12×600=300(m).在Rt △OCF 中,根据勾股定理,得OC 2=CF 2+OF 2,即 R 2=3002+(R -90)2. 解得R =545.所以,这段弯路的半径为545 m.常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.活动2 跟踪训练1.如图,在⊙O 中,弦AB =4 cm ,点O 到AB 的距离OC 的长是2 3 cm ,则⊙O 的半径是4_cm.2.CD 是⊙O 的直径,AB 是弦,且AB ⊥CD ,垂足是E ,如果CE =2、AB =8,那么ED =8,⊙O 的半径r =5.3.已知:如图,线段AB 与⊙O 交于C 、D 两点,且OA =OB.求证:AC =BD.证明:作OE ⊥AB 于E.则CE =DE. ∵OA =OB ,OE ⊥AB , ∴AE =BE.∴AE -CE =BE -DE , 即AC =BD.过圆心作垂径是圆中常用辅助线.活动3 课堂小结用垂径定理及其推论进行有关的计算.3.4 圆周角和圆心角的关系第1课时 圆周角定理及其推论11.理解圆周角的定义,会区分圆周角和圆心角.(重点)2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆推论1,能在证明或计算中熟练地应用它们处理相关问题.(难点)阅读教材P78~80,完成预习内容. (一)知识探究1.顶点在圆上,它的两边与圆还有另一个交点的角叫做圆周角.2.圆周角的度数等于它所对弧上的圆心角度数的一半.3.同弧或等弧所对的圆周角相等. (二)自学反馈1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则∠BAC =50°.2.如图所示,点A 、B 、C 在圆周上,∠A =65°,则∠D =65°.活动1 小组讨论例1 如图所示,点A 、B 、C 在⊙O 上,连接OA 、OB ,若∠ABO =25°,则∠C =65°.例2 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠COB =64°.(1)求圆周角通常先求同弧所对的圆心角.(2)求圆心角可先求对应的圆周角.(3)连接OC ,构造圆心角的同时构造等腰三角形.活动2 跟踪训练1.如图,锐角△ABC 的顶点A ,B ,C 均在⊙O 上,∠OAC =20°,则∠B =70°.2.OA 、OB 、OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB. 同理∠BOC =2∠BAC. ∵∠AOB =2∠BOC. ∴∠ACB =2∠BAC.求圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.活动3 课堂小结圆周角的定义、定理及推论.第2课时 圆周角定理的推论2、31.进一步探索直径所对的圆周角的特征,并能应用其进行简单的计算与证明.(重点)2.掌握圆内接四边形的有关概念及性质.(难点)阅读教材P81(问题解决)~83(议一议),完成预习内容. (一)知识探究1.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2.四个顶点都在圆上的四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆;圆内接四边形的对角互补.(二)自学反馈1.如图,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于(C) A.110° B.90° C.70° D.20°2.如图,AB 是⊙O 的直径,∠A =35°,则∠B 的度数是55°.活动1 小组讨论例1 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为(C) A.30° B.45° C.60° D.75°例2 如图,四边形ABCD 是⊙O 的内接四边形,∠CBE 是它的外角,若∠D =120°,则∠CBE 的度数是120°.例3 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD.证明:连接BE ,∵AE 是⊙O 的直径, ∴∠ABE =90°, ∴∠BAE +∠E =90°. ∵AD 是△ABC 的高, ∴∠ADC =90°, ∴∠CAD +∠C =90°. ∵AB ︵=AB ︵,∴∠E =∠C.∵∠BAE +∠E =90°,∠CAD +∠C =90°, ∴∠BAE =∠CAD.涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.活动2 跟踪训练1.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(D)A.1B. 2C. 3D.22.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.3.如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=140度.4.如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,求∠A 的度数.解:∵∠AOD=130°,∴∠BOD=50°.∵BC∥OD,∴∠B=∠BOD=50°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠A=90°-∠B=40°.活动3 课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师强调:①直径所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③在圆周角定理运用中,遇到直径,常构造直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时§1.1.1 从梯子的倾斜程度谈起教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

师生共同研究形成概念1、梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1)(重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡;2)如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;3)如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、想一想(比值不变)☆想一想书本P 3 想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、 正切函数(1) 明确各边的名称(2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;3) 若AC = 8,AB = 10,则tanA = ;b 、 如图,在△ACB 中,tanA = 。

(不是直角三角形) (4) tanA 的值越大,梯子越陡4、 讲解例题例1 图中表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?分析:通过计算正切值判断梯子的倾斜程度。

这是上述结论的直接应用。

例2 如图,在△ACB 中,∠C = 90°,AC = 6,43tan =B ,求BC 、AB 的长。

分析:通过正切函数求直角三角形其它边的长。

5、 正切函数的应用书本P 5 正切函数的应用 随堂练习6、书本 P 6 随堂练习7、《练习册》 P 1 小结正切函数的定义。

A BC ∠A 的对边∠A 的邻边斜边8mα5m5mβ13m ABC作业书本 P 6 习题1.1 1、2。

第2课时§1.1.2 从梯子的倾斜程度谈起教学目标5、 经历探索直角三角形中边角关系的过程6、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明7、 能够运用三角函数表示直角三角形中两边的比8、 能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正弦、余弦函数的定义 难点:理解正弦、余弦函数的定义教学过程设计从学生原有的认知结构提出问题上一节课,我们研究了正切函数,这节课,我们继续研究其它的两个函数。

✧ 复习正切函数师生共同研究形成概念8、 引入书本 P 7 顶9、 正弦、余弦函数斜边的对边A A ∠=sin ,斜边的邻边A A ∠=cos☆ 巩固练习c 、 如图,在△ACB 中,∠C = 90°, 1) sinA = ;cosA = ;sinB = ;cosB = 2) 若AC = 4,BC = 3,则sinA = ;cosA = ;3) 若AC = 8,AB = 10,则sinA = ;cosB = ;d 、 如图,在△ACB 中,sinA = 。

(10、 三角函数锐角∠A 的正切、正弦、余弦都是∠A 的三角函数。

A B C ∠A 的对边∠A 的邻边斜边AB C11、 梯子的倾斜程度sinA 的值越大,梯子越陡;cosA 的值越大,梯子越陡12、 讲解例题例3 如图,在Rt △ABC 中,∠B = 90°,AC = 200,6.0sin =A ,求BC 的长。

分析:本例是利用正弦的定义求对边的长。

例4 如图,在Rt △ABC 中,∠C = 90°,AC = 10,1312cos =A ,求AB 的长及sinB 。

分析:通过正切函数求直角三角形其它边的长。

随堂练习13、 书本 P 9 随堂练习 14、 《练习册》 P 2小结正弦、余弦函数的定义。

作业书本 P 9 习题1.2 2、3教学后记第3课时§1. 2 30°、45°、60°角的三角函数值教学目标9、 经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义10、 能够进行含有30°、45°、60°角的三角函数值的计算11、 能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小教学重点和难点重点:进行含有30°、45°、60°角的三角函数值的计算 难点:记住30°、45°、60°角的三角函数值A B C A B C教学过程设计从学生原有的认知结构提出问题上两节课,我们研究了正切、正弦、余弦函数,这节课,我们继续研究特殊角的三角函数值。

师生共同研究形成概念15、 引入书本 P 10 引入本节利用三角函数的定义求30°、45°、60°角的三角函数值,并利用这些值进行一些简单计算。

16、 30°、45°、60°角的三角函数值通过与学生一起推导,让学生真正理解特殊角的三角函数值。

要求学生在理解的基础上记忆,切忌死记硬背。

17、 讲解例题例5 计算:(1)sin30°+ cos45°; (2)︒-30cos 31;(3)︒-︒︒-︒45cos 60sin 45sin 30cos ; (4)︒-︒+︒45tan 45cos 60sin 22。

分析:本例是利用特殊角的三角函数值求解。

例6 填空:(1)已知∠A 是锐角,且cosA =21,则∠A = °,sinA = ; (2)已知∠B 是锐角,且2cosA = 1,则∠B = °;(3)已知∠A 是锐角,且3tanA 3-= 0,则∠A = °;B C A B C例7 一个小孩荡秋千,秋千链子的长度为2.5m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角相同,求它摆至最高位置时与其摆至最低位置时的高度之差。

分析:本例是利用特殊角的三角函数值求解的具体应用。

例8 在Rt △ABC 中,∠C = 90°,c a 32 ,求c a,∠B 、∠A 。

分析:本例先求出比值后,利用特殊角的三角函数值,再确定角的大小。

随堂练习18、 书本 P 12 随堂练习 19、 《练习册》 P 4小结要求学生在理解的基础上记忆特殊角的三角函数值,切忌死记硬背。

作业书本 P 13 习题1.3 1、2 全章复习:第5、6课时教学后记第7课时§2.1二次函数所描述的关系教学目标12、 经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验 13、 能够表示简单变量之间的二次函数关系14、 能够利用尝试求值的方法解决实际问题,如猜测增种多少棵橙子树可以使橙子的总产量最多的问题教学重点和难点重点:表示简单变量之间的二次函数关系 难点:利用尝试求值的方法解决实际问题教学过程设计从学生原有的认知结构提出问题在初中阶段,我们已经学习了一次函数、正比例函数、反比例函数、三角函数。

这一章,我们将学习另外一种重要的函数——二次函数。

AB C O D师生共同研究形成概念20、 橙树的产量通过实际情境,让学生观察、归纳出二次函数的概念,并从中体会函数的模型思想。

教学时要与)100)(5600(x x y +-= 6000010052++-=x x y☆ 想一想 书本P 35 想一想想一想是学生自然会想到的问题,教学时应首先鼓励学生用自己的方法解决问题,然后再通过数值统计的方法得到猜想。

21、 银行储蓄☆ 做一做 书本P 35 做一做做一做是为了降低列式的复杂程度,根据学生的具体情况,教学时可以要求学生考虑利息税。

22、 二次函数定义及一般形式一般地,形如c bx ax y ++=2(a 、b 、c 是常数,0≠a )的函数叫做x 的二次函数。

☆ 注意:1)x 的最高次数为2;2)0≠a ,但b 、c 可以为零。

可以让学生自己举出或写出一些二次函数的例子。

☆ 巩固练习 1)书本 P 36 随堂练习 12)练习册P 17 1 、223、 讲解例题 例9 练习册 P18 3例10 书本 P 36 随堂练习 2。

☆ 巩固练习 1)练习册P 17 3 — 9随堂练习24、《练习册》P 18 1 —5小结二次函数定义及一般形式。

作业书本P 37 习题2.1 2教学后记第8课时§2.2 结识抛物线教学目标15、经历探索二次函数2xy=的图象的作法和性质的过程,获得利用图象研究函数性质的经验16、经历探索二次函数2xy=的图象的作法和性质的过程,获得利用图象研究函数性质的经验17、能够利用描点法作出2xy=的图象,并能根据图象认识和理解二次函数表达式与图象之间的联系教学重点和难点重点:二次函数2xy=的图象的作法和性质难点:根据图象认识和理解二次函数表达式与图象之间的联系教学过程设计从学生原有的认知结构提出问题上一节课,我们学习了二次函数。

一般函数都有其图象,二次函数都不例外。

那么它的图象是一条什么曲线呢?这节课,我们先研究最简单的二次函数2x=的图象。

让我们通过动手,画y-y=和2x一画它的图象吧。

师生共同研究形成概念Array25、作二次函数2xy=的图象此图象由老师和学生一起探究完成,一般取七个点。

26、二次函数2xy=的图象和性质(开口方向、对称轴、顶点坐标)本节讨论最简单的二次函数2xy=的图象的作法,并引出抛物线的概念,在此基础上初步归纳这类抛物线的性质,要结合图象讲解,尽可能让学生讲,老师作适当点拨。

☆议一议书本P 39 议一议学生可以用自己的语言进行描述,要提醒学生不要忽略y轴左侧的图象。

二次函数2xy=的图象是一条抛物线,它的开口向上,且关于y轴对称。

相关文档
最新文档