3.2-3.3解一元一次方程(基础)知识讲解
一元一次方程(专题详解)(解析版)
一元一次方程专题详解专题03 一元一次方程专题详解 (1)3.1从算式到方程 (2)知识框架 (2)一、基础知识点 (2)知识点1 方程和一元一次方程的概念 (2)知识点2 方程的解与解方程 (3)知识点3 等式的性质 (4)二、典型题型 (5)题型1 依题意列方程 (5)题型2 运用等式的性质解方程 (6)三、难点题型 (7)题型1 利用定义求待定字母的值 (7)3.2解一元一次方程-合并同类项和移项 (8)知识框架 (8)一、基础知识点 (8)知识点1 合并同类项解一元一次方程 (8)知识点2 移项解一元一次方程 (9)二、典型题型 (10)题型1 一元一次方程的简单应用 (10)3.3解一元一次方程-去括号与去分母 (11)知识框架 (11)一、基础知识点 (11)知识点1 去括号 (11)知识点2 去分母 (12)二、典型题型 (13)题型1 去括号技巧 (13)题型2 转化变形解方程 (15)题型3 解分子分母中含有小数系数的方程 (16)三、难点题型 (18)题型1 待定系数法 (18)题型2 同解问题 (18)题型3 含参数的一元一次方程 (19)题型4 利用解的情况求参数的值 (20)题型5 整体考虑 (21)3.4实际问题与一元一次方程 (21)一、基础知识点 (21)知识点1 列方程解应用题的合理性 (21)知识点2 建立书写模型常见的数量关系 (22)知识点3 分析数量关系的常用方法 (23)二、典型例题 (24)3.1从算式到方程知识框架一、基础知识点知识点1 方程和一元一次方程的概念1) 方程:含有未知数的等式。
例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含有一个未知数,且未知数 的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 例1.下列各式中,那些是等式?那些是方程?①3x-6;②3-5=-2;③x+2y=8;④x+2≠3;⑤x-x1=2; ⑥y=10;⑦3y 2+2y=0;⑧3a<-5a ;⑨3x 2+2x-1=0;⑩213m m y =-+ 【答案】是方程的有:③、⑤、⑥、⑦、⑨、⑩方程需满足2个条件:1)含有未知数;2)是等式。
部编数学七年级上册必刷基础练【3.23.3解一元一次方程】(解析版)含答案
2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)基础第3章《一元一次方程》3.2-3.3 解一元一次方程知识点1:利用合并同类项与移项解一元一次方程1.(2021七上·长兴月考)方程261x x -=-的解是( ).A .5B .52-C .5±D .53【答案】A【完整解答】解:261x x -=-,移项得,261x x -=-,合并同类项得,5x =,故答案为:A.【思路引导】根据解一元一次方程的解题步骤“移项、合并同类项”求出方程的解,即可得出答案.2.(2021七上·梁山期中)方程537x x -=+移项后正确的是( )A .375x x +=+B .357x x +=-+C .375x x -=-D .375x x -=+【答案】D【完整解答】解:移项,得:375x x -=+.故答案为:D .【思路引导】根据移项的计算方法和注意事项求解即可。
3.(2021七上·灵山期末)解一元一次方程 4125x x +=- 时,移项后,得到的式子正确的是( )A .4251x x -=--B .4251x x +=--C .4251x x -=-+D .4251x x +=-【答案】A【完整解答】解: 4125x x +=-移项得: 4251x x -=--故答案为:B 、C 、D 均错误;选项A 正确,故答案为:A.【思路引导】根据移项要变号可判断求解.4.(2021七上·廉江期末)方程434x x =-的解是x = .【答案】-4【完整解答】解:移项,4x-3x=-4,合并同类项得,x=-4.故答案是:-4.【思路引导】先移项、合并同类项,再系数化为1即可。
5.(2020七上·高明期末)当 x = 时, 28x + 的值为4.【答案】-2【完整解答】根据题意得: 2x+8= 4,移项合并得: 2x = -4,解得: x=-2故答案为:-2【思路引导】根据题意建立方程,求出方程的解即可.6.(2020七上·无棣期末)下面的框图表示了琳琳同学解方程421x x +=-的流程:你认为琳琳同学在解这个方程的过程中从第 步开始出现问题,正确完成这一步的依据是 .【答案】一;等式的基本性质1【完整解答】解:我认为琳琳同学在解这个方程的过程中从第一步开始出现问题,符合题意完成这一步的依据是等式的基本性质1.故答案为:一;等式的基本性质1.【思路引导】利用一元一次方程的解法和等式的性质求解即可。
七年级数学人教版上册3.3解一元一次方程去分母说课稿
4.实际问题:引入更多实际问题,让学生运用所学知识解决,培养学以致用的能力。
(四)总结反馈
在总结反馈阶段,我将引导学生自我评价,并提供有效的反馈和建议:
1.自我评价:让学生回顾本节课的学习内容,总结自己的收获和不足。
2.同伴评价:组织学生相互评价,发现他人的优点,学习借鉴。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:在课堂上,我会适时提问,引导学生思考,并及时给予反馈。同时,鼓励学生提问,解答他们的疑惑,促进师生之间的良好互动。
2.生生互动:组织学生进行小组合作,共同探讨问题、交流心得。设置课堂竞赛、讨论等活动,让学生在合作中竞争,激发学生的学习积极性。
2.在书写过程中,注重字迹工整,使用不同颜色粉笔突出重点。
3.在适当时候进行板书,避免一次性书写过多内容,以免学生无法消化。
(二)教学反思
在教学过程中,我预见到以下可能的问题或挑战:
1.学生对一元一次方程去分母的本质理解不够深入。
2.在实际问题的求解过程中,学生可能难以找到等量关系,列出方程。
3.学生的课堂参与度和注意力可能不够集中。
2.引发疑问:在提出问题后,引导学生思考如何解决问题,激发他们的好奇心和求知欲。
3.回顾旧知:简要回顾一元一次方程的基本概念和解法,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.去分母的概念:介绍一元一次方程去分母的含义,通过具体实例演示如何去分母。
2.等式性质的应用:讲解运用等式性质进行方程变形的方法,让学生掌握解题关键。
初中数学知识归纳一元一次方程的基本概念与解法
初中数学知识归纳一元一次方程的基本概念与解法一、什么是一元一次方程数学中的方程是指包含了一个或多个未知数的等式。
一元一次方程是指方程中只包含一个未知数,并且该未知数的最高次数为一。
一元一次方程的一般形式为ax + b = 0,其中a和b是已知的实数常量,x是未知数。
二、一元一次方程的解法1. 通过逆运算法解一元一次方程一元一次方程的基本思路是通过逆运算法将未知数从方程中的其他项中分离出来,从而求得方程的解。
例如,我们考虑方程2x + 5 = 0。
为了将x从方程的其他项中分离出来,我们需要使用逆运算,即将5移到方程的另一侧,并且改变其符号,即2x = -5。
接下来,将方程中的系数2除到x的前面,得到x = -5/2。
这就是方程的解。
2. 通过移项法解一元一次方程除了逆运算法,还可以使用移项法来解一元一次方程。
移项法的基本思路是将方程中所有项移至一个侧,从而将方程化简为ax = b的形式,然后通过除法求解出x的值。
举个例子,我们考虑方程3x - 7 = 11。
为了将x的系数3移到方程的另一侧,我们需要在等式两边同时加上7,得到3x = 18。
接下来,将方程中的系数3除到x的前面,得到x = 18/3 = 6。
这就是方程的解。
3. 通过综合运用解一元一次方程有时候,解一元一次方程需要综合使用逆运算法和移项法。
这通常在方程较复杂,或者方程中含有分数等特殊情况下使用。
例如,我们考虑方程4(2x - 3) = 2(x + 5) + 6。
首先,将方程中的括号展开得到8x - 12 = 2x + 10 + 6。
接下来,将方程中的项整理到一个侧得到8x - 2x = 28 + 12。
继续整理得到6x = 40。
最后,将方程中的系数6除到x的前面,得到x = 40/6 = 20/3。
这就是方程的解。
三、例题演练1. 解方程2x - 3 = 5。
解:将方程中的常数项3移到方程的另一侧得到2x = 8。
然后,将方程中的系数2除到x的前面得到x = 4。
人教版数学七年级上学期3.2-3.3解一元一次方程测试(原卷+解析版)
专题3.2-3.3解一元一次方程一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·河南南召·月考)若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2B .﹣2C .8D .﹣82.(2020·福建宁化·期末)若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-33.(2019·山西浑源·初一期末)下列解方程的变形中,正确的是( ) A .方程3x ﹣5=x +1移项,得3x ﹣x =1﹣5B .方程3x +4x=1去分母,得4x +3x =1 C .方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x D .方程﹣15x =5 两边同除以﹣15,得x = -34.(2020·全国单元测试)如果代数式312x +与213x --互为相反数,那么x 的值是( ) A .1B .-1C .32D .05.(2020·全国初一课时练习)某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x 人,则下列方程正确的是( ) A .4x ﹣20=5x +30 B .4x +20=5x ﹣30 C .4x ﹣20=5x ﹣30D .4x +20=5x +306.(2020·全国初一课时练习)方程435x x -=+移项后正确的是( ) A .354x x +=+B .345x x -=--C .354x x -=-D .354x x -=+7.(2020·河北文安·初一期末)在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1 B .3(x ﹣1)+2(2x+3)=1 C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x+3)=68.(2020·全国初一课时练习)“☆”表示一种运算符号,其定义是a ☆2b a b =-+,例如:3☆7237=-⨯+,如果x ☆(5)3-=,那么x 等于( ) A .-4B .7C .-1D .19.(2020·河南南召·月考)下列方程变形中,正确的是( ) A .方程3x -2=2x+1,移项,得3x -2x=-1+2 B .方程3-x=2-5(x -1),去括号,得3-x=2-5x -1 C .1134x x+=-,去分母,得4(x+1)=3x -1D .方程2-45x =,未知数系数化为1,得x=-10 10.(2020·全国初一课时练习)整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )11.(2020·全国单元测试)三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .3012.(2020·陕西神木·期末)关于x 的方程3163a x--=与方程()2157x +-=的解相同,则a 的值为( ) A .103-B .73-C .53-D .23-13.(2020·湖南天心·长郡中学期末)若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣614.(2020·全国单元测试)已知1y =是方程()1223m y y --=的解,那么关于x 的方程()()3225m x m x --=-的解是( )A .10x =-B .0x =C .43x =D .2413x =二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上) 15.(2020·全国单元测试)6x =-________方程57811x x -=+的解.(填“是”或“不是”) 16.(2020·全国课时练习)当x =__________时,代数式32x x +-的值是1. 17.(2020·全国单元测试)已知方程332x x -=的解为2x a =+,则关于x 的方程()323x x a a --=的解为_______.18.(2020·全国课时练习)若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初一课时练习)某区期末考试一次数学阅卷中,阅B 卷第28题(简称B28)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28的教师中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28和阅A18原有教师的人数.20.(2019·北京市昌平区第四中学初一期中)本学期学习了一元一次方程的解法,下面是小明同学的解题过程: 解方程23532x x ---=. 解:方程两边同时乘以6,得:23566132x x --⨯-⨯= …………① 去分母,得:()()223351x x ---= …………② 去括号,得:463151x x --+=………………③ 移项,得:631415x x --=-- ……………④ 合并同类项,得:918x -=-……………………⑤ 系数化1,得:2x =………………………⑥上述小明的解题过程从第_____步开始出现错误,错误的原因是_______________. 请帮小明改正错误,写出完整的解题过程. 21.(2020·全国初一课时练习)解下列方程: (1)(1)2(1)13x x x +--=-; (2)3 1.4570.50.46x x x --=. 22.(2020·嘉峪关市第六中学初一期末)“*”是新规定的这样一种运算法则:a*b=a 2+2ab .比如3*(﹣2)=32+2×3×(﹣2)=﹣3 (1)试求2*(﹣1)的值; (2)若2*x=2,求x 的值;(3)若(﹣2)*(1*x )=x+9,求x 的值.23.(2019·河北河间·初一期末)在做解方程练习时,学习卷中有一个方程“2y –12=12y +■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?24.(2019·河北石家庄·初三一模)数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x 2+5x +6,翻开纸片③是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值. 25.(2020·全国初一课时练习)已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着值的增大,1的值逐渐 ;2的值逐渐 .26.(2020·福建泉州五中月考)在数轴上点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为4. (1)用AC 表示端点为A 、C 的线段长度(以下表示相同),则AC =(2)点P 、Q 、R 同时出发在数轴上运动,点P 从A 点出发以每秒1个单位长度的速度向左运动,点Q 从B 点出发以每秒4个单位长度的速度向右运动,点R 从C 点出发以每秒2个单位长度的速度向右运动,设运动的时间为t 秒.①用含t 的代数式表示:点P 表示的数是 ;点Q 表示的数是 ;点R 表示的数是 ②求在运动过程中,t 为何值时,PQ =12(单位长度) ③求在运动过程中,t 为何值时,PR =2QR专题3.2-3.3解一元一次方程一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·河南南召·月考)若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2C .8D .﹣8【答案】B【解析】把x =1代入方程3x ﹣m =5得:3﹣m =5, 解得:m =﹣2, 故选:B .2.(2020·福建宁化·期末)若代数式x +2的值为1,则x 等于( ) A .1 B .-1C .3D .-3【答案】B【解析】解:由题意可知x+2=1,解得x=-1, 故选B .3.(2019·山西浑源·初一期末)下列解方程的变形中,正确的是( ) A .方程3x ﹣5=x +1移项,得3x ﹣x =1﹣5B .方程3x +4x=1去分母,得4x +3x =1 C .方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x D .方程﹣15x =5 两边同除以﹣15,得x = -3【答案】C【解析】A.方程3x ﹣5=x +1移项,得3x ﹣x =1+5,故错误; B.方程3x +4x=1去分母,得4x +3x =12,故错误; C.方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x ,正确; D.方程﹣15x =5 两边同除以﹣15,得x = -13,故错误; 故选C .4.(2020·全国单元测试)如果代数式312x +与213x --互为相反数,那么x 的值是( ) A .1 B .-1C .32D .0【答案】D 【解析】∵代数式312x +与213x --互为相反数,∴3211023x x ⎛⎫++--= ⎪⎝⎭,得0x =. 故答案选D .5.(2020·全国初一课时练习)某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x 人,则下列方程正确的是( ) A .4x ﹣20=5x +30 B .4x +20=5x ﹣30 C .4x ﹣20=5x ﹣30 D .4x +20=5x +30【答案】B【解析】解:设该校七年级一班有学生x 人, 依题意,得:420530x x +=﹣ 故选:B6.(2020·全国初一课时练习)方程435x x -=+移项后正确的是( ) A .354x x +=+ B .345x x -=-- C .354x x -=- D .354x x -=+【答案】D【解析】因为435x x -=+, 所以354x x -=+. 故选D .7.(2020·河北文安·初一期末)在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1 B .3(x ﹣1)+2(2x+3)=1 C .3(x ﹣1)+2(2+3x )=6 D .3(x ﹣1)﹣2(2x+3)=6【答案】D【解析】解:方程两边同时乘以6得,3(x ﹣1)+2(2+3x)=6 故选:D8.(2020·全国初一课时练习)“☆”表示一种运算符号,其定义是a ☆2b a b =-+,例如:3☆7237=-⨯+,如果x ☆(5)3-=,那么x 等于( ) A .-4 B .7 C .-1 D .1【答案】A【解析】解:∵x ☆(-5)=3, ∴-2x+(-5)=3, 解得x=-4. 故选A.9.(2020·河南南召·月考)下列方程变形中,正确的是( )A .方程3x -2=2x+1,移项,得3x -2x=-1+2B .方程3-x=2-5(x -1),去括号,得3-x=2-5x -1C .1134x x+=-,去分母,得4(x+1)=3x -1 D .方程2-45x =,未知数系数化为1,得x=-10 【答案】D【解析】A. 方程3x -2=2x+1,移项应得3x -2x=1+2,故该项错误; B. 方程3-x=2-5(x -1),去括号应得3-x=2-5x+5,故该项错误; C.1134x x+=-,去分母,应得4(x+1)=3x -12,故该项错误; D. 方程2-45x =,未知数系数化为1应得x=-10,正确. 故选:D.10.(2020·全国初一课时练习)整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )【答案】A【解析】根据表格可知0x =时,4mx n +=-, 所以4n =-.2x =时,4mx n +=,所以244m -=, 移项得244m =+, 合并同类项,得28m = 系数化为1,得4m =. 所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -= 系数化为1,得1x =-. 故选A .11.(2020·全国单元测试)三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .30【解析】解:由题意可得,∵第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8, ∴三个数之比为10:15:24, 设三个数分别为10x 、15x 、24x , 则10152498x x x ++=, 解得:2x =,∴第二个数为1530x =. 故选:D .12.(2020·陕西神木·期末)关于x 的方程3163a x--=与方程()2157x +-=的解相同,则a 的值为( ) A .103-B .73-C .53-D .23-【答案】A【解析】解:∵()2157x +-=, 解得:x=5, 将x=5代入:3163a x--=, 解得:a=103-. 故选A .13. (2020·湖南天心·长郡中学期末)若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8 B .﹣8C .6D .﹣6【答案】D【解析】因为xΔy =xy +x +y ,且2Δm =-16, 所以2m+2+m=-16, 解得m=- 6, 故选D.14.(2020·全国单元测试)已知1y =是方程()1223m y y --=的解,那么关于x 的方程()()3225m x m x --=-的解是( )A .10x =-B .0x =C .43x =D .2413x =【解析】把1y =代入12()23m y y --=,得1m =, 把1m =代入关于x 的方程, 得3225x x --=-, 可得0x =, 故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上) 15.(2020·全国单元测试)6x =-________方程57811x x -=+的解.(填“是”或“不是”) 【答案】是【解析】57811x x -=+,318x =-, 6x =-,∴是方程的解;故答案为:是.16.(2020·全国课时练习)当x =__________时,代数式32x x +-的值是1. 【答案】5【解析】由题可得312+-=x x , 化简得232x x --=,∴5x =. 故答案是5.17.(2020·全国单元测试)已知方程332x x -=的解为2x a =+,则关于x 的方程()323x x a a --=的解为_______. 【答案】1x =【解析】解:依题意得:3(a+2)-3=2(a+2), 整理得:3a+6-3=2a+4, ∴a=1,将a=1代入方程3x -2(x -a )=3a 得:3x -2x+2×1=3×1 ∴x=1; 故答案为:1x =18.(2020·全国课时练习)若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________. 【答案】25【解析】把2x =代入()22310x c x c +-+=得:()2222310c c ⨯+⨯-+=,解得:4c =, 当3x =-时,()223x c x c +-+()22(3)34(3)4⨯=⨯-+--+ 1834=++ 25=,故答案为:25.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初一课时练习)某区期末考试一次数学阅卷中,阅B 卷第28题(简称B28)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28的教师中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28和阅A18原有教师的人数.【答案】阅A18原有教师6人,阅B28原有教师18人.【解析】设阅A18原有教师人数为x 人,则阅B28原有教师人数为3x 人,3x -12=0.5x+3,解之得x=6,所以阅A18原有教师人数为6人,则阅B28原有教师人数为18人.20.(2019·北京市昌平区第四中学初一期中)本学期学习了一元一次方程的解法,下面是小明同学的解题过程: 解方程23532x x ---=. 解:方程两边同时乘以6,得:23566132x x --⨯-⨯= …………① 去分母,得:()()223351x x ---= …………② 去括号,得:463151x x --+=………………③ 移项,得:631415x x --=-- ……………④ 合并同类项,得:918x -=-……………………⑤ 系数化1,得:2x =………………………⑥上述小明的解题过程从第_____步开始出现错误,错误的原因是_______________. 请帮小明改正错误,写出完整的解题过程.【答案】①,利用等式的性质时漏乘,完整过程见解析【解析】第①步开始出现错误,错误的原因是利用等式的性质时漏乘, 故答案为:①,利用等式的性质时漏乘; 解方程235132x x ---= , 解:方程两边同时乘以6,得:23566632x x --⨯-⨯= , 去分母,得:()()223356x x ---=, 去括号,得:463156x x --+=, 移项,得:636415x x --=--, 合并同类项,得: 913x -=- , 系数化1,得: 139x. 21.(2020·全国初一课时练习)解下列方程: (1)(1)2(1)13x x x +--=-; (2)3 1.4570.50.46x x x --=. 【答案】(1)1x =-;(2)30x =;(3)0.7x =-. 【解析】(1)去括号,得12213x x x +-+=-. 移项及合并同类项,得22x =-. 系数化为1,得1x =-. (2)原方程可化为757626x x x --=,去分母,得362157x x x -=-. 移项及合并同类项,得107x =-. 系数化为1,得0.7x =-.22.(2020·嘉峪关市第六中学初一期末)“*”是新规定的这样一种运算法则:a*b=a 2+2ab .比如3*(﹣2)=32+2×3×(﹣2)=﹣3 (1)试求2*(﹣1)的值; (2)若2*x=2,求x 的值;(3)若(﹣2)*(1*x )=x+9,求x 的值. 【答案】(1)0;(2):x=﹣12;(3)x=﹣1. 【解析】解:(1)根据题中的新定义得:原式=4﹣4=0; (2)根据题中的新定义化简得:4+4x=2,解得:x=﹣;(3)根据题中的新定义化简得:(﹣2)*(1+2x )=4﹣4(1+2x )=x+9, 去括号得:4﹣4﹣8x=x+9, 解得:x=﹣1.23.(2019·河北河间·初一期末)在做解方程练习时,学习卷中有一个方程“2y –12=12y +■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗? 【答案】见解析【解析】解:5(x -1)-2(x -2)-4=3x -5, 当x =3时,3x -5=3×3-5=4, ∴y =4.把y =4代入2y -12=12y -■中,得 2×4-12=12×4-■, ∴■=-112. 即这个常数为-112. 24.(2019·河北石家庄·初三一模)数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x 2+5x +6,翻开纸片③是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值. 【答案】(1)244x x ++;(2)1.【解析】解:(1)222456(32)44x x x x x x =+=+--=+-+①②③++,所以纸片①上的代数式为244x x ++; (2)解2x =-x -9得3x =-,将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.25.(2020·全国初一课时练习)已知14y x =-+,222y x =-.(1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着值的增大,1的值逐渐 ;2的值逐渐 . 【答案】(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【解析】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =; (2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大.26.(2020·福建泉州五中月考)在数轴上点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为4. (1)用AC 表示端点为A 、C 的线段长度(以下表示相同),则AC =(2)点P 、Q 、R 同时出发在数轴上运动,点P 从A 点出发以每秒1个单位长度的速度向左运动,点Q 从B 点出发以每秒4个单位长度的速度向右运动,点R 从C 点出发以每秒2个单位长度的速度向右运动,设运动的时间为t 秒.①用含t 的代数式表示:点P 表示的数是 ;点Q 表示的数是 ;点R 表示的数是 ②求在运动过程中,t 为何值时,PQ =12(单位长度) ③求在运动过程中,t 为何值时,PR =2QR【答案】(1)7;(2)①﹣3-t ,4t -1,2t+4;②t=2;③t=17或37【解析】解:(1)AC=4-(﹣3)=4+3=7; 故答案为:7;(2)①点P 表示的数是:﹣3-t ;点Q 表示的数是:4t -1;点R 表示的数是:2t+4; 故答案为:﹣3-t ,4t -1,2t+4;②根据题意得:4t -1-(﹣3-t )=12,解得:t=2; 所以当t=2时,PQ =12;③PR=2t+4-(﹣3-t )=3t+7,QR=()412425t t t --+=-, 若PR =2QR ,则37225t t +=⨯-, 当()37225t t +=-时,解得:t=17, 当()37225t t +=--时,解得:37t =; 所以当t=17或37时,PR =2QR .。
初中数学知识结构体系
初中数学知识结构体系2.1整式第三章一元一次方程:3.2解一元一次方程(一)--合并同类项与移向3.3解一元一次方程(二)--去括号与去分母3.4实际问题与一元一次方程第四章图形初步认识:七年级数学下册:5.1相交线7.1与三角形有关的线段7.2与三角形有关的角7.3多边形及其内角和7.4课题学习镶嵌第八章二元一次方程组第九章不等式与不等式组10.2直方图八年级数学上册:第十一章全等三角形12.1 轴对称第十三章实数第十四章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习选择方案八年级数学下册:第十六章分式第十七章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第十八章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第十九章四边形19.4 课题学习重心第二十章数据的分析20.3课题学习体质健康测试中的数据分析21.4 阅读与思考海伦-秦九韶公式22.1 一元二次方程第二十三章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第二十四章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第二十六章二次函数26.2 用函数观点看一元二次方程26.3 实际问题与二次函数29.2 三视图29.3 课题学习制作立体模型第二十六章二次函数26.2 用函数观点看一元二次方程26.3 实际问题与二次函数29.2 三视图29.3 课题学习制作立体模型第二十六章二次函数26.2 用函数观点看一元二次方程26.3 实际问题与二次函数29.2 三视图29.3 课题学习制作立体模型。
一元一次方程的解法知识讲解
一元一次方程的解法知识讲解解一元一次方程的方法有两种:平衡法和倒运算法。
1.平衡法平衡法的基本原则是在方程的两边逐步交换操作,使方程变为x=一个已知的数值的形式。
步骤:a)首先将方程转化为标准形式,即将b移到等号的另一边。
例如,方程为2x+3=1,可以变为2x=1-3b)然后再对方程进行化简,将x的系数移到方程左边,将常数项移到方程右边。
继续上面的例子,可以得到2x=-2c)接下来,将方程两边同时除以x的系数,即将方程左边的2x除以2,得到x=-1、这就是方程的解。
2.倒运算法倒运算法的基本思想是使用与方程中运算相反的运算,从而将方程变为x=一个已知的数值的形式。
步骤:a)用方程中的运算逆运算,去消去x的系数。
例如,对于方程2x+3=1,可以用减法逆运算去消去2x的系数,得到2x-2x+3=1-2x。
b)化简方程,将常数项移到方程的右边。
继续上面的例子,可以得到3=1-2x。
c)接下来,用减法逆运算去消去常数项的系数,得到3-1=-2x。
继续计算,可以得到2=-2x。
d)最后,将方程两边同时除以x的系数,即将方程左边的-2x除以-2,得到x=-1、这也是方程的解。
这两种解法可以互相验证,使用任意一种方法得到的解都可以代入方程进行验证。
除了这两种基本的解法,还可以使用图形解、代数解、矩阵解等方法来解一元一次方程。
这些方法更加灵活,可以用于更复杂的方程求解。
需要注意的是,一元一次方程可能有一个解、无解或无数解。
如果方程化简后得到的是一个恒等式,比如0=0,那么方程就是一个恒等方程,它对任何x都成立,即有无数解。
如果方程化简后得到一个矛盾的式子,比如1=0,那么方程无解。
如果方程化简后得到一个确定的式子,比如x=5,那么方程有一个解,即x=5总结一下,解一元一次方程的关键是将方程变为x=一个已知的数值的形式,可以使用平衡法或倒运算法进行计算。
解一元一次方程能够帮助我们解决各种实际问题,如计算成本、求解速度等。
七年级数学上册解一元一次方程3.2_3.3-合并同类项与移项_去括号去分母
x
如果先去括号,就能简化方程的形式。这里的 5(138 x) 138 x 相乘。根据分配律,得 是5与
3x 5(138 x) 540
5(138 x) 690 5 x
怎样使这个方程向 x=a的形式转化呢?
下面的框图表示了解这个方程的具体过程: 3x 5(138 x) 540 本题还有其他列
3x+20=4x-25 移项 (还原) 3x-4x=-25-20 (对消) 合并同 -x=-45 类项 系数化为1 x=45
学习了移项后,方程 5x -2=8还可以怎样解呢?
移项,得 化简,得
5x =8+2
5x =10 方程两边同除以5,得 x =2
观察 & 思考
① 移项有什么新特点? ② 移项后的化简包括哪些内容?
1 1 (2)6( x 4) 2 x 7 ( x 1) 2 3
例题讲解 一艘船从甲码头到乙码头顺
流行驶,用了2小时;从乙码头返回甲码头逆 流行驶,用了2.5小时。已知水流速度是3千米 /时,求船在静水中的平均速度。 分析:一般情况下可以认为这艘船往返的路 程相等,由此填空:顺流速度 × 顺流时间= 逆流速度 × 逆流时间 解:设船在静水中的平均速度为 x 千米/时,则
点拨:解未知数的系数含有字母的 方程时,要注意分类讨论。
合并同类项与系数化为1都是解 一元一次方程的重要过程(步骤)。 合并同类项 把方程化为mx=b (m≠0)的形式。 系数化为1 把mx=b (m≠0)化 为x=a。
例、解方程:
7x-2.5x+3x-1.5x= -15×4-6×3
解: 合并同类项,得 6x = -78 系数化为1,得 x= -13
人教版七年级上册第三章《一元一次方程》教材分析
一元一次方程教材分析一.本章在教材中的位置:本章的主要内容包括一元一次方程的定义、解法及应用。
小学时我们主要与数打交道,到了中学我们主要与字母代数式打交道.如果从应用的角度看,小学主要学习了用数的四则运算解实际问题,到了中学我们主要是用方程、不等式、函数的知识解决实际问题,一元一次方程的解法与应用是用方程、不等式、函数解实际问题的开始.一元一次方程的解法的依据是整式的运算和等式的性质,所以本章的学习可以加强有理数与整式运算的复习,使学生了解知识的内在联系与应用意识。
同时本章的学习直接关系到一元一次不等式和二次方程以及初三的函数的学习及学生今后解决实际问题的能力。
所以一元一次方程良好的开始至关重要。
二.教材内容:三.课程学习目标:1、经历“把实际问题抽象为数学方程”的过程,体会从算式到方程是数学的进步;2、利用等式的基本性质理解一元一次方程的解法依据,掌握一元一次方程的解法;3、能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设出未知数,列出方程表示问题中的等量关系”;4、通过探究实际问题,体会方程的优越性,提高分析问题解决问题的能力。
四.教材编写特点:1、与以往教材相比较,增加了由算式到方程这一节,加强了学生对算式与方程的认识;2、在方程的解法中,结合实际问题讨论解方程,加强了对学生应用意识的培养;3、通过加强探究性,培养分析解决问题的能力、创新精神和实践意识;4、从习题的选择到课后的阅读思考都在有意关注数学文化的传承;五.教学中应关注的几个问题:3.1 从算式到方程1. 要学生了解算术法与方程法解应用题的区别,体会方程的优越性; 如本节第一个例题:)1(503)35()7050(+⨯-÷+=x ; )2(570350+=-x x(1)为算术解法,未知量没有参与运算,(2)为方程解法;未知量可以参与运算。
2. 能区分用语言文字表述的一段话是相等关系还是不等关系; 例:下列哪段话表示相等关系(1)甲等于乙的2倍;(2)甲比乙的2倍小3;(3)甲乙两数和为5;(4)甲比乙大 (5)以前学习的一些公式3. 相等关系在列方程解应用题中的应用。
人教版初一数学下册:一元一次不等式的解法(基础)知识讲解
一元一次不等式的解法(基础)知识讲解【学习目标】1.理解一元一次不等式的概念; 2.会解一元一次不等式.【要点梳理】【高清课堂:一元一次不等式 370042 一元一次不等式 】 要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式. 要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数; ③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向. 要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集. 要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变. 3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释: 在用数轴表示不等式的解集时,要确定边界和方向: (1)边界:有等号的是实心圆点,无等号的是空心圆圈; (2)方向:大向右,小向左. 【典型例题】类型一、一元一次不等式的概念1.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0 (2)2x+3>5 (3)384x (4)1x≥2 (5)2x+y≤8【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数.【答案与解析】解:(2)、(3)是一元一次不等式.【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可.类型二、解一元一次不等式2.(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与解析】解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向.举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为()【答案】C3.(2015•巴中)解不等式:≤﹣1,并把解集表示在数轴上.【思路点拨】按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变.【答案与解析】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.【总结升华】去分母时,不要漏乘没有分母的项. 举一反三: 【变式】若3511+-=x y ,14522--=x y ,问x 取何值时,21y y >. 【答案】 解:∵3511+-=x y ,14522--=x y , 若21y y >,则有1452351-->+-x x 即 6101<x∴当6101<x 时,21y y >.4.关于x 的不等式2x -a ≤-1的解集为x ≤-1,则a 的值是_________.【思路点拨】首先把a 作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即可得到关于a 的方程,解方程即可求解. 【答案】-1【解析】由已知得:12a x -≤,由112a -=-,得1a =-. 【总结升华】解不等式要依据不等式的基本性质,注意移项要改变符号.举一反三:【变式1】如果关于x 的不等式(a+1)x <a+1的解集是x >l ,则a 的取值范围是________. 【答案】1a -<【高清课堂:一元一次不等式 370042 例6】 【变式2】已知关于x 的方程2233x m xx ---=的解是非负数,m 是正整数,求m 的值. 【答案】 解:由2233x m xx ---=,得x =22m -, 因为x 为非负数,所以22m-≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】 举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x <解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。
一元一次方程的分式方程_概述说明以及解释
一元一次方程的分式方程概述说明以及解释1. 引言1.1 概述一元一次方程是数学中常见的基础概念,它描述了未知数与已知数之间的线性关系。
而当一元一次方程中存在分式时,我们就称之为一元一次方程的分式方程。
本文将对一元一次分式方程进行全面的概述、说明和解释。
1.2 一元一次方程的基本概念在数学中,一元一次方程是指一个未知数的最高指数为1、系数为实常数或者有理数的代数方程。
这种类型的方程可以通过等式左右两边进行运算变换来求得未知数的值。
例如,形如ax + b = c 的表达式即为一元一次方程。
1.3 分式方程的含义与特点分式(也叫有理式)通常表示为两个整式(多项式)相除得到的商。
当一个分式成为一个等式,并且其中至少有一个未知数时,我们将其称之为分式方程。
在分式方程中,未知量可能出现在分子或者分母中,并且会带来许多特殊情况和解法。
2. 一元一次方程的分式方程2.1 什么是一元一次方程的分式方程一元一次方程是指只有一个未知数,并且未知数的最高次幂为1的方程。
而分式方程则是在方程中含有分式(即带有分子和分母)的形式。
因此,一元一次方程的分式方程就是在一个未知数上出现了带有分子和分母的表达式。
2.2 分式方程的解法步骤解决一元一次分式方程可以遵循以下步骤:步骤1:将所有含有未知数的项移至等号左边,将常数项移到等号右边,以便将所有项集中到一个侧。
步骤2:利用乘法逆元素原理消去分母。
将整个等式两边都乘以除了含有未知数所在项之外的那个不含未知数的因子,从而消除掉等号两侧中带有分母的表达式。
步骤3:合并同类项并简化表达式。
整理等号两边得到一个简化后的方程。
步骤4:通过移项、合并同类项或者代入已知值,求解未知数。
步骤5:将求得的未知数代入原分式方程中,验证所得解是否符合原方程,同时检查是否存在约束条件。
2.3 解答实例和应用为了更好地理解和掌握一元一次分式方程的解法步骤,以下是一个实际问题的例子:例题:某商店原价200元的商品打8折出售后价格为160元,请问该商品的折扣率是多少?解答过程:步骤1:设折扣率为x,则根据折扣计算公式可得200 * (1 - x) = 160。
人教新课标第三章一元一次方程知识点总结
1 1 的 两 边 同 ________________________ , 得 到 等 式 x , 这 是 依 据 8 2
______________________________________. 11、根据等式的性质解下列方程 (1) 2x 7 3 (2) 6 x 6 8 (3)
2
3
3.2—3.3 解一元一次方程 知识点归纳
一、方程中的合并同类项 解方程时,将含有未知数的几个项合成一项叫合并同类项,它的依据是乘法 的分配律,是分配律的逆用。 ※※★【注意】 (1)合并同类项的实质是系数的合并,字母及指数都不变 (2)在等号两边的同类项不能合并 (3)注意系数是负数的项的合并 (4)把常数项相加 二、系数化为 1 系数化为 1 的目的,是将形如 ax b(a 0) 化成 x 的形式,也就是求出方程 的解 x 。系数化为 1 的依据是等式性质 2,方程两边同时乘以系数 a(a 0) 的倒 数 ,或者同除以系数 a 本身。
D. x Байду номын сангаас 9
2
3、若关于 x 的方程 3x a x 1 的解是 x 2 ,则 a 的值为________. 4、如果关于 x 的方程 3x
5 2 k
6 0 是一元一次方程,则 k __________.
5、已知 x 1 是方程 mx 6 2 的解,则 m _________. 6、 x 的 8 倍加上 4 与 x 的 5 倍相等,列方程为_______________________. 7、已知方程 (a 4) x
※※※★★【注意】在解一元一次方程时,把系数化为
b a
b a
1 a
1 要注意一下几点:
人教版数学七年级上册 3.2---3.3练习题含答案
3.2解一元一次方程合并同类项及移项一.选择题1.一元一次方程3x﹣(x﹣1)=1的解是()A.x=2B.x=1C.x=0D.x=﹣1 2.解方程:2x﹣3=3x﹣2,正确的答案是()A.x=1B.x=﹣1C.x=5D.x=﹣5 3.方程﹣+x=2x的解是()A.x=B.x=﹣C.x=2D.x=﹣2 4.在解方程﹣=1时,对该方程进行化简正确的是()A.=100B.C.D.05.方程﹣=1的解是()A.x=1B.x=3C.x=5D.x=7 6.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.18x+2(2x﹣1)=18﹣3(x+1)7.对于实数a、b,规定a⊕b=a﹣2b,若4⊕(x﹣3)=2,则x的值为()A.﹣2B.﹣C.D.4 8.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解是()A.﹣1B.C.D.1 9.把方程1﹣=﹣去分母后,正确的是()A.1﹣2x﹣3=3x+5B.1﹣2(x﹣3)=﹣3x+5C.4﹣2(x﹣3)=﹣3x+5D.4﹣2(x﹣3)=﹣(3x+5)10.下列方程的变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程x=,未知数系数化为1,得x=1D.方程﹣=1 化成5(x﹣1)﹣2x=10二.填空题11.当x=时,4x﹣4与3x﹣10互为相反数.12.当x=时代数式的值是1.13.定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2a+3b,如:1⊕5=(﹣2)×1+3×5=13,则方程x⊕2=0的解为.14.对于任意实数a、b、c、d规定了一种运算,则当时,x=.15.在图示的运算流程中,若输出的数y=5,则输入的数x=.三.解答题16.解方程:﹣=1.17.解方程:(1)2(x+1)﹣7x=﹣8;(2)﹣=1.18.在一次数学课上,王老师出示一道题:解方程3(x+2)﹣8=2+x.小马立即举手并在黑板上写出了解方程过程,具体如下:解:3(x+2)﹣8=2+x,去括号,得:3x+2﹣8=x+2…①移项,得:3x﹣x=2﹣2+8.…②合并同类项,得:2x=8…③系数化为1,得:x=…④(1)请你写出小马解方程过程中哪步错了,并简要说明错误原因;(2)请你正确解方程:1﹣=.19.在一次数学课上,王老师出示一道题:解方程3(x+2)﹣8=2+x,小马立即举手并在黑板上写出了解方程过程,具体如下:(1)请你写出小马解方程过程中哪步错了,并简要说明错误原因;(2)请你正确解方程:1﹣=.参考答案与试题解析一.选择题1.【解答】解:去括号得3x﹣x+1=1,移项得3x﹣x=1﹣1,合并得2x=0,系数化为1得x=0.故选:C.2.【解答】解:移项合并得:﹣x=1,解得:x=﹣1,故选:B.3.【解答】解:由原方程,得x﹣2x=,﹣x=,x=﹣.故选:B.4.【解答】解:方程化简得:﹣=1,故选:B.5.【解答】解:去分母得:2x﹣x+1=6,移项合并:x=5.6.【解答】解:把方程3x+=3﹣去分母得:18x+2(2x﹣1)=18﹣3(x+1),故选:D.7.【解答】解:4⊕(x﹣3)=2,4﹣2(x﹣3)=2,4﹣2x+6=2,解得:x=4;故选:D.8.【解答】解:∵方程x2k﹣1+k=0是关于x的一元一次方程,∴2k﹣1=1,解得:k=1,方程为x+1=0,解得:x=﹣1,故选:A.9.【解答】解:方程去分母得:4﹣2(x﹣3)=﹣(3x+5),故选:D.10.【解答】解:A、方程3x﹣2=2x+1,移项得:3x﹣2=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号得:3﹣x=2﹣5x+5,不符合题意;C、方程x=,未知数系数化为1,得:x=,不符合题意;D、方程﹣=1化为5(x﹣1)﹣2x=10,符合题意,故选:D.二.填空题(共5小题)11.【解答】解:根据题意得:4x﹣4+3x﹣10=0,移项合并得:7x=14,解得:x=2,故答案为:212.【解答】解:根据题意得:=1,去分母得:4x﹣5=3,解得:x=2,故答案为:2.13.【解答】解:根据题意得:x⊕2=﹣2x+6=0,解得:x=3,故答案为:3.14.【解答】解:,即10+4(3﹣x)=25,解得:x=﹣.故答案为:﹣.15.【解答】解:①若x为奇数,则根据图表可得:=5,解得:x=11;②若x为偶数,则根据图表可得:=5,解得:x=10.故答案为:10或11.三.解答题(共4小题)16.【解答】解:﹣=1,去分母,得2x﹣(3x﹣1)=6,去括号,得2x﹣3x+1=6,移项,得2x﹣3x=6﹣1,合并同类项,得﹣x=5,系数化1,得x=﹣5.17.【解答】解:(1)2(x+1)﹣7x=﹣8,去括号,得2x+2﹣7x=﹣8,移项,得2x﹣7x=﹣8﹣2,合并同类项,得﹣5x=﹣10,系数化1,得x=2;(2)﹣=1,分母,得2(5x+1)﹣(2x﹣1)=6,去括号,得10x+2﹣2x+1=6,移项,得10x﹣2x=6﹣2﹣1,合并同类项,得8x=3,系数化1,得x=.18.【解答】解:(1)小马解方程过程中第①步错误,原因是去括号法则运用错误;(2)去分母得:12﹣2(7﹣5y)=3(3y﹣1),去括号得:12﹣14+10y=9y﹣3,移项合并得:y=﹣1.19.【解答】解:(1)小马解方程过程中第①步错误,去括号法则运用错误;(2)去分母得:12﹣2(7﹣5y)=3(3y﹣1),去括号得:12﹣14+10y=9y﹣3,移项合并得:y=﹣1.3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x-2)-3(4x-1)=9的去括号的过程,其中正确的是( )A.2x-4-12x+3=9B.2x-4-12x-3=9C.2x -4-12x +1=9D.2x -2-12x +1=9 7.若5m +4与-(m -2)的值互为相反数,则m 的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( ) A.-1 B.1 C.12 D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,求k 的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;件数单价金额甲种奖品x件每件40元40x元乙种奖品件每件30元元(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =15-3(x -1) B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1)2.下列等式变形正确的是( )A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1 C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 . 4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( ) 5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1 C.x +14+x 6=1 D.x 4+14+x -16=1 7.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =1-3(x -1) B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1)9.某书上有一道解方程的题:1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( )A.7B.5C.2D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3 C.x 50-x +12050+6=3 D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0;解:去括号,得2x -2+1=0.移项、合并同类项,得2x =1.系数化为1,得x =12. (2)2x +5=3(x -1).解:2x +5=3x -3,2x -3x =-3-5,-x =-8,x =8.5.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1;解:去括号,得12x -8-2x -3=-1.移项,得12x -2x =8+3-1.合并同类项,得10x =10.系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y.移项、合并同类项,得-6y =-48.系数化为1,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.第2课时 利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得40x +30(20-x)=650.解得x =5.则20-x =15.答:购买甲种奖品5件,乙种奖品15件.3.解:设装运香菇的汽车需x 辆.根据题意,得1.5x +2(6-x)=10.解得x =4.所以6-x =2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x)篇,依题意,得 (x +2)×2=118-x ,解得x =38.答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km.6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得2x +3(100-x)=270.解得x =30.则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的性质2)去括号,得9x +15=4x -2.(去括号法则)(移项),得9x -4x =-15-2.(等式的性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2) 5.(1)x +12=3+x -64; 解:2(x +1)=12+(x -6).2x +2=12+x -6.2x +2=x +6.x =4.(2)x -32-4x +15=1. 解:去分母,得5x -15-8x -2=10,移项合并,得-3x =27,解得x =-9.6.B7.解:设应先安排x 人工作,根据题意,得4x 40+8(x +2)40=1. 化简可得:x 10+x +25=1, 即x +2(x +2)=10.解得x =2.答:应先安排2人工作.8.C9.B10.C11. 1.12.(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)2x +13-5x -16=1; 解:去分母,得2(2x +1)-(5x -1)=6.去括号,得4x +2-5x +1=6.移项、合并同类项,得-x =3.系数化为1,得x =-3.(3)2x +14-1=x -10x +112; 解:去分母,得6x +3-12=12x -10x -1,移项合并,得4x =8,解得x =2.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x)=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 13.解:设A ,B 两地间的距离为x 千米,依题意,得x 7.5+2.5+x +107.5-2.5=4, 解得x =203. 答:A ,B 两地间的距离为203千米. 14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a. 因为将求得的结果代入原方程,左边与右边相等,所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)], 整理,得4a =16.解得a =4,故a 的值为4.。
一元一次方程讲解
一元一次方程讲解在数学学科中,一元一次方程是最基础也是最常见的方程形式之一。
一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
解一元一次方程是数学学习的基础内容,解方程的方法多种多样,但本文将重点介绍其中常见的一些解法。
一、基本概念首先,我们来了解一下什么是一元一次方程。
一元一次方程通常具有如下的一般形式:ax+b=0,其中a和b是已知的常数,x是未知数。
在这种形式的方程中,a是x的系数,b是方程的常数项。
解一元一次方程的关键是找到使方程成立的未知数x的值。
二、解一元一次方程的步骤解一元一次方程的常用步骤如下:步骤一:移项对于方程ax+b=0,我们首先要将b移到方程的右边,得到ax=−b。
步骤二:化简接着,我们将方程化简为 $x = -\\frac{b}{a}$。
步骤三:求解最后,根据化简后的形式,我们可以得到未知数x的具体值,即 $x = -\\frac{b}{a}$。
三、解一元一次方程的例题下面通过一个具体的例题来展示解一元一次方程的过程。
例题:解方程2x+3=7。
解:1.移项:将3移到右边,得到2x=7−3。
2.化简:化简后得到2x=4。
3.求解:最终解得 $x = \\frac{4}{2} = 2$。
所以,方程2x+3=7的解为x=2。
四、总结通过本文的讲解,我们了解了一元一次方程的基本概念、解题步骤以及通过例题演示了解一元一次方程的过程。
一元一次方程在数学中具有重要的地位,掌握解方程的方法对于建立数学基础知识至关重要。
希望本文的内容能够帮助读者更好地理解和掌握一元一次方程的解法。
3.3.2一元一次方程的解法课件
解 (1) 原方程为(4y+8)+2(3y-7)= 0
去括号,得 4y+8+6y-14= 0
移项,得 4y+6y = 14-8
化简,得 10y = 6
方程两边同除以 10,
y=
3 5
(2) 原方程为2(2x -1)-2(4x+3)= 7
去括号,得 4x-2-8x-6= 7
湖北鸿鹄志文化传媒有限公司——助您成功
说一说
上面解方程4(x+2 )= 5( x-2)的过程中, 包含哪些步骤?
湖北鸿鹄志文化传媒有限公司——助您成功
例2 解方程: 3(2x -1) = 3x + 1.
解 去括号,得 6x-3 = 3x+1
移项,得 6x -3x = 1+3
合并同类项,得 3x = 4
化简,得
5x = -1
应改为 3x =-4
方程两边都除以5 ,得
方程两边都除以3,得
x
=
-
1 5
应改为
x
=
-4 3
湖北鸿鹄志文化传媒有限公司——助您成功
2. 解下列方程.
(1) (4y+8)+2(3y-7)= 0 ; (2) 2(2x -1)-2(4x+3)= 7; (3) 3(x -4)= 4x-1.
移项,得 4x-8x = 2+6+7
化简,得 -4x = 15
方程两边同除以 -4,
x
=
-
15 4
湖北鸿鹄志文化传媒有限公司——助您成功
(3) 原方程为 3(x -4)= 4x-1
去括号,得 3x -12 = 4x-1
3.3 解一元一次方程
3.3 解一元一次方程在数学中,一元一次方程是指只包含一个未知数的一次方程。
解一元一次方程可以通过移项、合并同类项和求相反数等基本操作来实现。
在本文档中,我们将介绍解一元一次方程的步骤和示例。
解一元一次方程的步骤解一元一次方程的一般步骤如下:步骤1:观察方程式观察给定的一元一次方程,确保方程式已经按照一元一次方程的标准形式:ax + b = 0。
步骤2:移项将方程式中的常数项b移到等号的另一侧,使得方程式变为ax = -b。
步骤3:求解未知数将方程式中的系数a除以方程式中未知数的系数,得到未知数的值。
步骤4:验证解将求得的未知数代入原方程式中验证,看是否符合等式。
解一元一次方程的示例为了更好地理解解一元一次方程的步骤,我们将通过几个示例进行说明。
示例1:解方程式:2x + 3 = 0。
步骤1:观察方程式观察到方程式已按照一元一次方程的标准形式给出。
步骤2:移项将常数项3移到等号的另一侧,得到2x = -3。
步骤3:求解未知数将方程式中的系数2除以未知数的系数2,得到x = -3/2。
步骤4:验证解将x = -3/2代入原方程式2x + 3 = 0,得到2*(-3/2) + 3 = 0,化简得到0 = 0。
因为等式成立,所以x = -3/2是原方程式的解。
示例2:解方程式:4x - 8 = 0。
步骤1:观察方程式观察到方程式已按照一元一次方程的标准形式给出。
步骤2:移项将常数项-8移到等号的另一侧,得到4x = 8。
步骤3:求解未知数将方程式中的系数4除以未知数的系数4,得到x = 8/4,化简得到x = 2。
步骤4:验证解将x = 2代入原方程式4x - 8 = 0,得到4*2 - 8 = 0,化简得到0 = 0。
因为等式成立,所以x = 2是原方程式的解。
总结解一元一次方程的步骤可以简洁地概括为观察方程式、移项、求解未知数和验证解。
通过这些步骤,我们可以有效地解决一元一次方程的问题。
希望本文档能够帮助你理解并正确解决一元一次方程的相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的解法(基础)知识讲解
【学习目标】
1.熟悉解一元一次方程的一般步骤,理解每步变形的依据;
2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想;
3.进一步熟练在列方程时确定等量关系.
【要点梳理】
要点一、解一元一次方程的一般步骤
变形名称具体做法注意事项
去分母在方程两边都乘以各分母的最小
公倍数
(1)不要漏乘不含分母的项
(2)分子是一个整体的,去分母后
应加上括号
去括号先去小括号,再去中括号,最后去
大括号
(1)不要漏乘括号里的项
(2)不要弄错符号
移项把含有未知数的项都移到方程的
一边,其他项都移到方程的另一边
(记住移项要变号)
(1)移项要变号
(2)不要丢项
合并同类
项
把方程化成ax=b(a≠0)的形式字母及其指数不变
系数化成
1 在方程两边都除以未知数的系数
a,得到方程的解
b
x
a
.
不要把分子、分母写颠倒
要点诠释:
(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.
(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.
(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.
要点二、解特殊的一元一次方程
1.含绝对值的一元一次方程
解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.
要点诠释:此类问题一般先把方程化为ax b c
+=的形式,分类讨论:
(1)当0
c<时,无解;(2)当0
c=时,原方程化为:0
ax b
+=;(3)当0
c>时,原方程可化为:ax b c
+=或ax b c
+=-.
2.含字母的一元一次方程
此类方程一般先化为一元一次方程的最简形式ax=b,再分三种情况分类讨论:
(1)当a≠0时,
b
x
a
=;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,
b≠0时,方程无解.
【典型例题】
类型一、解较简单的一元一次方程
1.解下列方程
(1)
3
4
5
m m
-=- (2)-5x+6+7x=1+2x-3+8x
【答案与解析】
解:(1)移项,得
3
4
5
m m
-+=-.合并,得
2
4
5
m=-.系数化为1,得m=-10.
(2)移项,得-5x+7x-2x-8x=1-3-6.合并,得-8x=-8.系数化为1,得x =1.
【点评】方法规律:解较简单的一元一次方程的一般步骤:
(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.
(2)合并:即通过合并将方程化为ax=b(a≠0).
(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a,即得方
程的解
b
x
a =.
举一反三:
【变式】下列方程变形正确的是( ).
A .由2x-3=-x-4,得2x+x =-4-3
B .由x+3=2-4x ,得5x =5
C .由23
32
x -=,得x =-1
D .由3=x-2,得-x =-2-3 【答案】D .
类型二、去括号解一元一次方程
2.解方程:
【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程.
【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -=
解得:5
6
x =-
(2)去括号得:32226x x --=- 移项合并得:47x -=-
解得:74
x =
【点评】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号. 举一反三:
【变式】(四川乐山)解方程: 5(x-5)+2x =-4. 【答案】解: 去括号得:5x-25+2x =-4 移项合并得: 7x =21
解得: x =3.
类型三、解含分母的一元一次方程
3.解方程:434343
1623
x x x +++++=. 【答案与解析】
()()1221107x x +=+()()()
232123x x -+=-
解法1:去分母,得(4x+3)+3(4x+3)+2(4x+3)=6,去括号,得4x+3+12x+9+8x+6=6.
移项合并,得24x=-12,
系数化为1,得
1
2
x=-.
解法2:将“4x+3”看作整体,直接合并,得6(4x+3)=6,即4x+3=1,移项,得4x=-2,
系数化为1,得
1
2
x=-.
【点评】对于解法l:(1)去分母时,“1”不要漏乘分母的最小公倍数“6”;(2)注意适时添括号3(4x+3)防止3×4x+3.对于解法2:先将“4x+3”看作一个整体来解,最后求x.
举一反三:
【高清课堂:一元一次方程的解法388407 解含分母的一元一次方程】
【变式】
2251
1 346
x x x
-+-
-=-
【答案】解:去分母得:4(2)3(25)2(1)12
x x x
--+=--去括号得:486152212
x x x
---=--
合并同类项,得:49
x
-=
系数化为1,得
9
4
x=-.
类型四、解较复杂的一元一次方程
4.解方程:
0.170.2
1 0.70.03
x x
-
-=
【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.
【答案与解析】原方程可以化成:101720
1 73
x x
-
-=.
去分母,得:30x-7(17-20x)=21.
去括号、移项、合并同类项,得:170x=140.
系数化成1,得:
14
17
x=.
【点评】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍
数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数,要区分开.
5. 解方程:112 [(1)](1) 223
x x x
--=-
【答案与解析】
解法1:先去小括号得:11122
()
22233
x x x
-+=-
再去中括号得:
11122
24433
x x x
-+=-移项,合并得:
511
1212
x
-=-
系数化为1,得:
11
5
x=
解法2:两边均乘以2,去中括号得:
14
(1)(1)
23
x x x
--=-
去小括号,并移项合并得:
511
66
x
-=-,解得:
11
5
x=
解法3:原方程可化为:112 [(1)1(1)](1) 223
x x x
-+--=-
去中括号,得1112 (1)(1)(1) 2243
x x x
-+--=-
移项、合并,得
51
(1)
122
x
--=-
解得
11
5 x=
【点评】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.
举一反三:
【变式】32
[(1)2]2 234
x
x
---=
【答案】
解:去中括号得:
3
(1)22 42
x
x
--⨯-=
去小括号,移项合并得:
3
6
4
x
-=,解得x=-8
类型五、解含绝对值的方程
6.解方程|x|-2=0
【答案与解析】
x=
解:原方程可化为:2
当x≥0时,得x=2,
当x<0时,得-x=2,即,x=-2.
所以原方程的解是x=2或x=-2.
=的形式,再根据ax的正负分类讨论,【点评】此类问题一般先把方程化为ax b
注意不要漏解.。