高中数学 第1章 解三角形 1.3 正弦定理、余弦定理的应用 全方位聚焦正余弦定理的应用素材 苏教版5 精
高中数学第一章解三角形第1节正弦定理和余弦定理第1课时正弦定理课件新人教A版必修53
45°=
23,
∴C=60°或 C=120°.
当 C=60°时,B=75°,
b=cssiinnCB= s6isnin607°5°= 3+1; 当 C=120°时,B=15°, b=cssiinnCB= s6insi1n2105°°= 3-1. ∴b= 3+1,B=75°,C=60°或 b= 3 -1,B=15°,C=120°.
代入已知式子得
cos ksin
AA=kcsoisn
BB=kcsoisn
CC.
∴csoins
AA=csoins
BB=csoins
C C.
∴tan A=tan B=tan C.
又∵A、B、C∈(0,π),
∴A=B=C.∴△ABC 为等边三角形.
法二:化边为角
由正弦定理得sina A=sinb B=sinc C.
提示:sina A=sinb B=sinc C
2.归纳总结,核心必记 (1)正弦定理 在一个三角形中,各边和它所对角的正弦的
比相等,即 (2)解三角形
一般地,把三角形的三个角 A,B,C 和它 们的对边 a,b,c 叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做 解三角形.
[问题思考] (1)在△ABC 中 sin A=sin B,则 A=B 成立 吗? (2)在△ABC 中,sin A∶sin B∶sin C=a∶b∶c 成立吗? (3)在△ABC 中,若 A>B,是否有 sin A>sin B? 反之,是否成立?
—————————[课堂归纳·感悟提升]————————— 1.本节课的重点是正弦定理的应用,难点是正
弦定理的推导.
2.本节课要牢记正弦定理及其常见变形:
(1)sina A=sinb B=sinc C=2R(其中 R 为△ABC 外
正弦定理和余弦定理课件PPT
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
三角形中的正弦定理和余弦定理
三角形中的正弦定理和余弦定理1. 三角形的世界三角形,嘿,不就是那种三条边、三个角的几何形状吗?没错!但它的魅力可不止于此。
想象一下,你站在一个漂亮的山谷里,四周都是高耸入云的山峰,那个形状,就是个大三角形!三角形在我们的生活中无处不在,从建筑物到桥梁,再到你最爱的三角形切片披萨(谁不爱披萨呢?)。
今天,我们就来聊聊两位三角形界的明星——正弦定理和余弦定理,它们可是帮你解决很多三角形问题的好帮手哦!1.1 正弦定理:边与角的关系首先,正弦定理就像是一位善解人意的朋友,告诉我们三角形的边和角之间的关系。
简而言之,正弦定理的意思是:在任意一个三角形里,每条边的长度跟它对着的角的正弦值成正比。
听起来有点复杂,但其实很简单!你只需要记住这句话:“边长除以它对的角的正弦,结果是个常数!”就是这样!举个例子,假设你有一个三角形ABC,边分别是a、b、c,对应的角是A、B、C。
那么你可以写出这样的公式:a/sin(A) = b/sin(B) = c/sin(C)。
听到这里,是不是感觉自己瞬间成了三角形的“侦探”?只要知道某些边和角,你就能推算出其他的。
这种感觉,简直像是解谜游戏一样有趣!而且这条定理在现实生活中也超级实用,比如在测量地形的时候,正弦定理能帮你快速计算出未知的边和角,真是让人刮目相看。
1.2 余弦定理:边与角的深厚情谊接下来,咱们说说余弦定理。
这可是个更为深奥的朋友,专门处理三角形的边和角之间的深厚关系。
余弦定理可以用来计算三角形任意两边和夹角之间的关系。
换句话说,如果你知道了两条边的长度和它们夹角的度数,你就能找到第三条边的长度,反之亦然。
它的公式长得有点像数学的魔咒:c² = a² + b² 2ab * cos(C)。
看起来是不是有点吓人?其实不然!这就是告诉你,只要知道两条边的长度和夹角,想找到第三条边的长度,就不是问题了。
这种能力在计算斜坡、船只航行和很多工程设计中都派上了用场,简直是三角形界的“万金油”!2. 定理的实用场景2.1 在建筑中说到这儿,大家可能会问,这些定理在生活中真的有用吗?那可多了!想象一下,你在设计一座大楼,建筑师需要知道每个角度和边的长度,以确保大楼能安全稳固地屹立不倒。
高中数学知识点总结正弦定理与余弦定理
高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。
本文将对这两个定理进行详细总结与讲解。
一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。
1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。
二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。
这个过程较为繁琐,这里就不做详细讲解。
2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。
三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。
3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。
3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。
3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。
而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。
高中数学第一章解三角形教学设计新人教A版必修5
(新课标)高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边类型(3)在有解时只有一解,类型(4)可有解、一解和无R CcB b A a 2sin sin sin === (4)已知两边及其中一边的对角解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan12tan2tan2-=-=-=CCC.师思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生正弦定理、余弦定理与三角形面积公式.生还有余切的二倍角公式.师你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口.师对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】将一块圆心角为120°,半径为20 c m的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边O P在OA上,顶点M在圆弧上,设∠M OA=θ,则|MP|=20sinθ,|OP|=20co sθ,从而S=400sinθco sθ=200sin2θ,即当4πθ=时,S m a x=200.按图(2)的裁法:矩形的一边PQ与弦AB平行,设∠M O Q=θ,在△M O Q中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin2340120sinsin20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .C .D . 3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) >d 2=d 2 <d 2 D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。
高中数学 第一章 解三角形章末知识整合 新人教A版必修5
【金版学案】2015-2016学年高中数学第一章解三角形章末知识整合新人教A版必修5一、本章的中心内容——如何解三角形正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章的学习应当达到以下学习目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际生活问题.3.本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.在初中,学生已经学习了相关边角关系的定性知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全等”.4.在此内容之前我们已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,用了向量的方法,发挥了向量方法在解决问题中的威力.5.勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.二、学数学的最终目的——应用数学能把实际问题抽象成数学问题,把所学的数学知识应用到实际问题中去,通过观察、分析、归纳、类比、抽象、概括、猜想等发现问题,确定解决问题的科学思维方法,学会把数学知识应用于实际.1.正弦定理可建立边角关系,角的正弦越大所对的边就越长.2.由正弦值得出角的大小时特别要注意是一个解还是两个解.一般地,解三角形时,只有当A为锐角且b sin A<a<b时,有两解;其他情况时则只有一解或无解.3.利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角.4.把a=k sin A,b=k sin B代入已知等式可将边角关系全部转化为三角函数关系.5.余弦定理是三角形边角之间的共同规律,勾股定理是余弦定理的特例.6.余弦定理的应用范围是:①已知三边,求三角;②已知两边及一个内角,求第三边.7.解斜三角形应用题的一般步骤.(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.(4)检验:检验上述所求的解是否有实际意义,从而得出实际问题的解.8.平面上两点的距离测量问题一般有如下几类情况:(1)A、B两点都在河的两岸,一点可到达,另一点不可到达.方法是可到达一侧再找一点进行测量.(2)A、B两点都在河的对岸(不可到达).方法是在可到达一侧找两点进行测量.(3)A、B两点不可到达(如隔着一座山或建筑).方法是找一点可同时到达A、B两点进行测量.9.利用正弦定理和余弦定理来解高度问题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.10.测量高度的一般方法是选择能观察到测量物体的两点,分别测量仰角或俯角,同时测量出两个观测点的距离,再利用解三角形的方法进行计算.11.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理、余弦定理求出需要的元素,就可以求出三角形的面积.12.利用正弦定理、余弦定理、面积公式将已知条件转化为方程组是解决复杂问题的常见思路,将方程化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系.题型1 利用正、余弦定理解三角形解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的过程,三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形包括四种类型:①已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);②已知两边及夹角(一般先用余弦定理求第三边);③已知三边(先用余弦定理求角);④已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).例1 在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a.解析:如图,设CD =DB =x ,在△ACD 中,cos C =72+x 2-⎝ ⎛⎭⎪⎫7222×7×x ,在△ACB 中,cos C =72+(2x )2-422×7×2x, 所以72+x 2-⎝ ⎛⎭⎪⎫7222×7×x =72+(2x )2-422×7×2x. 解得x =92. 所以a =2x =2×92=9. 例2 如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.解析:由余弦定理得BD 2=22+22-2×2×2cos 120°=12,∴BD =2 3.∵BC =CD =2,C =120°,∴∠CBD =30°,∴∠ABD =90°,∴S 四边形ABCD =S △ABD +S △BCD=12×4×23sin 90°+12×2×2×sin 120°=5 3. 答案:5 3题型2 利用正、余弦定理判定三角形的形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin (A -B)=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断. 例3 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解析:方法一 由正弦定理可得2sin B =sin A +sin C ,∵B =60°,∴A +C =120°,A =120°-C ,将其代入上式,得2sin 60°=sin (120°-C)+sin C , 展开整理,得32sin C +12cos C =1, ∴sin (C +30°)=1,∴C +30°=90°.∴C =60°,故A =60°,∴△ABC 是正三角形.方法二 由余弦定理可得b 2=a 2+c 2-2ac cos B ,∵B =60°,b =a +c 2, ∴⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2-2ac cos 60°. ∴(a -c)2=0,∴a =c ,∴a =b =c ,∴△ABC 为正三角形.题型3 三角形解的个数的确定(1)利用正弦定理讨论:若已知a ,b ,A ,由正弦定理a sin A =b sin B ,得sin B =b sin A a .若sin B >1,则无解;若sin B =1,则有一解;若sin B <1,则可能有两解.(2)利用余弦定理讨论:已知a ,b ,A ,由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cosA)c +b 2-a 2=0.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个不同正数解,则三角形有两解.例4 在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?解析:由正弦定理a sin A =b sin B得: ①当b sin A <a <b 时,有两解,此时23<b <43;②当a≥b 时或B 为90°(b 为斜边)时,有一解,此时b≤23或b =43;③当a <b sin A 时无解,此时b >4 3.题型4 正、余弦定理在实际问题中的应用例5 如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解析:如下图,作DM∥AC 交BE 于N ,交CF 于M ,DF =MF 2+DM 2=302+1702=10298,DE =DN 2+EN 2=502+1202=130,EF =(BE -FC )2+BC 2=902+1202=150.在△DEF 中,由余弦定理得:cos ∠DEF =DE 2+EF 2-DF 22DE ×EF=1302+1502-102×2982×130×150=1665.。
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5
∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?
数学_高中必修五_解三角形_
第一章 解三角形1.1正弦定理和余弦定理1.1.1正弦定理【典型题剖析】考察点1:利用正弦定理解三角形例1在ABC 中,已知A:B:C=1:2:3,求a :b :c.【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。
解:::1:2:3,A .,,,6321::sin :sin :sin sin :sin :sin :1 2.6322A B C B C A B C a b A B C πππππππ=++=∴===∴====而【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。
例2在ABC 中,已知C=30°,求a+b 的取值范围。
【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。
解:∵C=30°,,∴由正弦定理得:sin sin sin sin 30a b c A B C ===︒ ∴(150°-A ).∴°·2sin75°·cos(75°-A)= 2cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b取得最大值2② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°,∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1,∴>2 cos75°=2综合①②可得a+b 的取值范围为考察点2:利用正弦定理判断三角形形状例3在△ABC 中,2a ·tanB=2b ·tanA ,判断三角形ABC 的形状。
【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。
高一数学中如何运用正弦定理和余弦定理
高一数学中如何运用正弦定理和余弦定理在高一数学的学习中,正弦定理和余弦定理是解决三角形问题的重要工具。
它们不仅在数学领域有着广泛的应用,在实际生活中的测量、建筑、导航等方面也具有重要意义。
接下来,让我们一起深入探讨如何巧妙地运用这两个定理。
首先,我们来了解一下正弦定理。
正弦定理的表达式为:$\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的三条边,$A$、$B$、$C$分别为它们所对应的角。
正弦定理主要用于以下几种情况:一是已知三角形的两角和一边,求其他两边和一角。
例如,已知角$A$、$B$和边$a$,我们可以先通过三角形内角和为$180^{\circ}$求出角$C$,然后利用正弦定理$\frac{a}{\sin A} =\frac{b}{\sin B}$求出边$b$,再用$\frac{a}{\sin A} =\frac{c}{\sin C}$求出边$c$。
二是已知两边和其中一边的对角,求另一边的对角。
假设已知边$a$、$b$和角$A$,通过正弦定理$\frac{a}{\sin A} =\frac{b}{\sin B}$,可以求出角$B$。
但需要注意的是,这种情况下可能会出现一解、两解或无解的情况。
当角$A$为锐角时,若$a < b\sin A$,则无解;若$a = b\sin A$,则有一解;若$b\sin A < a < b$,则有两解;若$a \geq b$,则有一解。
当角$A$为钝角或直角时,若$a > b$,则有一解;若$a \leq b$,则无解。
接下来,我们再看看余弦定理。
余弦定理的表达式有两个:$a^2= b^2 + c^2 2bc\cos A$,$b^2 = a^2 + c^2 2ac\cos B$,$c^2 =a^2 + b^2 2ab\cos C$。
余弦定理常用于以下几种情形:一是已知三角形的三边,求三个角。
正弦定理余弦定理知识点总结及最全证明
正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。
正弦定理可以用于求解任意三角形的边长或角度。
正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。
正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。
正弦定理的证明:可以使用数学推导来证明正弦定理。
这里给出一种较为详细的证明方法。
证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。
3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。
4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。
5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。
所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。
6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。
余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。
高中数学学习中的正弦定理与余弦定理运用
高中数学学习中的正弦定理与余弦定理运用正弦定理与余弦定理是高中数学学习中重要的几何定理,它们在解决三角形相关问题时起到了关键作用。
正弦定理和余弦定理广泛运用于测量和计算角度、边长和面积等方面。
在高中数学学习中,学生们需要熟练掌握并灵活运用这两个定理,以解决各种数学问题。
首先,正弦定理是描述三角形边与其对应的角之间的关系的定理。
对于任意三角形ABC,边a、b和c分别与角A、B和C对应。
正弦定理的表达式是:a/sinA = b/sinB = c/sinC。
该定理可以用于计算未知边长或角度的数值。
例如,当我们知道三角形的两个角和一个边长时,可以使用正弦定理来计算未知边长。
同样地,当我们知道三角形的两个边长和一个角度时,也可以使用正弦定理来计算未知角度。
正弦定理在解决不规则三角形的测量问题时非常有用。
与正弦定理相似,余弦定理也是用于描述三角形边与其对应的角之间的关系的定理。
对于任意三角形ABC,边a、b和c分别与角A、B和C对应。
余弦定理的表达式为:c² = a² + b² - 2abcosC。
该定理可以用于计算三角形任意边长的平方值,当我们知道边长和夹角时,可以使用余弦定理计算另一边的长度。
正弦定理和余弦定理的应用非常广泛。
在实际生活中,我们经常需要使用这两个定理来解决与三角形相关的问题。
例如,在测量高楼大厦的高度时,我们可以利用正弦定理计算出无法直接测量的高度。
同样地,在测量河流宽度时,我们可以利用余弦定理计算出河的宽度。
这些应用展示了这两个定理的实际价值。
在数学考试中,正弦定理与余弦定理也经常被考查。
题目通常要求学生根据已知条件,使用这两个定理计算未知量。
因此,学生们需要熟练掌握这两个定理的公式和用法。
为了更好地掌握,学生们可以多做相关的练习题,加深对这两个定理的理解和运用能力。
另外,正弦定理和余弦定理还有一些衍生应用。
比如,通过这两个定理,我们可以推导出海伦公式。
海伦公式用于计算任意三角形的面积,根据三边长a、b和c,海伦公式的表达式为:面积 = sqrt(s(s-a)(s-b)(s-c)),其中s是半周长(s=(a+b+c)/2)。
高中数学第一章解三角形1.1.2余弦定理(第2课时)正弦定理和余弦定理bb高二数学
12/9/2021
第八页,共三十九页。
2
PART TWO
题型探究(tànjiū)
2021/12/9
第九页,共三十九页。
题型一 利用(lìyòng)正弦、余弦定理解三角形
例 1 在△ABC 中,若 ccos B=bcos C,cos A=23,求 sin B 的值.
A.锐角三角形
√ B.直角三角形 C.钝角(dùnjiǎo)三角形 D.不能确定
解析 由正弦定理知,sin A=2aR,sin B=2bR,sin C=2cR.
∴sin2A+sin2B<sin2C可化为a2+b2<c2,a2+b2-c2<0.
a2+b2-c2 ∴cos C= 2ab <0.
∴角C为钝角(dùnjiǎo),△ABC为钝角三角形.
12/9/2021
第二十七页,共三十九页。
核心(héxīn)素养之数学运算
HEXINSUYANGZHISHUXUEYUNSUAN
求三角形一角的值
典例 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,若(a2+c2-b2)tan B
பைடு நூலகம்
= 3ac,则角 B 的值为
π A.6
√B.3π或23π
π C.3
1.正弦定理及常见变形
a (1)sin
b
c
A=__s_i_n_B__=__s_in__C__=2R(其中
R
是△ABC_外__接__圆_的__半__径___);
(bànjìng)
(2)a=bssiinnBA=cssiinnCA=2Rsin A;
高中数学第一章1.3第一课时正弦定理余弦定理的应用课件苏教必修5.ppt
基础知识梳理
1.解三角形应用题的基本思路 解三角形应用题的关键是将__实__际__问__题____转化为解三 角形问题来解决,所以首先将实际问题抽象转化为数 学问题(解三角形问题),然后利用正余弦定理对三角 形进行求解,最后再回到实际问题中作答.
2.解三角形应用问题的一般步骤 (1)准确理解题意,分清已知与所求; (2)根据题意画出示意图或准确地理解图形; (3)建立数学模型, 合 理 运 用 __正__余__弦__定__理__和__其__它__三__角__与__平__面__几__何__知__识____ 正确求解,并作答; (4)再根据实际问题的意义和精确度的要求给出答案.
变式训练
2.为测量建造中的上海东方明珠电视塔已到达的高度 ,李明在学校操场的某一直线上选择A、B、C三点, AB=BC=60米,且在A、B、C三点观察塔的最高点, 测得仰角分别为45°、54.2°、60°.已知李明身高1.5 米,试问建造中的电视塔已到达的高度.(结果保留一 位小数)
解:根据题意画出示意图,设DE=x,则h=x+1.5. 在Rt△AED、Rt△BED、 Rt△CED中, AE=DE·cot45°=x, BE=DE·cot54.2°=x·cot54.2°,
【解】 如图
设乙船速度为 v 海里/小时,在 C 处追上甲船, ∠BAC=45°+180°-105°=120°, 在△ABC 中,由余弦定理得,
BC2=AC2+AB2-2AC·AB·cos∠BAC, 即(23v)2=(23×9)2+102-2×23×9×10×cos120°,整理得 v =21, 又由正弦定理可知:sin∠BCBAC=sAinCB,
所以缉私船沿北偏东 60°方向,需 14.7 分钟才能最快追上
走私船.
原创1:第一章 解三角形
=( + )= (+),
其中 =
,α是第一象限角.
∵ ° < < °,且α是第一象限角
∴ 当C+α=90°时,AB+2BC有最大值 .
同学们,再见!
水域,并说明理由.
典例突破
(二)正、余弦定理的实际应用
(1) 如图,= ,= ,∠=,=
° < < °知 =
=
−(
.
)
.
由余弦定理,得= + − ∙ = .
∴ 船的行驶速度为
例3. 在△ABC中,=°,= ,则AB+2BC的最大值为
________.
【解析】 由正弦定理知
=
=
°
∴ AB=2sin C,BC=2sin A.
又 A+C =120°
∴ AB+2BC=2sin C+4sin(120 °-C)
典例突破
(三)解三角形与三角函数的综合
∴ ∠ =
∴
,∠
= −
∠
=
∙∠
在△ABC中,由正弦定理得=
°
=
典例突破
(一)正、余弦定理解三角形
方法1)
∴ 在△ABC中,由余弦定理得
BC2=AB2+AC2-2AB·ACcos∠2
即 25=AB2+49-11AB,即(AB-8)·(AB-3)=0,
刻测得一艘匀速直线行驶的船只位于点A北偏东 45°且
与点A相距 海里的位置B,经过40分钟又测得该船
已行驶到点A北偏东°+ (其中=
°)且与点A相距 海里的位置C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 正弦定理、余弦定理的应用
全方位聚焦正余弦定理的应用
正、余弦定理是研究三角形的边和角之间的关系,是解决三角形问题的有力工具和重要手段,下面将对正余弦定理的应用进行全方位扫描.
一、合理选用定理解三角形
求解三角形是典型问题,问题涉及三角形的若干几何量,解题时要注意边与角的互化.一般地,已知三角形的三个独立条件(不含已知三个角的情况),应用两定理,可以解三角形,具体可以解决的类型如下:
例1.在三角形ABC 中,已知︒===45,2,3B b a ,解此三角形.
分析:本题是一类已知两边一对角的解三角形问题,可用正弦定理,也可用余弦定理. 解法一:利用正弦定理,得︒=45sin 2sin 3A ,则2
3sin =A . 由于b a >,根据大边对大角,得︒=60A 或︒120.
当︒=60A 时,得︒=75C ,2
2645sin 75sin 2sin sin +=︒︒==B C b c ; 当︒=120A 时,得︒=15C ,2
2645sin 15sin 2sin sin -=︒︒==B C b c
.
解法二:利用余弦定理,得◊⋅⋅-+=45cos 32)3()2(222c c , 整理得0162=+-c c ,得2
26±=c . 当2
26+=c 时,212cos 222=-+=bc a c b A ,所以︒=60A ,则︒=75C ; 当2
26-=c 时,212cos 222-=-+=bc a c b A ,所以︒=120A ,则︒=15C . 点评:已知三角形的两边一对角这一类型,是同学们在学习过程中感到最困难的一种类型,这种类型的题,正弦和余弦定理都可以解决.
(1)用正弦定理解,往往通过大边对大角这个性质,来判断解的个数;
(2)用余弦定理解,一般转化为关于某条边的一元二次方程,利用∆或根的正负性来判断解的个数.
二 判断三角形的形状
解此类问题时,往往利用正弦或余弦定理转化到边或角,再通过边来判断或角来判断此三角形的形状.
例2在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.
分析:利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.
解1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosA ,
sinAcosB-cosAsinB=0 , sin(A-B)=0, 则A-B=0,∴A=B,即△ABC 为等腰三角形。
解2:由余弦定理:
2
2222222bc a c b b ac b c a a -+⋅=-+⋅22b a = ∴ b a =, 即△ABC 为等腰三角形.
点评:法一将已知条件全部转化成角的关系,法二则将已知条件全部转化成边的关系,这样更有利于寻求到角与角或边与边存在的内在联系,这种方法在解其它有关三角形的问题中也是常用的,不同的思维有助于学生建立属于自己的良好的认知结构.
三 解决与面积有关的问题 例3.在A B C ∆中,若B A B A c b a tan tan 33tan tan ,5,4=++=+=,求A
B C ∆的面积.
解析:由已知得3tan tan 1)1tan (tan 3tan tan 1tan tan )tan(-=--=-+=+B
A B A B A B A B A 0120=+∴B A ,得060=C
由余弦定理得022260cos 2ab b a c -+=,又5=+c b 因此2
7)5(4)5(1622=⇒---+=c c c c ,从而23=b 因此,ABC ∆的面积2
332323421sin 21=⨯⨯⨯==C ab 点评:本题有一定的难度,首先要用和角的正切公式产生B A +的值,进一步产生角C ;其次要灵活运用条件及余弦定理产生b ,然后再求三角形的面积,可以说是一道小型综合题,不能全面把握基础知识是难以完成求解的.
四、求值
例4 在ABC ∆中,求
A C c A b a C b sin sin cos cos ---的值 解一:原式A C A
B A B
C B C B A C C R A B R A R C B R sin sin )sin(cos sin )sin(cos sin sin sin sin 2cos sin 2sin 2cos sin 2-+-+-=---= 0sin sin sin cos sin cos =-=A
C A B C B 解二:原式=---+⋅--+⋅=R a R c c bc a c b b a ab c b a b 2222222222022222222=-----=a c c
a c
b a a
c b 点评:本题是一个“纸老虎”,看模样,有点吓人,但真正动手求解,也很顺利,正弦定理与余弦定理均可达到目的.
五、证明恒等式
例5 在ABC ∆中,求证:C B A c b a sin )sin(2
22-=- 证明:右边⋅=⋅-⋅=-=c
a A C B B C A C B A B A cos sin sin cos sin sin sin sin cos cos sin =-+⋅--+bc a c
b
c b ac b c a 22222222=-22
2c
b a 左边,故等式成立 点评:本题特点很突出,左边是边的式子、右边是角的式子,要完成这二者的统一(即
都是边的式子或都是角的式子)可以用正弦定理,也可以用余弦定理或两个定理联合使用.这里的求解是两个定理联合使用.
六、求解平面几何问题
例6 已知圆内接四边形ABCD 的边长4,6,2====DA CD BC AB ,求四边形
ABCD 的面积.
解:连结BD ,则A AD AB S S S BCD ABD ABCD sin 2
1⋅⋅=+=∆∆ C CD BC sin 2
1⋅⋅+
,由0180=+C A ,得C A sin sin = 那么A A CD BC AD AB S ABCD sin 16sin )(21=⋅+⋅= 由于C A BD cos 46246cos 4224222222⨯⨯-+=⨯⨯-+=,又C
A cos cos -=得2
1cos -=A ,因此0120=A 故四边形ABCD 的面积为382
316sin 16=⨯==A S ABCD . 点评:平几中涉及长度与面积问题往往需要用正弦或余弦定理进行求解.由于平几的图形不一定是几条单纯的线或三角形,求解时,一定要认真分析图形,努力使已知量转化为三角形中的边与角,促使正弦定理与余弦定理得以顺利应用.。