EJ200(欧洲喷气涡轮公司)

合集下载

第四代发动机先进结构

第四代发动机先进结构

Tiles reduce wall cooling air requirements making more air available for NOx reduction A significant cost reduction relative to conventional machined combustors is also achieved
双转子轴流双涵道涡轮风扇发动机(大涵道比)
2. 四代航空发动机的划分(战斗机的燃气涡轮发动机)
第一代:单转子亚音速喷气发动机(推重比3~4) 20 世纪30~40 年代研制。 代表机种:美国的J47。 第二代:超声速涡喷发动机(推重比5~6) 大都在50 年代研制。 代表机种:美国的J79。 第三代:超声速涡扇发动机(推重比7~8,有的达到9左右) 研制始于 60 年代,用于高性能超音速战斗机。 代表机种:美国的F404、F100、前苏联的AL-31F、 英国的RB199 和法国的M88-2。 第四代:先进技术涡扇发动机(推重比达到10) 从 80 年代中期开始发展,代表机种有:美国的 F119、F135、俄罗斯的AL-41F 和欧洲四国联合研制 的EJ200。
F135以F119 发动 机核心机为基础,重 新设计了风扇和低 压涡轮,改进了加力 燃烧室和喷管。
• 风扇截面面积增加 了10% ~20 • 低压涡轮增加到2 级,以适应增大的 风扇 • 加力燃烧室平衡了 推力性能和隐身性 • 喷管由二元俯仰矢 量喷管改为轴对称 喷管
F135
F119
F135发动机实物照片
两台AL-41F
F-35
一台F135
4S: Stealth Supersonic cruise Super maneuverability Superior Avionics

第一章 涡轮发动机分类及其性能指标

第一章 涡轮发动机分类及其性能指标

二. 双轴涡轮喷气发动机(two-spool turbojet)
与单轴涡喷发动机相比,其进气道、燃烧室和尾喷管是一样的,产生反作用 力的原理也完全相同。所不同的是:压气机分成低压压气机和高压压气机,涡轮 也分为高压涡轮和低压涡轮。高压压气机和高压涡轮由一根轴联接形成高压转子, 低压压气机机和低压涡轮由一根轴联接形成低压转子。 人们习惯将燃气轮机的高压转子部分称为核心机,核心机可作为燃气发生器。 在双轴燃气轮机中的核心机(高压转子)并不是它的燃气发生器,双轴燃气轮机 的燃气发生器部分还应该包括低压压气机和低压涡轮。因此,核心机与燃气发生 器是二个不同的概念。
单轴涡轮喷气发动机
压气机、燃烧室和涡轮的组合称为燃气发生器, 其作用是产生高温高压的燃气。 发动机工作时,外界空气流入进气道,在较大的飞行速度下气流经过进气道时速 度减小而压力提高;气流流过压气机时进一步增压,特别是在低速飞行时,压气机是 增压气流的主要部件;燃烧室利用燃油燃烧时放出的热量对气流加热;从燃烧室流出 的高温高压气流推动涡轮旋转,涡轮与压气机之间有轴联接,涡轮发出的功率提供给 压气机;涡轮出口的气流仍具有较高的压力和温度,流经尾喷管时压力减低而速度增 高。
吸气式发动机用途
亚燃冲压发动机及其组合动力主要用于:超音速导弹、无人 机的动力装置。 超燃冲压发动机及其组合动力主要用于:高超音速巡航导 弹; 高超音速飞机; 跨大气层飞行的空天飞机的动力装置, 目前尚处于研究阶段。 脉冲式发动机及其组合动力:主要用于导弹、无人机的动力 装置,目前尚处于研究阶段。
涡轮喷气发动机与活塞式发动机的比较
相同之处 (1) 均以空气和燃气作为工作介质。 (2)它们都是先把空气吸进发动机,经过压缩 增加空气的压力,经过燃烧增加气体的温度, 然后使燃气膨胀作功。燃气在膨胀过程中所作 的功要比空气在压缩过程中所消耗的功大得多。 这是因为燃气是在高温下膨胀的,于是就有一 部分富余的膨胀功可以被利用。 不同之处 (1)进入活塞式发动机的空气不是连续的;而 进入燃气轮机的空气是连续的。 (2) 活塞式发动机中喷油燃烧是在一个密闭 的固定空间里,称为等容燃烧,而燃气轮机则 在前后畅通的流动过程中喷油燃烧,若不计流 动损失,则燃烧前后压力不变,故称为等压燃 烧。

第四代军用航空发动机(F119和EJ2000)

第四代军用航空发动机(F119和EJ2000)

第四代军用航空发动机(F119和EJ2000)资料来源:西北工业大学F119 :结构形式:双转子加力式涡轮风扇发动机推力范围:加力 15568daN中间 9786daN用途: F22结构与系统:风扇:3级轴流式,无进口导流叶片,宽弦设计高压压气机:6级轴流式,整体叶盘结构燃烧室:环型,浮壁结构高压涡轮:单级轴流式,采用第三代单晶涡轮叶片材料,隔热涂层和先进冷却结构低压涡轮:单级轴流式,与高压涡轮对转加力燃烧室:整体式,内外涵各设单圈喷油环矢量喷管:二元矢量收敛-扩张喷管,俯仰方向可作-20度到 +20度的偏转控制系统:第三代双余度FADEC装备F119的F22研制概况:F119 是普惠公司为美国第四代战斗机研制的先进双转子加力式涡轮风扇发动机.其设计目标是:不加力超音速巡航,非常规机动和短距起落能力,隐身性能,寿命费用降低至 25% ,零件数减少 40%~60% ,推重比提高 20%, 耐久性提高两倍,零件寿命延长 50% .F119 上采用的先进技术有:三维粘性叶轮机设计方法,整体叶盘结构,高紊流度强旋流主燃烧室头部,浮壁式燃烧室结构,高低压涡轮旋向相反,整体加力式燃烧室设计,二元矢量喷管和第三代双余度 FADEC 等 .试车台上的F119收敛-扩张型尾喷管EJ2000 :结构形式:双转子加力式涡轮风扇发动机推力范围:中间6000daN加力9000daN用途:欧洲战斗机EF2000结构与系统:风扇:3级轴流式,采用三维跨音速宽弦叶片,无进口导流叶片.压比约为4.0高压压气机:5级轴流式燃烧室:环型,蒸发式喷油嘴涡轮:单级轴流式低压涡轮+单级轴流式高压涡轮加力燃烧室:燃烧和混合型,采用多根径向火焰稳定器尾喷管:全程可调收敛-扩张式控制系统:FADEC,具有故障诊断和状态监视能力装配EJ2000发动机的EF2000战斗机研制概况:EJ2000是欧洲四国联合研制的先进双转子加力式涡轮风扇发动机,用于欧洲四国联合研制的九十年代战斗机 EF2000.参加工作的有英国的罗 ? 罗公司,德国发动机涡轮联合公司,意大利菲亚特公司和西班牙涡轮发动机工业公司.1991年10月EJ2000原型机首次运转.在发动机的设计要求中,除了达到高推重比(10)和地耗油率外,特别强调高的可靠性,耐久性和维修性及低的寿命期费用.EJ2000发动机EJ2000全景图。

航空发动机结构..

航空发动机结构..

典型军用涡扇发动机结构
EJ200涡扇发动机用于欧洲联合研制的90 年代战斗机EFA2000,为双转子加力式低涵 道比涡扇发动机,由三级风扇,五级高压压 气机、具有空气雾化喷嘴的环形蒸发燃烧室、 单级高低压涡轮、加力燃烧室和收敛-扩散式 可调喷口组成。整台发动机有5个支点,共用 两个滑油腔室,两个承力框架。
CFM56 发动机支承简图
两个转子支承于五个支点上,通过两个承 力框架将轴承负荷外传,是承力构件最少的 发动机。低压转子为0-2-1支承方案,高压转 子为1-0-1支承方案。高压转子后支点为中介 支点,支承在低压涡轮的后轴上,此种支承 方案的主要优点是结构简单,低压轴刚性好, 发动机性能保持好,重量轻,为许多军民用 发动机所采用 。
RB199发动机(装备狂风式战斗机)是军用 发动机中唯一采用三转子结构的发动机,由3 级风扇、3级中压压气机、6级高压压气机、 环形蒸发燃烧室、单级高、中压涡轮、2级低 压涡轮、加力燃烧室及可调收扩喷管等组成。 另外还装有反推力装置,以减小着陆时的滑 行距离。
RB199发动机结构图
RB199 三转子发动机支承方案简图
由于高压与中压转子长度相对较短,因此 均采用2支点支承方案,其中高压转子最短, 故采用1-0-1支承方案;在中压转子中,为缩 短2支点间距离,将3号支点置于中压压气机 之后,形成0-1-1支承方案。
Su-27的心脏А Л -31Ф 发动机
А Л -31Ф ,是由俄罗斯的“留里卡-土 星”航空航天发动机制造公司在1985年研制 的第四代单元体设计、推重比为8的涡轮风扇 发动机。该发动机有很高的可靠性及技术维 护性能。А Л -31Ф 发动机即使在今天,也是 世界上最好的航空发动机之一 。
EJ200 发动机结构图

第一讲 燃气涡轮发动机概述

第一讲 燃气涡轮发动机概述

推力18000-22000 kg 耗油率比小涡扇低1/3 授课人 贾斯法
高涵道比涡扇发动机特点
起飞推力大 耗油率低 噪声低
授课人 贾斯法
第一代宽体客机
B747
1970年
L1011 (1972) DC-10 (1971)
71
高涵道比涡扇发动机
已在现代民机上广泛采用 A300、A310、A320、A330、A340, B737、B747、B757、B767、B777, A3XX B747-500X、 B717、A318、湾流Ⅴ
授课人
贾斯法
51
F-22用发动机-F119-PW-100
总压比 35 涵道比 ~0.2 涡轮前燃气温度 ~1850~1950 K 3+6___1+1 反向转动的双转子 推力 157.5 kN 推重比 10.0
授课人 贾斯法
52
F119 与 F100 比较
级数 17---11 少 6 级 零件数少 40% 中间推力大 47% 可使战斗机超声速巡航 巡航耗油率低 11% 可靠性、维修性好
授课人
贾斯法
40
加力式涡轮风扇发动机扇发动机 F-4“鬼怪”式战斗机 用涡扇(斯贝MK202)换装涡喷(J79)后 飞机性能的改进 最大M数 由 2.2→2.4 最大航程 ↑54% 加速到M=2的时间 ↓1/3 爬升到12000m的时间 ↓20%
授课人 贾斯法
41
加力式涡轮风扇发动机
60年代后期采用高循环参数 总压比≈25、T3≈1600K 发展高性能核心机 研制成专为先进战斗机用的、推重比为8.0一 级8的发动机 F100-PW-100→F-15 (1974)
2006年3月
航空发动机结构设计

航空燃气涡轮发动机发展历史

航空燃气涡轮发动机发展历史

航空燃气涡轮发动机发展历史航空燃气涡轮发动机发展历史航空燃气涡轮发动机是现代民航机、军机的主要动力。

它的发明和发展史可以追溯到中世纪。

下面我们将分年代逐步介绍其发展历史。

20世纪50年代:原型与研究1. 原型:莱特兄弟1903年的飞机动力装置,是后来燃气涡轮发动机的奠基之一。

2. 研究:在20世纪50年代初期,美国和英国的企业和研究机构开始研究燃气涡轮发动机。

在这期间,首次飞行的喷气式客机也开始出现。

20世纪60年代:商业化和发展1. 商业化:20世纪60年代初期,燃气涡轮发动机开始商业化。

首个商业机型是1960年推出的DC-8喷气式客机。

2. 发展:20世纪60年代中期,燃气涡轮发动机经历了重大发展,包括增加推力和改进燃油效率。

20世纪70年代:先进技术和高效能1. 先进技术:20世纪70年代,新的制造技术和先进的材料改进了燃气涡轮发动机的性能和效率。

2. 高效能:石油价格飙升使得节约燃油成为优先考虑因素。

燃气涡轮发动机也顺应时代发展需要,提高燃油效率。

20世纪80年代:建立统一标准1. 建立标准:20世纪80年代初期,美国Federal Aviation Administration和欧洲联合航空局为燃气涡轮发动机建立了统一标准。

2. 全球普及:20世纪80年代中期,燃气涡轮发动机得到全球广泛应用,成为民航机、军机的主要动力装置。

21世纪:环保和高科技1. 环保:21世纪,燃气涡轮发动机环保成为主要课题,新技术和材料有望帮助解决发动机碳排放问题。

2. 高科技:现代燃气涡轮发动机采用先进计算机控制,并应用高科技电子、光学及航空材料等技术,使其性能、效率和安全性得到显著提高。

总结燃气涡轮发动机在经历了近一个世纪的发展之后,现代化的技术手段给它注入了更新换代的能量。

在新的时代背景下,它的发展将会更加多元化和广泛化,不断追求环保、高效能、高科技等多元目标,成为人们空中出行的主要动力之一。

航空发动机结构 第二章 几种典型的发动机

航空发动机结构 第二章 几种典型的发动机

А Л -31Ф 发动机支承简图
АЛ-31Ф发动机转子支承方案,全机共有 六个支点,高压转子为1-0-1支承方案,低压 转子为1-2-1四支点支承方案,低压涡轮转子 与风扇转子间采用了传递扭矩、轴向力的柔
性联轴器,以解决低压转子工作不正常对高 压转子的影响。
2.3 典型的涡轮螺旋桨发动机
涡桨6发动机是单转子涡轮螺旋桨飞机,是 运8飞机的动力装置。由单转子轴流式压气机, 环形燃烧室等组成。结构图如下:
EJ200 发动机结构图
EJ200转子支承方案简图
第四代军用发动机—F119-PW-100
F119-PW-100发动机由3级风扇,6级高压压 气机,带气动喷嘴,浮壁式火焰筒的环形燃 烧室,单级高压涡轮与高压转向相反的单级 低压涡轮(对转涡轮),加力燃烧室与二维 喷管等组成。整台发动机分为:风扇、核心 机、低压涡轮、加力燃烧室、尾喷管和附件 传动机匣等6个单元体,另外还有附件等。
CFM56 发动机支承简图
两个转子支承于五个支点上,通过两个承
力框架将轴承负荷外传,是承力构件最少的 发动机。低压转子为0-2-1支承方案,高压转 子为1-0-1支承方案。高压转子后支点为中介 支点,支承在低压涡轮的后轴上,此种支承 方案的主要优点是结构简单,低压轴刚性好, 发动机性能保持好,重量轻,为许多军民用 发动机所采用 。
航空发动机结构
第二讲 几种典型的航空发动机
2.1几种典型的涡喷发动机
涡喷5发动机是典型的第一代涡轮喷气发动 机,主要结构特点是采用离心式压气机和分 管式燃烧室,是歼五,轰五型飞机的动力装 置。具体结构如下:
涡喷6发动机是歼六,强五飞机的动力装 置,涡喷六发动机是第二代涡轮喷气发动机。 主要结构特点是采用单转子轴流式压气机和 环管型燃烧室。

核心机之路---浅谈第四代大推力军用涡轮风扇发动机发展

核心机之路---浅谈第四代大推力军用涡轮风扇发动机发展

本明资料整理小文:核心机之路---浅谈第四代大推力军用涡轮风扇发动机发展警告:此文甚为枯燥冗长……自上世纪40年代涡轮喷气发动机诞生以来,大大促进了飞机飞行速度、高度航程的增加,获得了巨大的军事和经济效益。

世界上的航空发达国家执行了一系列航空发动机技术基础研究计划,推出一代又一代先进军民用发动机,跨上了一个又一个技术新台阶。

在短短不到60年的时间内,表征涡轮发动机综合性能水平指标的推重比已由当初的2提高到10一级,军、民用航空发动机性能水平得到了持续不断的提高。

航空发动机行业已成为世界航空强国的军事工业和国民经济的支柱产业。

航空发动机不仅仅是性能与结构的堆砌,更反应出一个国家航空动力产业的科研基础和工业实力,期中涉及到研制思想的转变,工艺材料的进步,设计方法和设计平台的改进以及航空发动机型谱体系构建方法等等并没有在航空发动机单个型号上直接体现出来的潜在因素才是决定一个国家航空发动机产业扬帆驶向何方的灯塔。

笔者在业余关注航空发动机,尤其是大推力军用涡轮风扇发动机的过程中,收集到了大量的专业书籍和科研论文,慢慢了解到了航空发动机研制背后的故事。

本文就是对大量涉及到第四代大推力军用涡轮风扇发动机发展专业资料的重新整理,归纳和总结,并加入了笔者一点点浅薄的观点,为了不使个人的观点影响到论述大推力军用涡轮风扇发动机发展的客观性,笔者尽量只是对科研资料进行重新归纳和整理,保持了科研资料在客观事实和观点上的完整性。

特此代表业余关注,热爱祖国航空动力事业的朋友们,向这些科研资料的作者,整理者,收集者表示衷心的敬意和感谢。

在现代战斗机设计中,首先要确定的就是发动机的推力级别、推力曲线特性和推重比,因为发动机的性能决定了战斗机的设计概念和性能用途。

航空发动机的研制装备和性能指标关系到国家安全和领土完整。

没有合适的发动机型号通常都会对战斗机设计和装备产生致命性的影响,从而导致整个空军的战术体系不完整和效能低下,而一款性能先进可靠性优秀的航空发动机也可以让战斗机性能“化腐朽为神奇”。

一目了然:国产和国外航空发动机性能对比表!(精彩组图)-HYPERLINK

一目了然:国产和国外航空发动机性能对比表!(精彩组图)-HYPERLINK

/bbs/viewthread.php?tid=40195一目了然:国产和国外航空发动机性能对比表!(精彩组图)中国国产涡扇发动机与国外涡扇发动机对比表黑马乐园% @; J4 c3 }4 u0 N- a+ G 黑马乐园/ G/ l# P5 f- J [) x3 [发动机AL-31F AL-31FN M53-P2 M88-2 EJ200 F404-GE-400 F100-PW-229 F101-GE-102 F110-GE-129 F119-PW-100 WS10 WS10改WS13天山黑马乐园8 B( d; C/ {7 x( e, O. S- N(仿RD33) WS9秦岭黑马乐园' G# ~: d6 A& _6 h2 A! ^, @(仿斯贝MK202) WS9改进型(秦岭MK220)黑马乐园& R& U, W' ?; N9 |1 s国家俄罗斯俄罗斯法国法国英国美国美国美国美国美国中国中国中国中国中国装机对象苏27系列歼10 幻影系列阵风系列EF2000 F/A-18E/F F15/16早期B-1B F15/16后期F22/35系列歼-10/11 歼-14* 枭龙飞豹飞豹改进型加力推力(daN) 12850 12255 9500 7500 9000 7120 12890 13681 12899 15568 13240 15500 8637 9118.9 9800黑马乐园" k* a$ a8 a9 O+ O3 S7 S1 U2 b中间推力(daN) 7620 7620 6330 4871 6000 4800 7918 7561 7562 9790 7900 5675 5445.9 6370黑马乐园0 U+ l0 ]/ Q7 d: J巡航推力(daN) 5120 4598.16加力耗油率(kg/daN•h) 1.98 1.98 2.12 1.8 1.765 1.65 2 2.24 2.05 2.4 2.02 2.02 2中间耗油率(kg/daN•h) 0.795 0.907 0.898 0.827 0.76 0.66 0.56 0.7 0.622 0.73 0.67 0.65巡航耗油率(kg/daN•h) 0.683 0.695 0.65 黑马乐园4 [6 e, f$ Q8 q6 Z7 l推重比7.14 6.56 9 9.2 7.24 7.9 7.69 7.28 11.7 7.5 9.5 7.8 5.05 6.55空气流量(kg/s) 112 112 94 65 75 64.4 112.4 159 118 126 80 92.5 96.9总增压比23.8 23 9.8 24.5 26 25 32 26.5 32 26 32 23 20 21.5黑马乐园: { F! d q- d/ w- z涡轮前温度(K或℃) 1665K 1665K 1260℃1577℃1850K 1316℃1399℃1371℃1728K 1853K 1747K 1800K 1650K 1167℃1550K黑马乐园1 R7 ]4 F3 a r# E涵道比0.6 0.6 0.36 0.5 0.4 0.34 0.4 2.01 0.76 0.3 0.78 0.57 0.62 0.62黑马乐园, Z+ a1 V( P8 ]$ \. n发动机寿命(h) 1500 4000* 2200大修间隔(h) 500* 1000* 810 黑马乐园$ D1 {$ l5 X# s' Q2 |长×宽(m) 4.99×1.28 4.85×1.14 5.07×1.055 3.538×1.0033.556×0.8634.033×0.884 4.856×1.181 4.6×1.3974.626×1.181 4.826×1.143 4.14×1.025.205×1.0935.211×1.095黑马乐园% X# x s0 [+ m# A7 A重量(kg) 1800 1478 850 900 983 1656 1814 1809 1360 1795 1665* 1135 1842 1527黑马乐园. L0 n4 ^: E. T) X, a+ L" `" n# Q注:带*号为推测。

航空发动机原理与构造知识点总结

航空发动机原理与构造知识点总结

航空发动机原理1 概论航空动力装置的功能是为航空器提供动力,推进航空器前进,所以航空动力装置也称为航空推进系统。

它主要包括航空发动机,以及为保证其正常工作所必需的系统和附件,如燃油系统、滑油系统、起动系统和防火系统等,通常简称为航空发动机。

1.1航空燃气涡轮发动机的基本类型目前航空燃气涡轮发动机有五种基本类型:涡轮喷气发动机、涡轮螺桨发动机、涡轮风扇发动机、涡轮轴发动机和供垂直/短距离飞机用的发动机。

涡轮喷气发动机简称涡喷发动机(WP)。

从结构上讲,它由压气机、燃烧室、燃气涡轮和尾喷管四个主要部件组成(见图1-1),其特点是:涡轮只带动压气机压缩空气,发动机的全部推力来自高速喷出的燃起流所产生的反作用力。

涡轮喷气发动机经济性差高温、高速燃气由尾喷管排出,能量损失大,因此经济性差。

图1-1 涡轮喷气发动机涡轮螺桨发动机简称涡桨发动机(WJ)。

在这类发动机中,涡轮除带动压气机供给发动机所需的空气外,还带动螺桨,产生飞机前进的拉力。

由尾喷管喷出的燃起流所产生的推力只占飞机前进力的很少一部分(10%)。

从结构上讲,这类发动机还多一个部件——减速器。

涡轮风扇发动机简称涡扇发动机(WS),又称内外涵发动机。

它是介于涡喷和涡桨之间的一种发动机。

它由两个同心圆筒的内涵道和外涵道组成,在内涵道中装有涡喷发动机的部件——压气机、燃烧室和涡轮,在外涵道中装有由内涵转子带动的风扇(见图1-2)。

发动机的推力是内、外涵道气流反作用力的总和。

- 2 -外、内涵道空气流量之比称为流量比,又称涵道比。

涡扇发动机的优点是,推力大了,排出的能量小了,耗油率低。

图 1-2 涡轮风扇发动机若在涡桨发动机中,发动机输出轴不带动螺桨,而用来输出功率,例如带动直升机的旋翼、舰艇的推进器、或地面的发电机和油泵等,则这种燃气涡轮发动机称为涡轮轴发动机,简称涡轴发动机(WZ)。

1.2 航空燃气涡轮发动机性能指标涡轮发动机和涡扇发动机都是将燃气发生器的可用功用于增加流过发动机气流的动能并产生反作用推力。

[教学研究]阵风”之心--法国M88涡轮风扇发动机

[教学研究]阵风”之心--法国M88涡轮风扇发动机

阵风”之心--法国M88涡轮风扇发动机阵风”之心--法国M88涡轮风扇发动机-自从“幻影”F1战机与M53发动机的组合在“欧洲四国战斗机”项目选型中惨败于F—16后,不甘失败的法国人又回到了熟悉并且适合自身技术水平的无尾三角布局上,推出了“幻影”2000,其“搭档”依旧是M53。

虽然该机与F—16之间的性能差距有所缩小,但无奈推出时间上的滞后使得“幻影”2000占有的国际市场份额与后者相比小得可怜,而且在价格和性能上也无法占优。

为此,达索公司决定跳出单发中性战斗机这个圈子,向更大、更强、利润更高的双发战斗机领域进军。

在“幻影”4000双发重型战斗机上验证了部分技术后,达索公司于1986年推出了“阵风”战机,并在当年的范堡罗航展上高调亮相。

“阵风”A原型机起初使用F/A-18A/B装备的F404-GE-400发动机,直到1990年5月斯奈克玛公司M88发动机完成为止。

该发动机与斯奈克玛公司过去开发的“阿塔”和M53系列截然不同,使得发动机不再成为制约法国战斗机性能的主要瓶颈。

然而,它的身世依然扑朔迷离。

法国制造的战斗机和攻击机装备的发动机,长期以来都是单转子结构。

“阿塔”系列涡喷发动机几乎一统了当时法国开发的所有战斗机、攻击机和轰炸机的动力系统,即使是“幻影”2000上的M53涡扇发动机,也有着“超级阿塔”的别称。

然而,单转子结构发动机高、低压段的转速只能取一个中间值,不能取相应的优化转速,涵道比也不能过大。

如果涵道比过大,其带来的后果将是加力比小而加力推力不大。

单转子结构发动机还有一个缺点,就是喘振裕度不大,所以“阿塔”和M53都靠设置放气门来增加喘振裕度。

但是这样一来又会使得增压比降低,推力减少。

加之法国人的压气机设计水平不高,M53的压气机级数偏偏又少,仅有3级风扇、5级高压,这就造成其推重比和单位推力都比较低。

与之相比,压气机增压比同样不高的俄制RD33发动机则采用了4级风扇、9级高压的设计。

TOP10:全球十款推力最大的战斗机发动机

TOP10:全球十款推力最大的战斗机发动机

TOP10:全球十款推力最大的战斗机发动机在众多的战斗机涡扇发动机型号中,以推力为主要指标,并参考是否批量装机和原发原创技术是否大于50%等因素排列此榜。

仅供参考,如有疑问实属正常:第1名:F135-PW-100厂商:普拉特·惠特尼(Pratt & Whitney)最大推力:43,000 lbf(190kN)装机:F-35A“闪电II”注:空军和海军的F135-PW-100和400基本算一款;陆战队的F135-PW-600可算另一款,F-35B在悬停时,F135-PW-600的输出功率为28000轴马力,可以说也是世界上最强大的涡桨发动机。

第2名:F119-PW-100厂商:普拉特·惠特尼(Pratt & Whitney)最大推力:35,000 lbf (156 kN) 装机:F-22“猛禽”第3名:AL-41F1厂商:UEC-土星最大推力:33,000 lbf (147 kN) 装机:SU-57第4名:F110-GE-132厂商:通用电气最大推力:32,500 lbf (142 kN) 装机:F-16、F-15E/K/SG/SA 第5名:AL-31FN/41F1S厂商:UEC-礼炮最大推力:30,200-31,900 lbf(127-142kN )装机:SU-27、SU-30、SU-34、SU-35、J-10、J-11 第6名:F100-PW-229EEP(增强引擎包)厂商:普拉特·惠特尼(Pratt & Whitney)最大推力:29,160 lbf (129 kN)装机:F-16、F-15E第7名:F414EE(增强引擎)厂商:通用电气最大推力:26,000 lbf(116 kN)装机:F/A-18E/F“超级大黄蜂”、EA-18G“咆哮者”第8名:EJ-200厂商:欧洲喷气涡轮最大推力:20,200 lbf (90 kN)装机:EF-2000“台风”第9名:RD-33MK厂商:克里莫夫最大推力:20,000 lbf (88 kN )装机:米格-29K、米格-35、JF-17“枭龙”第10名:M88-2厂商:赛峰集团斯奈克玛最大推力:16,900 lbf (75 kN)装机:达索“阵风”。

英国的喷气发动机发展史

英国的喷气发动机发展史

英国的喷气发动机发展史英国的喷气发动机发展史,最初也是公司甚至是个人的行为。

英国政府最初对这种新锐技术所表现出来的态度,着实不敢令人恭维。

唯一值得佩服的是,一旦认识到了航空喷气动力产业的重要意义,英国政府就再也没有掉以轻心。

从淡漠到执着在喷气推进领域,英国和美国、法国以及苏联一样,都或多或少从战败国德国那里获得过相关技术,但在后续发展上,几个国家的道路却有较大差异。

英国喷气发动机的发展,某种程度上就是罗罗公司喷气推进技术的发展史,但其中却处处渗透着英国政府的努力和关注,绝不是纯粹的“公司力量”。

英国“台风”战斗机使用的EJ200喷气发动机性能不俗,但一般人也许想不到,惠特尔当年研究航空喷气发动机时,却四处寻求资助无门,最困难时就连5英镑的专利延期费用都交不起,原因很简单,当时英国空军认为喷气推进是一项很多人已经研究了很久的技术,惠特尔几乎不可能在可以预见的未来取得成功。

英国的喷气推进技术研究最初也是始于个别富于创意的工程技术人员——政府和工业企业几乎没有给予太多的资金和关注。

涡轮机早在19世纪起就开始在工业领域应用,但现实存在的工程技术困难限制了它在飞机上的应用,直到上世纪30年代中期,人们才开始认真考虑开发航空喷气发动机的问题。

实用型工业蒸汽轮机早在19世纪末便已出现,很快便应用在海军和远洋商船上。

20世纪初,工程师们开始试验燃气涡轮,但这些早期试验型涡轮机耗油率奇高无比,大概是同等的活塞发动机的4倍。

把燃气轮机应用到飞机上面临着难以解决的技术问题,其中最为关键的是必须设法找到轻质耐热材料以及实现合适的压缩效率,此外还需要开发足够实用、坚固且燃油经济性较高的燃烧系统,用它来驱动涡轮和压缩机。

1926年,供职于英国范保罗的皇家飞机制造厂的科学家阿兰·格里菲斯在轴流式压缩机和涡轮组合的基础上提出了一种概念型燃气轮机,这一概念中涡轮带动的是螺旋桨叶,而不是直接依靠喷气流产生推力。

格里菲斯后来又做了一些基础研究以确定这一概念是否可行,但研究进展非常缓慢。

航空发动机结构-PPT课件

航空发动机结构-PPT课件

EJ200 发动机结构图
EJ200转子支承方案简图
第四代军用发动机—F119-PW-100
F119-PW-100发动机由3级风扇,6级高压压 气机,带气动喷嘴,浮壁式火焰筒的环形燃 烧室,单级高压涡轮与高压转向相反的单级 低压涡轮(对转涡轮),加力燃烧室与二维 喷管等组成。整台发动机分为:风扇、核心 机、低压涡轮、加力燃烧室、尾喷管和附件 传动机匣等6个单元体,另外还有附件等。
CFM56 发动机支承简图
两个转子支承于五个支点上,通过两个承 力框架将轴承负荷外传,是承力构件最少的 发动机。低压转子为0-2-1支承方案,高压转 子为1-0-1支承方案。高压转子后支点为中介 支点,支承在低压涡轮的后轴上,此种支承 方案的主要优点是结构简单,低压轴刚性好, 发动机性能保持好,重量轻,为许多军民用 发动机所采用 。
RB199发动机(装备狂风式战斗机)是军用 发动机中唯一采用三转子结构的发动机,由3 级风扇、3级中压压气机、6级高压压气机、 环形蒸发燃烧室、单级高、中压涡轮、2级低 压涡轮、加力燃烧室及可调收扩喷管等组成。 另外还装有反推力装置,以减小着陆时的滑 行距离。
RB199发动机结构图
RB199 三转子发动机支承方案简图
由于高压与中压转子长度相对较短,因此 均采用2支点支承方案,其中高压转子最短, 故采用1-0-1支承方案;在中压转子中,为缩 短2支点间距离,将3号支点置于中压压气机 之后,形成0-1-1支承方案。
Su-27的心脏А Л -31Ф 发动机
А Л -31Ф ,是由俄罗斯的“留里卡-土 星”航空航天发动机制造公司在1985年研制 的第四代单元体设计、推重比为8的涡轮风扇 发动机。该发动机有很高的可靠性及技术维 护性能。А Л -31Ф 发动机即使在今天,也是 世界上最好的航空发动机之一 。

飞机发动机的发展历程

飞机发动机的发展历程

飞机发动机的发展历程飞机发动机是现代航空工业中最重要的关键技术之一,航空发动机的发展对飞机的运行性能和航程都有着决定性的影响。

下面我们将从早期的蒸汽动力飞机到现代的喷气发动机来回顾飞机发动机的发展历程。

早在19世纪末,人们就开始探索用于飞行的动力,最早的飞机发动机是蒸汽动力。

1884年,英国工程师霍普基尔斯(Herbert Akroyd Stuart)发明了一种蒸汽发动机,称为霍普基尔斯循环发动机。

这种发动机结构简单,但效率低下,无法满足飞机的需求。

随着内燃机的出现,飞机的动力问题得到了解决。

1903年,美国兄弟莱特成功制造出第一架能够自由起降的飞机,他们使用的是自制的内燃发动机。

这一成功标志着飞机发动机的革命性进步,蒸汽动力逐渐被淘汰。

接下来的几十年间,飞机发动机的发展经历了不断改进和革新的过程。

1920年代,涡轮喷气发动机的原型出现。

1930年代,西方国家基本确定了涡轮喷气发动机的发展方向,并相继投入使用。

第二次世界大战期间,喷气发动机得到了大规模的发展和应用。

德国人发明了双流涡轮喷气发动机,并应用在他们的喷气式战斗机上,使其性能大幅度提升。

同一时期,美国人则发明了涡轮螺旋桨发动机,用于提高战斗机的升力和速度。

战后,喷气发动机得到了更加广泛的应用。

20世纪50年代,苏联科学家发明了高空高速飞机的涡轮喷气发动机,使得飞机的续航能力大大增加。

同时,各国纷纷研发改进和新型的喷气发动机,使得飞机的性能水平达到了一个新的高度。

到了20世纪60年代,人们又开始试图开发更高级别的发动机。

1969年,美国的勃兰登·雅各布斯的研发团队在喷气发动机上进行了一次重大的突破,发明了涡扇发动机。

这一发动机搭载在了波音747飞机上,成为了世界上第一架商用的宽体喷气飞机。

涡扇发动机的出现使得大型飞机的运输效率大大提高。

从那时起,喷气发动机在不断发展和创新,并得到了广泛应用。

现代的喷气发动机在结构和材料上有了巨大的突破,使得飞机的性能进一步提高。

代战斗机发动机的结构特点

代战斗机发动机的结构特点

J79 17 12
291.0
1.16
CF6-80C2 14 13
343.2
1.20
CFM56-3 9 12
392.2
1.3179
CFM56-5C 9 12.16 400.0
1.32
GE90
V2500 PW6000 PW8000
10 23
10 20 6 10.4 5 12
455.6
405
1.368
1.349(1.32) 1.477 1.6437
4. 高压比压气机
5. 弯曲静叶(高压压气机)
6. 浮壁式燃烧室
7. 气动式喷咀
8. 反转高、低压涡轮 9. 单级高温涡轮
10. 双重热处理涡轮盘 11. 矢量喷口
12. 阻燃钛合金 Alloy C:压气机机匣、加力筒体、 喷口调节片)
F119与F100比较
F100(上图)
F119(下图)
转子支承方案
• EJ200
2.2 欧洲
2.3 俄罗斯
3 第四代战斗机发动机的新结构技术
3.1 风扇 3.2 压气机 3.3 燃烧室 3.4 涡轮 3.5 加力燃烧室 3.6 喷管
F119 F135 YF120 F136 EJ200 M88 117S AL-41
3.1 风扇
3.2 压气机
• 普.惠的传统设计
JT9D、PW2000、PW4000、F100、V2500
转子支承方案
• GE公司的设计
F101、F110、F404、CFM56
YF120 (1)
变循环
可调外涵通道 (2级风扇后) 固定外涵通道 (1级HPC后) 可变面积的掺混器(LPT后)
YF120 (2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EJ200
EJ200加力涡轮风扇发动机外形
牌号EJ200
用途军用涡扇发动机
类型涡轮风扇发动机
国家国际合作
厂商欧洲喷气涡轮公司
生产现状研制中
装机对象欧洲战斗机EF2000
研制情况
EJ200是欧洲四国联合研制的先进双转子加力式涡轮风扇发动机,用于欧洲联合研制的90年代战斗机EFA(现编号EF2000)。

参加研制工作的有英国罗·罗公司、德国发动机涡轮联合公司、意大利菲亚特公司和西班牙涡轮发动机工业公司,各占份额33%、33%、21%和13%。

1985年8月,先由英、德和意大利三国集团发起EFA计划,同年9月西班牙加入该集团。

1986年12月,负责EJ200发动机研制的欧洲喷气涡轮公司(Eurojet Turbo GmbH)在慕尼黑注册。

1988年11月签订发动机研制合同,同时首台EJ200设计验证机在德国慕尼黑运转。

1989年12月,三台设计验证机共积累运转650h,达到设计验证机要求。

1991年10月EJ200原型机首次运转。

计划将制造20多台原型机用于地面和飞行试验。

预计1996年可能交付生产型EJ200。

在发动机设计要求中,除要达到高推重比(10)和低耗油率外,特别强调高的可靠性,耐久性和维修性以及低的寿命期费用。

例如:平均故障间隔时间大于100EFH*,空中停车率小于0.1/1000EFH,维修工时不大0.5MMH**/EFH。

采用的新技术主要有:损伤容限和高效率的宽弦叶片、三维有粘的叶轮机设计方法、整体叶盘结构的风扇和压气机、单晶气冷涡轮叶片、粉末冶金涡轮盘、刷式封严和具有故障诊断和状态监控能力的FADEC。

在开始执行EJ200研制计划之前英国罗·罗公司专门研制了XG-40验证机,以便在实际发动机环境下验证新的设计技术。

为EJ200打下技术基础。

除欧洲战斗机EF2000外,EJ200发动机其他可能的用途有:垂直/短距起落欧洲战斗机2000、“狂风”战斗机改装、F/A-18、意大利马基航空公司与巴西航空工业公司合作研制的AMX、“阵风”、巴基斯坦的F-7和印度的LCA 战斗机。

EJ200
EJ200加力涡轮风扇发动机结构
结构和系统
风扇3级轴流式。

采用三维跨音速宽弦叶片。

悬臂支承,无进口导流叶片。

第3级为叶盘结构。

压比约4.0。

高压
压气机5级轴流式。

第1级有可调进口导流叶片并采用叶盘结构。

燃烧室环形。

无烟。

带蒸发式喷油嘴。

高压涡轮单级轴流式。

气冷涡轮叶片采用低密度单晶材料和隔热涂层,涡轮盘材料为粉末冶金材料U720。

低压涡轮单级轴流式。

叶片和轮盘材料分别为单晶和粉末冶金。

加力
燃烧室燃烧和混合型。

采用多根径向火焰稳定器。

尾喷管全程可调收敛-扩张式。

控制系统FADEC,具有故障诊断和状态监控能力。

滑油系统零过载或负过载滑油系统。

EJ200
技术数据
最大加力推力(daN)9000
中间推力(daN)6000
加力耗油率(kg/daN/h) 1.66~1.73
耗油率(kg/daN/h)0.74~0.81
推重比10
空气流量(kg/s)75~77
涵道比0.40
总增压比26.0
涡轮进口温度(℃)1477
最大直径(mm)863
长度(mm)3556
质量(kg)900
EJ200发动机。

相关文档
最新文档