【易错题】高中必修二数学下期中第一次模拟试题(带答案)(2)

合集下载

【易错题】高中必修二数学下期中试卷附答案

【易错题】高中必修二数学下期中试卷附答案

【易错题】高中必修二数学下期中试卷附答案一、选择题1.已知三棱锥A BCD -中,5AB CD ==,2==AC BD ,3AD BC ==,若该三棱锥的四个顶点在同一个球面上,则此球的体积为( ) A .32π B .24πC .6πD .6π2.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥ 3.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( )A .22(1)(1)5x y ++-=B .22(1)(1)5x y -++=C .22(1)(1)5x y -++=D .22(1)(1)5x y ++-=4.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<5.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -的体积为43,则球O 的半径为( ) A .3B .1C .2D .46.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 7.已知圆O :2224110x y x y ++--=,过点()1,0M 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( )A .42B .24C .212D .68.椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( )A .312+ B .31-C .22D .512- 9.某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13B .12C .16D .110.如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立11.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .3B 1033C .23D 83312.α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( ) A .m ,n 是平面α内两条直线,且//m β,//n β B .α内不共线的三点到β的距离相等 C .α,β都垂直于平面γD .m ,n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.14.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.15.已知P 是抛物线24y x =上的动点,点Q 是圆22:(3)(3)1C x y ++-=上的动点,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是____________.16.若圆1C :220x y ax by c ++++=与圆2C :224x y +=关于直线21y x =-对称,则c =______.17.已知,m n 为直线,,αβ为空间的两个平面,给出下列命题:①,//m n m n αα⊥⎧⇒⎨⊥⎩;②,////m n m n αβαβ⊂⎧⎪⊂⇒⎨⎪⎩;③,//m m ααββ⊥⎧⇒⎨⊥⎩;④,//m m n n ββ⊥⎧⇒⎨⊥⎩.其中的正确命题为_________________.18.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.19.若圆C :222430x y x y ++-+=,关于直线260ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值为______. 20.在正方体1111ABCD A B C D -中,①BD P 平面11CB D ②直线AD 与1CB 所成角的大小为60︒ ③1AA BD ⊥ ④平面11A BC ∥平面1ACD 请把所有正确命题的序号填在横线上________.三、解答题21.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,2AD =,25PD =,4AB PB ==,60BAD ∠=︒.(1)求证:AD PB ⊥;(2)E 是侧棱PC 上一点,记PEPCλ=,当PB ⊥平面ADE 时,求实数λ的值 22.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,AC 与BD 交于点O ,E ,F 分别为AB ,PC 的中点.(Ⅰ)求证:EF ∥平面PAD ; (Ⅱ)求证:AF ⊥平面POD .23.如图所示,四棱锥B AEDC -中,平面AEDC ⊥平面ABC ,F 为BC 的中点,P 为BD 的中点,且AE ∥DC ,90ACD BAC ∠=∠=︒,2DC AC AB AE ===.(Ⅰ)证明:平面BDE ⊥平面BCD ; (Ⅱ)若2DC =,求三棱锥E BDF -的体积.24.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(1)求证://DM 平面APC ; (2)求证:BC ⊥平面APC ;(3)若4BC =,10AB =,求三棱锥D BCM -的体积.25.如图,在ABC V 中AC BC ⊥且点O 为AB 的中点,矩形ABEF 所在的平面与平面ABC 互相垂直.(1)设EC 的中点为M ,求证://OM 平面ACF ; (2)求证:AC ⊥平面CBE26.如图,矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在直线上.求:(1) AD 边所在直线的方程; (2) DC 边所在直线的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】作出三棱锥A BCD -的外接长方体AEBF GDHC -,计算出该长方体的体对角线长,即可得出其外接球的半径,然后利用球体体积公式可计算出外接球的体积. 【详解】作出三棱锥A BCD -的外接长方体AEBF GDHC -,如下图所示:设DG x =,DH y =,DE z =,则2223AD x z =+=,2224DB y z =+=,2225DC x y =+=, 上述三个等式相加得()222222234512AD BD CD x y z++=++=++=,2226x y z ++=62R =, 因此,此球的体积为34663ππ⨯=⎝⎭. 故选:C. 【点睛】本题考查三棱锥外接球体积的计算,将三棱锥补成长方体,利用长方体的体对角线作为外接球的直径是解题的关键,考查空间想象能力与计算能力,属于中等题.2.B解析:B 【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确. 考点:空间点线面位置关系.3.A解析:A 【解析】 【分析】由题意得:圆心在直线x=-1上,又圆心在直线x+y=0上,故圆心M 的坐标为(-1,1),再由点点距得到半径。

【易错题】高中必修二数学下期中模拟试题带答案(1)

【易错题】高中必修二数学下期中模拟试题带答案(1)

【易错题】高中必修二数学下期中模拟试题带答案(1)一、选择题1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30o ,则该长方体的体积为( )A .8B .62C .82D .832.一正四面体木块如图所示,点P 是棱VA 的中点,过点P 将木块锯开,使截面平行于棱VB 和AC ,则下列关于截面的说法正确的是( ).A .满足条件的截面不存在B .截面是一个梯形C .截面是一个菱形D .截面是一个三角形3.已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集。

其中正确的是( )A .(1)(2)(3)B .(1)(4)C .(1)(2)(4)D .(2)(4)4.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦5.直线(2)4y k x =-+与曲线2320x y y +-=有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞6.<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .8πB .12πC .20πD .24π7.已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个B .有有限多个C .有无限多个D .不存在8.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD所成角的余弦值为( )A .12B .12-C .32D .32-9.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm10.正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( ) A .62+45B .62+25C .32+45D .32+2511.已知ABC V 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,25BC =,三棱锥O ABC -的体积为43,则球O 的表面积为( ) A .22πB .743πC .24πD .36π12.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题13.光线由点P(2,3)射到直线x+y+1=0上,反射后过点Q(1,1) ,则反射光线方程为__________.14.在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.15.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为________. 16.过点(1,2)-且与直线2390x y -+=垂直的直线方程为____________.17.若圆C :222430x y x y ++-+=,关于直线260ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值为______.18.若直线:20l kx y --=与曲线()2:111C y x --=-有两个不同的交点,则实数k 的取值范围________.19.已知PA 垂直于平行四边形ABCD 所在平面,若PC BD ⊥,则平行四边形ABCD 一定是___________.20.在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.三、解答题21.如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,AB BC CF DE ⊥=,45BAC ∠=o ,求平面FGH 与平面ACFD 所成角(锐角)的大小.22.如图1,有一边长为2的正方形ABCD ,E 是边AD 的中点,将ABE △沿着直线BE 折起至A BE 'V 位置(如图2),此时恰好A E A C ''⊥,点A '在底面上的射影为O .(1)求证:A E BC '⊥;(2)求直线A B '与平面BCDE 所成角的正弦值.23.在梯形ABCD 中,//AD BC ,AC BD ⊥于点O ,2BC AD =,9AC =,将ABD ∆沿着BD 折起,使得A 点到P 点的位置,35PC =.(Ⅰ)求证:平面PBD ⊥平面BCD ;(Ⅱ)M 为BC 上一点,且2BM CM =,求证://OM 平面PCD .24.已知点(3,4),(9,0)A B -,,C D 分别为线段,OA OB 上的动点,且满足AC BD = (1)若4,AC =求直线CD 的方程;(2)证明:OCD ∆的外接圆恒过定点(异于原点).25.如图所示的等腰梯形ABCD 中,//AB CD ,12AB AD BC CD a ====,E 为CD 中点.若沿AE 将三角形DAE 折起,并连接DB ,DC ,得到如图所示的几何体D-ABCE ,在图中解答以下问题:(1)设G 为AD 中点,求证://DC 平面GBE ;(2)若平面DAE ⊥平面ABCE ,且F 为AB 中点,求证:DF AC ⊥.26.如图,将棱长为2的正方体1111ABCD A B C D -沿着相邻的三个面的对角线切去四个棱锥后得一四面体11A CB D -.(Ⅰ)求该四面体的体积; (Ⅱ)求该四面体外接球的表面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=o,根据2AB =,求得123BC =,可以确定122CC =,之后利用长方体的体积公式求出长方体的体积. 【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=o,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C. 【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.2.C解析:C 【解析】 【分析】取AB 的中点D ,BC 的中点E ,VC 的中点F ,连接,,,PD PF DE EF ,易得即截面为四边形PDEF ,且四边形PDEF 为菱形即可得到答案. 【详解】取AB 的中点D ,BC 的中点E ,VC 的中点F ,连接,,,PD PF DE EF , 易得PD ∥VB 且12PD VB =,EF ∥VB 且12EF VB =,所以PD ∥EF ,PD EF =, 所以四边形PDEF 为平行四边形,又VB ⊄平面PDEF ,PD ⊂平面PDEF ,由线面平行 的判定定理可知,VB ∥平面PDEF ,AC ∥平面PDEF ,即截面为四边形PDEF ,又1122DE AC VB PD ===,所以四边形PDEF 为菱形,所以选项C 正确. 故选:C【点睛】本题考查线面平行的判定定理的应用,考查学生的逻辑推理能力,是一道中档题.3.C解析:C 【解析】 【分析】根据题意,对每一个选项进行逐一判定,不正确的只需举出反例,正确的作出证明,即可得到答案. 【详解】如图(1)所示,在平面内不可能由符合题的点;如图(2),直线,a b 到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图(3),直线,a b 所在平面与已知平面平行,则符合题意的点为一条直线, 综上可知(1)(2)(4)是正确的,故选C.【点睛】本题主要考查了空间中直线与平面之间的位置关系,其中熟记空间中点、线、面的位置关系是解答此类问题的关键,着重考查了空间想象能力,以及推理与论证能力,属于基础题.4.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO …,即满足2PO …,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO …故2222000103634PO x y y y ==+-+… 解得0825y 剟,0605x 剟 即0x 的取值范围是6[0,]5, 故选:B . 【点睛】解题的关键是充分利用几何知识,判断出2PO …,从而得到不等式求出参数的取值范围.5.B解析:B 【解析】 【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论. 【详解】曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+23221k k -=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =. 所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B. 【点睛】本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.6.C解析:C 【解析】 【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC V 是直角三角形,且2ABC π∠=,2223BC AC AB ∴-=PA ⊥平面ABC ,且PAC V 是直角三角形,∴球O 的直径2222PC R PA AB BC =++205==5R ∴=,则球O 的表面积2420S R ππ==.故选:C 【点睛】本题考查多面体外接球的表面积,是常考题型.7.A解析:A 【解析】 【分析】根据正四面体的对称性分析到平面ABC ,平面ACD ,平面ABD 的距离相等的点的轨迹,与BCM ∆所在平面的公共部分即符合条件的点P . 【详解】在正四面体ABCD 中,取正三角形BCD 中心O ,连接AO ,根据正四面体的对称性,线段AO 上任一点到平面ABC ,平面ACD ,平面ABD 的距离相等,到平面ABC ,平面ACD ,平面ABD 的距离相等的点都在AO 所在直线上,AO 与BCM ∆所在平面相交且交于BCM ∆内部,所以符合题意的点P 只有唯一一个. 故选:A 【点睛】此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间想象能力.8.A解析:A 【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC P P ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角). 又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =.又112,222MN BD NP AC ====, ∴PNM ∆为等边三角形, ∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值.9.B解析:B 【解析】 【分析】 【详解】试题分析:. 由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4, ∴几何体的体积V =×3×4×5﹣××3×4×5=20(cm 3). 考点:1.三视图读图的能力;2.几何体的体积公式.10.A解析:A【分析】利用线面平行的判定与性质证明直线1BC 为过直线EF 且过点B 的平面与平面11BCC B 的交线,从而证得1,,,B E F C 四点共面,然后在正方体中求等腰梯形1BEFC 的周长即可.【详解】作图如下:因为,E F 是棱1,AD DD 的中点,所以11////EF AD BC ,因为EF ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//EF 平面11BCC B ,由线面平行的性质定理知,过直线EF 且过点B 的平面与平面11BCC B 的交线l 平行于直线EF ,结合图形知,l 即为直线1BC ,过B ,E ,F 的平面截该正方体所得的截面即为等腰梯形1BEFC ,因为正方体的棱长AB =4, 所以1122,25,42EF BE C F BC ====所以所求截面的周长为2+5故选:A【点睛】本题主要考查多面体的截面问题和线面平行的判定定理和性质定理;重点考查学生的空间想象能力;属于中档题.11.C解析:C【解析】【分析】由已知可得三角形ABC 为直角三角形,斜边BC 的中点O '就是ABC V 的外接圆圆心,利用三棱锥O ABC -的体积,求出O 到底面的距离,可求出球的半径,然后代入球的表面积公式求解.在ABC V 中,∵2AB =,4AC =,25BC =得AB AC ⊥,则斜边BC 的中点O '就是ABC V 的外接圆的圆心,∵三棱锥O ABC -的体积为43, 11424323OO '⨯⨯⨯⨯=,解得1OO '=,221(5)6R =+=, 球O 的表面积为2424R ππ=.故选C .【点睛】本题考查球的表面积的求法,考查锥体体积公式的应用,考查空间想象能力和计算能力,属于基础题.12.D解析:D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D. 二、填空题13.4x -5y+1=0【解析】【分析】先求P 点关于直线x+y+1=0对称点M 再根据两点式求MQ 方程即得结果【详解】因为P 点关于直线x+y+1=0对称点为所以反射光线方程为【点睛】本题考查点关于直线对称问解析:4x -5y +1=0【解析】【分析】先求P 点关于直线x+y+1=0对称点M ,再根据两点式求 MQ 方程,即得结果.【详解】因为P 点关于直线x+y+1=0对称点为(4,3)M --, 所以反射光线方程为13:1(1),451014MQ y x x y +-=--+=+. 【点睛】本题考查点关于直线对称问题,考查基本分析求解能力,属基本题. 14.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为【解析】连结11B D ,易知面1ACD ⊥面11BDD B ,而1MN ACD ⊥,即1NM D O ⊥,NM 在面11BDD B 内,且点N 的轨迹是线段11B D ,连结1AB ,易知11AB D V 是等边三角形,则当N 为11B D 中点时,NA 15.28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可【详解】由棱台的体积公式可得棱台的体积:故答案为:28【点睛】本题主要考查棱台的体积公式及其应用意在考查学生的转化能力和计算求解能力解析:28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可.【详解】由棱台的体积公式可得棱台的体积:(()1211416832833V S S h =⨯++⨯=⨯++⨯=. 故答案为:28.【点睛】 本题主要考查棱台的体积公式及其应用,意在考查学生的转化能力和计算求解能力.16.【解析】【分析】因为直线l 与已知直线垂直根据两直线垂直时斜率的乘积为-1由已知直线的斜率求出直线l 的斜率然后根据(-12)和求出的斜率写出直线l 的方程即可【详解】因为直线2x-3y+9=0的斜率为所 解析:3210x y +-=【解析】【分析】因为直线l 与已知直线垂直,根据两直线垂直时斜率的乘积为-1,由已知直线的斜率求出直线l 的斜率,然后根据(-1,2)和求出的斜率写出直线l 的方程即可.【详解】因为直线2x-3y+9=0的斜率为23 ,所以直线l 的斜率为32- , 则直线l 的方程为:3212y x -=-+() ,化简得3210x y +-=.即答案为3210x y +-=.【点睛】本题考查学生掌握两直线垂直时斜率的关系,会根据一点和斜率写出直线的点斜式方程,是一道基础题.17.4【解析】因为圆=关于直线=对称所以圆心在直线=上所以即又圆的半径为当点(ab)与圆心的距离最小时切线长取得最小值又点(ab)与圆心的距离为=所以切线长的最小值为=故答案为4点睛:本题主要考查直线与解析:4【解析】因为圆22:243C x y x y ++-+=0关于直线26ax by ++=0对称,所以圆心()1,2C -在直线26ax by ++=0上,所以2260a b -++=,即3a b -=,,当点(a,b )与圆心的距离最小时,切线长取得最小值,又点(a,b )与圆心的距离为≥所以切线长的最小值为=4.故答案为4 点睛:本题主要考查直线与圆的位置关系,考查了转化思想.利用勾股关系,切线长取得最小值时即为当点(a,b )与圆心的距离最小时.18.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k 的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则解析:4,23⎛⎤ ⎥⎝⎦【解析】【分析】由题意可知,曲线C 为圆()()22111x y -+-=的右半圆,作出直线l 与曲线C 的图象,可知直线l 是过点()0,2-且斜率为k 的直线,求出当直线l 与曲线C 相切时k 的值,利用数形结合思想可得出当直线l 与曲线C 有两个公共点时实数k 的取值范围.【详解】对于直线:2l y kx =-,则直线l 是过点()0,2P -且斜率为k 的直线,对于曲线()2:111C y x --=-,则101x x -≥⇒≥,曲线C 的方程两边平方并整理得()()22111x y -+-=,则曲线C 为圆()()22111x y -+-=的右半圆,如下图所示:当直线l 与曲线C 相切时,0k >()222123111k k k k ---==++-,解得43k =, 当直线l 过点()1,0A 时,则有20k -=,解得2k =.结合图象可知,当4,23k ⎛⎤∈ ⎥⎝⎦时,直线l 与曲线C 有两个交点. 故答案为:4,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查利用直线与曲线的交点个数求参数,解题的关键就是将曲线C 化为半圆,利用数形结合思想求解,同时要找出直线与曲线相切时的临界位置,考查数形结合思想的应用,属于中等题.19.菱形【解析】【分析】【详解】根据题意画出图形如图∵PA 垂直平行四边形ABCD 所在平面∴PA ⊥BD 又∵PC ⊥BDPA ⊂平面PACPC ⊂平面PACPA∩PC=P ∴BD ⊥平面PAC 又∵AC ⊂平面PAC ∴A解析:菱形【解析】【分析】【详解】根据题意,画出图形如图,∵PA 垂直平行四边形ABCD 所在平面,∴PA ⊥BD , 又∵PC ⊥BD ,PA ⊂平面PAC ,PC ⊂平面PAC ,PA∩PC=P .∴BD ⊥平面PAC 又∵AC ⊂平面PAC ∴AC ⊥BD 又ABCD 是平行四边形∴平行四边形ABCD 一定是 菱形.故答案为菱形20.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π 【解析】【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB .【详解】PA ⊥Q 平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,,,AC BC PA AC A BC ⊥=∴⊥I 平面PAC ,BC PC ⊥,,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π. 【点睛】 本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.三、解答题21.(Ⅰ)略;(Ⅱ)60o【解析】试题分析:(Ⅰ)思路一:连接,DG CD ,设CD GF O ⋂=,连接OH ,先证明//OH BD ,从而由直线与平面平行的判定定理得//BD 平面HDF ;思路二:先证明平面//FGH 平面ABED ,再由平面与平面平行的定义得到//BD 平面HDF .(Ⅱ)思路一:连接,DG CD ,设CD GF O ⋂=,连接OH ,证明,,GB GC GD 两两垂直, 以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -,利用空量向量的夹角公式求解;思路二:作HM AC ⊥于点M ,作MN GF ⊥于点N ,连接NH ,证明MNH ∠即为所求的角,然后在三角形中求解.试题解析:(Ⅰ)证法一:连接,DG CD ,设CD GF O ⋂=,连接OH ,在三棱台DEF ABC -中,2,AB DE G =为AC 的中点可得//,DF GC DF GC =所以四边形DFCG 为平行四边形则O 为CD 的中点又H 为BC 的中点所以//OH BD又OH ⊂平面,FGH BD ⊂平面,FGH所以//BD 平面FGH .证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点可得//,,BH EF BH EF =所以四边形BHFE 为平行四边形可得//BE HF在ABC ∆中,G 为AC 的中点,H 为BC 的中点,所以//GH AB又GH HF H ⋂=,所以平面//FGH 平面ABED因为BD ⊂平面ABED所以//BD 平面FGH(Ⅱ)解法一:设2AB =,则1CF =在三棱台DEF ABC -中,G 为AC 的中点 由12DF AC GC ==, 可得四边形DGCF 为平行四边形,因此//DG CF又FC ⊥平面ABC所以DG ⊥平面ABC在ABC ∆中,由,45AB BC BAC o ⊥∠=,G 是AC 中点,所以,AB BC GB GC =⊥因此,,GB GC GD 两两垂直,以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -所以())()()0,0,0,2,0,0,2,0,0,0,1G B C D 可得()22,0,2,122H F ⎛⎫ ⎪ ⎪⎝⎭ 故()22,2,1GH GF ⎫==⎪⎪⎝⎭u u u r u u u r 设(),,n x y z r =是平面FGH 的一个法向量,则由0,{0,n GH n GF ⋅=⋅=u u u r r u u u r r 可得0{20x y z +=+=可得平面FGH 的一个法向量()1,1,2n r =-因为GB uuu r 是平面ACFD 的一个法向量,()2,0,0GB =u u u r 所以21cos ,222GB n GB n GB n ⋅===⋅u u u r r u u u r r u u u r r 所以平面与平面所成的解(锐角)的大小为60o解法二:作HM AC ⊥于点M ,作MN GF ⊥于点N ,连接NH由FC ⊥平面ABC ,得HM FC ⊥又FC AC C ⋂=所以HM ⊥平面ACFD因此GF NH ⊥所以MNH ∠即为所求的角在BGC ∆中,12//,,22MH BG MH BG == 由GNM ∆∽GCF ∆可得,MN GM FC GF= 从而6MN =由MH ⊥平面,ACFD MN ⊂平面ACFD得,MH MN ⊥因此tan 3HM MNH MN∠==所以60MNH ∠=o所以平面FGH 与平面ACFD 所成角(锐角)的大小为60o .考点:1、空间直线与平面的位置关系;2、二面角的求法;3、空间向量在解决立体几何问题中的应用.22.(1)证明见解析(2)3 【解析】【分析】 (1)利用直线与平面垂直的判定定理证明A E '⊥面A BC ',再根据直线与平面垂直的性质可得A E BC '⊥;(2)依题意得就是直线A B '与面BCDE 所成角,延长EO 交BC 于H ,连接A H ',在直角三角形A EH '中得60A EH '=︒,在直角三角形A EO '中得3A O '=,在直角三角形A OB '中得3sin A BO '∠=. 【详解】 (1)证明:∵A E A B ''⊥,A E A C ''⊥又∵A B A C A '''⋂=∴A E '⊥面A BC '∴A E BC '⊥.(2)∵点A '在底面上的射影为O .∴AO '⊥面BCDE∴A BO '∠就是直线A B '与面BCDE 所成角.延长EO 交BC 于H ,连接A H '如图:∵A E BC '⊥,AO BC '⊥且A O A E A '''⋂=∴BC ⊥面A EO '∴BC EO ⊥∵E 为AD 中点∴H 为BC 中点∵1A E '=,2EH =由(1)知A E A H ''⊥∴60A EH '=︒∴2A O '=∴2sin 24A O BO A AB '∠==''= 所以直线A B '与平面BCDE【点睛】本题考查了直线与平面垂直的判定和性质,考查了直线与平面所成角的计算,属于中档题.23.(Ⅰ)见证明;(Ⅱ)见证明【解析】【分析】(Ⅰ)先证明PO ⊥平面BCD ,再证明平面PBD ⊥平面BCD ;(Ⅱ)先证明//OM DC .再证明//OM 平面PCD .【详解】(Ⅰ)因为//AD BC ,2BC AD =,所以2CO AO =,所以6CO =,3AO =.即3PO =,又因为PC =PO CO ⊥ .因为AC BD ⊥于点O ,所以PO BD ⊥.又因为BD OC O ⋂=,所以PO ⊥平面BCD .又因PO ⊂平面PBD ,所以平面PBD ⊥平面BCD .(Ⅱ)因为//AD BC ,2BC AD =,所以2BO DO =, 又因为2BM CM =,因此BO BM DO CM=,所以//OM DC . 又因为OM ⊄平面PCD ,DC ⊂平面PCD ,所以//OM 平面PCD .【点睛】本题主要考查线面平行和面面垂直的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.24.(1)750x y +-=(2)详见解析【解析】试题分析:(1)求直线CD 的方程,只需确定C ,D 坐标即可:34(,)55C -,(5,0)D ,直线CD 的斜率40153755-=-⎛⎫-- ⎪⎝⎭,直线CD 的方程为750x y +-=.(2)证明动圆过定点,关键在于表示出圆的方程,本题适宜设圆的一般式:22+0x y Dx Ey F +++=设(3,4)(01)C m m m -<≤,则D (5+4,0)m ,从而()()2220,{916340,54540.F m m mD mE F m m D F =+-++=++++=解之得(54),0D m F =-+=,103E m =--,整理得22435(2)0x y x y m x y +---+=,所以△OCD 的外接圆恒过定点为(2,1)-.试题解析:(1)因为(3,4)A -,所以22(3)45OA =-+=, 1分又因为4AC =,所以1OC =,所以34(,)55C -, 3分由4BD =,得(5,0)D , 4分所以直线CD 的斜率40153755-=-⎛⎫-- ⎪⎝⎭, 5分所以直线CD 的方程为1(5)7y x =--,即750x y +-=. 6分(2)设(3,4)(01)C m m m -<≤,则5OC m =. 7分则55AC OA OC m =-=-,因为AC BD =,所以5+4OD OB BD m =-=,所以D 点的坐标为(5+4,0)m 8分又设OCD ∆的外接圆的方程为22+0x y Dx Ey F +++=,则有()()2220,{916340,54540.F m m mD mE F m m D F =+-++=++++=10分解之得(54),0D m F =-+=,103E m =--,所以OCD ∆的外接圆的方程为22(54)(103)0x y m x m y +-+-+=,12分 整理得22435(2)0x y x y m x y +---+=,令2243=0,{+2=0x y x y x y +--,所以0,{0.x y ==(舍)或2,{ 1.x y ==-所以△OCD 的外接圆恒过定点为(2,1)-. 14分考点:直线与圆方程25.(1)证明见解析;(2)证明见解析【解析】【分析】(1)连接AC 交BE 于点O ,连接OG ,先证明四边形ABCE 为平行四边形,再通过证明//OG DC ,即可得到//DC 平面GBE ;(2)通过证明AC ⊥平面DFH ,即可得到DF AC ⊥.【详解】(1)连接AC 交BE 于点O ,连接OG .因为//AB CD ,12AB AD BC CD a ====, E 为CD 中点 所以AB CE =,即四边形ABCE 为平行四边形所以O 为AC 的中点因为G 分别为AD 的中点,所以//OG DC ,又因为OG ⊂平面GBE ,DC ⊄平面GBE ,所以//DC 平面GBE ;(2)取AE 中点H ,连接,DH FH .因为,F H 分别为,AB AE 中点,所以//FH BE ,易知,四边形ABCE 为菱形,所以AC BE ⊥,所以AC FH ⊥,又因为DA DE =,H 为AE 中点,所以DH AE ⊥,又平面DAE ⊥平面ABCE ,所以DH ⊥平面ABCE ,所以DH AC ⊥,又因为DH FH H ⋂=,所以AC ⊥平面DFH ,则DF AC ⊥.【点睛】本题主要考查线面平行和线线垂直的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.26.(Ⅰ)8123π(Ⅱ)【解析】【分析】(Ⅰ)利用正方体体积减去截去部分的体积即可求解(Ⅱ)利用正四面体与正方体的外接球一致求解【详解】(Ⅰ)三棱锥1B ABC -的体积1114222323V =⋅⋅⋅⋅=, 切去部分的体积为14164433V =⋅= 正方体的体积为22228V =⋅⋅= ∴四面体的体积3168833V =-= (Ⅱ)∵正方体的棱长为2,∴正方体的体对角线长为∵该四面体外接球即为正方体的外接球,而正方体的外接球直径为其体对角线∴外接球直径2R =R =∴外接球表面积为2412S R ππ==【点睛】本题考查组合体体积,外接球问题,是基础题。

【易错题】高中必修二数学下期中一模试卷含答案(1)

【易错题】高中必修二数学下期中一模试卷含答案(1)

【易错题】高中必修二数学下期中一模试卷含答案(1)一、选择题1.设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( ) A .-4 B .14- C .14 D .42.陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )A .1073π B .32453π+ C .16323π+ D .32333π+ 3.已知a ,b 是两条异面直线,且a b ⊥r r ,直线c 与直线a 成30°角,则c 与b 所成的角的大小范围是( )A .[]60,90︒︒B .[]30,90︒︒C .[]30,60︒︒D .[]45,90︒︒ 4.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( )A .6πB .5πC .4πD .3π5.已知平面//α平面β,直线m αÜ,直线n βÜ,点A m ∈,点B n ∈,记点A 、B 之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则A .b a c ≤≤B .a c b ≤≤C . c a b ≤≤D .c b a ≤≤ 6.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( ) A .4x 2y 5+=B .4x 2y 5-=C .x 2y 5+=D .x 2y 5-= 7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积为 ( )A .3πB .23πC .43πD .12π8.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763B .1603C .1283D .32 9.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b10.设有两条直线m ,n 和三个平面α,β,γ,给出下面四个命题:①m αβ=I ,////n m n α⇒,//n β②αβ⊥,m β⊥,//m m αα⊄⇒;③//αβ,//m m αβ⊂⇒;④αβ⊥,//αγβγ⊥⇒其中正确命题的个数是( )A .1B .2C .3D .411.已知AB 是圆22620x y x y +-+=内过点(2,1)E 的最短弦,则||AB 等于( )A .3B .22C .23D .2512.如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π二、填空题13.已知平面α与正方体的12条棱所成角相等,设所成角为θ,则sin θ=______.14.给出下面四个命题:①“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;②“直线//a 直线b ”的充要条件是“a 平行于b 所在的平面”;③“直线a ,b 为异面直线”的充分不必要条件是“直线a ,b 不相交”;④“平面//α平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”. 其中正确命题的序号是____________________15.直线与圆交于两点,则________.16.已知动点,A B 分别在x 轴和直线y x =上,C 为定点()2,1,则ABC ∆周长的最小值为_______.17.在棱长为1的正方体1111ABCD A B C D -中,M 是1BB 的中点,直线1D M 与平面ABCD 交于点N ,则线段AN 的长度为________18.在正方体1111ABCD A B C D -中,①BD P 平面11CB D ②直线AD 与1CB 所成角的大小为60︒③1AA BD ⊥ ④平面11A BC ∥平面1ACD请把所有正确命题的序号填在横线上________.19.如图,已知圆锥的高是底面半径的2倍,侧面积为π,若正方形ABCD 内接于底面圆O ,则四棱锥P ABCD -侧面积为__________.20.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.三、解答题21.在平面直角坐标系xOy 中,已知两直线1:330l x y --=和2:10l x y ++=,定点(1,2)A .(1)若1l 与2l 相交于点P ,求直线AP 的方程;(2)若1l 恰好是△ABC 的角平分线BD 所在的直线,2l 是中线CM 所在的直线,求△ABC 的边BC 所在直线的方程.22.已知ABC ∆的三个顶点(),A m n 、()2,1B 、()2,3C -.(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且7ABC S ∆=,求点A 的坐标.23.在四棱锥S ABCD -中,平面SAB ⊥平面ABCD ,平面SAD ⊥平面ABCD .(Ⅰ)证明:SA ⊥平面ABCD ;(Ⅱ)若底面ABCD 为矩形,23SA AD AB ==,F 为SC 的中点,23BE BC =u u u v u u u v ,求直线EF 与平面SCD 所成角的正弦值.24.如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=o 分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为3,求二面角B AF C --的正切值.25.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,1,2AC BC AC BC CC ⊥===,点,,D E F 分别为棱11111,,AC B C BB 的中点.(1)求证://AB 平面DEF ;(2)求证:平面1ACB ⊥平面DEF ;(3)求三棱锥1E ACB -的体积.26.如图,四边形ABCD 为矩形,且2,1,AD AB PA ==⊥平面ABCD , 1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求三棱锥C PDE -的体积;(3)探究在PA 上是否存在点G ,使得EG P 平面PCD ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值.【详解】 解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-, 又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =.故选D .【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.D解析:D【解析】【分析】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成.根据柱体、锥体的体积计算公式即得该陀螺模型的体积.【详解】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成. 所以该陀螺模型的体积222113242333233333V πππ=⨯⨯+⨯⨯+⨯⨯⨯=+. 故选:D .【点睛】本题考查三视图,考查学生的空间想象能力,属于基础题. 3.A解析:A【解析】【分析】将异面直线所成的角转化为平面角,然后由题意,找出与直线a 垂直的直线b 的平行线,与直线c 平行线的夹角.【详解】在直线a 上任取一点O ,过O 做//c c ',则,a c '确定一平面α,过O 点做直线b 的平行线b ',所有平行线b '在过O 与直线a 垂直的平面β内, 若存在平行线1b '不在β内,则1b '与b '相交又确定不同于β的平面,这与过一点有且仅有一个平面与一条直线垂直矛盾,所以b '都在平面β内,且,l αβαβ⊥=I ,在直线c '上任取不同于O 的一点P ,做PP l '⊥于P ',则PP β'⊥,POP '∠为是c '与β所成的角为60︒,若b l '⊥,则,b b c α'''⊥⊥,若b '不垂直l 且不与l 重合,过P '做P A b ''⊥,垂足为A ,连PA ,则b '⊥平面PP A ',所以b PA '⊥,即1,cos 2OA OP OA PA AOP OP OP '⊥∠=<=, 60AOP ∠>︒,综上b '与c '所成角的范围为[60,90]︒︒,所以直线b 与c 所成角的范围为[]60,90︒︒.故选:A.【点睛】本题考查异面直线所成角,空间角转化为平面角是解题的关键,利用垂直关系比较角的大小,属于中档题.4.A解析:A【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥Q ,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球,外接球的直径等于长方体的对角线, 即24116R =++=246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径) ③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.5.D解析:D【解析】【分析】根据平面与平面平行的判断性质,判断c 最小,再根据点到直线距离和点到直线上任意点距离判断a 最大.【详解】由于平面//α平面β,直线m 和n 又分别是两平面的直线,则c 即是平面之间的最短距离. 而由于两直线不一定在同一平面内,则b 一定大于或等于c ,判断a 和b 时,因为B 是上n 任意一点,则a 大于或等于b .故选D.【点睛】本题主要考查面面平行的性质以及空间距离的性质,考查了空间想象能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.6.B解析:B【解析】【分析】【详解】因为线段AB 的垂直平分线上的点(),x y 到点A ,B 的距离相等,=.即:221244x x y y +-++- 229612x x y y =+-++-,化简得:425x y -=.故选B .7.C解析:C【解析】【分析】的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为2,高为2,故三棱锥的外接球与以棱长为2的正方体的外接球相同,由此可得结论【详解】由三视图知几何体是一个侧棱与底面垂直的三棱锥,与底面垂直的侧面是个等腰三角形,底边长为2,高为2,故三棱锥的外接球与以棱长为2的正方体的外接球相同,其直径为∴三棱锥的外接球体积为343π⨯=故选C【点睛】 本题主要考查了三视图,几何体的外接球的体积,考查了空间想象能力,计算能力,属于中档题.8.B【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.9.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 10.B解析:B【解析】【分析】根据直线与平面、平面与平面的位置关系的性质和定理,逐项判断,即可得到本题答案.【详解】对于选项①,,//m n m αβ⋂=不能得出,////n n αβ,因为n 可能在α或β内,故①错误;对于选项②,由于,,m m αββα⊥⊥⊄,则根据直线与平面平行的判定,可得//m α,故②正确;对于选项③,由于//αβ,m α⊂,则根据面面平行的性质定理可得//m β,故③正确; 对于选项④,由于,αβαγ⊥⊥,则,βγ可能平行也可能相交,故④错误.故选:B【点睛】本题主要考查直线与平面、平面与平面的位置关系的性质和定理,考查学生的空间想象能力和推理判断能力.解析:D【解析】【分析】求出圆的标准方程,确定最短弦的条件,利用弦长公式进行求解即可.【详解】圆的标准方程为(x ﹣3)2+(y +1)2=10,则圆心坐标为C (3,﹣1),半径为 10, 过E 的最短弦满足E 恰好为C 在弦上垂足,则CE 22(32)[11]5=-+--=(), 则|AB |222(10)(5)25=-=,故选D .【点睛】本题主要考查圆的标准方程的求解,以及直线和圆相交的弦长问题,属于中档题.12.A解析:A【解析】【分析】【详解】由几何体的三视图分析可知,该几何体上部为边长为2的正方体,下部为底面半径为1、高为2的半圆柱体,故该几何体的表面积是20+3π,故选A.考点:1、几何体的三视图;2、几何体的表面积. 二、填空题13.【解析】【分析】棱与平面所成的角相等所以平面就是与正方体的12条棱的夹角均为θ的平面之一设出棱长即可求出【详解】因为棱与平面所成的角相等所以平面就是与正方体的条棱的夹角均为的平面设棱长为:易知故答案 3【解析】【分析】棱11111,,A A A B A D 与平面11AB D 所成的角相等,所以平面11AB D 就是与正方体的12条棱的夹角均为θ的平面之一,设出棱长,即可求出sin θ.【详解】因为棱11111,,A A A B A D 与平面11AB D 所成的角相等,所以平面11AB D 就是与正方体的12条棱的夹角均为θ的平面,1A AO θ∠=,设棱长为:1,126,AO AO ==,易知232sin 36θ==. 故答案为:33【点睛】本题考查了线面所成的角,解题的关键是作出线面角,属于基础题. 14.①④【解析】【分析】利用直线与直线平面与平面间的位置关系及性质判断前后两个条件的推出关系利用充要条件的定义得结论【详解】解:对于①直线与平面垂直的定义是直线与平面内的所有直线垂直故①正确;对于②平行 解析:①④【解析】【分析】利用直线与直线、平面与平面间的位置关系及性质判断前后两个条件的推出关系,利用充要条件的定义得结论.【详解】解:对于①直线与平面垂直的定义是直线与平面内的所有直线垂直,故①正确; 对于②,a 平行于b 所在的平面//a b ⇒或a 与b 异面,故②错;对于③,直线a 、b 不相交⇒直线a ,b 异面或平行,故③错;对于④,平面//α平面βα⇒内存在不共线三点到β的距离相等;α内存在不共线三点到β的距离相等⇒平面//α平面β或相交,故④正确故答案为:①④【点睛】本题考查直线与直线间的位置关系及性质;充要条件的判断.命题真假的判断,属于中档题.15.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根 解析:【解析】【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16.【解析】【分析】点C关于直线y=x的对称点为(12)点C关于x轴的对称点为(2﹣1)三角形PAB周长的最小值为(12)与(2﹣1)两点之间的直线距离【详解】点C关于直线y=x的对称点为(12)点C关10【解析】【分析】点C关于直线y=x的对称点为C'(1,2),点C关于x轴的对称点为C''(2,﹣1).三角形PAB周长的最小值为C'(1,2)与C''(2,﹣1)两点之间的直线距离.【详解】点C关于直线y=x的对称点为C'(1,2),点C关于x轴的对称点为C''(2,﹣1).三角形PAB周长的最小值为C'(1,2)与C''(2,﹣1)两点之间的直线距离,|C C'''(2,﹣1)22-+--10.(21)(12)10【点睛】本题考查点到直线的距离公式,解题时要认真审题,仔细解答,注意合理地进行等价转化.17.【解析】【分析】在平面中与的交点即为求出长即可求解【详解】连在正方体中所以四边形为矩形相交其交点为平面的交点是的中点为的中位线为中点正方体各棱长为1故答案为:【点睛】本题考查空间线面位置关系确定直线5【解析】【分析】在平面11BB D D 中,1D M 与BD 的交点即为N ,求出BN 长,即可求解.【详解】连BD ,在正方体1111ABCD A B C D -中,11111,//,BB DD BB DD DD BD =⊥,所以四边形11BB D D 为矩形,1,BD D M 相交,其交点为1D M 平面ABCD 的交点N ,Q M 是1BB 的中点,111,//2BM DD BM DD ∴=, BM 为1DD N V 的中位线,B 为DN 中点,正方体各棱长为1,2BN BD ∴==,,1,2,135ABN AB BN ABN ==∠=o V ,2222cos AN AB BN AB BN ABN =+-⋅⋅∠2321252=+⨯⨯⨯=,5AN ∴=. 故答案为:5.【点睛】本题考查空间线面位置关系,确定直线与平面交点是解题的关键,意在考查直观想象能力,属于中档题.18.①③④【解析】【分析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④【详解】对于①如下图所示由于则四边形为平行四边形则面面所以平面故①正确; 解析:①③④【解析】【分析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④.【详解】对于①,如下图所示,由于1111,DD BB DD BB =P ,则四边形11DD B B 为平行四边形,则11D B BD P11D B ⊂面11D B C ,BD ⊄面11D B C ,所以BD P 平面11CB D ,故①正确;对于②,由于AD BC ∥,则直线AD 与1CB 所成角为145B CB ∠=︒,故②错误; 对于③,1AA ⊥面ABCD ,BD ⊂面ABCD ,则1AA BD ⊥,故③正确;对于④,在正方体中,1111,AA CC AA CC =P ,则四边形11AAC C 为平行四边形 所以1111,AC AC AC ⊄P 平面1ACD ,AC ⊂平面1ACD ,所以11AC ∥平面1ACD 同理1A B P 平面1ACD ,1111111,,AC A B A AC A B ⋂=⊂平面11A BC所以平面11A BC ∥平面1ACD ,故④正确;故答案为:①③④【点睛】本题主要考查了利用判定定理证明线面平行,面面平行,利用线面垂直的性质证明线线垂直,异面直线所成角,属于中档题.19.【解析】分析:设圆锥底面半径为则高为母线长为由圆锥侧面积为可得结合利用三角形面积公式可得结果详解:设圆锥底面半径为则高为母线长为因为圆锥侧面积为设正方形边长为则正四棱锥的斜高为正四棱锥的侧面积为故答 65. 【解析】分析:设圆锥底面半径为r ,则高为2r 5r ,由圆锥侧面积为π,可得255r =,结合2a r =,利用三角形面积公式可得结果. 详解:设圆锥底面半径为r ,则高为2h r =,母线长为5r ,因为圆锥侧面积为π,5r r ππ∴⨯⨯=,25r =, 设正方形边长为a ,则2224,2a r a r ==, 正四棱锥的斜高为()223242a h r +=, ∴正四棱锥的侧面积为2136542622a r r ⨯⨯⨯==, 故答案为65. 点睛:本题主要考查圆锥的性质、正四棱锥的性质,以及圆锥的侧面积、正四棱锥的侧面积,属于中档题,解答本题的关键是求得正四棱锥底面棱长与圆锥底面半径之间的关系.20.【解析】分析:画出图形(如图)根据圆的性质可得然后可将问题转化为切线长最小的问题进而转化为圆心到直线距离的最小值的问题处理详解:根据题意画出图形如下图所示由题意得圆的圆心半径是由圆的性质可得四边形的 解析:【解析】分析:画出图形(如图),根据圆的性质可得2PBC PACB S S =V 四边形,然后可将问题转化为切线长最小的问题,进而转化为圆心到直线距离的最小值的问题处理.详解:根据题意画出图形如下图所示.由题意得圆22:20C x y y +-=的圆心()0,1,半径是1r =, 由圆的性质可得2PBC PACB S S =V 四边形,四边形PACB 的最小面积是2,∴PBC S V 的最小值112S rd ==(d 是切线长), ∴2d =最小值,∵圆心到直线的距离就是PC 的最小值,==又0k>,∴2k=.点睛:本题考查圆的性质、切线长定理的运用,解题时注意转化思想方法的运用,结合题意将问题逐步转化为点到直线的距离的问题处理.三、解答题21.(1):31AP y x=-;(2)7170x y++=.【解析】【分析】(1)根据题意,联立两直线得其交点坐标,进而写出直线AP的方程;(2)根据题意,设()33,B t t+,则342,22t tM++⎛⎫⎪⎝⎭,利用点M在直线2l上,得2t=-,()3,2B--,再利用到角公式得17BCk=-,即可得到BC的直线方程.【详解】(1)由题意,联立33010x yx y--=⎧⎨++=⎩,解得1xy=⎧⎨=-⎩,即两直线的交点()0,1P-,所以,直线AP的斜率21310k+==-,故直线AP的方程为:31y x=-.(2)设点B的坐标为()33,t t+,则点342,22t tM++⎛⎫⎪⎝⎭,又点M在直线2l上,即3421022t t++++=,解得2t=-,故()3,2B--,所以22131ABk--==--,直线1l的斜率113k=,由到角公式得,111111BC ABBC ABk k k kk k k k--=++,即11133111133BCBCkk--=++,解得17BCk=-,所以BC所在直线方程为12(3)7y x+=-+,化简得7170x y++=.【点睛】本题考查直线方程,两直线的位置关系,到角公式,属于基础题.22.(1)240x y+-=;(2)点A坐标为()3,4、()3,0-【解析】【分析】(1)利用两点式求得BC 边所在直线方程;(2)利用点到直线的距离公式求得A 到直线BC 的距离,根据面积7ABC S ∆=以及点A 在直线2360x y -+=上列方程组,解方程组求得A 点的坐标.【详解】(1)由()2,1B 、()2,3C -得BC 边所在直线方程为123122y x --=---,即240x y +-=.(2)BC ==A 到BC 边所在直线240x y +-=的距离为d =A 在直线2360x y -+=上,故1722360ABC S BC d m n ∆⎧=⋅⋅=⎪⎨⎪-+=⎩,即2472360m n m n ⎧+-=⎨-+=⎩,解得()3,4A 或()30A -,. 【点睛】本小题主要考查利用两点式求直线方程,考查点到直线的距离公式,考查三角形面积公式,属于基础题.23.. 【解析】试题分析:(Ⅰ)由题意1l ⊥平面SAB ,得到所以1l SA ⊥,同理可证2l SA ⊥,利用线面垂直的判定定理,即可证得SA ⊥平面ABCD ;(Ⅱ)分别以AB u u u r 、AD u u u r 、AS u u u r 所在方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -,求得向量EF u u u r 和平面SCD 的一个法向量为n r ,利用向量的夹角公式,即可求解直线与平面所成的角的正弦值.试题解析:(Ⅰ)证法1:在平面ABCD 内过点C 作两条直线1l ,2l ,使得1l AB ⊥,2l AD ⊥.因为AB AD A ⋂=,所以1l ,2l 为两条相交直线.因为平面SAB ⊥平面ABCD ,平面SAB ⋂平面ABCD AB =,1l ⊂平面ABCD ,1l AB ⊥,所以1l ⊥平面SAB .所以1l SA ⊥.同理可证2l SA ⊥.又因为1l ⊂平面ABCD ,2l ⊂平面ABCD ,12l l C ⋂=,所以SA ⊥平面ABCD .证法2:在平面SAB 内过点S 作1l AB ⊥,在平面SAD 内过点S 作2l AD ⊥. 因为平面SAB ⊥平面ABCD ,平面SAB ⋂平面ABCD AB =,1l ⊂平面SAB ,1l AB ⊥,所以1l ⊥平面ABCD .同理可证2l ⊥平面ABCD .而过点S 作平面ABCD 的垂线有且仅有一条,所以1l 与2l 重合.所以1l ⊂平面SAD .所以,直线1l 为平面SAB 与平面SAD 的交线.所以,直线1l 与直线SA 重合.所以SA ⊥平面ABCD .(Ⅱ)如图,分别以AB u u u v 、AD u u u v 、AS u u u v 所在方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系A xyz -.设6SA =,则2AB =,3AD =,()2,0,0B ,()2,3,0C ,()0,3,0D ,()0,0,6S .由F 为SC 的中点,得31,,32F ⎛⎫ ⎪⎝⎭;由23BE BC =u u u v u u u v ,得()2,2,0E .所以11,,32EF u u u v ⎛⎫=-- ⎪⎝⎭,()2,3,6SC =-u u u v ,()2,0,0DC =u u u v .设平面SCD 的一个法向量为(),,n x y z =v ,则00n SC n DC ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即236020x y z x +-=⎧⎨=⎩.取1z =,则2y =,0x =.所以()0,2,1n =v . 所以cos ,EF n u u u v v EF n EF n ⋅=⋅u u u v v u u u v v ()1102311190414⎛⎫-⨯+-⨯+⨯ ⎪⎝⎭=++⨯++ 4205205=. 所以,直线EF 与平面SCD 所成角的正弦值为4205205.24.(1)见证明;(2) 23【解析】【分析】(1)由PA ⊥面ABCD 可知PA AE ⊥,又可证AE BC ⊥,根据线面垂直的判定即可证明(2) 取AB 中点M ,作MN AF ⊥于N ,连CN ,可证MNC ∠是二面角B AF C --的平面角,解三角形即可求解.【详解】 (1)PA ⊥Q 面ABCD ,AE ⊂面ABCD ,PA AE ∴⊥;又Q 底面ABCD 为菱形,60ABC ∠=o ,E 为BC 中点,,//,,AE BC AD BC AE AD ∴⊥∴⊥QAE ∴⊥面PAD ;(2)AE ^Q 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AE AHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=o , 在Rt PAD ∆中,233PA = PA ⊥Q 面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M , 正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.3CM =.在PAB ∆中,23,2,3BF AF AB ===边AF 上的高11,2BG MN ==, tan 23CM MNC MN∠==【点睛】 本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题.25.(1)证明见解析;(2)证明见解析;(3)23. 【解析】【分析】(1)由题意可知DE P AB ,从而得证;(2)要证平面1ACB ⊥平面DEF ,转证EF ⊥平面1ACB ,即证AC EF ⊥,1EF CB ⊥; (3)利用等积法即可得到结果.【详解】(1)证明:因为三棱柱111ABC A B C -中,11A B P AB , 又因为,D E 分别为1111,AC B C 的中点,所以DE P 11A B , 于是DE P AB ,AB ⊄平面DEF ,DE ⊂平面DEF ,所以AB P 平面DEF .(2) 在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC 所以1CC AC ⊥,1CC BC ⊥,又AC BC ⊥,1BC CC C ⋂=,1,BC CC ⊂平面11C BC B ,所以AC ⊥平面11C BC B ,EF ⊂平面11C BC B ,所以AC EF ⊥ ,又因为12BC CC ==, 1CC BC ⊥,所以侧面11C BC B 为正方形,故11BC CB ⊥ ,而,E F 分别为111,B C BB 的中点,连结1BC ,所以EF ‖1BC , 所以1EF CB ⊥ ,又1AC CB C ⋂=,1,AC CB ⊂平面1ACB , 所以EF ⊥平面1ACB ,又EF ⊂平面DEF ,所以平面1ACB ⊥平面DEF .(3) 1111233E ACB A ECB ECB V V S AC --∆==⋅= . 【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.26.(1)见解析;(2)16;(3)见解析. 【解析】【分析】(1)连结AE ,由几何体的空间结构可证得DE PAE ⊥平面,利用线面垂直的定义可知DE PE ⊥.(2)由(1)知DCE ∆为腰长为1的等腰直角三角形,结合题意转化顶点可得16C PDE P DCE V V --==. (3)在PA 上存在中点G ,使得//EG PCD 平面.取,PA PD 的中点,G H ,连结,,EG GH CH . 易证得四边形EGHC 是平行四边形,所以EG //CH ,结合线面平行的判断定理可知EG //平面PCD .【详解】(1)连结AE ,∵E 为BC 的中点,1EC CD ==,∴DCE ∆为等腰直角三角形,则45DEC ∠=o ,同理可得45AEB ∠=o ,∴90AED ∠=o ,∴DE AE ⊥,又PA ABCD 平面⊥,且DE ABCD ⊂平面, ∴PA DE ⊥,又∵AE PA A ⋂=,∴DE PAE ⊥平面,又PE PAE ⊂平面,∴DE PE ⊥.(2)由(1)知DCE ∆为腰长为1的等腰直角三角形,∴111122DCE S ∆=⨯⨯=,而PA 是三棱锥P DCE -的高, ∴111113326C PDE P DCE DCE V V S PA --∆==⋅=⨯⨯=. (3)在PA 上存在中点G ,使得//EG PCD 平面.理由如下:取,PA PD 的中点,G H ,连结,,EG GH CH .∵,G H 是,PA PD 的中点, ∴//GH AD ,且12GH AD =, 又因为E 为BC 的中点,且四边形ABCD 为矩形,所以EC //AD ,且EC =12AD , 所以EC //GH ,且EC =GH ,所以四边形EGHC 是平行四边形,所以EG //CH ,又EG ⊄平面PCD ,CH ⊂平面PCD ,所以EG //平面PCD .【点睛】 本题主要考查线面垂直的判断定理,线面垂直的判断定理,棱锥的体积公式,立体几何中探索问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.。

【易错题】高中必修二数学下期中一模试卷附答案

【易错题】高中必修二数学下期中一模试卷附答案

【易错题】高中必修二数学下期中一模试卷附答案一、选择题1.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥2.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( ) A .4330x y --= B .3430x y --= C .3440x y --=D .4340x y --=3.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<4.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭ B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,35.直线(2)4y k x =-+与曲线0x =有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞6.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -,则球O 的半径为( ) A .3B .1C .2D .47.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20πB .40πC .80πD .160π8.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( ) A .1-或2B .1-C .2D .不存在9.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm10.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π11.若圆锥的高等于底面直径,则它的底面积与侧面积之比为 A .1∶2 B .1∶3 C .1∶5D .3∶212.如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立二、填空题13.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u v u u u v,则点A 的横坐标为________. 14.已知圆22(1)16x y ++=,点(1,0),(1,0)E F -,过(1,0)E -的直线1l 与过(1,0)F 的直线2l 垂直且圆相交于,A C 和,B D ,则四边形ABCD 的面积的取值范围是_________.15.已知菱形ABCD 中,2AB =,120A ∠=o ,沿对角线BD 将ABD △折起,使二面角A BD C --为120o ,则点A 到BCD V 所在平面的距离等于 .16.已知三棱锥D ABC -的体积为2,ABC ∆是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 的中点,则球O 的表面积为_______.17.小明在解题中发现函数()32x f x x -=-,[]0,1x ∈的几何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,22⎡⎤⎢⎥⎣⎦,类似地,他研究了函数()3x g x -=,[]0,1x ∈,则函数()g x 的值域为_____18.若圆C :222430x y x y ++-+=,关于直线260ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值为______.19.已知双曲线的半焦距为,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是(为双曲线的离心率),则的值为__________.20.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.三、解答题21.如图1,有一边长为2的正方形ABCD ,E 是边AD 的中点,将ABE △沿着直线BE 折起至A BE 'V 位置(如图2),此时恰好A E A C ''⊥,点A '在底面上的射影为O .(1)求证:A E BC '⊥;(2)求直线A B '与平面BCDE 所成角的正弦值.22.如图1所示,在等腰梯形ABCD 中,4524AB CD BAD AB CD ∠=︒==∥,,,点E 为AB 的中点.将ADE ∆沿DE 折起,使点A 到达P 的位置,得到如图2所示的四棱锥P EBCD -,点M 为棱PB 的中点.(1)求证:PD MCE ∥平面;(2)若PDE EBCD ⊥平面平面,求三棱锥M BCE -的体积.23.如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=o 分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为3,求二面角B AFC --的正切值.24.已知空间几何体ABCDE 中,△BCD 与△CDE 均是边长为2的等边三角形,△ABC 是腰长为3的等腰三角形,平面CDE ⊥平面BCD ,平面ABC ⊥平面BCD .(1)试在平面BCD 内作一条直线,使得直线上任意一点F 与E 的连线EF 均与平面ABC 平行,并给出证明; (2)求三棱锥E -ABC 的体积.25.设直线l 的方程为()()1520a x y a a R ++--=∈. (1)求证:不论a 为何值,直线l 必过一定点P ;(2)若直线l 分别与x 轴正半轴,y 轴正半轴交于点(),0A A x ,()0,B B y ,当AOB ∆而积最小时,求AOB ∆的周长;(3)当直线l 在两坐标轴上的截距均为整数时,求直线l 的方程.26.如图,四棱锥P ABCD -中,AP ⊥平面1,//,,,2PCD AD BC AB BC AD E F ==分别为线段,AD PC 的中点.(1)求证://AP 平面BEF ; (2)求证:平面BEF ⊥平面PAC【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确. 考点:空间点线面位置关系.2.D解析:D 【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.3.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.4.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭. 故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.5.B解析:B 【解析】 【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论. 【详解】曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+,此直线与曲线相切,此时有23221k k-=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =. 所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B. 【点睛】本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.6.C解析:C 【解析】 【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题. 【详解】解:根据题意作出图形: 设球心为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和. 2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.7.C解析:C 【解析】 【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin ar A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案.【详解】SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =. ABC ∆的外接圆半径为42sin ar A==,设球O 的半径为R ,则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得R =O 的表面积为2480R ππ=. 故选:C . 【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.8.C解析:C 【解析】 【分析】直接根据直线平行公式得到答案. 【详解】直线20ax y +-=和直线()2140x a y +-+=平行,则()12a a -=,解得2a =或1a =-.当1a =-时,两直线重合,排除. 故选:C . 【点睛】本题考查了根据直线平行求参数,意在考查学生的计算能力,多解是容易发生的错误.9.B解析:B 【解析】 【分析】 【详解】试题分析:. 由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4, ∴几何体的体积V =×3×4×5﹣××3×4×5=20(cm 3). 考点:1.三视图读图的能力;2.几何体的体积公式.10.A解析:A 【解析】 【分析】 【详解】正四棱锥P-ABCD 的外接球的球心在它的高1PO 上, 记为O ,PO=AO=R ,14PO =,1OO =4-R , 在Rt △1AOO 中,12AO =,由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.考点:球的体积和表面积11.C解析:C 【解析】 【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案 【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C . 【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.12.C解析:C 【解析】 【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案. 【详解】正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是直线BD 的动点,在A 中,不存在点G ,使PG EF ⊥成立,故A 错误; 在B 中,不存在点G ,使FG EP ⊥成立,故B 错误;在C 中,不存在点G ,使平面EFG ⊥平面ACD 成立,故C 正确; 在D 中,存在点G ,使平面EFG ⊥平面ABD 成立,故D 错误. 故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.二、填空题13.3【解析】分析:先根据条件确定圆方程再利用方程组解出交点坐标最后根据平面向量的数量积求结果详解:设则由圆心为中点得易得与联立解得点的横坐标所以所以由得或因为所以点睛:以向量为载体求相关变量的取值或范解析:3 【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u v u u u v , 由0AB CD ⋅=u u u v u u u v 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.14.【解析】【分析】由题可知而过的弦过圆心时最长与垂直时最短据此则可以确定四边形的面积的取值范围【详解】由题知直线过圆心故设圆心到直线的距离为则所以所以四边形的面积;故答案为:【点睛】本题主要考查直线与解析:⎡⎤⎣⎦【解析】 【分析】由题可知8AC =,而过(1,0)F 的弦BD 过圆心时最长,与EF 垂直时最短,据此则可以确定四边形ABCD 的面积的取值范围. 【详解】由题知,直线1l 过圆心(1,0)E -,故8AC =,设圆心(1,0)E -到直线2l 的距离为d ,则02d EF ≤≤=,所以BD ⎡⎤=⎣⎦,所以四边形ABCD的面积12S AB CD ⎡⎤=⋅⋅∈⎣⎦; 故答案为:⎡⎤⎣⎦.【点睛】本题主要考查直线与圆相交时的弦长、面积问题,解题关键是明确:过圆内一点的作弦,弦过圆心时最长,与最长的弦垂直时弦最短.15.【解析】【分析】【详解】设AC 与BD 交于点O 在三角形ABD 中因为∠A =120°AB =2可得AO =1过A 作面BCD 的垂线垂足E 则AE 即为所求由题得∠AOE =180°−∠AOC =180°−120°=60【解析】 【分析】 【详解】设AC与BD交于点O.在三角形ABD中,因为∠A=120°,AB=2.可得AO=1.过A作面BCD的垂线,垂足E,则AE即为所求.由题得,∠AOE=180°−∠AOC=180°−120°=60°.在RT△AOE中,AE=AO•sin∠AOE=32.16.【解析】【分析】如图所示根据外接球的球心O恰好是的中点将棱锥的高转化为点到面的距离再利用勾股定理求解【详解】如图所示:设球O的半径为R球心O到平面的距离为d由O是的中点得解得作平面ABC垂足为的外心解析:523【解析】【分析】如图所示,根据外接球的球心O恰好是CD的中点,将棱锥的高,转化为点到面的距离,再利用勾股定理求解.【详解】如图所示:设球O的半径为R,球心O到平面ABC的距离为d,由O 是CD 的中点得221222322D ABC O ABC V V d --==⨯⨯⨯=,解得d =作1OO ⊥平面ABC ,垂足1O 为ABC ∆的外心,所以13CO =,所以222133R =+=⎝⎭,所以球O 的表面积为25243R ππ=. 故答案为:523π【点睛】本题主要考查三棱锥的外接球的体积,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得解析:2] 【解析】 【分析】根据斜率的几何意义,()32g x x =-表示函数y =(2,3)连线的斜率,数形结合,即可求解. 【详解】()g x =为点(x 与点(2,3)连线的斜率,点([0,1]x x ∈在函数[0,1]y x =∈图像上,(1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-,最小值为过A 点与[0,1]y x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入[0,1]y x =∈得,320,0,14(32)0kx k k k k --=≠∆=--=,即281210k k -+=,解得34k +=或34k =当37 k+=时,37[0,1]372x==-∈+⨯,当37k-=时,37[0,1]372x==+∉-⨯不合题意,舍去,()g x值域为37[,2]+.故答案为:37[,2]+.【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.18.4【解析】因为圆=关于直线=对称所以圆心在直线=上所以即又圆的半径为当点(ab)与圆心的距离最小时切线长取得最小值又点(ab)与圆心的距离为=所以切线长的最小值为=故答案为4点睛:本题主要考查直线与解析:4【解析】因为圆22:243C x y x y++-+=0关于直线26ax by++=0对称,所以圆心()1,2C-在直线26ax by++=0上,所以2260a b-++=,即3a b-=,2,当点(a,b)与圆心的距离最小时,切线长取得最小值,又点(a,b)与圆心的距离为()()2212a b++-()2221832a-+≥所以切线长的最小值为()22(32)2-=4.故答案为4点睛:本题主要考查直线与圆的位置关系,考查了转化思想.利用勾股关系,切线长取得最小值时即为当点(a,b)与圆心的距离最小时.19.62【解析】试题分析:由题意得抛物线的准线为x=-c它正好经过双曲线的左焦点所以准线被双曲线截得的弦长为2b2a所以2b2a=223 be2即ba=23e2所以整理得2e4-9e2+1=0解得e=62解析:【解析】试题分析:由题意,得抛物线的准线为,它正好经过双曲线的左焦点,所以准线被双曲线截得的弦长为,所以,即,所以,整理,得,解得或.又过焦点且斜率为1的直线与双曲线的右支交于两点,所以.考点:1、抛物线与双曲线的几何性质;2、直线与双曲线的位置关系.【方法点睛】关于双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中的关系式,求值问题就是建立关于的等式,求取值范围问题就是建立关于的不等式.20.【解析】分析:画出图形(如图)根据圆的性质可得然后可将问题转化为切线长最小的问题进而转化为圆心到直线距离的最小值的问题处理详解:根据题意画出图形如下图所示由题意得圆的圆心半径是由圆的性质可得四边形的解析:【解析】分析:画出图形(如图),根据圆的性质可得2PBC PACB S S =V 四边形,然后可将问题转化为切线长最小的问题,进而转化为圆心到直线距离的最小值的问题处理. 详解:根据题意画出图形如下图所示.由题意得圆22:20C x y y +-=的圆心()0,1,半径是1r =,由圆的性质可得2PBC PACB S S =V 四边形,四边形PACB 的最小面积是2, ∴PBC S V 的最小值112S rd ==(d 是切线长), ∴2d =最小值,∵圆心到直线的距离就是PC 的最小值,∴2221251k+==+,又0k >, ∴2k =.点睛:本题考查圆的性质、切线长定理的运用,解题时注意转化思想方法的运用,结合题意将问题逐步转化为点到直线的距离的问题处理.三、解答题21.(1)证明见解析(2)34【解析】 【分析】(1)利用直线与平面垂直的判定定理证明A E '⊥面A BC ',再根据直线与平面垂直的性质可得A E BC '⊥;(2)依题意得就是直线A B '与面BCDE 所成角,延长EO 交BC 于H ,连接A H ',在直角三角形A EH '中得60A EH '=︒,在直角三角形A EO '中得3A O '=,在直角三角形A OB '中得3sin 4A BO '∠=. 【详解】(1)证明:∵A E A B ''⊥,A E A C ''⊥ 又∵A B A C A '''⋂= ∴A E '⊥面A BC ' ∴A E BC '⊥.(2)∵点A '在底面上的射影为O .∴AO '⊥面BCDE∴A BO '∠就是直线A B '与面BCDE 所成角. 延长EO 交BC 于H ,连接A H ' 如图:∵A E BC '⊥,AO BC '⊥且A O A E A '''⋂=∴BC ⊥面A EO ' ∴BC EO ⊥ ∵E 为AD 中点 ∴H 为BC 中点 ∵1A E '=,2EH = 由(1)知A E A H ''⊥ ∴60A EH '=︒ ∴3A O '=∴332sin 2A O BO A A B '∠==''= 所以直线A B '与平面BCDE 所成角的正弦值为3【点睛】本题考查了直线与平面垂直的判定和性质,考查了直线与平面所成角的计算,属于中档题. 22.(1)见解析;(2)26【解析】 【分析】(1)连接BD ,交CE 于点O ,连接OM ,易知底面EBCD 是平行四边形,则O 为BD 中点,又M 是BP 中点,可知PD MO P ,则结论可证.(2)先证明ADE V 是等腰直角三角形,由条件中的面面垂直可得PD ⊥平面BCDE ,则由(1)可知MN ⊥平面BCDE ,则MN 为三棱锥M BCE -的高,底面BCE V 的面积容易求得,根据公式求三棱锥M BCE -的体积. 【详解】(1)在平面图中,因为12BE AB CD ==且//BE CD , 所以四边形EBCD 是平行四边形; 在立体图中,连接BD ,交CE 于点O ,连接OM ,所以点O 是BD 的中点,又因为点M 为棱PB 的中点,所以//OM PD ,因为PD ⊄平面MCE ,OM ⊂平面MCE , 所以//PD 平面MCE ; (2)在平面图中,因为EBCD 是平行四边形,所以DE BC =,因为四边形ABCD 是等腰梯形, 所以AD BC =,所以AD DE =,因为45BAD ∠=︒,所以AD DE ⊥; 在立体图中,PD DE ⊥,又平面PDE ⊥平面EBCD ,且平面PDE ⋂平面EBCD DE =,PD ⊂平面PDE 所以PD ⊥平面EBCD ,由(1)知//OM PD ,所以OM ⊥平面EBCD , 在等腰直角三角形ADE 中,因为2AE =,所以2AD DE ==所以11222OM PD AD ===,又1BCE ADE S S ∆∆==, 所以1236M BCE BCE V S OM -∆=⋅⋅=. 【点睛】本题考查平面几何与立体几何的关系,线面平行的证明,面面垂直的性质等,有一定的综合性,属中等题.23.(1)见证明;(2) 23【解析】 【分析】(1)由PA ⊥面ABCD 可知PA AE ⊥,又可证AE BC ⊥,根据线面垂直的判定即可证明 (2) 取AB 中点M ,作MN AF ⊥于N ,连CN ,可证MNC ∠是二面角B AF C --的平面角,解三角形即可求解. 【详解】(1)PA ⊥Q 面ABCD ,AE ⊂面ABCD ,PA AE ∴⊥; 又Q 底面ABCD 为菱形,60ABC ∠=o ,E 为BC 中点,,//,,AE BC AD BC AE AD ∴⊥∴⊥QAE ∴⊥面PAD ;(2)AE ^Q 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AEAHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=o ,在Rt PAD ∆中,233PA =PA ⊥Q 面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M , 正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.3CM =.在PAB ∆中,23,2,3BF AF AB ===边AF 上的高11,2BG MN ==, tan 23CMMNC MN∠==【点睛】本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题. 24.(1)取DC 的中点N ,取BD 的中点M ,连接MN ,则MN 即为所求,证明见解析(2)63【解析】 【分析】(1)取DC 的中点N ,取BD 的中点M ,连接MN ,则MN 即为所求,证明EN ∥AH ,MN ∥BC 可得平面EMN ∥平面ABC 即可(2)因为点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,求三棱锥E -ABC 的体积可转化为求三棱锥N -ABC 的体积,根据体积公式计算即可. 【详解】(1)如图所示,取DC 的中点N ,取BD 的中点M ,连接MN ,则MN 即为所求.证明:连接EM ,EN ,取BC 的中点H ,连接AH , ∵△ABC 是腰长为3的等腰三角形,H 为BC 的中点,∴AH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,AH ⊂平面ABC , ∴AH ⊥平面BCD ,同理可证EN ⊥平面BCD , ∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC , ∴EN ∥平面ABC .又M ,N 分别为BD ,DC 的中点, ∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC , ∴MN ∥平面ABC .又MN ∩EN =N ,MN ⊂平面EMN ,EN ⊂平面EMN , ∴平面EMN ∥平面ABC , 又EF ⊂平面EMN , ∴EF ∥平面ABC ,即直线MN 上任意一点F 与E 的连线EF 均与平面ABC 平行. (2)连接DH ,取CH 的中点G ,连接NG ,则NG ∥DH , 由(1)可知EN ∥平面ABC ,∴点E 到平面ABC 的距离与点N 到平面ABC 的距离相等, 又△BCD 是边长为2的等边三角形, ∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD , ∴DH ⊥平面ABC ,∴NG ⊥平面ABC , 易知DH 3,∴NG 3 又S △ABC =12·BC ·AH =12×2×2231-2, ∴V E -ABC =13·S △ABC ·NG 6. 【点睛】本题主要考查了线线平行,线面平行,面面平行的判定,面面垂直的性质,等体积法求三棱锥的体积,属于中档题.25.(1)证明见解析;(2) 1013+(3) 330x y --=,10x y -+=,50x y +-=,390x y +-=,320x y -=【解析】【分析】(1)将原式变形为()250a x x y -++-=,由2050x x y -=⎧⎨+-=⎩可得直线l 必过一定点()2,3P ;(2)由题可得52B y a =+,521A a x a +=+,则()1252521AOB a S a a ++⋅=⋅+V ,求出最值,并找到最值的条件,进而可得AOB ∆的周长; (3) 52a +,521a a ++均为整数,变形得523211a a a +=+++,只要31a +是整数即可,另外不要漏掉截距为零的情况,求出a ,进而可得直线l 的方程. 【详解】解:(1)由()1520a x y a ++--=得()250a x x y -++-=,则2050x x y -=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩, 所以不论a 为何值,直线l 必过一定点()2,3P ;(2)由()1520a x y a ++--=得,当0x =时,52B y a =+,当0y =时,521A a x a +=+, 又由5205201B A y a a x a =+>⎧⎪+⎨=>⎪+⎩,得1a >-, ()()119141+121212221252521AOB a a a S a a ⎡⎤⎡⎤∴=⋅++++⋅=≥=⎢⎥⎢⎥+⎣⎦⎣⎦+V , 当且仅当()9411a a +=+,即12a =时,取等号. ()4,0A ∴,()0,6B ,AOB ∴∆的周长为4610OA OB AB ++=+=+(3) 直线l 在两坐标轴上的截距均为整数,即52a +,521a a ++均为整数, 523211a a a +=+++Q ,4,2,0,2a ∴=--, 又当52a =-时,直线l 在两坐标轴上的截距均为零,也符合题意,所以直线l 的方程为330x y --=,10x y -+=,50x y +-=,390x y +-=,320x y -=.【点睛】本题考查直线恒过定点问题,考查直线与坐标轴围成的三角形的面积的最值,是中档题.26.(1)证明见详解(2)证明见详解【解析】【分析】(1)设,AC BE 交点为O ,连接OF ,则可根据OF 是APC ∆中位线求证OF AP P ,进而得证;(2)由线段关系可证BE CD ∥,又由AP ⊥平面PCD 可得AP CD ⊥,进而可得BE AC ⊥,再结合四边形ABCE 是菱形可得BE AC ⊥,即可求证;【详解】(1)设,AC BE 交点为O ,连接OF ,又1,2AB BC AD ==BC AE ∴=, 又//AD BC Q ,所以四边形ABCE 是菱形,则O 是AC 中点,又F 为PC 中点,∴OF 是APC ∆中位线,OF AP ∴P ,AP ⊄平面BEF ,OF ⊂平面BEF ,∴//AP 平面BEF ;(2)由(1)可知四边形ABCE 是菱形,BE AC ∴⊥,又Q AP ⊥平面PCD 可得AP CD ⊥,E 为AD 中点可得BC ED =,又//AD BC Q ,∴四边形BCDE 为平行四边形,CD BE P ,AP BE ∴⊥,AC AP A =I ,BE ∴⊥平面PAC ,又BE ⊂平面BEF ,∴平面BEF ⊥平面PAC【点睛】本题考查线面平行面面垂直的证明,属于中档题。

【易错题】高中必修二数学下期中试题(及答案)(2)

【易错题】高中必修二数学下期中试题(及答案)(2)

【易错题】高中必修二数学下期中试题(及答案)(2)一、选择题1.圆224470x y x y +--+=上的动点P 到直线0x y +=的最小距离为( ) A .1 B .221- C .22 D .22.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( ) A .22(1)(1)5x y ++-=B .22(1)(1)5x y -++=C .22(1)(1)5x y -++=D .22(1)(1)5x y ++-= 3.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( )A .6πB .5πC .4πD .3π4.已知点(),P x y 是直线()400kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B ,若四边形PACB 的面积最小值为2,则k 的值为( )A .3B .212C .22D .25.如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是( )A . 22B . 42C .4D .8 6.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .2B .32C 322D .227.已知圆O :2224110x y x y ++--=,过点()1,0M 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( )A .42B .24C .212D .68.在三棱锥P ABC -中,PA ⊥平面1202,2ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 3P ABC -的外接球的表面积是( )A .92πB .92πC .18πD .40π9.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .2a 10.如图,正四面体ABCD 中,,EF 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立 11.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列说法错误..的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行12.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC⊥BE;②EF∥平面ABCD;③三棱锥A﹣BEF的体积为定值;④AEF∆的面积与BEF∆的面积相等,A.4 B.3 C.2 D.1二、填空题13.如图,在长方形ABCD中,2AB=,1BC=,E为DC的中点,F为线段EC(端点除外)上一动点,现将AFDV沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK AB⊥,K为垂足,设AK t=,则t的取值范围是__________.14.已知圆22(1)16x y++=,点(1,0),(1,0)E F-,过(1,0)E-的直线1l与过(1,0)F的直线2l垂直且圆相交于,A C和,B D,则四边形ABCD的面积的取值范围是_________. 15.如图,在圆柱O1 O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1 O2的体积为V1 ,球O的体积为V2,则12VV的值是_____16.已知三棱锥P ABC-中,侧面PAC⊥底面ABC,90BAC∠=︒,4AB AC==,23PA PC==,则三棱锥P ABC-外接球的半径为______.17.如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD与△ACD折成互相垂直的两个平面后,某学生得出下列四个结论: ①0BD AC ⋅≠u u u r u u u r ;②∠BAC =60°;③三棱锥D ﹣ABC 是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确结论的序号是 .(请把正确结论的序号都填上)18.圆221x y +=上的点到直线34250x y +-=的距离的最小值是 .19.在棱长为1的正方体1111ABCD A B C D -中,M 是1BB 的中点,直线1D M 与平面ABCD 交于点N ,则线段AN 的长度为________20.已知直线1:1l y x =-上有两个点11(,)A x y 和22(,)B x y , 且12,x x 为一元二次方程2610x x -+=的两个根, 则过点,A B 且和直线2:1l x =-相切的圆的方程为______________.三、解答题21.如图,四棱锥P ABCD -,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设二面角D AE C --为60°,1AP =,3AD =,求直线AC 与平面ECD 所成角的正弦值.22.如图,在棱长均为4的三棱柱111ABC A B C -中,1,D D 分别是BC 和11B C 的中点.(1)求证:11//A D 平面1AB D(2)若平面ABC ⊥平面111,60BCC B B BC ∠=︒,求三棱锥1B ABC -的体积.23.已知圆C 过点()1,1A ,()3,1B -,圆心C 在直线250x y --=上,P 是直线34100x y -+=上任意一点.(1)求圆C 的方程;(2)过点P 向圆C 引两条切线,切点分别为M ,N ,求四边形PMCN 的面积的最小值.24.四棱锥P -ABCD 中,底面ABCD 是直角梯形,//AB CD ,90BCD ∠=︒,22AB AD DC ===.PAD △ 为正三角形,二面角P -AD -C 的大小为23π.(1)线段AD 的中点为M.求证:平面PMB ⊥平面ABCD ;(2)求直线BA 与平面P AD 所成角的正弦值.25.如图,在四棱锥P ABCD -中,CB ⊥平面PBD ,AD ⊥平面PBD ,PH BD ⊥于H ,10CD =,8BC AD ==.(1)求证:CD PH ⊥;(2)若13BH BD =,12PH BD =,在线段PD 上是否存在一点M ,使得HM ⊥平面PAD ,且直线HA 与平面PAD 所成角的正弦值为3525.若存在,求PM 的长;若不存在,请说明理由. 26.如图,在梯形ABCD 中,AB CD ∥,1AD DC BC ===,60ABC ∠=︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)证明:BC ⊥平面ACFE ;(2)设点M 在线段EF 上运动,平面MAB 与平面FCB 所成锐二面角为θ,求cos θ的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出圆心到直线0x y +=的距离,根据距离的最小值为d r -,即可求解. 【详解】由圆的一般方程可得22(2)(2)1x y -+-=,圆心到直线的距离222d == 所以圆上的点到直线的距离的最小值为221.故选B.【点睛】本题主要考查了点到直线的距离,圆的方程,属于中档题.2.A解析:A【解析】【分析】由题意得:圆心在直线x=-1上,又圆心在直线x+y=0上,故圆心M 的坐标为(-1,1),再由点点距得到半径。

【易错题】高中必修二数学下期中试卷(含答案)

【易错题】高中必修二数学下期中试卷(含答案)

【易错题】高中必修二数学下期中试卷(含答案)一、选择题1.一正四面体木块如图所示,点P 是棱VA 的中点,过点P 将木块锯开,使截面平行于棱VB 和AC ,则下列关于截面的说法正确的是( ).A .满足条件的截面不存在B .截面是一个梯形C .截面是一个菱形D .截面是一个三角形 2.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( )A .6πB .5πC .4πD .3π3.已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集。

其中正确的是( )A .(1)(2)(3)B .(1)(4)C .(1)(2)(4)D .(2)(4)4.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -43,则球O 的半径为( )A .3B .1C .2D .45.已知点(),P x y 是直线()400kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B ,若四边形PACB 的面积最小值为2,则k 的值为( )A .3B .212C .22D .2 6.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( )A .-3B .-4C .-6D .367.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256πC .25πD .100π 8.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切 B .相交 C .外切D .相离 9.在三棱锥P ABC -中,PA ⊥平面1202,2ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 长度最小值为3,则三棱锥P ABC -的外接球的表面积是( )A .92πB .92πC .18πD .40π10.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .3011.点A 、B 、C 、D 在同一个球的球面上,2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256π B .8π C .2516π D .254π 12.一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .二、填空题13.光线由点P(2,3)射到直线x+y+1=0上,反射后过点Q(1,1) ,则反射光线方程为__________.14.在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:① 平行于同一平面的两个不同平面互相平行;② 平行于同一直线的两个不同平面互相平行;③ 垂直于同一直线的两个不同平面互相平行;④ 垂直于同一平面的两个不同平面互相平行;其中正确的有________15.已知在直角梯形ABCD 中,AB AD ⊥,CD AD ⊥,224AB AD CD ===,将直角梯形ABCD 沿AC 折叠,使平面BAC ⊥平面DAC ,则三棱锥D ABC -外接球的体积为__________.16.若过点(8,1)P 的直线与双曲线2244x y -=相交于A ,B 两点,且P 是线段AB 的中点,则直线AB 的方程为________.17.已知三棱锥D ABC -的体积为2,ABC ∆是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 的中点,则球O 的表面积为_______.18.如上图所示,在正方体1111ABCD A B C D -中,,M N 分别是棱1AB CC 、的中点,1MB P ∆的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题:A .平面1MB P 1ND ⊥; B .平面1MB P ⊥平面11ND A ;C .∆1MB P 在底面ABCD 上的射影图形的面积为定值;D .∆1MB P 在侧面11D C CD 上的射影图形是三角形.其中正确命题的序号是__________.19.若圆C :222430x y x y ++-+=,关于直线260ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值为______.20.已知棱长等于31111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.三、解答题21.如图(1)在等腰直角三角形ABC 中,90B ∠=︒,将ABC ∆沿中位线DE 翻折得到如图(2)所示的空间图形,使二面角A DE C --的大小为02πθθ⎛⎫<< ⎪⎝⎭.(1)求证:平面ABD ⊥平面ABC ;(2)若3πθ=,求直线AE 与平面ABC 所成角的正弦值.22.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,3AD BC =,2AO OD =.(1)求证:平面PAB ⊥平面PCD .(2)试问在棱PA 上是否存在点E ,使得面//BOE 面PCD ,若存在,试指出点E 的位置并证明;若不存在,请说明理由.23.如图,四棱锥P ABCD -的底面ABCD 是直角梯形,//AB CD , 33AB CD ==,AB AD ⊥,AB PA ⊥, 且2AD PA ==,22PD =,13PE PB =uur uu r(1)证明://CE 平面PAD ;(2)求点B 到平面ECD 的距离;24.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(1)求证://DM 平面APC ;(2)求证:BC ⊥平面APC ;(3)若4BC =,10AB =,求三棱锥D BCM -的体积.25.若圆M 的方程为22(2)(5)10x y -+-=,△ABC 中,已知(1,1)A ,(4,2)B ,点C 为圆M 上的动点.(1)求AC 中点D 的轨迹方程;(2)求△ABC 面积的最小值.26.如图所示,直角梯形ABCD 中,//AD BC ,,AD AB ⊥22,AB BC AD ===四边形EDCF 为矩形,2DE =,平面EDCF ⊥ABCD .(1)求证://DF 平面ABE ;(2)求二面角B EF D --二面角的正弦值;(3)在线段BE 上是否存在点P ,使得直线AP 与平面BEF 所成角的正弦值为66,若存在,求出线段BP 的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】取AB 的中点D ,BC 的中点E ,VC 的中点F ,连接,,,PD PF DE EF ,易得即截面为四边形PDEF ,且四边形PDEF 为菱形即可得到答案.【详解】取AB 的中点D ,BC 的中点E ,VC 的中点F ,连接,,,PD PF DE EF ,易得PD ∥VB 且12PD VB =,EF ∥VB 且12EF VB =,所以PD ∥EF ,PD EF =, 所以四边形PDEF 为平行四边形,又VB ⊄平面PDEF ,PD ⊂平面PDEF ,由线面平行 的判定定理可知,VB ∥平面PDEF ,AC ∥平面PDEF ,即截面为四边形PDEF ,又1122DE AC VB PD ===,所以四边形PDEF 为菱形,所以选项C 正确. 故选:C【点睛】本题考查线面平行的判定定理的应用,考查学生的逻辑推理能力,是一道中档题.2.A解析:A【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥Q ,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球,外接球的直径等于长方体的对角线,即24116R =++=246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径) ③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.3.C解析:C【解析】【分析】根据题意,对每一个选项进行逐一判定,不正确的只需举出反例,正确的作出证明,即可得到答案.【详解】如图(1)所示,在平面内不可能由符合题的点;如图(2),直线,a b 到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图(3),直线,a b 所在平面与已知平面平行,则符合题意的点为一条直线, 综上可知(1)(2)(4)是正确的,故选C.【点睛】本题主要考查了空间中直线与平面之间的位置关系,其中熟记空间中点、线、面的位置关系是解答此类问题的关键,着重考查了空间想象能力,以及推理与论证能力,属于基础题. 4.C解析:C【解析】【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题.【详解】解:根据题意作出图形:设球心为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和.2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.5.D解析:D【解析】【分析】当且仅当PC 垂直于()400kx y k ++=>时,四边形PACB 的面积最小,求出PC 后可得最小面积,从而可求k 的值.【详解】圆C 方程为()2211x y +-=,圆心()0,1C ,半径为1. 因为PA ,PB 为切线,221PC PA ∴=+且1=2122PACB S PA PA ⨯⨯⨯==四边形. ∴当PA 最小时,PACB S 四边形最小, 此时PC 最小且PC 垂直于()400kx y k ++=>. 又min 21PC k =+,222221+1k ⎛⎫∴=+,2k ∴=,故选D. 【点睛】圆中的最值问题,往往可以转化圆心到几何对象的距离的最值来处理,这类问题属于中档题. 6.A解析:A【解析】【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可.【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-, 则圆心坐标为(1,1)-,半径1r a =-, 又由圆心到直线的距离为11222d -++==,所以由圆的弦长公式可得222(1)(2)4a --=,解得3a =-,故选A.【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.7.C解析:C【解析】【分析】【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD 为等腰直角三角形, 其外心为BD 中点1O ,设O 为AD 中点,则O 为外接球球心,半径长度为1522AD =, 所以表面积为25π.8.B解析:B【解析】化简圆到直线的距离,又 两圆相交. 选B9.C解析:C【解析】【分析】首先确定三角形ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【详解】解:如图所示:三棱锥P ABC -中,PA ⊥平面2,2ABC AP AB ==,,M 是线段BC 上一动点,线段PM 3则:当AM BC ⊥时,线段PM 达到最小值,由于:PA ⊥平面ABC ,所以:222PA AM PM +=,解得:1AM =, 所以:3BM =,则:60BAM ∠=︒,由于:120BAC ∠=︒,所以:60MAC ∠=︒则:ABC V 为等腰三角形. 所以:23BC =在ABC V 中,设外接圆的直径为2324r ==, 则:2r =, 所以:外接球的半径2229222R ⎛⎫=+= ⎪ ⎪⎝⎭, 则:94182S ππ=⋅⋅=, 故选:C .【点睛】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用.10.C解析:C 【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C .考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.11.D解析:D 【解析】试题分析:根据题意知,ABC V 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S V 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =V ,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO V 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D.考点:球内接多面体,球的表面积.12.D解析:D 【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.二、填空题13.4x-5y+1=0【解析】【分析】先求P点关于直线x+y+1=0对称点M再根据两点式求MQ方程即得结果【详解】因为P点关于直线x+y+1=0对称点为所以反射光线方程为【点睛】本题考查点关于直线对称问解析:4x-5y+1=0【解析】【分析】先求P点关于直线x+y+1=0对称点M,再根据两点式求 MQ方程,即得结果.【详解】因为P点关于直线x+y+1=0对称点为(4,3)M--,所以反射光线方程为13:1(1),451014MQ y x x y+-=--+=+.【点睛】本题考查点关于直线对称问题,考查基本分析求解能力,属基本题.14.①③【解析】【分析】对4个命题分别进行判断即可得出结论【详解】解:①平行于同一平面的两个不同平面互相平行正确;②平行于同一直线的两个不同平面互相平行或相交不正确;③垂直于同一直线的两个不同平面互相平解析:①③【解析】【分析】对4个命题分别进行判断,即可得出结论.【详解】解:①平行于同一平面的两个不同平面互相平行,正确;②平行于同一直线的两个不同平面互相平行或相交,不正确;③垂直于同一直线的两个不同平面互相平行,正确;④垂直于同一平面的两个不同平面互相平行或相交,不正确.故答案为:①③.【点睛】本题考查类比推理,考查学生分析解决问题的能力,属于基础题.15.【解析】结合题意画出折叠后得到的三棱锥如图所示由条件可得在底面中取AB的中点OAC的中点E连OCOE则∵∴∵平面平面∴平面∴又∴∴∴点O为三棱锥外接球的球心球半径为2∴答案:点睛:(1)本题是一道关解析:32 3π【解析】结合题意画出折叠后得到的三棱锥D ABC -如图所示,由条件可得在底面ACB ∆中,90,22ACB AC BC ∠=︒==。

【典型题】高中必修二数学下期中第一次模拟试题(附答案)

【典型题】高中必修二数学下期中第一次模拟试题(附答案)

【典型题】高中必修二数学下期中第一次模拟试题(附答案)一、选择题1.直线(2)4y k x =-+与曲线2320x y y ++-=有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞2.如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是( )A . 22B . 42C .4D .83.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离4.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为43的等边三角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20πB .40πC .80πD .160π5.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763B .1603C .1283D .326.已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( )A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭7.椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( ) A .312+ B .31-C .22D .512- 8.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为22,则a 的值为( ) A .-2或2B .12或32C .2或0D .-2或09.若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫⎪⎝⎭C .53,124⎛⎫⎪⎝⎭ D .53,12410.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个B .2个C .3个D .4个11.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A.3πB.32πC.4πD.34π12.如图,在三棱柱111ABC A B C-中,1CC⊥平面ABC,ABC是等腰三角形,BA BC=,123AC CC==,,D是AC的中点,点F在侧棱1A上,若要使1C F⊥平面BDF,则1AFFA的值为( )A.1B.12或2C.2或2D.13或3二、填空题13.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.14.已知圆22(1)16x y++=,点(1,0),(1,0)E F-,过(1,0)E-的直线1l与过(1,0)F的直线2l垂直且圆相交于,A C和,B D,则四边形ABCD的面积的取值范围是_________. 15.点(5,2)到直线()1(21)5m x m y m-+-=-的距离的最大值为________.16.已知正三棱锥P-ABC,点P,A,B,C3PA,PB,PC两两互相垂直,则球心到截面ABC 的距离为________.17.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60 ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60 ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.18.已知直线:0l x my m ++=,且与以A (-1,1)、B (2,2)为端点的线段相交,实数m 的取值范围为___________.19.已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.20.如图,在体积为1V 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V ,则21V V =__________.三、解答题21.如图,直角梯形BDFE 中,//,,2EF BD BE BD EF ⊥=ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.22.如图,在直三棱柱111ABC A B C -中,D 是BC 的中点.AB AC ⊥,1AB AC ==,12AA =.(Ⅰ)求直线1AC 与平面11BCC B 所成角的正弦值; (Ⅱ)求二面角1A A B C --的余弦值.23.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,3AD BC =,2AO OD =.(1)求证:平面PAB ⊥平面PCD .(2)试问在棱PA 上是否存在点E ,使得面//BOE 面PCD ,若存在,试指出点E 的位置并证明;若不存在,请说明理由.24.如图,在Rt AOB 中,30OAB ∠=︒,斜边4AB =,Rt AOC 可以通过Rt AOB 以直线AO 为轴旋转得到,且平面AOB ⊥平面AOC .动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值.25.如图,直三棱柱111ABC A B C -的底面是边长为4的正三角形,M ,N 分别是BC ,1CC 的中点.(1)证明:平面AMN ⊥平面11B BCC ;(2)若直线1A C 与平面11A ABB 所成的角为30,试求三棱锥M ANC -的体积. 26.(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形: ①直线l 在平面α内; ②直线m 不在平面α内; ③直线m 与平面α交于点A ; ④直线l 不经过点A .(2)如图,在长方体1111ABCD A B C D -中,E 为棱1BB 的中点,F 为棱1CC 的三等分点,画出由1,,D E F 三点所确定的平面β与平面ABCD 的交线.(保留作图痕迹)【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论. 【详解】曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+23221k k -=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =. 所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B. 【点睛】本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.2.C解析:C 【解析】分析:由三视图还原实物图,再根据三角形面积公式求解.详解:在斜二测直观图中OB=2,OA=2, 所以在平面图形中OB=2,OA=4, OA ⊥OB , 所以面积为12442S =⨯⨯=. 选C.点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.3.B解析:B 【解析】 化简圆到直线的距离,又两圆相交. 选B4.C解析:C 【解析】 【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin ar A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案.【详解】SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =. ABC ∆的外接圆半径为42sin ar A==,设球O 的半径为R , 则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得5R =O 的表面积为2480R ππ=. 故选:C . 【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.5.B解析:B 【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.6.D解析:D 【解析】 试题分析:A.}r rααββ⊥⇒⊥不正确,以墙角为例,,αβ可能相交;B.}m l l m ββ⇒⊥⊥不正确,,l β有可能平行;C.}m rm n n r⇒不正确,m,n 可能平行、相交、异面;故选D 。

【典型题】高中必修二数学下期中第一次模拟试题(带答案)

【典型题】高中必修二数学下期中第一次模拟试题(带答案)

【典型题】高中必修二数学下期中第一次模拟试题(带答案)一、选择题1.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .2.已知两点()A 3,4-,()B 3,2,过点()P 1,0的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是( ) A .()1,1- B .()(),11,∞∞--⋃+ C .[]1,1-D .][(),11,∞∞--⋃+3.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 4.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -,则球O 的半径为( ) A .3B .1C .2D .45.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( )A .-3B .-4C .-6D .36.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ⊥n ,且n ∥β C .α⊥β,且m ∥α D .m ∥n ,且n ⊥β 7.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = )A .1B .1-C .2-或1D .2或18.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20πB .40πC .80πD .160π9.若方程124kx k =-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫ ⎪⎝⎭C .53,124⎛⎫ ⎪⎝⎭D .53,124纟çúçú棼10.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列说法错误..的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行D .MN 与11A B 平行11.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .43B .1033C .23D .83312.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题13.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,2,4PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O的表面积为__________.14.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____15.在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,3AB =,4BC =,5PA =,则三棱锥P ABC -的外接球的表面积为__________16.将正方形ABCD沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60o ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60o ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.17.正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上.若163P ABCDV -=,则球O 的体积是______. 18.三棱锥A BCD -中,E 是AC 的中点,F 在AD 上,且2AF FD =,若三棱锥A BEF -的体积是2,则四棱锥B ECDF -的体积为_______________.19.如图所示,二面角l αβ--为60,,A B o是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.20.如图,在体积为1V的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V,则21VV=__________.三、解答题21.如图,在三棱锥S ABC-中,SAC∆为等边三角形,4AC=,43BC=,BC AC⊥,3cos SCB∠=-,D为AB的中点.(1)求证:AC SD⊥;(2)求直线SD与平面SAC所成角的大小.22.如图,在三棱锥A BCD-中,,E F分别为棱,BC CD上的中点.(1)求证:EF P 平面ABD ;(2)若,BD CD AE ⊥⊥平面BCD ,求证:平面AEF ⊥平面ACD .23.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(1)求证://DM 平面APC ; (2)求证:BC ⊥平面APC ;(3)若4BC =,10AB =,求三棱锥D BCM -的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,12BC AD =,PA PD =,M ,N 分别为AD 和PC 的中点.(1)求证://PA 平面MNB ; (2)求证:平面PAD ⊥平面PMB .25.如图,三棱柱111ABC A B C -中,平面11AAC C ⊥平面11AA B B ,平面11AACC ⊥平面ABC ,12AB AC AA ===,点P 、M 分别为棱BC 、1CC 的中点,过点B 、M 的平面交棱1AA 于点N ,使得AP ∥平面BMN .(1)求证:AB ⊥平面11AAC C ; (2)若四棱锥B ACMN -的体积为32,求1A AC ∠的正弦值. 26.如图,1AA 、1BB 为圆柱1OO 的母线(母线与底面垂直),BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点,DE ⊥平面1CBB .(1)证明:AC ⊥平面11AA B B ; (2)证明://DE 平面ABC .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果. 【详解】设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E 设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥Q 平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+=解得:3x =,3R =∴球的体积为:343233V R ππ==本题正确选项:D 【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.2.D解析:D 【解析】分析:根据两点间的斜率公式,利用数形结合即可求出直线斜率的取值范围. 详解:∵点A (﹣3,4),B (3,2),过点P (1,0)的直线L 与线段AB 有公共点, ∴直线l 的斜率k≥k PB 或k≤k PA ,∵PA 的斜率为4031--- =﹣1,PB 的斜率为2031--=1, ∴直线l 的斜率k≥1或k≤﹣1, 故选:D .点睛:本题主要考查直线的斜率的求法,利用数形结合是解决本题的关键,比较基础.直线的倾斜角和斜率的变化是紧密相联的,tana=k,一般在分析角的变化引起斜率变化的过程时,是要画出正切的函数图像,再分析.3.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO …,即满足2PO …,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO …故2222000103634PO x y y y ==+-+… 解得0825y 剟,0605x 剟 即0x 的取值范围是6[0,]5, 故选:B . 【点睛】解题的关键是充分利用几何知识,判断出2PO …,从而得到不等式求出参数的取值范围.4.C解析:C 【解析】 【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题. 【详解】解:根据题意作出图形: 设球心为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和. 2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.5.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-, 则圆心坐标为(1,1)-,半径1r a =- 又由圆心到直线的距离为11222d -++==所以由圆的弦长公式可得4=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.6.D解析:D 【解析】 【分析】根据所给条件,分别进行分析判断,即可得出正确答案. 【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立; //m n 且n β⊥⇒m β⊥,故D 成立;故选:D 【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.7.D解析:D 【解析】 【分析】根据题意讨论直线它在两坐标轴上的截距为0和在两坐标轴上的截距不为0时,求出对应a 的值,即可得到答案.【详解】由题意,当2a 0-+=,即a 2=时,直线ax y 2a 0+-+=化为2x y 0+=, 此时直线在两坐标轴上的截距都为0,满足题意;当2a 0-+≠,即a 2≠时,直线ax y 2a 0+-+=化为122x y a a a+=--,由直线在两坐标轴上的截距相等,可得2a2a a-=-,解得a 1=; 综上所述,实数a 2=或a 1=. 故选:D . 【点睛】本题主要考查了直线方程的应用,以及直线在坐标轴上的截距的应用,其中解答中熟记直线在坐标轴上的截距定义,合理分类讨论求解是解答的关键,着重考查了运算与求解能力,属于基础题.8.C解析:C 【解析】 【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin ar A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案.【详解】SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =. ABC ∆的外接圆半径为42sin ar A==,设球O 的半径为R , 则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得25R =,故球O 的表面积为2480R ππ=. 故选:C . 【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.9.D解析:D 【解析】 【分析】由题意可得,曲线22(1)4(1)x y y +-=…与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围. 【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=…,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <…,直线与半圆有两个交点,AD 与半圆相切时,221k =+,解得512AD k =,4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦.故选:D 【点睛】本题考查直线与圆的位置关系,属于中档题.10.D解析:D 【解析】 【分析】先利用三角形中位线定理证明//MN BD ,再利用线面垂直的判定定理定义证明MN 与1CC 垂直,由异面直线所成的角的定义证明MN 与AC 垂直,即可得出结论.【详解】如图:连接1C D ,BD ,Q 在三角形1C DB 中,//MN BD ,故C 正确.1CC ⊥Q 平面ABCD ,1CC BD ∴⊥,MN ∴与1CC 垂直,故A 正确;AC BD ^Q ,//MN BD ,MN ∴与AC 垂直,B 正确;∵//MN BD ,MN ∴与11A B 不可能平行,D 错误 故选:D . 【点睛】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键.11.B解析:B 【解析】由题意可知该几何体为正三棱柱去掉一个小三棱锥,1104323333V =⋅=. 故选:B.12.D解析:D 【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题13.【解析】【分析】由题意得该四面体的四个面都为直角三角形且平面可得因为为直角三角形可得所以因此结合几何关系可求得外接球的半径代入公式即可求球的表面积【详解】本题主要考查空间几何体由题意得该四面体的四个 解析:20π【解析】 【分析】由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,可得25PC =22PB =PBC V 为直角三角形,可得23BC =PB BC ⊥,因此AB BC ⊥,结合几何关系,可求得外接球O 的半径2222152PA R r ⎛⎫=+=+= ⎪⎝⎭O 的表面积.【详解】本题主要考查空间几何体.由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,2PA AB ==,4AC =,25PC =22PB =因为PBC V 为直角三角形,因此23BC =7BC =(舍). 所以只可能是23BC = 此时PB BC ⊥,因此AB BC ⊥,所以平面ABC 所在小圆的半径即为22ACr ==, 又因为2PA =,所以外接球O的半径R ===所以球O 的表面积为24π20πS R ==. 【点睛】本题考查三棱锥的外接球问题,难点在于确定BC 的长,即得到AB BC ⊥,再结合几何性质即可求解,考查学生空间想象能力,逻辑推理能力,计算能力,属中档题.14.【解析】设球半径为则故答案为点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体锥体或台体则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出则常 解析:32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.15.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球 解析:50π【解析】 【分析】以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球,由此能求出三棱锥P ABC -的外接球的表面积. 【详解】由题意,在三棱锥P ABC -中,PA ⊥平面,,3,4,5ABC AB BC AB BC PA ⊥===, 以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球, 所以三棱锥P ABC -的外接球的半径为2R ==, 所以三棱锥P ABC -的外接球的表面积为2244()502S R πππ==⨯=. 【点睛】本题主要考查了三棱锥的外接球的表面积的计算问题,其中解答中根据几何体的结构特征,以,,AB BC PA 为长宽高构建长方体,得到长方体的外接球是三棱锥P ABC -的外接球是解答的关键,着重考查了数形结合思想,以及推理与运算能力.16.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E 是BD 的中点易得∠AED =90°即为此直二面角的平面角对于命题①AB 与平面BCD解析:②③④ 【解析】 【分析】作出此直二面角的图象,由图形中所给的位置关系对命题逐一判断,即可得出正确结论. 【详解】作出如图的图象,E 是BD 的中点,易得∠AED =90°即为此直二面角的平面角 对于命题①AB 与平面BCD 所成的线面角的平面角是∠ABE =45°,故AB 与平面BCD 成60°的角不正确;对于命题②,在等腰直角三角形AEC 中AC 等于正方形的边长,故△ACD 是等边三角形,此命题正确;对于命题③可取AD 中点F ,AC 的中点H ,连接EF ,EH ,FH ,则EF ,FH 是中位线,故∠EFH 或其补角为异面直线AB 与CD 所成角,又EF,FH 其长度为正方形边长的一半,而EH 是直角三角形AEC 的中线,其长度是AC 的一半即正方形边长的一半,故△EFH 是等边三角形,由此AB 与CD 所成的角为60°,此命题正确;对于命题④,BD ⊥面AEC ,故AC ⊥BD ,此命题正确;对于命题⑤,连接BH ,HD,则BH ⊥AC, DH ⊥AC,则∠BHD 为二面角B AC D --的平面角,又32,cos ∠BHD=-1,3故二面角B AC D --不是120︒综上知②③④是正确的 故答案为②③④ 【点睛】本题考查与二面角有关立体几何中线线之间的角的求法,线面之间的角的求法,以及线线之间位置关系的证明方法.综合性较强,对空间立体感要求较高.17.【解析】【分析】正四棱锥底面的四个顶点在球的同一个大圆上则棱锥的高等于球的半径由此可由棱锥体积求得球的半径从而得球体积【详解】∵正四棱锥底面的四个顶点在球的同一个大圆上∴球心是正方形对角线交点是棱锥 解析:323π【解析】 【分析】正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,则棱锥的高等于球的半径,由此可由棱锥体积求得球的半径,从而得球体积. 【详解】∵正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,∴球心O 是正方形ABCD 对角线交点,PO 是棱锥的高,设球半径为R ,则2AB R =,22(2)2ABCD S R R ==,211162333P ABCD ABCD V S PO R R -==⨯⨯=,2R =,∴3344322333V R πππ==⨯=球. 故答案为:323π.【点睛】本题考查球的体积,考查正四棱锥与半球的截接问题.解题关键是确定球半径与正四棱锥中的线段长之间的关系.18.【解析】【分析】以B 为顶点三棱锥与四棱锥等高计算体积只需找到三角形AEF 与四边形ECDF 的面积关系即可求解【详解】设B 到平面ACD 的距离为h 三角形ACD 面积为因为是的中点在上且所以所以又=2所以所以解析:【解析】 【分析】以B 为顶点,三棱锥B AEF -与四棱锥B ECDF -等高,计算体积只需找到三角形AEF 与四边形ECDF 的面积关系即可求解. 【详解】设B 到平面ACD 的距离为h ,三角形ACD 面积为S ,因为E 是AC 的中点,F 在AD 上,且2AF FD =,所以16AEF ACD S AE AF S AC AD∆∆⋅==⋅,16AEF S S ∆=,所以56ECDF S S =,又A BEF V -=2,所以⨯=11236Sh ,36Sh =,所以153610318B ECDF ECDF V S h -==⋅=. 故答案为10. 【点睛】本题考查空间几何体的体积计算,考查空间想象能力和运算能力,属于基础题.19.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程解析:217. 【解析】 【分析】推导出CD CA AB BD =++u u u r u u u r u u u r u u u r,两边平方可得CD 的长. 【详解】Q 二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内,且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++u u u r u u u r u u u r u u u r, ∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r2222CA AB BD CA BD =+++u u u r u u u r u u u r u u u r u u u r g361664268cos12068=+++⨯⨯⨯︒=,CD ∴的长||68217CD ==u u u r.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这 解析:23【解析】分析:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h,再求21V V . 详解:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h, 则222212222111()233.3r h r h h r h r hV V r hr hππππππ-+-===故答案为:23. 点睛:(1)本题主要考查圆锥圆柱体积的计算,意在考查学生对这些知识的掌握水平.(2)圆柱的体积为2V sh r h π==,圆锥的体积为21133V sh r h π==. 三、解答题21.(1)证明见解析;(2)6π. 【解析】 【分析】(1)取AC 的中点O ,连接OS 、OD ,证明出OS AC ⊥,OD AC ⊥,利用直线与平面垂直的判定定理可得出AC ⊥平面SOD ,即可证明出AC SD ⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H ,说明直线SD 与平面SAC 所成的角为OSD ∠,求出OSD ∆三边边长,利用余弦定理求出OSD ∠,即可求出直线SD 与平面SAC 所成角的大小. 【详解】(1)取AC 的中点O ,连接OS 、OD ,SAC ∆Q 为等边三角形,O 为AC 的中点,SO AC ∴⊥,D Q 、O 分别为AB 、AC 的中点,//OD BC ∴,BC AC ⊥Q ,OD AC ∴⊥, SO OD O =Q I ,AC ∴⊥平面SOD ,SD ⊂Q 平面SOD ,AC SD ∴⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H , AC ⊥Q 平面SOD ,DH ⊂平面SOD ,DH AC ∴⊥,DH SO ⊥Q ,SO AC O =I ,DH ∴⊥平面SAC ,所以,直线SD 与平面SAC 所成的角为OSD ∠,由(2)知,1232OD BC ==AC BC ⊥Q ,228AB AC BC ∴+=. SAC ∆Q 是边长为4的等边三角形,4sin233SO π∴==在SBC ∆中,4SC =,43BC=由余弦定理得2222cos 88SB SC BC SC BC SCB =+-⋅⋅∠=,222SB ∴=由余弦定理得2221cos 28SA AB SB SAB SA AB +-∠==-⋅,2222cos 36SD SA AD SA AD SAD ∴=+-⋅⋅∠=,6SD ∴=.在SOD ∆中,由余弦定理得2223cos 2SO SD OD OSD SO SD +-∠==⋅. 0OSD π<∠<Q ,6OSD π∴∠=,因此,直线SD 与平面SAC 所成角的大小为6π. 【点睛】本题考查利用线面垂直的性质证明线线垂直,同时也考查了直线与平面所成角的计算,涉及到利用余弦定理解三角形,考查推理能力与计算能力,属于中等题. 22.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据线面平行的判定定理,在平面ABD 中找EF 的平行线,转化为线线平行的证明;(2)根据面面垂直的判定定理,转化为CD ⊥平面AEF . 【详解】(1)E Q ,F 分别是BC ,CD 的中点,EF ∴P BD ; 又Q EF ⊄平面ABD ,BD ⊂平面ABD ,EF ∴P 平面ABD .(2)BD CD ⊥Q ,EF P BD ,EF CD ∴⊥;AE ^Q 平面BCD ,AE CD ∴⊥;又EF ⊂平面AEF ,AE ⊂平面AEF ,CD \^平面AEF ,又CD ⊂平面ACD , ∴平面AEF ⊥平面ACD .【点睛】本题考查了面面垂直的证明,难点在于转化为线面垂直,方法:结合已知条件,选定其中一个面为垂面,在另外一个面中找垂线,不行再换另外一个面.23.(1)见详解;(2)见详解;(3. 【解析】 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP PBC ⊥平面,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】(1)证明:因为M 为AB 的中点,D 为PB 的中点, 所以MD 是ABP △的中位线,MD AP P . 又MD APC ⊄平面,AP APC ⊂平面, 所以MD APC ∥平面.(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥. 又MD AP P ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P I =,所以AP PBC ⊥平面. 因为BC PBC ⊂平面,所以⊥AP BC . 又因为BC AC ⊥,AC AP A ⋂=, 所以BC APC ⊥平面.(3)因为AP PBC ⊥平面,MD AP P ,所以MD PBC ⊥平面,即MD 是三棱锥M DBC -的高. 因为10AB =,M 为AB 的中点,PMB △为正三角形,所以5,PB MB MD MB ====. 由BC APC ⊥平面,可得BC PC ⊥,在直角三角形PCB 中,由54PB BC =,=,可得3PC =. 于是111433222BCD BCP S S ⨯⨯⨯=△△==.所以1133322D BCM M DBC BCD V V S MD --⨯⨯=g △===. 【点睛】本题考查空间线面平行与垂直的证明,体积的计算.空间中的平行与垂直的证明过程就是利用相关定义、判定定理和性质定理实现线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转换.求三棱锥的体积常采用等积转换的方法,选择易求的底面积和高来求体积. 24.(1)见解析;(2)见解析.【解析】【分析】(1)通过证明//NQ PA ,即可得到本题结论;(2)由题,先证PM AD ⊥和AD MB ⊥,即可得到AD ⊥平面PMB ,由此即可得到本题结论.【详解】(1)连接AC 交MB 于Q ,连接,NQ MC .因为//AM BC ,12AM AD BC ==, 所以四边形ABCM 是平行四边形,所以Q 是AC 的中点.又N 是PC 的中点,所以//NQ PA ,因为NQ ⊂平面MNB ,PA ⊄平面MNB ,所以//PA 平面MNB ;(2)因为PA PD =,AM MD =,所以PM AD ⊥,因为//MD BC ,MD BC =,所以四边形BCDM 是平行四边形,所以//MB DC ,因为=90ADC ∠︒,即AD DC ⊥,所以AD MB ⊥,因为PM MB M ⋂=,,PM MB ⊂平面PMB ,所以AD ⊥平面PMB ,又AD ⊂平面PAD ,所以平面PAD ⊥平面PMB .【点睛】本题主要考查线面平行的判定与面面垂直的判定,考查学生的空间想象能力和逻辑推理能力.25.(1)见解析;(2)32. 【解析】(1)在平面ABC 中,过点B 作棱AC 的垂线,垂足为D ,Q 平面11AAC C ⊥平面ABC ,∴ BD ⊥平面11AAC C .在平面11AA B B 中,过点B 作棱1AA 的垂线,垂足为E ,Q 平面11AAC C ⊥平面11AA B B ,∴BE ⊥平面11AAC C .Q 过点B 与平面11AAC C 垂直的直线有且只有一条,∴BE 与BD 重合,又∵平面ABC I 平面11AA B B AB =,∴BE 与BD 重合于AB ,所以AB ⊥平面11AAC C .(2)设BM 的中点为Q ,连接PQ ,NQ ,Q 点P 为棱BC 的中点,∴PQ ∥CM 且PQ =12CM , Q 1AA ∥1CC ,∴PQ ∥AN ,∴P 、Q 、N 、A 四点共面,∵AP ∥平面BMN ,∴AP ∥NQ ,∴四边形PQNA 是平行四边形,∴PQ =AN ,∵M 为1CC 的中点且12AB AC AA ===,∴1CM =,∴PQ =AN =12, 设梯形ACMN 的高为h ,Q 2AB =, ∴111132×2322B ACMN h V h -⎛⎫+ ⎪⎝⎭=⨯==,∴3h = ∴13sin 2h A AC AC ∠==,∴1A AC ∠的正弦值为32. 26.(1)证明见解析;(2)证明见解析【解析】【分析】(1)通过证明1A A AC ⊥和AB AC ⊥,即可证得AC ⊥平面11AA B B ;(2)通过证明//DE AO ,即可证得//DE 平面ABC .【详解】(1)由题,得1A A ⊥平面ABC ,所以1A A AC ⊥,又BC 是底面圆O 的直径,所以AB AC ⊥,因为1AB AA A =I ,所以AC ⊥平面11AA B B ;(2)连接,OE OA ,因为,E O 分别为1,B C BC 的中点,所以1//OE BB 且112OE BB =, 易得1//AD BB 且112AD BB =, 所以//AD OE 且AD OE =,所以四边形OADE 为平行四边形,则//DE AO ,因为AO ⊂平面ABC ,DE ⊄平面ABC ,所以//DE 平面ABC .【点睛】本题主要考查线面垂直和线面平行的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.。

【易错题】高中必修二数学下期中试题(及答案)

【易错题】高中必修二数学下期中试题(及答案)

【易错题】高中必修二数学下期中试题(及答案)一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.已知点(),P x y 是直线()400kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B ,若四边形PACB 的面积最小值为2,则k 的值为( ) A .3B .212C .22D .23.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = ) A .1B .1-C .2-或1D .2或14.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( ) A .26B .5C .26D .42+5.在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .23π B .43π C .53π D .2π6.长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( ) A .72π B .56π C .14π D .64π7.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b8.某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13B .12C .16D .19.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A.15B.53C.64D.10410.如图,正四面体ABCD中,,E F分别是线段AC的三等分点,P 是线段AB 的中点,G是线段BD的动点,则( )A.存在点G,使PG EF⊥成立B.存在点G ,使FG EP⊥成立C.不存在点G,使平面EFG⊥平面ACD成立D.不存在点G,使平面EFG⊥平面ABD成立11.如图在正方体中,点为线段的中点. 设点在线段上,直线与平面所成的角为,则的取值范围是( )A.B.C.D.12.如图,在三棱柱111ABC A B C-中,1CC⊥平面ABC,ABCV是等腰三角形,BA BC=,123AC CC==,,D是AC的中点,点F在侧棱1A上,若要使1C F⊥平面BDF,则1AFFA的值为( )A .1B .12或2 C .22或2 D .13或3 二、填空题13.在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.14.已知平面α,β,γ是空间中三个不同的平面,直线l ,m 是空间中两条不同的直线,若α⊥γ,γ∩α=m ,γ∩β=l ,l⊥m,则 ①m⊥β;②l⊥α;③β⊥γ;④α⊥β.由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上). 15.已知动点,A B 分别在x 轴和直线y x =上,C 为定点()2,1,则ABC ∆周长的最小值为_______.16.如图,在ABC V 中,AB BC ⊥,SA ⊥平面ABC ,DE 垂直平分SC ,且分别交AC ,SC 于点D ,E ,又SA AB =,SB BC =,则二面角E BD C --的大小为_______________.17.若直线l :3y kx =23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________. 18.小明在解题中发现函数()32x f x x -=-,[]0,1x ∈的几何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,22⎡⎤⎢⎥⎣⎦,类似地,他研究了函数()3x g x -=,[]0,1x ∈,则函数()g x 的值域为_____19.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.20.在正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则直线BE 和平面11ABB A 所成的角的正弦值为_____________.三、解答题21.如图,在棱长均为4的三棱柱111ABC A B C -中,1,D D 分别是BC 和11B C 的中点.(1)求证:11//A D 平面1AB D(2)若平面ABC ⊥平面111,60BCC B B BC ∠=︒,求三棱锥1B ABC -的体积. 22.已知圆C 过点()1,1A ,()3,1B -,圆心C 在直线250x y --=上,P 是直线34100x y -+=上任意一点.(1)求圆C 的方程;(2)过点P 向圆C 引两条切线,切点分别为M ,N ,求四边形PMCN 的面积的最小值.23.如图,四棱锥P ABCD -的底面ABCD 是直角梯形,//AB CD , 33AB CD ==,AB AD ⊥,AB PA ⊥, 且2AD PA ==,22PD =,13PE PB =uur uu r(1)证明://CE 平面PAD ; (2)求点B 到平面ECD 的距离;24.如图,在直三棱柱111ABC A B C -中,90ABC ︒∠=,1AB AA =,,M N 分别为AC ,11B C 的中点.(1)求证://MN 平面11ABB A ; (2)求证:1AN A B ⊥.25.在ABC ∆中,已知()1,2A ,()3,4C ,点B 在x 轴上,AB 边上的高线CD 所在直线的方程为220x y --=. (1)求B 点坐标; (2)求ABC ∆面积.26.设直线l 的方程为()()1520a x y a a R ++--=∈. (1)求证:不论a 为何值,直线l 必过一定点P ;(2)若直线l 分别与x 轴正半轴,y 轴正半轴交于点(),0A A x ,()0,B B y ,当AOB ∆而积最小时,求AOB ∆的周长;(3)当直线l 在两坐标轴上的截距均为整数时,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.D解析:D 【解析】 【分析】当且仅当PC 垂直于()400kx y k ++=>时,四边形PACB 的面积最小,求出PC 后可得最小面积,从而可求k 的值. 【详解】圆C 方程为()2211x y +-=,圆心()0,1C ,半径为1.因为PA ,PB 为切线,221PC PA ∴=+且1=2122PACB S PA PA ⨯⨯⨯==四边形.∴当PA 最小时,PACB S 四边形最小,此时PC 最小且PC 垂直于()400kx y k ++=>. 又min 21PC k =+,222221+1k ⎛⎫∴=+,2k ∴=,故选D. 【点睛】圆中的最值问题,往往可以转化圆心到几何对象的距离的最值来处理,这类问题属于中档题.3.D解析:D 【解析】 【分析】根据题意讨论直线它在两坐标轴上的截距为0和在两坐标轴上的截距不为0时,求出对应a 的值,即可得到答案.【详解】由题意,当2a 0-+=,即a 2=时,直线ax y 2a 0+-+=化为2x y 0+=, 此时直线在两坐标轴上的截距都为0,满足题意;当2a 0-+≠,即a 2≠时,直线ax y 2a 0+-+=化为122x y a a a+=--,由直线在两坐标轴上的截距相等,可得2a2a a-=-,解得a 1=; 综上所述,实数a 2=或a 1=. 故选:D . 【点睛】本题主要考查了直线方程的应用,以及直线在坐标轴上的截距的应用,其中解答中熟记直线在坐标轴上的截距定义,合理分类讨论求解是解答的关键,着重考查了运算与求解能力,属于基础题.4.A解析:A 【解析】 【分析】设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解. 【详解】设切线长为d ,则2222(2)51(2)24d m m =++-=++, min 26d ∴=. 故选:A. 【点睛】本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.5.C解析:C 【解析】 【分析】 【详解】由题意可知旋转后的几何体如图:直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥 故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积.6.C解析:C 【解析】 【分析】由题意首先求得长方体的棱长,然后求解其外接球的表面积即可. 【详解】设长方体的棱长分别为,,a b c ,则236ab bc ac =⎧⎪=⎨⎪=⎩,所以()236abc =,于是213a b c =⎧⎪=⎨⎪=⎩,设球的半径为R ,则2222414R a b c =++=,所以这个球面的表面积为24R π=14π. 本题选择C 选项. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.7.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.A解析:A 【解析】 【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积. 【详解】由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.9.D解析:D 【解析】 【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N , 所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角, 设正三棱柱的各棱长为2,则115,22,3C N BC BN === 设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 2522θ+-==⨯⨯, 即异面直线AM 与1BC 所成角的余弦值为104,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.10.C解析:C【解析】【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案.【详解】正四面体ABCD中,,E F分别是线段AC的三等分点,P是线段AB的中点,G是直线BD的动点,⊥成立,故A错误;在A中,不存在点G,使PG EF⊥成立,故B错误;在B中,不存在点G,使FG EP在C中,不存在点G,使平面EFG⊥平面ACD成立,故C正确;在D中,存在点G,使平面EFG⊥平面ABD成立,故D错误.故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.11.B解析:B 【解析】 【分析】 【详解】设正方体的棱长为,则,所以,.又直线与平面所成的角小于等于,而为钝角,所以的范围为,选B.【考点定位】空间直线与平面所成的角.12.B解析:B 【解析】 【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果. 【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点, 所以BD AC ⊥,又1AC CC C =I , 所以BD ⊥平面11AAC C ,1C F Q 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =I ,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143xx ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =,所以112AF FA =或者12AFFA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题13.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为 6【解析】连结11B D ,易知面1ACD ⊥面11BDD B ,而1MN ACD ⊥,即1NM D O ⊥,NM 在面11BDD B 内,且点N 的轨迹是线段11B D ,连结1AB ,易知11AB D V 是等边三角形,则当N 为11B D 中点时,NA 6 14.②④【解析】【分析】对每一个选项分析判断得解【详解】根据已知可得面β和面γ可成任意角度和面α必垂直所以直线m 可以和面β成任意角度①不正确;l ⊂γl⊥m 所以l⊥α②正确;③显然不对;④因为l ⊂βl⊥α解析:②④ 【解析】 【分析】对每一个选项分析判断得解. 【详解】根据已知可得面β和面γ可成任意角度,和面α必垂直.所以直线m 可以和面β成任意角度,①不正确;l ⊂γ,l⊥m,所以l⊥α,②正确;③显然不对;④因为l ⊂β,l⊥α,所以α⊥β,④正确.故答案为②④ 【点睛】本题主要考查空间线面垂直和面面垂直的证明,意在考查学生对这些知识的理解掌握水平,属于基础题.15.【解析】【分析】点C 关于直线y=x 的对称点为(12)点C 关于x 轴的对称点为(2﹣1)三角形PAB 周长的最小值为(12)与(2﹣1)两点之间的直线距离【详解】点C 关于直线y=x 的对称点为(12)点C 关【解析】 【分析】点C 关于直线y=x 的对称点为C '(1,2),点C 关于x 轴的对称点为C ''(2,﹣1).三角形PAB 周长的最小值为C '(1,2)与C ''(2,﹣1)两点之间的直线距离. 【详解】点C 关于直线y=x 的对称点为C '(1,2),点C 关于x 轴的对称点为C ''(2,﹣1).三角形PAB 周长的最小值为C '(1,2)与C ''(2,﹣1)两点之间的直线距离,|C C '''(2,﹣1).【点睛】本题考查点到直线的距离公式,解题时要认真审题,仔细解答,注意合理地进行等价转化.16.60°【解析】【分析】首先证得是二面角的平面角解直角三角形求得的大小【详解】由于是的中点所以由于所以平面所以由于平面所以而所以平面所以所以是二面角的平面角设则所以所以在中所以所以故答案为:【点睛】本解析:60° 【解析】 【分析】首先证得EDC ∠是二面角E BD C --的平面角,解直角三角形求得EDC ∠的大小. 【详解】由于SB BC =,E 是SC 的中点,所以SC BE ⊥,由于,SC DE DE BE E ⊥⋂=,所以SC ⊥平面BDE ,所以SC BD ⊥.由于SA ⊥平面ABC ,所以SA BD ⊥,而SA SC S ⋂=,所以BD ⊥平面SAC ,所以,BD DC BD DE ⊥⊥,所以EDC ∠是二面角E BD C --的平面角.设1SA AB ==,则SB BC ==2SC =,所以在Rt SAC ∆中,12SA SC =,所以30SCA ∠=o ,所以60EDC ∠=o . 故答案为:60o 【点睛】本小题主要考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.17.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ【解析】若直线:3l y kx =-与直线2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(033303k -==-,直线l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫⎪⎝⎭18.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得 解析:37[2]4+ 【解析】 【分析】根据斜率的几何意义,()32x g x x =-表示函数y x =(2,3)连线的斜率,数形结合,即可求解. 【详解】()3x g x -=为点(x x 与点(2,3)连线的斜率,点(,),[0,1]x x x ∈在函数,[0,1]y x x =∈图像上,(1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-, 最小值为过A 点与,[0,1]y x x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入,[0,1]y x x =∈得,320,0,14(32)0kx x k k k k -+-=≠∆=--=,即281210k k -+=,解得374k +=或374k -= 当37k +=时,37[0,1]372x ==-∈+⨯, 当37k -=时,37[0,1]372x ==+∉-⨯ 不合题意,舍去,()g x 值域为37[,2]+.故答案为:37[,2]+.【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.19.【解析】分析:画出图形(如图)根据圆的性质可得然后可将问题转化为切线长最小的问题进而转化为圆心到直线距离的最小值的问题处理详解:根据题意画出图形如下图所示由题意得圆的圆心半径是由圆的性质可得四边形的解析:【解析】分析:画出图形(如图),根据圆的性质可得2PBC PACB S S =V 四边形,然后可将问题转化为切线长最小的问题,进而转化为圆心到直线距离的最小值的问题处理. 详解:根据题意画出图形如下图所示.由题意得圆22:20C x y y +-=的圆心()0,1,半径是1r =,由圆的性质可得2PBC PACB S S =V 四边形,四边形PACB 的最小面积是2, ∴PBC S V 的最小值112S rd ==(d 是切线长), ∴2d =最小值,∵圆心到直线的距离就是PC 的最小值,2221251k+==+又0k >, ∴2k =.点睛:本题考查圆的性质、切线长定理的运用,解题时注意转化思想方法的运用,结合题意将问题逐步转化为点到直线的距离的问题处理.20.【解析】【分析】作出直线和平面所成的角解直角三角形求得线面角的正弦值【详解】设为的中点连接根据正方体的性质可知平面所以是直线和平面所成的角设正方体的边长为在中所以故答案为:【点睛】本小题主要考查线面 解析:23【解析】 【分析】作出直线BE 和平面11ABB A 所成的角,解直角三角形求得线面角的正弦值. 【详解】设F 为1AA 的中点,连接,,EF EB BF ,根据正方体的性质可知EF ⊥平面11ABB A ,所以EBF ∠是直线BE 和平面11ABB A 所成的角.设正方体的边长为2,在Rt EBF ∆中2EF =,2222213BE =++=,所以2sin 3EF EBF BE ∠==. 故答案为:23【点睛】本小题主要考查线面角的求法,考查空间想象能力,属于基础题.三、解答题21.(1)证明见解析(2)8 【解析】试题分析:(1)欲证A 1D 1∥平面AB 1D ,根据直线与平面平行的判定定理可知只需证A 1D 1与平面AB 1D 内一直线平行,连接DD 1,根据中位线定理可知B 1D 1∥BD,且B 1D 1=BD ,则四边形B 1BDD 1为平行四边形,同理可证四边形AA 1D 1D 为平行四边形,则A 1D 1∥AD 又A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D ,满足定理所需条件;(2)根据面面垂直的性质定理可知AD⊥平面B 1C 1CB ,即AD 是三棱锥A ﹣B 1BC 的高,求出三棱锥A ﹣B 1BC 的体积,从而求出三棱锥B 1﹣ABC 的体积. 试题解析:(1)证明:如图,连结1DD .在三棱柱111ABC A B C -中,因为1,D D 分别是BC 与11B C 的中点,所以11//B D BD ,且11B D BD =. 所以四边形11B BDD 为平行四边形,所以11//BB DD ,且11BB DD =. 又1111//,AA BB AA BB =所以1111//,AA DD AA DD =, 所以四边形11AA D D 为平行四边形,所以11//A D AD .又11A D ⊄平面1AB D ,AD ⊂平面1AB D ,故11//A D 平面1AB D .(2)解:(方法1)在ABC ∆中,因为AB AC =,D 为BC 的中点,所以AD BC ⊥. 因为平面ABC ⊥平面11B C CB ,交线为BC ,AD ⊂平面ABC , 所以AD ⊥平面11B C CB ,即AD 是三棱锥1A B BC -的高. 在ABC ∆中,由4AB AC BC ===,得3AD =. 在1B BC ∆中,114,60B B BC B BC ==∠=︒, 所以1B BC ∆的面积213443S B BC ∆== 所以三棱锥1B ABC -的体积,即三棱锥1A B BC -的体积1114323833V S B BC AD =⨯∆⋅=⨯=.(方法 2)在1B BC ∆ 中,因为11,60B B BC B BC =∠=︒, 所以1B BC ∆为正三角形,因此1B D BC ⊥.因为平面ABC ⊥平面11B C CB ,交线为BC ,1B D ⊂平面11B C CB , 所以1B D ⊥平面ABC ,即1B D 是三棱锥1B ABC -的高. 在ABC ∆中,由4AB AC BC ===,得ABC ∆的面积23443ABC S ∆== 在1B BC ∆中,因为114,60B B BC B BC ==∠=︒,所以123B D =. 所以三棱锥1B ABC -的体积1114323833ABC V S B D ∆=⨯⋅=⨯=. 点睛:本题主要考查了线面平行的判定,以及三棱锥的体积的计算,同时考查了推理论证的能力、计算能力,转化与划归的思想,属于中档题. 22.(1)()()22314x y -+-=(2)5【解析】 【分析】(1)首先列出圆的标准方程()()()2220x a y b r r -+-=>,根据条件代入,得到关于,,a b r 的方程求解;(2)根据切线的对称性,可知,12222S PM PM =⨯⨯⨯=,这样求面积的最小值即是求PM 的最小值,当点P 是圆心到直线的距离的垂足时,PM 最小.【详解】解:(1)设圆C 的方程为()()()2220x a y b r r -+-=>.由题意得()()()()222222250,11,31,a b a b r a b r ⎧--=⎪⎪-+--=⎨⎪-+--=⎪⎩解得3,1,2.a b r =⎧⎪=⎨⎪=⎩故圆C 的方程为()()22314x y -+-=.另解:先求线段AB 的中垂线与直线250x y --=的交点,即2,25,y x y x =-⎧⎨=-⎩解得3,1,x y =⎧⎨=⎩从而得到圆心坐标为()3,1,再求24r =,故圆C 的方程为()()22314x y -+-=. (2)设四边形PMCN 的面积为S ,则2PMC S S =V . 因为PM 是圆C 的切线,所以PM CM ⊥, 所以12PMC S PM CM PM =⋅=V ,即22PMC S S PM ==V . 因为PM CM ⊥,所以PM ==因为P 是直线34100x y -+=上的任意一点,所以3PC ≥=,则PM =,即2PMC S S =≥V故四边形PMCN 的面积的最小值为 【点睛】本题考查了圆的标准方程,和与圆,切线有关的最值的计算,与圆有关的最值计算,需注意数形结合.23.(1)见解析;(2)13【解析】 【分析】(1)取PA 的三等分点F ,法一,利用线面平行的判定定理证明.法二,利用面面平行判定定理证明;(2)法一,利用等积转换即B ECD E BCD V V --=,即可求得,法二,利用空间向量法,求点到面的距离. 【详解】(1)解法一:取PA 的三等分点F ,连结,DF EF ,则13PF PA = 又因为13PE PB =,所以13EF AB =且//EF AB , 因为13CD AB=且//AB CD ,所以EF CD =且//EF CD ,四边形CDFE 是平行四边形, 所以//CE DF ,又平面DF ⊂平面 PAD ,CE ⊄平面 PAD , 所以//CE 平面 PAD .解法二:取AB 的三等分点G ,连结,FG CG ,则13AG AB =, 又因为13PE PB =, 所以23EG PA =且//EG PA ,EG ⊄平面PAD , PA ⊂平面PAD , //EG ∴平面PAD ,因为13CD AB=且//AB CD ,所以AG CD =且//AG CD , 四边形ADCG 是平行四边形.所以//AD CG ,CG ⊄平面PAD ,DA ⊂平面PAD ,//CG ∴平面PAD ,又因为EG CG G ⋂=,,EG CG ⊂平面CEG , 所以平面//CEG 平面PAD , 又因为CE ⊂平面CEG , 所以//CE 平面PAD .(2)解法一:设点B 到平面ECD 的距离为h .因为2PA AD ==,PD =222PA AD PD +=,所以,PA AD ⊥,因为,PA AB AB AD A ⊥⋂=,所以PA ⊥平面ABCD , 点E 平面ABCD 的距离是43,3DF ==, 12112BCD S ∆=⨯⨯=,11122ECD S CD DF ∆=⨯⨯=⨯=, 因为B ECD E BCD V V --=,所以,1141,333h h =⨯⨯= 点B 到平面ECD解法二:设点B 到平面ECD 的距离为h .因为2PA AD ==,PD =222PA AD PD +=所以,PA AD ⊥,因为,PA AB AB AD A ⊥⋂=,所以PA ⊥平面ABCD , 分别以,,AD AB AP 为x 轴y 轴z 轴,建立空间坐标系,4(0,0,0),(0,3,0),(2,1,0),(2,0,0),0,1,3A B C D E ⎛⎫ ⎪⎝⎭’40,2,3BE ⎛⎫=- ⎪⎝⎭u u u r , 设平面CDE 法向量1(,,)n x y z =u r , 因为04203y x z =⎧⎪⎨-+=⎪⎩,所以1(2,0,3)n =u r , 设BE 与平面ECD 所成角为θ, 则 点B 到平面ECD的距离11||cos BE n h BE n θ⋅====u u u r u r u u u r u r 点B 到平面ECD 的距离为【点睛】本题主要考查的是直线与平面平行的证明,点到面的距离的求法,以空间向量法求距离的应用,及解题时要注意认真审题,注意等价转化思想的合理应用,是中档题.24.(1)见解析(2)见解析【解析】【分析】(1)取AB 的中点P ,连接1,PM PB ,通过中位线定理求证四边形1PMNB 是平行四边形,进而求证;(2)连接1AB ,,设法证明11A B AB ⊥,111A B B C ⊥,进而证明1A B ⊥平面1AB N ,求得1A B AN ⊥.【详解】解:(1)如图,取AB 的中点P ,连接1,PM PB ,,M P Q 分别是,AC AB 的中点,//PM BC ∴,且12PM BC =,在直三棱柱11t ABC A B C -中, 11//BC B C ,11BC B C =, N Q 是11B C 的中点,∴1PM B N =,且1//PM B N , ∴四边形1PMNB 是平行四边形,1//MN PB ∴,而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,//MN ∴平面11ABB A .(2)如图,连接1AB ,由111ABC A B C -是直三棱柱,90ABC ︒∠=,1AB AA =可知,111B C BB ⊥,1111B C A B ⊥,1111BB B A B =I ,∴11B C ⊥平面11A B BA ,111B C A B ∴⊥,又Q 侧面11A B BA 为正方形,11A B AB ∴⊥,1111AB B C B ⋂=,1A B ∴⊥平面11AB C , 又AN ⊂平面11AB C ,1A B AN ∴⊥【点睛】本题考查线面平行,线线垂直的证明,属于中档题.25.(1) ()5,0B ; (2)6【解析】【分析】(1)根据AB 边上的高线CD 所在直线的方程为220x y --=求得AB 的斜率,再设B 点坐标利用斜率求解即可.(2)求得直线AC 的方程,再计算B 点到直线AC 的距离与线段AC 的长度即可.【详解】(1)由AB 边上的高线CD 所在直线的方程为220x y --=,其斜率为2,故直线AB 的斜率为1122k -==-.设()0,0B x 则00201512x x -=-⇒=-.故()5,0B (2)因为()1,2A ,()3,4C ,故42:131AC k -=-,故:2110AC l y x x y -=-⇒-+=. 又AC ==又B 点到直线AC的距离d == .故11622ABC S AC d ∆=⋅=⨯=. 【点睛】 本题主要考查了直线方程的表达式与解析几何中的距离公式等,需要根据题意选取公式求解即可.属于中等题型.26.(1)证明见解析;(2) 10+(3) 330x y --=,10x y -+=,50x y +-=,390x y +-=,320x y -=【解析】【分析】(1)将原式变形为()250a x x y -++-=,由2050x x y -=⎧⎨+-=⎩可得直线l 必过一定点()2,3P ;(2)由题可得52B y a =+,521A a x a +=+,则()1252521AOB a S a a ++⋅=⋅+V ,求出最值,并找到最值的条件,进而可得AOB ∆的周长; (3) 52a +,521a a ++均为整数,变形得523211a a a +=+++,只要31a +是整数即可,另外不要漏掉截距为零的情况,求出a ,进而可得直线l 的方程. 【详解】解:(1)由()1520a x y a ++--=得()250a x x y -++-=,则2050x x y -=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩, 所以不论a 为何值,直线l 必过一定点()2,3P ;(2)由()1520a x y a ++--=得,当0x =时,52B y a =+,当0y =时,521A a x a +=+,又由5205201B A y a a x a =+>⎧⎪+⎨=>⎪+⎩,得1a >-, ()()119141+121212221252521AOB a a a S a a ⎡⎤⎡⎤∴=⋅++++⋅=≥=⎢⎥⎢⎥+⎣⎦⎣⎦+V , 当且仅当()9411a a +=+,即12a =时,取等号. ()4,0A ∴,()0,6B ,AOB ∴∆的周长为4610OA OB AB ++=+=+(3) 直线l 在两坐标轴上的截距均为整数,即52a +,521a a ++均为整数, 523211a a a +=+++Q ,4,2,0,2a ∴=--, 又当52a =-时,直线l 在两坐标轴上的截距均为零,也符合题意, 所以直线l 的方程为330x y --=,10x y -+=,50x y +-=,390x y +-=,320x y -=.【点睛】本题考查直线恒过定点问题,考查直线与坐标轴围成的三角形的面积的最值,是中档题.。

【易错题】高中必修二数学下期中第一次模拟试卷(含答案)(2)

【易错题】高中必修二数学下期中第一次模拟试卷(含答案)(2)

【易错题】高中必修二数学下期中第一次模拟试卷(含答案)(2)一、选择题1.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥2.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .323π3.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 4.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ⊥n ,且n ∥β C .α⊥β,且m ∥α D .m ∥n ,且n ⊥β 5.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离6.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积为 ( )A 3πB .3πC .43πD .12π 7.用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形8.在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .23πB .43π C .53π D .2π9.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB .32π C .4πD .34π 10.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130B .140C .150D .16011.如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立12.已知ABC V 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,5BC =三棱锥O ABC -的体积为43,则球O 的表面积为( ) A .22πB .743πC .24πD .36π二、填空题13.已知圆22:(2)1M x y +-=,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B两点,则动弦AB 的中点P 的轨迹方程为__________.14.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,﹣1)的距离之和最小的点的坐标是 .15.在各棱长均为1的正四棱锥P ABCD -中,M 为线段PB 上的一动点,则当AM MC +最小时,cos AMC ∠=_________16.小明在解题中发现函数()32x f x x -=-,[]0,1x ∈的几何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,22⎡⎤⎢⎥⎣⎦,类似地,他研究了函数()3x g x -=,[]0,1x ∈,则函数()g x 的值域为_____17.若直线()():1210l m x m y m -+--=与曲线()2:422C y x =--有公共点,则直线l 的斜率的最小值是_________.18.在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.19.如图:点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ;③1DP BC ^; ④面1PDB ^面1ACD .其中正确的命题的序号是__________.20.如图,在体积为1V 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V,则21V V =__________.三、解答题21.如图所示,四棱锥S ABCD -中,SA ⊥底面ABCD ,090ABC ∠=,23SA AB ==,,1BC =,23AD =,060ACD ∠=,E 为CD 的中点.(1)求证://BC 平面SAE ;(2)求直线SD 与平面SBC 所成角的正弦值.22.如图,矩形ABCD 所在平面与半圆弧»CD所在平面垂直,M 是»CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.23.如图,在三棱锥S ABC -中,SAC ∆为等边三角形,4AC =,43BC =,BC AC ⊥,3cos SCB ∠=-,D 为AB 的中点.(1)求证:AC SD ⊥;(2)求直线SD 与平面SAC 所成角的大小.24.如图,在棱长均为4的三棱柱111ABC A B C -中,1,D D 分别是BC 和11B C 的中点.(1)求证:11//A D 平面1AB D(2)若平面ABC ⊥平面111,60BCC B B BC ∠=︒,求三棱锥1B ABC -的体积.25.在直角坐标系xOy 中,直线l 的参数方程为3112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 所在直线为极轴,且长度单位相同,建立极坐标系,得曲线C 的极坐标方程为22)4πρθ=-.(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长度.26.如图,四边形ABCD 为矩形,且2,1,AD AB PA ==⊥平面ABCD , 1PA =,E 为BC 的中点.(1)求证:PE DE ⊥; (2)求三棱锥C PDE -的体积;(3)探究在PA 上是否存在点G ,使得EG P 平面PCD ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内. 【考点定位】点线面的位置关系2.D解析:D 【解析】 【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果. 【详解】设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E 设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥Q 平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+=解得:3x =,3R =∴球的体积为:343233V R ππ==本题正确选项:D 【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.3.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO …,即满足2PO …,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO …故22220000103634PO x y y y ==+-+… 解得0825y 剟,0605x 剟 即0x 的取值范围是6[0,]5, 故选:B . 【点睛】解题的关键是充分利用几何知识,判断出2PO …,从而得到不等式求出参数的取值范围.4.D解析:D 【解析】 【分析】根据所给条件,分别进行分析判断,即可得出正确答案. 【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立; //m n 且n β⊥⇒m β⊥,故D 成立;故选:D 【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.5.B解析:B 【解析】 化简圆到直线的距离,又两圆相交. 选B6.C解析:C 【解析】 【分析】2的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为2,高为2,故三棱锥的外接球与以棱长为2的正方体的外接球相同,由此可得结论 【详解】由三视图知几何体是一个侧棱与底面垂直的三棱锥, 底面是斜边上的高为2的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为2,高为2,故三棱锥的外接球与以棱长为2的正方体的外接球相同,其直径为23,半径为3∴三棱锥的外接球体积为()343433ππ⨯=故选C 【点睛】本题主要考查了三视图,几何体的外接球的体积,考查了空间想象能力,计算能力,属于中档题.7.A解析:A 【解析】 【分析】 【详解】 画出截面图形如图 显然A 正三角形C 正方形: D 正六边形可以画出三角形但不是直角三角形; 故选A .用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形; ④截面为六边形时,可以是正六边形. 故可选A .8.C解析:C 【解析】 【分析】 【详解】由题意可知旋转后的几何体如图:直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥 故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积.9.A解析:A 【解析】 【分析】设BC 的中点是E ,连接DE ,由四面体A′­BCD 的特征可知,DE 即为球体的半径. 【详解】设BC 的中点是E ,连接DE ,A′E, 因为AB =AD =1,BD 2由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形 所以DE 为球体的半径3DE =2343S ππ==故选A 【点睛】求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.10.D解析:D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A =,可得221156AC AC A A =-=, 同理可得2211200102BD D B D D =-==,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分, 所以2211()()1450822AB AC BD =+=+=,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.11.C解析:C 【解析】 【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案. 【详解】正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是直线BD 的动点,在A 中,不存在点G ,使PG EF ⊥成立,故A 错误; 在B 中,不存在点G ,使FG EP ⊥成立,故B 错误;在C 中,不存在点G ,使平面EFG ⊥平面ACD 成立,故C 正确; 在D 中,存在点G ,使平面EFG ⊥平面ABD 成立,故D 错误. 故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.12.C解析:C 【解析】 【分析】由已知可得三角形ABC 为直角三角形,斜边BC 的中点O '就是ABC V 的外接圆圆心,利用三棱锥O ABC -的体积,求出O 到底面的距离,可求出球的半径,然后代入球的表面积公式求解. 【详解】在ABC V 中,∵2AB =,4AC =,25BC =AB AC ⊥, 则斜边BC 的中点O '就是ABC V 的外接圆的圆心, ∵三棱锥O ABC -的体积为43, 11424323OO '⨯⨯⨯⨯=,解得1OO '=,221(5)6R =+= 球O 的表面积为2424R ππ=. 故选C .【点睛】本题考查球的表面积的求法,考查锥体体积公式的应用,考查空间想象能力和计算能力,属于基础题.二、填空题13.【解析】【分析】转化条件点三点共线即可得到点满足的条件化简即可得解【详解】由圆的方程可知圆心半径为设点点三点共线可得由相似可得即联立消去并由图可知可得故答案为:【点睛】本题考查了圆的性质和轨迹方程的解析:2271416x y ⎛⎫+-=⎪⎝⎭(2)y < 【解析】 【分析】转化条件点P 、M 、Q 三点共线、2MQ PM BM ⋅=即可得到点P 满足的条件,化简即可得解. 【详解】由圆的方程可知圆心()0,2,半径为1.设点(),P x y ,(),0Q a ,点P 、M 、Q 三点共线, 可得22y x a-=-, 由相似可得2MQ PM BM ⋅=即()222421a x y ++-=,联立消去a 并由图可知2y <,可得()2271()2416x y y +-=<.故答案为:()2271()2416x y y +-=<【点睛】本题考查了圆的性质和轨迹方程的求法,考查了转化能力和运算能力,属于中档题.14.(24)【解析】【分析】【详解】取四边形ABCD 对角线的交点这个交点到四点的距离之和就是最小值可证明如下:假设在四边形ABCD 中任取一点P在△APC 中有AP +PC >AC 在△BPD 中有PB +PD >BD解析:(2,4) 【解析】 【分析】 【详解】取四边形ABCD 对角线的交点,这个交点到四点的距离之和就是最小值.可证明如下: 假设在四边形ABCD 中任取一点P ,在△APC 中,有AP +PC >AC ,在△BPD 中,有PB +PD >BD ,而如果P 在线段AC 上,那么AP +PC =AC ;同理,如果P 在线段BD 上,那么BP +PD =BD.如果同时取等号,那么意味着距离之和最小,此时P 就只能是AC 与BD 的交点. 易求得P(2,4).15.【解析】【分析】将侧面和侧面平展在一个平面上连即可求出满足最小时点的位置以及长解即可求出结论【详解】将侧面和侧面平展在一个平面上连与交点即为满足最小正四棱锥各棱长均为在平展的平面中四边形为菱形且在正解析:13-【解析】 【分析】将侧面PAB 和侧面PBC 平展在一个平面上,连AC ,即可求出满足AM MC +最小时,点M 的位置,以及,AM CM 长,解AMC V ,即可求出结论. 【详解】将侧面PAB 和侧面PBC 平展在一个平面上, 连AC 与PB 交点即为满足AM MC +最小, 正四棱锥P ABCD -各棱长均为1,在平展的平面中四边形PABC 为菱形,且60PAB ∠=o ,3AM MC ==P ABCD -中,2AC =在ACM V 中,222332144cos 32324AM CM AC AMC AM CM +-+-∠===-⋅⋅. 故答案为:13-.【点睛】本题考查线线角,要注意多面体表面的长度关系转化为共面的长度关系,考查直观想象能力,属于中档题.16.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得解析:3[2]4+ 【解析】 【分析】根据斜率的几何意义,()32g x x =-表示函数y =(2,3)连线的斜率,数形结合,即可求解. 【详解】()32g x x =-为点(x 与点(2,3)连线的斜率,点([0,1]x x ∈在函数[0,1]y x =∈图像上,(1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-, 最小值为过A点与[0,1]y x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入[0,1]y x =∈得,320,0,14(32)0kx k k k k --=≠∆=--=,即281210k k -+=,解得k =或k =当k =3[0,1]==-,当k =3[0,1]==+ 不合题意,舍去,()g x 值域为37[,2]4+.故答案为:37[,2]+.【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.17.【解析】【分析】将直线的方程化为可求出直线所过的定点坐标作出曲线的图象利用数形结合思想可得出当直线与曲线有公共点时直线的斜率的最小值【详解】将直线的方程化为由得则直线过定点将曲线的方程变形为曲线为圆解析:15【解析】 【分析】将直线l 的方程化为()()210m x y x y +--+=,可求出直线l 所过的定点坐标,作出曲线C 的图象,利用数形结合思想可得出当直线l 与曲线C 有公共点时,直线l 的斜率的最小值. 【详解】将直线l 的方程化为()()210m x y x y +--+=,由2100x y x y +-=⎧⎨+=⎩,得11x y =-⎧⎨=⎩. 则直线l 过定点()1,1P -,将曲线C 的方程变形为()()()222242x y y -+-=≥,曲线C 为圆()()22224x y -+-=的上半圆,如下图所示:由图象可知,当直线l 过点A 时,直线l 的斜率取最小值211415PA k -==+. 故答案为:15. 【点睛】本题考查利用直线与圆的位置关系求直线斜率的最值,考查数形结合思想的应用,属于中等题.18.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π 【解析】 【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB . 【详解】PA ⊥Q 平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,,,AC BC PA AC A BC ⊥=∴⊥I 平面PAC ,BC PC ⊥,,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π.【点睛】本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.19.①②④【解析】对于①因为从而平面故上任意一点到平面的距离均相等以为顶点平面为底面则三棱锥的体积不变正确;对于②连接容易证明且相等由于①知:平面平面所以可得面②正确;对于③由于平面若则平面则为中点与动解析:. ① ② ④ 【解析】对于①,因为11//AD BC ,从而1//BC 平面1AD C ,故1BC 上任意一点到平面1AD C 的距离均相等,∴以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,正确;对于②,连接111,A B A C 容易证明111//AC A D 且相等,由于①知:11//AD BC ,平面11//BA C 平面1ACD ,所以可得1//A P 面1ACD ,②正确;对于③,由于DC ⊥平面111,BCB C DC BC ∴⊥,若1DP BC ^,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 动点矛盾,错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,由面面垂直的判定知平面1PDB ⊥平面1ACD ,④正确,故答案为①②④.20.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这 解析:23【解析】分析:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h,再求21V V . 详解:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h, 则222212222111()233.3r h r h h r h r hV V r hr hππππππ-+-===故答案为:23. 点睛:(1)本题主要考查圆锥圆柱体积的计算,意在考查学生对这些知识的掌握水平.(2)圆柱的体积为2V sh r h π==,圆锥的体积为21133V sh r h π==. 三、解答题21.(1)见解析; (2)7. 【解析】 【分析】(1)在ACD ∆中,由余弦定理可解得:4CD = 所以222AC AD CD +=,所以ACD ∆是直角三角形,又ACE ∆可证为等边三角形,所以060CAE BCA ∠==∠,所以//BC AE ,即可证明//BC 平面SAE ;(2):由(1)可知090BAE ∠=,以点A 为原点,以AB ,AE ,AS 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,利用空间向量可求直线SD 与平面SBC 所成角的正弦值. 【详解】(1)证明:因为AB =1BC =,090ABC ∠=,所以2AC =,060BCA ∠=,在ACD ∆中,AD =2AC =,060ACD ∠=, 由余弦定理可得:2222?cos AD AC CD AC CD ACD =+-∠ 解得:4CD =所以222AC AD CD +=,所以ACD ∆是直角三角形, 又E 为CD 的中点,所以12AE CD CE == 又060ACD ∠=,所以ACE ∆为等边三角形, 所以060CAE BCA ∠==∠,所以//BC AE , 又AE ⊂平面SAE ,BC ⊄平面SAE , 所以//BC 平面SAE .(2)解:由(1)可知090BAE ∠=,以点A 为原点,以AB ,AE ,AS 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,0,2S ,)B,)C,()D .所以)3,0,2SB =-u u v ,()3,1,2SC =-u u u v,()3,3,2SD =--u u u v.设(),,n x y z =v为平面SBC 的法向量,则·0·0n SB n SC ⎧=⎨=⎩u u v v u u u v v ,即320320x z x y z ⎧-=⎪⎨+-=⎪⎩ 设1x =,则0y =,32z =,即平面SBC 的一个法向量为31,0,2n ⎛= ⎝⎭v , 所以·2321cos ,77164n SD n SD n SD-===-⨯u u u v v u u u v vu u u v v 所以直线SD 与平面SBC 所成角的正弦值为217. 【点睛】不妨考查线面平行的证明以及利用空间向量求线面角,属中档题. 22.(1)证明见解析 (2)存在,理由见解析 【解析】 【分析】 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.23.(1)证明见解析;(2)6π. 【解析】【分析】(1)取AC 的中点O ,连接OS 、OD ,证明出OS AC ⊥,OD AC ⊥,利用直线与平面垂直的判定定理可得出AC ⊥平面SOD ,即可证明出AC SD ⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H ,说明直线SD 与平面SAC 所成的角为OSD ∠,求出OSD ∆三边边长,利用余弦定理求出OSD ∠,即可求出直线SD 与平面SAC 所成角的大小.【详解】(1)取AC 的中点O ,连接OS 、OD , SAC ∆Q 为等边三角形,O 为AC 的中点,SO AC ∴⊥,D Q 、O 分别为AB 、AC 的中点,//OD BC ∴,BC AC ⊥Q ,OD AC ∴⊥, SO OD O =Q I ,AC ∴⊥平面SOD ,SD ⊂Q 平面SOD ,AC SD ∴⊥; (2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H ,AC ⊥Q 平面SOD ,DH ⊂平面SOD ,DH AC ∴⊥,DH SO ⊥Q ,SO AC O =I ,DH ∴⊥平面SAC ,所以,直线SD 与平面SAC 所成的角为OSD ∠,由(2)知,1232OD BC ==AC BC ⊥Q ,228AB AC BC ∴+=. SAC ∆Q 是边长为4的等边三角形,4sin233SO π∴== 在SBC ∆中,4SC =,43BC =由余弦定理得2222cos 88SB SC BC SC BC SCB =+-⋅⋅∠=,222SB ∴=. 由余弦定理得2221cos 28SA AB SB SAB SA AB +-∠==-⋅, 2222cos 36SD SA AD SA AD SAD ∴=+-⋅⋅∠=,6SD ∴=.在SOD ∆中,由余弦定理得2223cos 2SO SD OD OSD SO SD +-∠==⋅. 0OSD π<∠<Q ,6OSD π∴∠=,因此,直线SD 与平面SAC 所成角的大小为6π. 【点睛】 本题考查利用线面垂直的性质证明线线垂直,同时也考查了直线与平面所成角的计算,涉及到利用余弦定理解三角形,考查推理能力与计算能力,属于中等题.24.(1)证明见解析(2)8【解析】试题分析:(1)欲证A 1D 1∥平面AB 1D ,根据直线与平面平行的判定定理可知只需证A 1D 1与平面AB 1D 内一直线平行,连接DD 1,根据中位线定理可知B 1D 1∥BD,且B 1D 1=BD ,则四边形B 1BDD 1为平行四边形,同理可证四边形AA 1D 1D 为平行四边形,则A 1D 1∥AD又A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D ,满足定理所需条件;(2)根据面面垂直的性质定理可知AD⊥平面B 1C 1CB ,即AD 是三棱锥A ﹣B 1BC 的高,求出三棱锥A ﹣B 1BC 的体积,从而求出三棱锥B 1﹣ABC 的体积.试题解析:(1)证明:如图,连结1DD .在三棱柱111ABC A B C -中,因为1,D D 分别是BC 与11B C 的中点,所以11//B D BD ,且11B D BD =.所以四边形11B BDD 为平行四边形,所以11//BB DD ,且11BB DD =.又1111//,AA BB AA BB =所以1111//,AA DD AA DD =,所以四边形11AA D D 为平行四边形,所以11//A D AD .又11A D ⊄平面1AB D ,AD ⊂平面1AB D ,故11//A D 平面1AB D .(2)解:(方法1)在ABC ∆中,因为AB AC =,D 为BC 的中点,所以AD BC ⊥.因为平面ABC ⊥平面11B C CB ,交线为BC ,AD ⊂平面ABC ,所以AD ⊥平面11B C CB ,即AD 是三棱锥1A B BC -的高.在ABC ∆中,由4AB AC BC ===,得AD =.在1B BC ∆中,114,60B B BC B BC ==∠=︒,所以1B BC ∆的面积214S B BC ∆== 所以三棱锥1B ABC -的体积,即三棱锥1A B BC -的体积111833V S B BC AD =⨯∆⋅=⨯=. (方法 2)在1B BC ∆ 中,因为11,60B B BC B BC =∠=︒,所以1B BC ∆为正三角形,因此1B D BC ⊥.因为平面ABC ⊥平面11B C CB ,交线为BC ,1B D ⊂平面11B C CB ,所以1B D ⊥平面ABC ,即1B D 是三棱锥1B ABC -的高.在ABC ∆中,由4AB AC BC ===,得ABC ∆的面积244ABC S ∆== 在1B BC ∆中,因为114,60B B BC B BC ==∠=︒,所以1B D =.所以三棱锥1B ABC -的体积111833ABC V S B D ∆=⨯⋅=⨯=. 点睛:本题主要考查了线面平行的判定,以及三棱锥的体积的计算,同时考查了推理论证的能力、计算能力,转化与划归的思想,属于中档题.25.(1)22220x y x y +--=;(2【解析】【分析】(1)由公式cos sin x y ρθρθ=⎧⎨=⎩可得曲线C 的直角坐标方程; (2)把直线参数方程化为普通方程,曲线C 是圆,因此由垂径定理计算弦长,即求出圆心到直线的距离,由勾股定理计算弦长.【详解】(1)因为)4πρθ=-,所以()cos cos sin sin 2cos sin 44ππρθθθθ⎫=+=+⎪⎭ 即()22cos sin ρρθρθ=+.因为222cos ,sin ,x y x y ρθρθρ===+,所以222()x y x y +=+,所以曲线C 的直角坐标方程为22220x y x y +--= (2)因为直线l的参数方程为112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),所以333(3)3x y t t -=-+=-, 所以l 的直角坐标方程为330x y -+=所以圆心()1,1到直线l 的距离()21331213d -+==+, 所以21222274AB d =-=-=,所以线段AB 的长度为7 【点睛】 本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化.考查圆的弦长问题.求圆弦长,一般用几何方法,即求出圆心到弦所在直线距离(弦心距),由勾股定理计算弦长.26.(1)见解析;(2)16;(3)见解析. 【解析】【分析】(1)连结AE ,由几何体的空间结构可证得DE PAE ⊥平面,利用线面垂直的定义可知DE PE ⊥.(2)由(1)知DCE ∆为腰长为1的等腰直角三角形,结合题意转化顶点可得16C PDE P DCE V V --==. (3)在PA 上存在中点G ,使得//EG PCD 平面.取,PA PD 的中点,G H ,连结,,EG GH CH . 易证得四边形EGHC 是平行四边形,所以EG //CH ,结合线面平行的判断定理可知EG //平面PCD .【详解】(1)连结AE ,∵E 为BC 的中点,1EC CD ==,∴DCE ∆为等腰直角三角形,则45DEC ∠=o ,同理可得45AEB ∠=o ,∴90AED ∠=o ,∴DE AE ⊥,又PA ABCD 平面⊥,且DE ABCD ⊂平面, ∴PA DE ⊥,又∵AE PA A ⋂=,∴DE PAE ⊥平面,又PE PAE ⊂平面,∴DE PE ⊥.(2)由(1)知DCE ∆为腰长为1的等腰直角三角形,∴111122DCE S ∆=⨯⨯=,而PA 是三棱锥P DCE -的高, ∴111113326C PDE P DCE DCE V V S PA --∆==⋅=⨯⨯=. (3)在PA 上存在中点G ,使得//EG PCD 平面.理由如下:取,PA PD 的中点,G H ,连结,,EG GH CH .∵,G H 是,PA PD 的中点, ∴//GH AD ,且12GH AD =, 又因为E 为BC 的中点,且四边形ABCD 为矩形,所以EC //AD ,且EC =12AD , 所以EC //GH ,且EC =GH ,所以四边形EGHC 是平行四边形,所以EG //CH ,又EG ⊄平面PCD ,CH ⊂平面PCD ,所以EG //平面PCD .【点睛】 本题主要考查线面垂直的判断定理,线面垂直的判断定理,棱锥的体积公式,立体几何中探索问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.。

【易错题】高中必修二数学下期中第一次模拟试题(及答案)(2)

【易错题】高中必修二数学下期中第一次模拟试题(及答案)(2)

【易错题】高中必修二数学下期中第一次模拟试题(及答案)(2)一、选择题1.已知a ,b 是两条异面直线,且a b ⊥r r,直线c 与直线a 成30°角,则c 与b 所成的角的大小范围是( ) A .[]60,90︒︒B .[]30,90︒︒C .[]30,60︒︒D .[]45,90︒︒2.已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .643.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .2 B .3 C .2 D .2 4.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .65.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 6.<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .8πB .12πC .20πD .24π7.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ⊥n ,且n ∥β C .α⊥β,且m ∥α D .m ∥n ,且n ⊥β 8.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = )A .1B .1-C .2-或1D .2或19.设直线,a b 是空间中两条不同的直线,平面,αβ是空间中两个不同的平面,则下列说法正确的是( )A .若a ∥α,b ∥α,则a ∥bB .若a ∥b ,b ∥α,则a ∥αC .若a ∥α,α∥β,则a ∥βD .若α∥β,a α⊂,则a ∥β10.,为两个不同的平面,,为两条不同的直线,下列命题中正确的是( )①若,,则; ②若,,则;③若,,,则 ④若,,,则.A .①③B .①④C .②③D .②④11.已知AB 是圆22620x y x y +-+=内过点(2,1)E 的最短弦,则||AB 等于( )A .3B .22C .23D .2512.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB .32π C .4πD .34π 二、填空题13.在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.14.如图,在正方体1111—ABCD A B C D 中,M N ,分别为棱111C D C C ,的中点,有以下四个结论:①直线AM 与1CC 是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与1MB 是异面直线; ④直线AM 与1DD 是异面直线. 其中正确的结论的序号为________.15.点(5,2)到直线()1(21)5m x m y m -+-=-的距离的最大值为________.16.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2正三角形,,E F 分别是,PA AB 的中点,90CEF ︒∠=,则球O 的体积为_________________。

【易错题】高中必修二数学下期中试题及答案

【易错题】高中必修二数学下期中试题及答案

【易错题】高中必修二数学下期中试题及答案一、选择题1.已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( ) A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=I ,n m ⊥,则n α⊥2.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( ) A .-3B .-4C .-6D .36-3.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ⊥n ,且n ∥β C .α⊥β,且m ∥α D .m ∥n ,且n ⊥β 4.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离5.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .2B .32C 322D .226.已知圆M :2220x y y =++与直线l :350ax y a +-+=,则圆心M 到直线l 的最大距离为( ) A .5B .6C .35D 417.已知点()1,2-和33⎛⎫⎪ ⎪⎝⎭在直线():100l ax y a --=≠的两侧,则直线l 的倾斜角的取值范围是 ( ) A .,43ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫⎪⎝⎭C .25,36ππ⎛⎫⎪⎝⎭D .30,,34πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭8.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个B .2个C .3个D .4个9.某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13B .12C .16D .110.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1011.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130B .140C .150D .16012.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题13.在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:① 平行于同一平面的两个不同平面互相平行;② 平行于同一直线的两个不同平面互相平行;③ 垂直于同一直线的两个不同平面互相平行;④ 垂直于同一平面的两个不同平面互相平行;其中正确的有________14.已知,m n 为直线,,αβ为空间的两个平面,给出下列命题:①,//m n m n αα⊥⎧⇒⎨⊥⎩;②,////m n m n αβαβ⊂⎧⎪⊂⇒⎨⎪⎩;③,//m m ααββ⊥⎧⇒⎨⊥⎩;④,//m m n n ββ⊥⎧⇒⎨⊥⎩.其中的正确命题为_________________.15.正三棱柱的底面边长为,高为2,则它的外接球的表面积为 . 16.函数2291041y x x x +-+_________.17.直线10x y --=与直线20x ay --=互相垂直,则a =__________.18.已知棱长等于31111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.19.若直线:20l kx y --=与曲线()2111C y x --=-有两个不同的交点,则实数k 的取值范围________.20.如图:点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ;③1DP BC ^; ④面1PDB ^面1ACD .其中正确的命题的序号是__________.三、解答题21.如图所示,四棱锥S ABCD -中,SA ⊥底面ABCD ,090ABC ∠=,23SA AB ==,,1BC =,23AD =,060ACD ∠=,E 为CD 的中点.(1)求证://BC 平面SAE ;(2)求直线SD 与平面SBC 所成角的正弦值.22.如图1所示,在等腰梯形ABCD 中,4524AB CD BAD AB CD ∠=︒==∥,,,点E 为AB 的中点.将ADE ∆沿DE 折起,使点A 到达P 的位置,得到如图2所示的四棱锥P EBCD -,点M 为棱PB 的中点.(1)求证:PD MCE ∥平面;(2)若PDE EBCD ⊥平面平面,求三棱锥M BCE -的体积.23.如图,四棱锥P ABCD -,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设二面角D AE C --为60°,1AP =,3AD =,求直线AC 与平面ECD 所成角的正弦值.24.已知点()1,0P ,()4,0Q ,一动点M 满足2MQ MP =. (1)求点M 的轨迹方程;(2)过点()2,3A 的直线l 与(1)中的曲线有且仅有一个公共点,求直线l 的方程. 25.四棱锥P -ABCD 中,底面ABCD 是直角梯形,//AB CD ,90BCD ∠=︒,22AB AD DC ===.PAD △ 为正三角形,二面角P -AD -C 的大小为23π.(1)线段AD 的中点为M.求证:平面PMB ⊥平面ABCD ; (2)求直线BA 与平面P AD 所成角的正弦值.26.如图,在直三棱柱111ABCA B C 中,AC BC ⊥,14CC =,M 是棱1CC 上的一点.(1)求证:BC AM ⊥;(2)若N 是AB 的中点,且//CN 平面1AB M ,求CM 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】由题设,,αβ⊥ 则A. 若m α⊂,则m β⊥,错误;B. 若m α⊂,n β⊂,则m n ⊥ 错误;D. 若m αβ⋂=,n m ⊥,当n β⊄ 时不能得到n α⊥,错误. 故选C.2.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-,则圆心坐标为(1,1)-,半径r =又由圆心到直线的距离为d ==所以由圆的弦长公式可得4=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.3.D解析:D 【解析】 【分析】根据所给条件,分别进行分析判断,即可得出正确答案. 【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立; //m n 且n β⊥⇒m β⊥,故D 成立;故选:D 【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.4.B解析:B 【解析】化简圆到直线的距离,又两圆相交. 选B5.B解析:B 【解析】 【分析】根据使得90APB ∠=︒的点P 在以AB 为直径的圆上,再分析轨迹圆与圆C 的关系即可. 【详解】由题, 使得90APB ∠=︒的点P 在以AB 为直径的圆上,又两点(),A m m -,(),B m m -, 所以圆心为()0,0.()222m m m +-=.故P 的轨迹方程为2222x y m +=.又由题意知,当圆()()22:341C x y -+-=内切于222x y m +=时m 取最大值. 2223416m =+=,故32m =故选:B 【点睛】本题主要考查了圆与圆的位置关系,重点是根据90APB ∠=︒求出点P 的轨迹.属于中等题型.6.A解析:A 【解析】 【分析】计算圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,最大距离为MN ,得到答案. 【详解】圆M :2220x y y =++,即()2211x y ++=,圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,故圆心M 到直线l 的最大距离为5MN =.故选:A . 【点睛】本题考查了点到直线距离的最值问题,确定直线过定点()3,5N -是解题的关键.7.D解析:D 【解析】设直线l 的倾斜角为θ∈[0,π).点A (1,−2),B (3,0). 直线l :ax −y −1=0(a ≠0)经过定点P (0,−1).()121,01PA PB k k ---==-==-∵点(1,−2)和在直线l :ax −y −1=0(a ≠0)的两侧,∴k P A <a <k PB ,∴−1<tanθtanθ≠0. 解得30,34ππθθπ<<<<.本题选择D 选项.8.C解析:C 【解析】 【分析】(1)翻折时使得平面ABE ⊥平面ABC ,由面面垂直的性质定理得出BC ⊥平面ABE ,从而使得(1)有可能;(2)翻折时使得点E 、F 两点重合,利用勾股定理可证得此时AE CE ⊥,即AE FC ⊥;(3)翻折时使得平面ABE 和平面BCF 同时与平面ABC 垂直,利用面面垂直的性质定理、直线与平面平行的判定定理以及面面平行的判定定理可证明出平面//EAB 平面FGT ;(4)利用反证法,可推出//BC AE 不成立. 【详解】(1)翻折时,若平面ABE ⊥平面ABC ,由于ABC ∆是以B 为直角顶点的等腰直角三角形,则BC AB ⊥,又Q 平面ABE I 平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABE ,AE ⊂Q 平面ABC ,此时AE BC ⊥;(2)设AB BC a ==,则AC =,且有AE CF a ==,翻折时,若点E 、F 重合,则AE CE a ==,222AE CE AC ∴+=,此时,AE CE ⊥, 即AE FC ⊥;(3)如下图所示:翻折时,若平面ABE 和平面BCF 同时与平面ABC 垂直, 取AB 的中点D ,连接DE 、FG 、GT 、FT .ABE ∆Q 是等边三角形,且D 为AB 的中点,DE AB ⊥∴.Q 平面ABE ⊥平面ABC ,平面ABE I 平面ABC AB =,DE ⊂平面ABE . DE ∴⊥平面ABC ,同理可证FG ⊥平面ABC ,//DE FG ∴, DE ⊄Q 平面FGT ,FG ⊂平面FGT ,//DE ∴平面FGT .G Q 、T 分别为BC 、AC 的中点,//AB GT ∴,AB ⊄Q 平面FGT ,GT ⊂平面FGT ,//AB ∴平面FGT . DE AB D =Q I ,∴平面//EAB 平面FGT ;(4)假设AE 与BC 可能平行,BC AB ⊥Q ,则AE AB ⊥,事实上60BAE ∠=o , 即AE 与AB 不垂直,假设不成立,因此,AE 与BC 不可能平行. 因此,可能正确命题的个数为3. 故选:C. 【点睛】本题考查的是线面位置关系的判定,判断时要熟悉线面、面面平行与垂直的判定、性质定理,考查推理能力,属于中等题.9.A解析:A 【解析】 【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积. 【详解】由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.10.D解析:D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.11.D解析:D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.12.D解析:D 【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题13.①③【解析】【分析】对4个命题分别进行判断即可得出结论【详解】解:①平行于同一平面的两个不同平面互相平行正确;②平行于同一直线的两个不同平面互相平行或相交不正确;③垂直于同一直线的两个不同平面互相平解析:①③ 【解析】 【分析】对4个命题分别进行判断,即可得出结论. 【详解】解:①平行于同一平面的两个不同平面互相平行,正确; ②平行于同一直线的两个不同平面互相平行或相交,不正确; ③垂直于同一直线的两个不同平面互相平行,正确; ④垂直于同一平面的两个不同平面互相平行或相交,不正确. 故答案为:①③.【点睛】本题考查类比推理,考查学生分析解决问题的能力,属于基础题.14.③④【解析】关于①也会有的结论因此不正确;关于②也会有异面的可能的结论因此不正确;容易验证关于③④都是正确的故应填答案③④解析:③④ 【解析】关于①,也会有n ⊂α的结论,因此不正确;关于②,也会有,m n 异面的可能的结论,因此不正确;容易验证关于③④都是正确的,故应填答案③④.15.【解析】试题分析:由正三棱柱底面边长为得底面所在平面截其外接球所成圆半径为又由高为则球心到圆的球心距为根据球心距截面圆半径球半径构成的直角三角形满足勾股定理我们易得半径满足:已知求得正三棱柱外接球所 解析:【解析】试题分析:由正三棱柱底面边长为2,得底面所在平面截其外接球所成圆O 半径为23r =,又由高为2,则球心到圆O 的球心距为1d =,根据球心距,截面圆半径,球半径构成的直角三角形满足勾股定理,我们易得半径R 满足:22273R r d =+=,已知求得正三棱柱外接球,所以外接球的表面积为22843S R ππ==. 考点:棱柱的几何特征,球的表面积,空间位置关系和距离.【方法点晴】解决本题的关键是确定球心的位置,进而确定半径.因为三角形的外心到三角形的三个顶点的距离相等,所以过三角形的外心且垂直于此三角形的所在平面的垂线上的任意一点到次三角形三个顶点的距离相等,所以过该三角形的三个顶点的球的球心必在垂线上.所以本题中球心必在上下底面外心的连线上,进而利用球心距,截面圆半径,球半径构成的直角三角形,即可算出.16.【解析】【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】 74【解析】 【分析】将2291041y x x x +-+()2222354y x x =+-+()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =+-++即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值; 【详解】解:()22222291041354y x x x x x =++-+=++-+,设()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =++-+=+,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,()22153474BA =+--=min 74y ∴=故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题.17.【解析】【分析】根据直线垂直的条件计算即可【详解】因为直线与直线互相垂直所以解得故填【点睛】本题主要考查了两条直线垂直的条件属于中档题 解析:1-【解析】 【分析】根据直线垂直的条件计算即可. 【详解】因为直线10x y --=与直线20x ay --=互相垂直, 所以110a ⨯+= 解得1a =-.故填1-.【点睛】本题主要考查了两条直线垂直的条件,属于中档题.18.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【解析:3π. 【解析】 【分析】当过球内一点E 的截面与OE 垂直时,截面面积最小可求截面半径,即可求出过点E 的平面截球O 的截面面积的最小值. 【详解】解:棱长等于1111ABCD A B C D -,它的外接球的半径为3,||OE =当过点E 的平面与OE 垂直时,截面面积最小,r 33S ππ=⨯=, 故答案为:3π. 【点睛】本题考查过点E 的平面截球O 的截面面积的最小值及接体问题,找准量化关系是关键,属于中档题.19.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k 的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则解析:4,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可知,曲线C 为圆()()22111x y -+-=的右半圆,作出直线l 与曲线C 的图象,可知直线l 是过点()0,2-且斜率为k 的直线,求出当直线l 与曲线C 相切时k 的值,利用数形结合思想可得出当直线l 与曲线C 有两个公共点时实数k 的取值范围. 【详解】对于直线:2l y kx =-,则直线l 是过点()0,2P -且斜率为k 的直线,对于曲线1C x =-,则101x x -≥⇒≥, 曲线C 的方程两边平方并整理得()()22111x y -+-=, 则曲线C 为圆()()22111x y -+-=的右半圆,如下图所示:当直线l 与曲线C 相切时,0k >,且有()222123111k k k k ---==++-,解得43k =, 当直线l 过点()1,0A 时,则有20k -=,解得2k =. 结合图象可知,当4,23k ⎛⎤∈ ⎥⎝⎦时,直线l 与曲线C 有两个交点. 故答案为:4,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查利用直线与曲线的交点个数求参数,解题的关键就是将曲线C 化为半圆,利用数形结合思想求解,同时要找出直线与曲线相切时的临界位置,考查数形结合思想的应用,属于中等题.20.①②④【解析】对于①因为从而平面故上任意一点到平面的距离均相等以为顶点平面为底面则三棱锥的体积不变正确;对于②连接容易证明且相等由于①知:平面平面所以可得面②正确;对于③由于平面若则平面则为中点与动解析:. ① ② ④ 【解析】对于①,因为11//AD BC ,从而1//BC 平面1AD C ,故1BC 上任意一点到平面1AD C 的距离均相等,∴以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,正确;对于②,连接111,A B A C 容易证明111//AC A D 且相等,由于①知:11//AD BC ,平面11//BA C 平面1ACD ,所以可得1//A P 面1ACD ,②正确;对于③,由于DC ⊥平面111,BCB C DC BC ∴⊥,若1DP BC ^,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 动点矛盾,错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,由面面垂直的判定知平面1PDB ⊥平面1ACD ,④正确,故答案为①②④.三、解答题21.(1)见解析; (2)7. 【解析】 【分析】(1)在ACD ∆中,由余弦定理可解得:4CD = 所以222AC AD CD +=,所以ACD ∆是直角三角形,又ACE ∆可证为等边三角形,所以060CAE BCA ∠==∠,所以//BC AE ,即可证明//BC 平面SAE ;(2):由(1)可知090BAE ∠=,以点A 为原点,以AB ,AE ,AS 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,利用空间向量可求直线SD 与平面SBC 所成角的正弦值. 【详解】(1)证明:因为AB =1BC =,090ABC ∠=,所以2AC =,060BCA ∠=,在ACD ∆中,AD =2AC =,060ACD ∠=, 由余弦定理可得:2222?cos AD AC CD AC CD ACD =+-∠ 解得:4CD =所以222AC AD CD +=,所以ACD ∆是直角三角形, 又E 为CD 的中点,所以12AE CD CE == 又060ACD ∠=,所以ACE ∆为等边三角形, 所以060CAE BCA ∠==∠,所以//BC AE , 又AE ⊂平面SAE ,BC ⊄平面SAE , 所以//BC 平面SAE .(2)解:由(1)可知090BAE ∠=,以点A 为原点,以AB ,AE ,AS 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,0,2S ,)B,)C,()D .所以)3,0,2SB =-u u v ,()3,1,2SC =-u u u v,()3,3,2SD =--u u u v.设(),,n x y z =v为平面SBC 的法向量,则·0·0n SB n SC ⎧=⎨=⎩u u v v u u u v v ,即320320x z x y z ⎧-=⎪⎨+-=⎪⎩ 设1x =,则0y =,32z =,即平面SBC 的一个法向量为31,0,2n ⎛= ⎝⎭v , 所以·2321cos ,77164n SD n SD n SD-===-⨯u u u v v u u u v vu u u v v 所以直线SD 与平面SBC 所成角的正弦值为217. 【点睛】不妨考查线面平行的证明以及利用空间向量求线面角,属中档题. 22.(1)见解析;(2)26【解析】 【分析】(1)连接BD ,交CE 于点O ,连接OM ,易知底面EBCD 是平行四边形,则O 为BD 中点,又M 是BP 中点,可知PD MO P ,则结论可证.(2)先证明ADE V 是等腰直角三角形,由条件中的面面垂直可得PD ⊥平面BCDE ,则由(1)可知MN ⊥平面BCDE ,则MN 为三棱锥M BCE -的高,底面BCE V 的面积容易求得,根据公式求三棱锥M BCE -的体积. 【详解】(1)在平面图中,因为12BE AB CD ==且//BE CD , 所以四边形EBCD 是平行四边形; 在立体图中,连接BD ,交CE 于点O ,连接OM ,所以点O 是BD 的中点,又因为点M 为棱PB 的中点,所以//OM PD ,因为PD ⊄平面MCE ,OM ⊂平面MCE , 所以//PD 平面MCE ; (2)在平面图中,因为EBCD 是平行四边形,所以DE BC =,因为四边形ABCD 是等腰梯形, 所以AD BC =,所以AD DE =,因为45BAD ∠=︒,所以AD DE ⊥; 在立体图中,PD DE ⊥,又平面PDE ⊥平面EBCD ,且平面PDE ⋂平面EBCD DE =,PD ⊂平面PDE 所以PD ⊥平面EBCD ,由(1)知//OM PD ,所以OM ⊥平面EBCD , 在等腰直角三角形ADE 中,因为2AE =,所以2AD DE ==所以112222OM PD AD ===,又1BCE ADE S S ∆∆==, 所以123M BCE BCE V S OM -∆=⋅⋅=. 【点睛】本题考查平面几何与立体几何的关系,线面平行的证明,面面垂直的性质等,有一定的综合性,属中等题. 23.(1)见解析;(2)77.【解析】 【分析】(1)连接辅助线构造三角形,利用三角形中位线定理证明线线平行,再通过线线平行证明线面平行;(2)建立空间直角坐标系,通过二面角D AE C --为60°,利用平面法向量求出点B 的坐标,再利用法向量求直线AC 与平面ECD 所成角的正弦值. 【详解】 (1)如图,连接BD ,且BD AC O ⋂=,则在矩形ABCD 中O 为BD 中点, 且在PBD △中,E 为PD 的中点, ∴//OE PB且OE ⊂平面AEC ,PB ⊄平面AEC , ∴//PB 平面AEC ;(2)如图以A 为原点,以AB 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,1AP =,3AD BC ==,设AB CD a ==,()0,0,0A , ()3,0C a ,()3,0D ,312E ⎛⎫⎪ ⎪⎝⎭∴()AC a =u u u r,12AE ⎛⎫= ⎪ ⎪⎝⎭u u u r,()AD =u u ur 设平面AEC 、平面AED 和平面ECD 的法向量分别为()1111,,n x y z =u r ,()2222,,n x y z =u u r, ()3333,,n x y z =u u r则有1100n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩u v u u u v u v u u u v ,∴111110220y z ax +=⎨⎪+=⎩,令1x)1n a =-u r,同理可得()21,0,0n =u u r,()3n =u u r ,∵二面角D AE C --为60°∴12121cos 602n n n n ⋅︒==u r u u ru r u u r ,12=, 解得32a =,∴32AC ⎛⎫= ⎪⎝⎭u u u r,()3n =uu r ,设AC u u u r 与3n uu r 所成角为θ,∴33cos 7n AC n ACθ⋅===u u r u u u r u u r u u u r , 即直线AC 与平面ECD. 【点睛】本题考查用线面平行判定定理证明线面平行,用空间向量求线面所成角,考查推理论证能力、运算求解能力和转化与化归思想,是中档题.24.(1)224x y +=;(2)2x =或512260x y -+=.【解析】 【分析】(1)设点M 的坐标,根据已知用数学表达式表示出来,再化简即可;(2) 直线与曲线相交有且只有一个公共点,即为相切,可以用几何关系:圆心到直线的距离等于半径.【详解】(1)设点(),M x y ,点M 满足2MQ MP =,2222(4)2(1)x y x y -+=-+则点M 的轨迹方程C 为224x y +=(2)设直线l 的方程为()32y k x -=-,∵直线():32l y k x -=-与曲线C 只有一个公共点,∴直线():32l y k x -=-与曲线C 相切, 252121d k k ==⇒=+ ∵直线2x =与曲线C 相切,∴直线l 方程为2x =或512260x y -+=.【点睛】本题主要考查了点的轨迹方程的求法,直线与圆相切,属于中档题.25.(1)证明见解析;(2)34. 【解析】【分析】(1)直角梯形ABCD 中,过D 作DF ⊥AB 于F ,求解三角形可得ABD △为正三角形,又PAD △为正三角形,M 为线段AD 的中点,可得PM ⊥AD ,BM ⊥AD ,再由线面垂直的判定可得AD ⊥平面PBM ,从而得到平面PMB ⊥平面ABCD ;(2)在平面PMB 中,过B 作BO ⊥PM ,垂足为O ,则BO ⊥平面P AD ,连接AO ,则∠BAO 为直线BA 与平面P AD 所成角,然后求解三角形得答案.【详解】(1)证明:过D 作DF ⊥AB 于F在Rt ADE ∆中,2,1AD AE ==,3BAD π∴∠=∴BAD V 和PAD △是正三角形,∵M 是AD 的中点,∴AD MB ⊥,AD MP ⊥,又∵MB MP M ⋂=,∴AD ⊥平面PMB ,又∵AD ⊂平面ABCD∴平面PMB ⊥平面ABCD.(2)由(1)知PMB ∠是二面角P -AD -B 的平面角 ∴23PMB π∠=. 由(1)知AD ⊥平面PMB∵AD ⊂平面P AD∴平面PAD ⊥平面PBM∴过B 作平面P AD 的垂线,则垂足E 在PM 延长线上,∴3BME π∠=. 连结AE ,则BAE ∠是AB 与平面P AD 所成的角,∴3BM =,∴32BE =, ∴3sin 4BAE BE AB ∠== 【点睛】本题主要考查平面与平面垂直的判定,线面角的求法,二面角,考查空间想象能力与思维能力,属于中档题.26.(1)证明见解析;(2)2CM =.【解析】【分析】(1)由已知可得1CC BC ⊥,结合AC BC ⊥,可得BC ⊥平面11AAC C ,即可证明结论; (2)取1AB 中点D ,连,MD ND ,则//ND CM ,由//CN 平面1AB M ,可证//CN MD ,得到四边形CMDN 为平行四边形,即可求CM 的长.【详解】(1)在直三棱柱111ABCA B C 中,1CC ⊥平面ABC ,1CC BC ∴⊥,又11,,,AC BC AC CC C AC CC ⊥=⊂I 平面11AAC C ,BC ∴⊥平面11AAC C ,AM ⊂Q 平面11AAC C ,BC AM ⊥∴;(2)取1AB 中点D ,连,MD ND ,N 是AB 的中点,11111//,22DN BB DN BB CC ∴==,又11//,//BB CC DN CM ∴, ,DN CM ∴可确定平面,CMDN CN ∴⊂平面CMDN , //CN Q 平面1AB M ,平面1AB M I 平面CMDN DM =,//,CN DM ∴∴四边形CMDN 为平行四边形,1122CM DN CC ∴===.【点睛】本题考查异面直线垂直的证明,注意空间垂直间的相互转化,以及直线与平面平行性质定理的应用,意在考查直观想象、逻辑分析能力,属于中档题.。

【好题】高中必修二数学下期中第一次模拟试卷带答案

【好题】高中必修二数学下期中第一次模拟试卷带答案

【好题】高中必修二数学下期中第一次模拟试卷带答案一、选择题1.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥2.已知a ,b 是两条异面直线,且a b ⊥r r,直线c 与直线a 成30°角,则c 与b 所成的角的大小范围是( ) A .[]60,90︒︒B .[]30,90︒︒C .[]30,60︒︒D .[]45,90︒︒3.已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .644.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( ) A .22(1)(1)5x y ++-= B .22(1)(1)5x y -++= C .22(1)(1)5x y -++=D .22(1)(1)5x y ++-=5.直线(2)4y k x =-+与曲线2320x y y ++-=有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞6.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C .32D .3 7.用一个平面去截正方体,则截面不可能是( ) A .直角三角形B .等边三角形C .正方形D .正六边形8.在三棱锥P ABC -中,PA ⊥平面1202,2ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 3P ABC -的外接球的表面积是( ) A .92π B .92πC .18πD .40π9.已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( )A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭10.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个B .2个C .3个D .4个11.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB .32C .4πD .3412.如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立二、填空题13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是线段AB 、AD 、AA 1的中点,又P 、Q 分别在线段A 1B 1、A 1D 1上,且A 1P =A 1Q =x (0<x <1).设平面MEF ∩平面MPQ=l ,现有下列结论:①l ∥平面ABCD ; ②l ⊥AC ;③直线l 与平面BCC 1B 1不垂直; ④当x 变化时,l 不是定直线.其中不成立的结论是________.(写出所有不成立结论的序号)14.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD V 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是__________.15.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2正三角形,,E F 分别是,PA AB 的中点,90CEF ︒∠=,则球O 的体积为_________________。

新高中必修二数学下期中第一次模拟试题附答案

新高中必修二数学下期中第一次模拟试题附答案

新高中必修二数学下期中第一次模拟试题附答案一、选择题1.下列命题正确的是( ) A .经过三点确定一个平面B .经过一条直线和一个点确定一个平面C .两两相交且不共点的三条直线确定一个平面D .四边形确定一个平面2.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( ) A .6πB .5πC .4πD .3π3.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),af 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<4.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离5.已知圆O :2224110x y x y ++--=,过点()1,0M 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( )A .42B .24C .212D .66.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π7.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763B .1603C .1283D .328.已知AB 是圆22620x y x y +-+=内过点(2,1)E 的最短弦,则||AB 等于( )A 3B .2C .23D .259.若方程124kx k =-+ 有两个相异的实根,则实数k 的取值范围是( ) A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫⎪⎝⎭C .53,124⎛⎫⎪⎝⎭D .53,12410.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1011.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130B .140C .150D .16012.已知ABC 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,BC =三棱锥O ABC -的体积为43,则球O 的表面积为( ) A .22πB .743πC .24πD .36π二、填空题13.已知平面α与正方体的12条棱所成角相等,设所成角为θ,则sin θ=______. 14.正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.15.已知直线40Ax By A +-=与圆O :2236x y +=交于M ,N 两点,则线段MN 中点G 的轨迹方程为______.16.过正方体1111ABCD A B C D -的顶点A 作直线l ,使l 与棱AB 、AD 、1AA 所成的角都相等,这样的直线l 可以作_________条.17.已知,m n 为直线,,αβ为空间的两个平面,给出下列命题:①,//m n m nαα⊥⎧⇒⎨⊥⎩;②,////m n m n αβαβ⊂⎧⎪⊂⇒⎨⎪⎩;③,//m m ααββ⊥⎧⇒⎨⊥⎩;④,//m m n n ββ⊥⎧⇒⎨⊥⎩.其中的正确命题为_________________.18.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60 ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60 ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.19.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.20.如图,在体积为1V 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V ,则21V V =__________.三、解答题21.在平面直角坐标系xOy 中,已知圆C 经过()0,2A ,()0,0O ,(),0D t (0t >)三点,M 是线段AD 上的动点,1l ,2l 是过点()10B ,且互相垂直的两条直线,其中1l 交y 轴于点E ,2l 交圆C 于P 、Q 两点. (1)若6t PQ ==,求直线2l 的方程; (2)若t 是使2AM BM ≤恒成立的最小正整数 ①求t 的值; ②求三角形EPQ 的面积的最小值.22.如图所示,四棱锥S ABCD -中,SA ⊥底面ABCD ,090ABC ∠=,23SA AB ==,,1BC =,23AD =,060ACD ∠=,E 为CD 的中点.(1)求证://BC 平面SAE ;(2)求直线SD 与平面SBC 所成角的正弦值. 23.已知平面内两点(8,6),(2,2)A B -. (1)求AB 的中垂线方程;(2)求过点(2,3)P -且与直线AB 平行的直线l 的方程.24.如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为3,求二面角B AFC --的正切值.25.如图,在直三棱柱111ABC A B C -中,90ABC ︒∠=,1AB AA =,,M N 分别为AC ,11B C 的中点.(1)求证://MN 平面11ABB A ; (2)求证:1AN A B ⊥.26.如图,将棱长为2的正方体1111ABCD A B C D -沿着相邻的三个面的对角线切去四个棱锥后得一四面体11A CB D -.(Ⅰ)求该四面体的体积; (Ⅱ)求该四面体外接球的表面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据确定一个平面的公理及推论即可选出. 【详解】A 选项,根据平面基本性质知,不共线的三点确定一个平面,故错误;B 选项,根据平面基本性质公理一的推论,直线和直线外一点确定一个平面,故错误;C 选项,根据公理一可知,不共线的三点确定一个平面,而两两相交且不共点的三条直线,在三个不共线的交点确定的唯一平面内,所以两两相交且不共点的三条直线确定一个平面,正确;选项D,空间四边形不能确定一个平面,故错误;综上知选C. 【点睛】本题主要考查了平面的基本性质公理一及其推论,属于中档题.2.A解析:A 【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球,外接球的直径等于长方体的对角线, 即24116R =++=,所以外接球的表面积为:246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径) ③可以转化为长方体的外接球; ④特殊几何体可以直接找出球心和半径.3.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.4.B解析:B 【解析】 化简圆到直线的距离,又两圆相交. 选B5.B解析:B 【解析】 【分析】设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==,22121216162S AC BD d d =⋅=--,利用均值不等式得到最值. 【详解】 2224110x y x y ++--=,即()()221216x y ++-=,圆心为()1,2O -,半径4r =.()1,0M 在圆内,设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==.222222121211222161622S AC BD r d r d d d =⋅=⨯-⋅-=-⋅- 2212161624d d ≤-+-=,当22121616d d -=-,即122d d ==时等号成立.故选:B . 【点睛】本题考查了圆内四边形面积的最值,意在考查学生的计算计算能力和转化能力.6.A解析:A 【解析】 【分析】 【详解】正四棱锥P-ABCD 的外接球的球心在它的高1PO 上, 记为O ,PO=AO=R ,14PO =,1OO =4-R , 在Rt △1AOO 中,12AO =,由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.考点:球的体积和表面积7.B解析:B 【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.8.D解析:D 【解析】求出圆的标准方程,确定最短弦的条件,利用弦长公式进行求解即可. 【详解】圆的标准方程为(x ﹣3)2+(y +1)2=10,则圆心坐标为C (3,﹣1),半径为 10, 过E 的最短弦满足E 恰好为C 在弦上垂足,则CE 22(32)[11]5=-+--=(), 则|AB |222(10)(5)25=-=, 故选D . 【点睛】本题主要考查圆的标准方程的求解,以及直线和圆相交的弦长问题,属于中档题.9.D解析:D 【解析】 【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围. 【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点, AD 221k =+,解得512AD k =,4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦.故选:D 【点睛】本题考查直线与圆的位置关系,属于中档题.10.D解析:D【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+=⎪⎝⎭,解得min 6AB =, 再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.11.D解析:D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.12.C解析:C 【解析】 【分析】由已知可得三角形ABC 为直角三角形,斜边BC 的中点O '就是ABC 的外接圆圆心,利用三棱锥O ABC -的体积,求出O 到底面的距离,可求出球的半径,然后代入球的表面积公式求解. 【详解】在ABC 中,∵2AB =,4AC =,25BC =得AB AC ⊥, 则斜边BC 的中点O '就是ABC 的外接圆的圆心, ∵三棱锥O ABC -的体积为43, 11424323OO '⨯⨯⨯⨯=,解得1OO '=,221(5)6R =+=, 球O 的表面积为2424R ππ=. 故选C .【点睛】本题考查球的表面积的求法,考查锥体体积公式的应用,考查空间想象能力和计算能力,属于基础题.二、填空题13.【解析】【分析】棱与平面所成的角相等所以平面就是与正方体的12条棱的夹角均为θ的平面之一设出棱长即可求出【详解】因为棱与平面所成的角相等所以平面就是与正方体的条棱的夹角均为的平面设棱长为:易知故答案解析:33【解析】【分析】棱11111,,A A AB A D与平面11AB D所成的角相等,所以平面11AB D就是与正方体的12条棱的夹角均为θ的平面之一,设出棱长,即可求出sinθ.【详解】因为棱11111,,A A AB A D与平面11AB D所成的角相等,所以平面11AB D就是与正方体的12条棱的夹角均为θ的平面,1A AOθ∠=,设棱长为:1,126,22AO AO==,易知232sin36θ==.3【点睛】本题考查了线面所成的角,解题的关键是作出线面角,属于基础题.14.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上解析:22【解析】【分析】首先根据数形结合分析可知线段PQ的长度的最小值转化为PQ在平面ABCD上投影线段的最小值,然后转化为点到直线的距离的最小值.【详解】当//PQ平面ABCD时,线段PQ与其在平面ABCD上投影相等,当PQ与平面ABCD不平行时,PQ是斜线段,大于其在平面ABCD上投影的长度,∴求线段PQ的最小值就是求其在平面ABCD上投影的最小值,点P 在平面ABCD 的投影是点C ,点Q 在平面ABCD 的投影在BD 上,∴求线段PQ 的最小值转化为点C 到BD 的距离的最小值,连接,AC BD ,交于点O ,AC BD ⊥,∴点C 到BD 的距离的最小值22CO =.2 【点睛】本题考查几何体中距离的最小值,意在考查空间想象能力和数形结合分析问题的能力,属于中档题型.15.【解析】【分析】直线过定点设代入方程利用点差法计算得到答案【详解】直线过定点设则两式相减得到即故整理得到:故答案为:【点睛】本题考查了轨迹方程意在考查学生对于点差法的理解和掌握 解析:()2224x y -+=【解析】 【分析】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,代入方程利用点差法计算得到答案. 【详解】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,则221136x y +=,222236x y +=,两式相减得到()()()()121212120x x x x y y y y +-++-=,即220x ky +=. 故2204y x y x +=-,整理得到:()2224x y -+=. 故答案为:()2224x y -+=. 【点睛】本题考查了轨迹方程,意在考查学生对于点差法的理解和掌握.16.【解析】【分析】将小正方体扩展成4个小正方体根据直线夹角的定义即可判断出符合条件的条数【详解】解:设ABCD﹣A1B1C1D1边长为1第一条:AC1是满足条件的直线;第二条:延长C1D1到C1且D1解析:4【解析】【分析】将小正方体扩展成4个小正方体,根据直线夹角的定义即可判断出符合条件的条数.【详解】解:设ABCD﹣A1B1C1D1边长为1.第一条:AC1是满足条件的直线;第二条:延长C1D1到C1且D1C2=1,AC2是满足条件的直线;第三条:延长C1B1到C3且B1C3=1,AC3是满足条件的直线;第四条:延长C1A1到C4且C4A12=,AC4是满足条件的直线.故答案为4.【点睛】本题考查满足条件的直线条数的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,考查分类与整合思想,是基础题.17.③④【解析】关于①也会有的结论因此不正确;关于②也会有异面的可能的结论因此不正确;容易验证关于③④都是正确的故应填答案③④解析:③④【解析】关于①,也会有n⊂α的结论,因此不正确;关于②,也会有,m n异面的可能的结论,因此不正确;容易验证关于③④都是正确的,故应填答案③④.18.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E是BD的中点易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD解析:②③④【解析】【分析】作出此直二面角的图象,由图形中所给的位置关系对命题逐一判断,即可得出正确结论.【详解】作出如图的图象,E是BD的中点,易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD所成的线面角的平面角是∠ABE=45°,故AB与平面BCD成60°的角不正确;对于命题②,在等腰直角三角形AEC中AC等于正方形的边长,故△ACD是等边三角形,此命题正确;对于命题③可取AD中点F,AC的中点H,连接EF,EH,FH,则EF,FH是中位线,故∠EFH或其补角为异面直线AB与CD所成角,又EF,FH其长度为正方形边长的一半,而EH是直角三角形AEC的中线,其长度是AC的一半即正方形边长的一半,故△EFH是等边三角形,由此AB与CD所成的角为60°,此命题正确;对于命题④,BD⊥面AEC,故AC⊥BD,此命题正确;对于命题⑤,连接BH,HD,则BH⊥AC, DH⊥AC,则∠BHD为二面角B AC D--的平面角,又BH=DH=32AC,BD=2,AC cos∠BHD=-1,3故二面角B AC D--不是120︒综上知②③④是正确的故答案为②③④【点睛】本题考查与二面角有关立体几何中线线之间的角的求法,线面之间的角的求法,以及线线之间位置关系的证明方法.综合性较强,对空间立体感要求较高.19.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角 解析:5 【解析】 【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离. 【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,151,,2AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得55BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题.20.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这 解析:23【解析】分析:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h,再求21V V .详解:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h, 则222212222111()233.3r h r h h r h r hV V r hr hππππππ-+-===故答案为:23. 点睛:(1)本题主要考查圆锥圆柱体积的计算,意在考查学生对这些知识的掌握水平.(2)圆柱的体积为2V sh r h π==,圆锥的体积为21133V sh r h π==. 三、解答题21.(1)4340x y --=;(2)①4. 【解析】 【分析】(1)求出圆的标准方程,设直线2l 的方程(1)y k x =-,利用6PQ =,结合圆心到直线的1=,解可得k 的值,验证直线与y 轴有无交点,即可得答案;(2)①设(,)M x y ,由点M 在线段AD 上,得220x ty t +-=,由2AM BM ≤,得224220()()339x y -++,结合题意,线段AD 与圆224220()()339x y-++=至多有一个公共88||25t -,分析可得t 的值, ②由①的结论,分直线的斜率存在与不存在2种情况讨论,用k 表示三角形EPQ 的面积,结合二次函数的性质分析可得答案. 【详解】解:(1)由题意可知,圆C 的直径为AD ,所以圆C 方程为:()()223110x y -+-=,设2l 方程为:()1y k x =-,则()222213101k k -+=+, 解得10k =,243k =,当0k =时,直线1l 与y 轴无交点,不合题意,舍去. 所以,43k =时直线2l 的方程为4340x y --=.(2)①设(,)M x y ,由点M 在线段AD 上,则有12x yt +=,即220x ty t +-=. 由2AM BM ,则有224220()()339x y -++依题意知,线段AD 与圆224220()()339x y-++=至多有一个公共点,88||25t -,解可得1610t -或1610t +,因为t 是使2AM BM ≤恒成立的最小正整数,所以4t =; ②由①的结论,圆C 的方程为22(2)(1)5x y -+-=. 分2种情况讨论:a 当直线2:1l x =时,直线1l 的方程为0y =,此时,2EPQS=;b 当直线2l 的斜率存在时,设2l 的方程为(1)y k x =-,0k ≠,则1l 的方程为1(1)y x k=--,点1(0,)E k ,所以BE=又圆心到2l,所以PQ =故111522EPQS BE PQ==⨯=,又由22<, 故求三角形EPQ . 【点睛】本题考查直线与圆的方程的综合应用,涉及三角形面积的最小值的求法,(2)的关键是确定三角形面积的表达式,属于中档题. 22.(1)见解析; (2)7. 【解析】 【分析】(1)在ACD ∆中,由余弦定理可解得:4CD = 所以222AC AD CD +=,所以ACD ∆是直角三角形,又ACE ∆可证为等边三角形,所以060CAE BCA ∠==∠,所以//BC AE ,即可证明//BC 平面SAE ;(2):由(1)可知090BAE ∠=,以点A 为原点,以AB ,AE ,AS 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,利用空间向量可求直线SD 与平面SBC 所成角的正弦值. 【详解】(1)证明:因为3AB =,1BC =,090ABC ∠=,所以2AC =,060BCA ∠=,在ACD ∆中,23AD =,2AC =,060ACD ∠=, 由余弦定理可得:2222?cos AD AC CD AC CD ACD =+-∠ 解得:4CD =所以222AC AD CD +=,所以ACD ∆是直角三角形, 又E 为CD 的中点,所以12AE CD CE == 又060ACD ∠=,所以ACE ∆为等边三角形, 所以060CAE BCA ∠==∠,所以//BC AE , 又AE ⊂平面SAE ,BC ⊄平面SAE , 所以//BC 平面SAE .(2)解:由(1)可知090BAE ∠=,以点A 为原点,以AB ,AE ,AS 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,0,2S ,()3,0,0B,()3,1,0C,()3,3,0D -.所以()3,0,2SB =-,()3,1,2SC =-,()3,3,2SD =--.设(),,n x y z =为平面SBC 的法向量,则·0·0n SB n SC ⎧=⎨=⎩,即320320x z x y z ⎧-=⎪⎨+-=⎪⎩设1x =,则0y =,32z =,即平面SBC 的一个法向量为31,0,n ⎛= ⎝⎭,所以·2321 cos,7164n SDn SDn SD-===-⨯所以直线SD与平面SBC所成角的正弦值为217.【点睛】不妨考查线面平行的证明以及利用空间向量求线面角,属中档题.23.(1)34230x y--=; (2)4310x y++=.【解析】试题分析:(1)首先求得中点坐标,然后求得斜率,最后利用点斜式公式即可求得直线方程;(2)利用点斜式可得直线方程为4310x y++=.试题解析:(1)8252+=,6222-+=-∴AB的中点坐标为()5,2-624823ABk--==--,∴AB的中垂线斜率为34∴由点斜式可得()3254y x+=-∴AB的中垂线方程为34230x y--=(2)由点斜式()4323y x+=--∴直线l的方程4310x y++=24.(1)见证明;(2) 23【解析】【分析】(1)由PA⊥面ABCD可知PA AE⊥,又可证AE BC⊥,根据线面垂直的判定即可证明(2) 取AB中点M,作MN AF⊥于N,连CN,可证MNC∠是二面角B AF C--的平面角,解三角形即可求解.【详解】(1)PA⊥面ABCD,AE⊂面ABCD,PA AE∴⊥;又底面ABCD为菱形,60ABC∠=,E为BC中点,,//,,AE BC AD BC AE AD∴⊥∴⊥AE∴⊥面PAD;(2)AE 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AEAHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=,在Rt PAD ∆中,233PA =, PA ⊥面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M , 正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.3CM =.在PAB ∆中,23,2,3BF AF AB ===边AF 上的高11,2BG MN ==, tan 23CMMNC MN∠== 【点睛】本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题. 25.(1)见解析(2)见解析 【解析】 【分析】(1)取AB 的中点P ,连接1,PM PB ,通过中位线定理求证四边形1PMNB 是平行四边形,进而求证;(2)连接1AB ,,设法证明11A B AB ⊥,111A B B C ⊥,进而证明1A B ⊥平面1AB N ,求得1A B AN ⊥. 【详解】解:(1)如图,取AB 的中点P ,连接1,PM PB ,,M P 分别是,AC AB 的中点,//PM BC ∴,且12PM BC =,在直三棱柱11t ABC A B C -中, 11//BC B C ,11BC B C =, N 是11B C 的中点,∴1PM B N =,且1//PM B N ,∴四边形1PMNB 是平行四边形,1//MN PB ∴, 而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,//MN ∴平面11ABB A .(2)如图,连接1AB ,由111ABC A B C -是直三棱柱,90ABC ︒∠=,1AB AA =可知,111B C BB ⊥,1111B C A B ⊥,1111BB B A B =,∴11B C ⊥平面11A B BA ,111B C A B ∴⊥, 又侧面11A B BA 为正方形,11A B AB ∴⊥,1111AB B C B ⋂=,1A B ∴⊥平面11AB C , 又AN ⊂平面11AB C ,1A B AN ∴⊥【点睛】本题考查线面平行,线线垂直的证明,属于中档题.26.(Ⅰ)8123π(Ⅱ)【解析】【分析】(Ⅰ)利用正方体体积减去截去部分的体积即可求解(Ⅱ)利用正四面体与正方体的外接球一致求解【详解】(Ⅰ)三棱锥1B ABC -的体积1114222323V =⋅⋅⋅⋅=, 切去部分的体积为14164433V =⋅= 正方体的体积为22228V =⋅⋅= ∴四面体的体积3168833V =-= (Ⅱ)∵正方体的棱长为2, ∴正方体的体对角线长为23∵该四面体外接球即为正方体的外接球,而正方体的外接球直径为其体对角线 ∴外接球直径2R 23=R 3=∴外接球表面积为2412S R ππ==【点睛】本题考查组合体体积,外接球问题,是基础题。

【易错题】高中必修二数学下期中模拟试卷含答案(1)

【易错题】高中必修二数学下期中模拟试卷含答案(1)

【易错题】高中必修二数学下期中模拟试卷含答案(1)一、选择题1.陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )A .1073πB .32453π+ C .16323π+ D .32333π+ 2.对于平面、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==I I 则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα3.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为43角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20πB .40πC .80πD .160π4.已知圆M :2220x y y =++与直线l :350ax y a +-+=,则圆心M 到直线l 的最大距离为( ) A .5B .6C .35D 415.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( ) A .26B .5C 26D .426.矩形ABCD 中,4AB =,3BC =,沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是( )A .12512π B .1259π C .1256π D .1253π7.已知点()1,2-和3,03⎛⎫⎪ ⎪⎝⎭在直线():100l ax y a --=≠的两侧,则直线l 的倾斜角的取值范围是 ( ) A .,43ππ⎛⎫ ⎪⎝⎭ B .2,33ππ⎛⎫⎪⎝⎭C .25,36ππ⎛⎫⎪⎝⎭D .30,,34πππ⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭8.一锥体的三视图如图所示,则该棱锥的最长棱的棱长为 ( )A .B .C .D .9.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB .3π C .4πD .3π 10.如图是正方体的平面展开图,则在这个正方体中: ①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60︒角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( )A .1B .2C .3D .411.如图在正方体中,点为线段的中点. 设点在线段上,直线与平面所成的角为,则的取值范围是( )A .B .C .D .12.若圆的参数方程为12cos ,32sin x y θθ=-+⎧⎨=+⎩(θ为参数),直线的参数方程为21,61x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆的位置关系是( ) A .相交且过圆心B .相交但不过圆心C .相切D .相离二、填空题13.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为________. 14.直线10ax y ++=与连接A (4,5),B (-1,2)的线段相交,则a 的取值范围是___.15.如图,在ABC V 中,AB BC ⊥,SA ⊥平面ABC ,DE 垂直平分SC ,且分别交AC ,SC 于点D ,E ,又SA AB =,SB BC =,则二面角E BD C --的大小为_______________.16.已知双曲线的半焦距为,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是(为双曲线的离心率),则的值为__________.17.已知棱长等于31111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.18.已知PA 垂直于平行四边形ABCD 所在平面,若PC BD ⊥,则平行四边形ABCD 一定是___________.19.已知圆225x y +=和点()1,2A ,则过点A 的圆的切线方程为______20.如图:点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ;③1DP BC ^; ④面1PDB ^面1ACD .其中正确的命题的序号是__________.三、解答题21.如图,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,且1AE =,2AB =.(Ⅰ)求证:AB ⊥平面ADE ;(Ⅱ)求凸多面体ABCDE 的体积.22.如图,在ABC V 中AC BC ⊥且点O 为AB 的中点,矩形ABEF 所在的平面与平面ABC 互相垂直.OM平面ACF;(1)设EC的中点为M,求证://(2)求证:AC⊥平面CBE-中,底面ABCD为菱形,PA⊥平面ABCD,23.如图所示,已知四棱锥P ABCDBC PB的中点.∠=o分别是,ABC E F60,,(1)证明:AE⊥平面PAD;(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为3,求二面角--的正切值.B AF C-中,PA⊥平面ABCD,底面ABCD是菱形.24.如图,在四棱锥P ABCD⊥;(1)求证:BD PCBC l.(2)若平面PBC与平面PAD的交线为l,求证://25.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A6,M 是CC1的中点.(1)求证:A 1B ⊥AM ;(2)求二面角B --AM--C 的平面角的大小..26.如图所示,直角梯形ABCD 中,//AD BC ,,AD AB ⊥22,AB BC AD ===四边形EDCF 为矩形,2DE =,平面EDCF ⊥ABCD .(1)求证://DF 平面ABE ;(2)求二面角B EF D --二面角的正弦值;(3)在线段BE 上是否存在点P ,使得直线AP 与平面BEF 6存在,求出线段BP 的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成.根据柱体、锥体的体积计算公式即得该陀螺模型的体积. 【详解】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成. 所以该陀螺模型的体积222113242333233333V πππ=⨯⨯+⨯⨯+⨯⨯⨯=+. 故选:D .本题考查三视图,考查学生的空间想象能力,属于基础题.2.C解析:C 【解析】 【分析】 【详解】 若由线面垂直的判定定理知,只有当和为相交线时,才有错误;若此时由线面平行的判定定理可知,只有当在平面外时,才有错误;由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若//αβ,a αγ⋂=,b βγ=I ,则//a b 为真命题, 正确;若此时由面面平行的判定定理可知,只有当、为相交线时,才有//,D βα错误. 故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系.3.C解析:C 【解析】 【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin ar A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案.【详解】SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =. ABC ∆的外接圆半径为42sin ar A==,设球O 的半径为R , 则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得5R =O 的表面积为2480R ππ=. 故选:C . 【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.4.A解析:A【分析】计算圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,最大距离为MN ,得到答案. 【详解】圆M :2220x y y =++,即()2211x y ++=,圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,故圆心M 到直线l 的最大距离为5MN =.故选:A . 【点睛】本题考查了点到直线距离的最值问题,确定直线过定点()3,5N -是解题的关键.5.A解析:A 【解析】 【分析】设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解. 【详解】设切线长为d ,则2222(2)51(2)24d m m =++-=++, min d ∴= 故选:A. 【点睛】本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.6.C解析:C 【解析】 【分析】由矩形的对角线互相平分且相等即球心到四个顶点的距离相等推出球心为AC 的中点,即可求出球的半径,代入体积公式即可得解. 【详解】因为矩形对角线互相平分且相等,根据外接球性质易知外接球球心到四个顶点的距离相等,所以球心在对角线AC 上,且球的半径为AC 长度的一半,即1522r AC ===,所以334451253326V r πππ⎛⎫==⋅= ⎪⎝⎭.故选:C 【点睛】本题考查球与几何体的切、接问题,二面角的概念,属于基础题.7.D解析:D 【解析】设直线l 的倾斜角为θ∈[0,π).点A (1,−2),B (3,0). 直线l :ax −y −1=0(a ≠0)经过定点P (0,−1).()121, 3.0130PA PB k k ---==-==--∵点(1,−2)和(33,0)在直线l :ax −y −1=0(a ≠0)的两侧, ∴k P A <a <k PB ,∴−1<tanθ<3,tanθ≠0. 解得30,34ππθθπ<<<<.本题选择D 选项.8.C解析:C 【解析】试题分析:该几何体为一个侧面与底面垂直,底面为正方形的四棱锥(如图所示),其中底面边长为,侧面平面,点在底面的射影为,所以,所以,,,,底面边长为,所以最长的棱长为,故选C.考点:简单几何体的三视图.9.A解析:A 【解析】 【分析】设BC 的中点是E ,连接DE ,由四面体A′­BCD 的特征可知,DE 即为球体的半径. 【详解】设BC 的中点是E ,连接DE ,A′E, 因为AB =AD =1,BD 2由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形 所以DE 为球体的半径3DE =23432S ππ== 故选A 【点睛】求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.10.B解析:B 【解析】 【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案. 【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确. ∴正确命题的个数是2个. 故选:B . 【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.11.B解析:B 【解析】 【分析】 【详解】设正方体的棱长为,则,所以,.又直线与平面所成的角小于等于,而为钝角,所以的范围为,选B.【考点定位】空间直线与平面所成的角.12.B解析:B 【解析】 【分析】根据题意,将圆和直线的参数方程变形为普通方程,分析可得圆心不在直线上,再利用点到直线的距离公式计算可得圆心(1,3)-到直线320y x --=的距离2d <,得到直线与圆的位置关系为相交. 【详解】根据题意,圆的参数方程为1232x cos y sin θθ=-+⎧⎨=+⎩(θ为参数),则圆的普通方程为22(1)(3)4x y ++-=,其圆心坐标为(1,3)-,半径为2.直线的方程为2161x t y t =-⎧⎨=-⎩(t 为参数),则直线的普通方程为13(1)y x +=+,即320y x --=,圆心不在直线上.∴圆心(1,3)-到直线320y x --=的距离为25d ==<,即直线与圆相交. 故选A. 【点睛】本题考查直线、圆的参数方程,涉及直线与圆的位置关系,解答本题的关键是将直线与圆的参数方程变形为普通方程.二、填空题13.28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可【详解】由棱台的体积公式可得棱台的体积:故答案为:28【点睛】本题主要考查棱台的体积公式及其应用意在考查学生的转化能力和计算求解能力解析:28 【解析】 【分析】由题意结合棱台的体积公式求解棱台的体积即可. 【详解】由棱台的体积公式可得棱台的体积:(()1211416832833V S S h =⨯++⨯=⨯++⨯=.故答案为:28. 【点睛】本题主要考查棱台的体积公式及其应用,意在考查学生的转化能力和计算求解能力.14.或【解析】【分析】判断直线恒过定点P (0-1)计算PAPB 的斜率再利用数形结合求a 的取值范围【详解】解:由直线ax+y+1=0的方程判断直线恒过定点P (0-1)如图所示计算且或则或即实数a 的取值范围解析:32a ≤-或3a ≥ 【解析】 【分析】判断直线0ax by c ++=恒过定点P (0,-1),计算PA 、PB 的斜率,再利用数形结合求a 的取值范围. 【详解】解:由直线ax+y+1=0的方程,判断直线恒过定点P (0,-1),如图所示,计算513402PA k +==-,21310PB k +==--- 且PA k k ≥或PB k k ≤, 则PA a k ≤-或PB a k ≥-, 即实数a 的取值范围是:32a ≤-或3a ≥. 故答案为:32a ≤-或3a ≥. 【点睛】本题考查直线的斜率与直线方程的应用问题,是基础题.15.60°【解析】【分析】首先证得是二面角的平面角解直角三角形求得的大小【详解】由于是的中点所以由于所以平面所以由于平面所以而所以平面所以所以是二面角的平面角设则所以所以在中所以所以故答案为:【点睛】本解析:60° 【解析】 【分析】首先证得EDC ∠是二面角E BD C --的平面角,解直角三角形求得EDC ∠的大小. 【详解】由于SB BC =,E 是SC 的中点,所以SC BE ⊥,由于,SC DE DE BE E ⊥⋂=,所以SC ⊥平面BDE ,所以SC BD ⊥.由于SA ⊥平面ABC ,所以SA BD ⊥,而SA SC S ⋂=,所以BD ⊥平面SAC ,所以,BD DC BD DE ⊥⊥,所以EDC ∠是二面角E BD C --的平面角.设1SA AB ==,则2SB BC ==2SC =,所以在Rt SAC ∆中,12SA SC =,所以30SCA ∠=o ,所以60EDC ∠=o . 故答案为:60o 【点睛】本小题主要考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.16.62【解析】试题分析:由题意得抛物线的准线为x=-c 它正好经过双曲线的左焦点所以准线被双曲线截得的弦长为2b2a 所以2b2a=223be2即ba=23e2所以整理得2e4-9e2+1=0解得e=62 解析:【解析】试题分析:由题意,得抛物线的准线为,它正好经过双曲线的左焦点,所以准线被双曲线截得的弦长为,所以,即,所以,整理,得,解得或.又过焦点且斜率为1的直线与双曲线的右支交于两点,所以.考点:1、抛物线与双曲线的几何性质;2、直线与双曲线的位置关系.【方法点睛】关于双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中的关系式,求值问题就是建立关于的等式,求取值范围问题就是建立关于的不等式.17.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【解析:3π. 【解析】 【分析】当过球内一点E 的截面与OE 垂直时,截面面积最小可求截面半径,即可求出过点E 的平面截球O 的截面面积的最小值. 【详解】解:棱长等于231111ABCD A B C D -,它的外接球的半径为3,||6OE = 当过点E 的平面与OE 垂直时,截面面积最小,963r -33S ππ=⨯=, 故答案为:3π. 【点睛】本题考查过点E 的平面截球O 的截面面积的最小值及接体问题,找准量化关系是关键,属于中档题.18.菱形【解析】【分析】【详解】根据题意画出图形如图∵PA 垂直平行四边形ABCD 所在平面∴PA⊥BD 又∵PC⊥BDPA ⊂平面PACPC ⊂平面PACPA∩PC=P∴BD⊥平面PAC 又∵AC ⊂平面PAC∴A解析:菱形 【解析】 【分析】 【详解】根据题意,画出图形如图,∵PA 垂直平行四边形ABCD 所在平面,∴PA ⊥BD , 又∵PC ⊥BD ,PA ⊂平面PAC ,PC ⊂平面PAC ,PA∩PC=P .∴BD ⊥平面PAC 又∵AC ⊂平面PAC ∴AC ⊥BD 又ABCD 是平行四边形 ∴平行四边形ABCD 一定是 菱形.故答案为菱形19.【解析】【分析】先由题得到点A 在圆上再设出切线方程为利用直线和圆相切得到k 的值即得过点A 的圆的切线方程【详解】因为所以点在圆上设切线方程为即kx-y-k+2=0因为直线和圆相切所以所以切线方程为所以 解析:25x y +=【解析】 【分析】先由题得到点A 在圆上,再设出切线方程为2(1),y k x -=-利用直线和圆相切得到k 的值,即得过点A 的圆的切线方程. 【详解】因为22125+=,所以点()1,2A 在圆上,设切线方程为2(1),y k x -=-即kx-y-k+2=0, 222152(1)k k k -+=∴=-+-,所以切线方程为112022x y --++=, 所以切线方程为25x y +=,故答案为:25x y += 【点睛】(1)本题主要考查圆的切线方程的求法,意在考查学生对该知识的掌握水平和分析推理能力.(2) 点00(,)P x y 到直线:0l Ax By C ++=的距离0022Ax By C d A B++=+.20.①②④【解析】对于①因为从而平面故上任意一点到平面的距离均相等以为顶点平面为底面则三棱锥的体积不变正确;对于②连接容易证明且相等由于①知:平面平面所以可得面②正确;对于③由于平面若则平面则为中点与动解析:. ① ② ④ 【解析】对于①,因为11//AD BC ,从而1//BC 平面1AD C ,故1BC 上任意一点到平面1AD C 的距离均相等,∴以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,正确;对于②,连接111,A B A C 容易证明111//AC A D 且相等,由于①知:11//AD BC ,平面11//BA C 平面1ACD ,所以可得1//A P 面1ACD ,②正确;对于③,由于DC ⊥平面111,BCB C DC BC ∴⊥,若1DP BC ^,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 动点矛盾,错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,由面面垂直的判定知平面1PDB ⊥平面1ACD ,④正确,故答案为①②④.三、解答题21.(Ⅰ)见解析; (Ⅱ) 233ABCDE V = 【解析】 【分析】(1)推导出AE ⊥CD ,CD ⊥AD ,从而CD ⊥平面ADE ,再由AB ∥CD ,能证明AB ⊥平面ADE .(2)凸多面体ABCDE 的体积V=V B-CDE +V B-ADE ,由此能求出结果. 【详解】(1)证明:,AE CDE CD CDE ⊥⊂平面平面,AE CD ∴⊥又在正方形ABCD 中,CD AD ⊥AE AD A ⋂=CD ADE ∴⊥平面,又在正方形ABCD 中,//AB CD∴ //AB 平面ADE .(2) 连接BD ,设B 到平面CDE 的距离为h ,//,,AB CD CD CDE ⊂Q 平面//AB CDE ∴平面,又AE CDE ⊥平面,∴ h AE = 1=又11222CDE S CD DE ∆=⨯=⨯=1133B CDE V -∴==又11112332B ADE ADE V S AB -∆=⨯⨯=⨯⨯=所以3ABCDE V = 【点睛】本题考查线面垂直的证明,考查多面体的体积的求法,是中档题,注意空间思维能力的培养.22.(1)证明见解析(2)证明见解析 【解析】 【分析】(1)取CF 中点N ,连结AN ,MN ,可知四边形ANMO 为平行四边形,从而可知//OM AN ,由线面平行的判定定理可证//OM 平面ACF .(2)由BE AB ⊥以及平面ABEF ⊥平面ABC ,可得BE ⊥平面ABC ,从而可证BE AC ⊥,结合AC BC ⊥,即能证明AC ⊥平面CBE .【详解】证明:(1)取CF 中点N ,连结AN ,MN .Q M 为CE 中点,//MN EF ∴且12MN EF =. 又在矩形ABEF 中,//AB EF 且AB EF =,//MN AB ∴且12MN AB =.O Q 为AB 中点,//MN OA ∴且MN OA =.∴四边形ANMO 为平行四边形, ∴//OM AN ,且OM ⊄平面ACF ,AN ⊂平面ACF ,//OM Q 平面ACF .(2)由平面ABEF ⊥平面ABC ,平面ABEF I 平面ABC AB =,BE ⊂平面ABEFQ 矩形ABEF 中,BE AB ⊥,∴BE ⊥平面ABC .又AC ⊂平面ABC ,∴BE AC ⊥又AC BC ⊥且BC BE B =I ,,BC BE ⊂平面CBE ,AC ∴⊥平面CBE .【点睛】本题考查了线面平行的判定,考查了线面垂直的判定,考查了面面垂直的性质.证明线线平行时,常结合三角形的中位线、平行四边形的对边、线面平行的性质.证明线线垂直时,常结合勾股定理、等腰三角形三线合一、菱形对角线垂直、线面垂直、面面垂直的性质. 23.(1)见证明;(2) 23 【解析】 【分析】(1)由PA ⊥面ABCD 可知PA AE ⊥,又可证AE BC ⊥,根据线面垂直的判定即可证明 (2) 取AB 中点M ,作MN AF ⊥于N ,连CN ,可证MNC ∠是二面角B AF C --的平面角,解三角形即可求解. 【详解】(1)PA ⊥Q 面ABCD ,AE ⊂面ABCD ,PA AE ∴⊥; 又Q 底面ABCD 为菱形,60ABC ∠=o ,E 为BC 中点,,//,,AE BC AD BC AE AD ∴⊥∴⊥QAE ∴⊥面PAD ;(2)AE ^Q 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AEAHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=o ,在Rt PAD ∆中,PA =PA ⊥Q 面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M , 正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.CM =.在PAB ∆中,2,BF AF AB ===边AF 上的高11,2BG MN ==,tan CMMNC MN∠==【点睛】本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题. 24.(1)见解析;(2)见解析 【解析】 【分析】(1)要想证明线线垂直,可以考虑线面垂直.已知底面ABCD 是菱形,显然有BD AC ⊥ ,已知PA ⊥平面ABCD ,可以得到PA BD ⊥,这样就可以根据线面垂直的判定定理,证明出BD ⊥平面APC ,进而可以证明出BD PC ⊥;(2)可以先证明出线面平行,然后利用线面平行的性质定理证明出//BC l . 【详解】(1)证明:连接AC ,交BD 于点O . ∵四边形ABCD 为菱形,所以BD AC ⊥又∵PA ⊥平面ABCD ,BD ⊂ 平面ABCD ,∴PA BD ⊥ 又∵PA AC A ⋂=, PA ⊂平面PAC , AC ⊂平面PAC ∴BD ⊥平面APC , 又∵PC ⊂平面APC ∴ BD PC ⊥(2)∵四边形ABCD 为菱形,∴//BC AD ∵AD ⊂平面PAD ,BC ⊄平面PAD . ∴//BC 平面PAD .又∵BC ⊂平面PBC ,平面PBC ⋂平面PAD l =. ∴//BC l . 【点睛】本题考查了线面垂直的判定定理、线面平行的判定定理以及性质定理.关键是考查了转化思想.25.(1)见解析(2)45° 【解析】(1)以点C 为原点,CB 、CA 、CC 1所在直线为x ,y ,z 轴,建立空间直角坐标系C -xyz ,如图所示,则B (1,0,0),A (03,0),A 1(036),M 6⎛ ⎝⎭.所以1A B u u u r =(136),AM u u u u r =60,3,⎛ ⎝⎭. 因为1A B u u u r ·AM u u u u r =1×0+(33)+(6)×620,所以A 1B ⊥AM .(2)因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC ,又BC ⊂平面ABC ,所以CC 1⊥BC . 因为∠ACB =90°,即BC ⊥AC ,又AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,即BC ⊥平面AMC .所以CB u u u r 是平面AMC 的一个法向量,CB u u u r=(1,0,0).设n =(x ,y ,z )是平面BAM 的一个法向量,BA u u u r =(-130),BM u u u u r =61,0,2⎛⎫- ⎪ ⎪⎝⎭. 由0,{0nBA nBM ==u u u r u u u u r 得30{602x y x z -=-+=,令z =2,得x 6,y 2. 所以n =62,2)因为|CB u u u r |=1,|n |=3cos 〈CB u u u r ,n 〉=CB n CB n ⋅⋅u u u r u u u r 2, 因此二面角B -AM -C 的大小为45° 26.(1)证明见解析;(2)23;(3)存在,3BP =或23BP = 【解析】 【分析】(1)以,,DA DG DE 分别为,,x y z 轴建立空间直角坐标系,DF AE AB =+u u u r u u u r u u u r,得到证明.(2)平面DEF 的一个法向量为()12,1,0n =u r ,平面BEF 的一个法向量为()12,1,2n =u r,计算夹角得到答案.(3)假设存在点P 满足条件,设BP BE λ=u u u r u u u r,设线AP 与平面BEF 所成角为θ,22cos AP n AP n θ⋅=⋅u u u r u u r u u u r u u r ,解得答案. 【详解】(1)取BC 中点G ,连接DG ,易知DA DG ⊥,平面EDCF ⊥ABCD ,四边形EDCF 为矩形,故ED ⊥平面ABCD . 以,,DA DG DE 分别为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()1,2,2F -,()1,0,0A ,()1,2,0B ,()1,2,0C -,()0,0,2E . ()1,2,2DF =-u u u r ,()1,0,2AE =-u u u r ,()0,2,0AB =u u u r ,故DF AE AB =+u u u r u u u r u u u r , 故//DF 平面ABE . (2)设平面DEF 的一个法向量为()1,,n x y z =u r ,则1100n DE n DF ⎧⋅=⎪⎨⋅=⎪⎩u v u u u v u v u u u v ,即20220z x y z =⎧⎨-++=⎩, 取1y =,则()12,1,0n =u r .设平面BEF 的一个法向量为()2,,n a b c =u u r ,则2200n EF n EB ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u v ,即20220x y x y z -+=⎧⎨+-=⎩, 取1y =,则()12,1,2n =u r .则121212cos ,3n n n n n n ⋅==⋅u r u u r u r u u r u r u u r ,故二面角B EF D --二面角的正弦值为23. (3)假设存在点P 满足条件,设BP BE λ=u u u r u u u r ,则()1,22,2P λλλ--,(),22,2AP λλλ=--u u u r ,()12,1,2n =u r ,设线AP 与平面BEF 所成角为θ, 则22cos 6AP n AP n θ⋅===⋅u u u r u u r u u u r u u r ,解得23λ=或29λ=. 故3BP BE λλ==u u u r u u u r ,故3BP =或23BP =.【点睛】本题考查了线面平行,二面角,线面夹角,意在考查学生的计算能力和空间想象能力.。

【易错题】高中必修二数学下期中第一次模拟试卷(带答案)(2)

【易错题】高中必修二数学下期中第一次模拟试卷(带答案)(2)

【易错题】高中必修二数学下期中第一次模拟试卷(带答案)(2)一、选择题1.圆224470x y x y +--+=上的动点P 到直线0x y +=的最小距离为( ) A .1 B .221- C .22 D .22.如图为某几何体的三视图,则该几何体的表面积为( )A .202π+B .203π+C .242π+D .243π+ 3.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( )A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 4.已知点(),P x y 是直线()400kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B ,若四边形PACB 的面积最小值为2,则k 的值为( )A .3B .212C .22D .25.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256πC .25πD .100π6.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A .α⊥β,且m ⊂αB .m ⊥n ,且n ∥βC .α⊥β,且m ∥αD .m ∥n ,且n ⊥β7.已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个 B .有有限多个 C .有无限多个 D .不存在8.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,72PA =,若该四棱锥的所有顶点都在同一球面上,则该球的表面积为( ) A .812π B .814π C .65π D .652π 9.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .10.一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .11.某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13B .12C .16D .1 12.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A .153B .53C .64D .104二、填空题13.已知在直角梯形ABCD 中,AB AD ⊥,CD AD ⊥,224AB AD CD ===,将直角梯形ABCD 沿AC 折叠,使平面BAC ⊥平面DAC ,则三棱锥D ABC -外接球的体积为__________.14.已知菱形ABCD 中,2AB =,120A ∠=o ,沿对角线BD 将ABD △折起,使二面角A BD C --为120o ,则点A 到BCD V 所在平面的距离等于 .15.若直线y x b =+与曲线234y x x =+-有公共点,则b 的取值范围是______.16.过正方体1111ABCD A B C D -的顶点A 作直线l ,使l 与棱AB 、AD 、1AA 所成的角都相等,这样的直线l 可以作_________条.17.圆221x y +=上的点到直线34250x y +-=的距离的最小值是 .18.若直线l :-3y kx =与直线23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.19.正三棱柱的底面边长为,高为2,则它的外接球的表面积为 .20.三棱锥A BCD -中,E 是AC 的中点,F 在AD 上,且2AF FD =,若三棱锥A BEF -的体积是2,则四棱锥B ECDF -的体积为_______________.三、解答题21.如图,在多面体ABCDM 中,BCD ∆是等边三角形,CMD ∆是等腰直角三角形,90CMD ∠=︒,平面CMD ⊥平面BCD ,AB ⊥平面BCD ,点O 为CD 的中点.(1)求证://OM 平面ABD ;(2)若2AB BC ==,求三棱锥M ABD -的体积.22.在正三棱柱111ABC A B C -中,点D 是BC 的中点.(1)求证:1A C //面1AB D ;(2)设M 是棱1CC 上的点,且满足1BM B D ⊥.求证:面1AB D ⊥面ABM .23.如图四棱锥C ABDE -的侧面ABC ∆是正三角形,BD ⊥面ABC ,//BD AE 且2BD AE =,F 为CD 的中点.(1)求证://EF 面ABC(2)若6BD AB ==,求BF 与平面BCE 所成角的正弦值24.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,3AD BC =,2AO OD =.(1)求证:平面PAB ⊥平面PCD .(2)试问在棱PA 上是否存在点E ,使得面//BOE 面PCD ,若存在,试指出点E 的位置并证明;若不存在,请说明理由.25.已知圆22:2410C x y x y ++-+=,O 为坐标原点,动点P 在圆外,过点P 作圆C 的切线,设切点为M . (1)若点P 运动到()13,处,求此时切线l 的方程;(2)求满足PM PO =的点P 的轨迹方程.26.如图,在ABC V 中AC BC ⊥且点O 为AB 的中点,矩形ABEF 所在的平面与平面ABC 互相垂直.(1)设EC 的中点为M ,求证://OM 平面ACF ;(2)求证:AC ⊥平面CBE【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出圆心到直线0x y +=的距离,根据距离的最小值为d r -,即可求解.【详解】由圆的一般方程可得22(2)(2)1x y -+-=,圆心到直线的距离222d == 所以圆上的点到直线的距离的最小值为221.故选B.【点睛】本题主要考查了点到直线的距离,圆的方程,属于中档题.2.B解析:B【解析】该几何体是一个正方体与半圆柱的组合体,表面积为2215221122032S πππ=⨯+⨯⨯+⨯⨯=+,故选B . 3.B解析:B【解析】【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QO OPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO „,即满足2PO „,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的.【详解】由分析可得:22200PO x y =+ 又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO „故22220000103634PO x y y y ==+-+„ 解得0825y 剟,0605x 剟 即0x 的取值范围是6[0,]5,故选:B .【点睛】解题的关键是充分利用几何知识,判断出2PO „,从而得到不等式求出参数的取值范围. 4.D解析:D【解析】【分析】当且仅当PC 垂直于()400kx y k ++=>时,四边形PACB 的面积最小,求出PC 后可得最小面积,从而可求k 的值.【详解】圆C 方程为()2211x y +-=,圆心()0,1C ,半径为1. 因为PA ,PB 为切线,221PC PA ∴=+且1=2122PACB S PA PA ⨯⨯⨯==四边形.∴当PA 最小时,PACB S 四边形最小,此时PC 最小且PC 垂直于()400kx y k ++=>.又min 21PC k =+,222221+1k ⎛⎫∴= ⎪+⎝⎭,2k ∴=,故选D. 【点睛】圆中的最值问题,往往可以转化圆心到几何对象的距离的最值来处理,这类问题属于中档题. 5.C解析:C【解析】【分析】【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD 为等腰直角三角形, 其外心为BD 中点1O ,设O 为AD 中点,则O 为外接球球心,半径长度为1522AD =, 所以表面积为25π.6.D解析:D【解析】【分析】根据所给条件,分别进行分析判断,即可得出正确答案.【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立;//m n 且n β⊥⇒m β⊥,故D 成立;故选:D【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.7.A解析:A【解析】【分析】根据正四面体的对称性分析到平面ABC ,平面ACD ,平面ABD 的距离相等的点的轨迹,与BCM ∆所在平面的公共部分即符合条件的点P .【详解】在正四面体ABCD 中,取正三角形BCD 中心O ,连接AO ,根据正四面体的对称性,线段AO 上任一点到平面ABC ,平面ACD ,平面ABD 的距离相等,到平面ABC ,平面ACD ,平面ABD 的距离相等的点都在AO 所在直线上,AO 与BCM ∆所在平面相交且交于BCM ∆内部,所以符合题意的点P 只有唯一一个.故选:A【点睛】此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间想象能力.8.B解析:B【解析】【分析】根据题意可知,该四棱锥的外接球即为其所在长方体的外接球,根据公式即可求得.【详解】根据题意,为方便说明,在长方体中找出该四棱锥如图所示:由图可知在长方体中的四棱锥P ABCD-完全满足题意,故该四棱锥的外接球即是长方体的外接球,故外接球半径2 22722294R⎛⎫++ ⎪⎝⎭==,故该球的表面积为28144S Rππ==.故选:B.【点睛】本题考查四棱锥外接球的问题,关键的步骤是将问题转化为求长方体的外接球.9.A解析:A【解析】【分析】利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【详解】对于B项,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ,同理可证,C,D项中均有AB∥平面MNQ.故选:A.【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.10.D解析:D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.11.A解析:A【解析】【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积.【详解】 由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.12.D解析:D【解析】【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,设正三棱柱的各棱长为2,则115,22,3C N BC BN ===设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 2522θ+-==⨯⨯, 即异面直线AM 与1BC 10,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题13.【解析】结合题意画出折叠后得到的三棱锥如图所示由条件可得在底面中取AB 的中点OAC 的中点E 连OCOE 则∵∴∵平面平面∴平面∴又∴∴∴点O 为三棱锥外接球的球心球半径为2∴答案:点睛:(1)本题是一道关 解析:323π 【解析】结合题意画出折叠后得到的三棱锥D ABC -如图所示,由条件可得在底面ACB ∆中,90,22ACB AC BC ∠=︒==。

【易错题】高中必修二数学下期中试题附答案

【易错题】高中必修二数学下期中试题附答案

【易错题】高中必修二数学下期中试题附答案一、选择题1.陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )A .1073π B .32453π+ C .16323π+ D .32333π+ 2.已知点(),P x y 是直线()400kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B ,若四边形PACB 的面积最小值为2,则k 的值为( )A .3B 21C .22D .23.已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个 B .有有限多个 C .有无限多个 D .不存在4.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为43角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20π B .40π C .80π D .160π5.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm6.矩形ABCD 中,4AB =,3BC =,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( )A .12512πB .1259πC .1256πD .1253π 7.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .8.已知点()1,2-和33⎛⎫ ⎪ ⎪⎝⎭在直线():100l ax y a --=≠的两侧,则直线l 的倾斜角的取值范围是 ( )A .,43ππ⎛⎫⎪⎝⎭ B .2,33ππ⎛⎫ ⎪⎝⎭ C .25,36ππ⎛⎫ ⎪⎝⎭ D .30,,34πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭9.一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .10.已知AB 是圆22620x y x y +-+=内过点(2,1)E 的最短弦,则||AB 等于( ) A.3 B.22C .23D .25 11.某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13 B .12 C .16 D .112.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,ABC V 是等腰三角形,BA BC =,123AC CC ==,,D 是AC 的中点,点F 在侧棱1A 上,若要使1C F ⊥平面BDF ,则1AF FA 的值为( )A .1B .12或2C .22或2D .13或3 二、填空题13.设P ,A ,B ,C 是球O 表面上的四个点,PA ,PB ,PC 两两垂直,且1PA PB PC ===,则球O 的表面积为____________.14.已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.15.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .16.正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.17.已知P 是抛物线24y x =上的动点,点Q 是圆22:(3)(3)1C x y ++-=上的动点,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是____________.18.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.19.圆221x y +=上的点到直线34250x y +-=的距离的最小值是 .20.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .三、解答题21.如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24=-l y x ,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.22.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,AC 与BD 交于点O ,E ,F 分别为AB ,PC 的中点.(Ⅰ)求证:EF ∥平面PAD ;(Ⅱ)求证:AF ⊥平面POD .23.如图,在Rt AOB V 中,30OAB ∠=︒,斜边4AB =,Rt AOC V 可以通过Rt AOB V 以直线AO 为轴旋转得到,且平面AOB ⊥平面AOC .动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值.24.如图,四棱锥P ABCD -的底面ABCD 是直角梯形,//AB CD , 33AB CD ==,AB AD ⊥,AB PA ⊥, 且2AD PA ==,22PD =,13PE PB =uur uu r(1)证明://CE 平面PAD ;(2)求点B 到平面ECD 的距离;25.已知直线1:20l ax y a +--=,22:0l x ay ++=,点(5,0)P -(1)当12//l l 时,求a 的值;(2)求直线1l 所过的定点Q ,并求当点P 到直线1l 的距离最大时直线1l 的方程.26.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,1,2AC BC AC BC CC ⊥===,点,,D E F 分别为棱11111,,AC B C BB 的中点.(1)求证://AB 平面DEF ;(2)求证:平面1ACB ⊥平面DEF ;(3)求三棱锥1E ACB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成.根据柱体、锥体的体积计算公式即得该陀螺模型的体积.【详解】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成. 所以该陀螺模型的体积222113242333233333V πππ=⨯⨯+⨯⨯+⨯⨯⨯=+. 故选:D .【点睛】本题考查三视图,考查学生的空间想象能力,属于基础题. 2.D解析:D【解析】【分析】当且仅当PC 垂直于()400kx y k ++=>时,四边形PACB 的面积最小,求出PC 后可得最小面积,从而可求k 的值.【详解】圆C 方程为()2211x y +-=,圆心()0,1C ,半径为1. 因为PA ,PB 为切线,221PC PA ∴=+且1=2122PACB S PA PA ⨯⨯⨯==四边形. ∴当PA 最小时,PACB S 四边形最小,此时PC 最小且PC 垂直于()400kx y k ++=>.又min 21PC k =+,222221+1k ⎛⎫∴= ⎪+⎝⎭,2k ∴=,故选D. 【点睛】圆中的最值问题,往往可以转化圆心到几何对象的距离的最值来处理,这类问题属于中档题. 3.A解析:A【解析】【分析】根据正四面体的对称性分析到平面ABC ,平面ACD ,平面ABD 的距离相等的点的轨迹,与BCM ∆所在平面的公共部分即符合条件的点P .【详解】在正四面体ABCD 中,取正三角形BCD 中心O ,连接AO ,根据正四面体的对称性,线段AO 上任一点到平面ABC ,平面ACD ,平面ABD 的距离相等,到平面ABC ,平面ACD ,平面ABD 的距离相等的点都在AO 所在直线上,AO 与BCM ∆所在平面相交且交于BCM ∆内部,所以符合题意的点P 只有唯一一个.故选:A【点睛】此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间想象能力.4.C解析:C【解析】【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin a r A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案. 【详解】SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =.ABC ∆的外接圆半径为42sin a r A ==,设球O 的半径为R , 则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得25R =,故球O 的表面积为2480R ππ=. 故选:C .【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.5.B解析:B【解析】【分析】【详解】试题分析:. 由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V =×3×4×5﹣××3×4×5=20(cm 3).考点:1.三视图读图的能力;2.几何体的体积公式.6.C解析:C【解析】【分析】由矩形的对角线互相平分且相等即球心到四个顶点的距离相等推出球心为AC 的中点,即可求出球的半径,代入体积公式即可得解.【详解】因为矩形对角线互相平分且相等,根据外接球性质易知外接球球心到四个顶点的距离相等,所以球心在对角线AC 上,且球的半径为AC 长度的一半,即22115222r AC AB BC ==+=,所以334451253326V r πππ⎛⎫==⋅= ⎪⎝⎭.故选:C【点睛】本题考查球与几何体的切、接问题,二面角的概念,属于基础题.7.A解析:A【解析】【分析】利用线面平行判定定理可知B 、C 、D 均不满足题意,从而可得答案.【详解】 对于B 项,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ , 同理可证,C ,D 项中均有AB ∥平面MNQ .故选:A.【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.8.D解析:D【解析】设直线l 的倾斜角为θ∈[0,π).点A (1,−2),B (33,0). 直线l :ax −y −1=0(a ≠0)经过定点P (0,−1).()121, 3.01303PA PB k k ---==-==-- ∵点(1,−2)和(3,0)在直线l :ax −y −1=0(a ≠0)的两侧, ∴k P A <a <k PB ,∴−1<tanθ<3,tanθ≠0.解得30,34ππθθπ<<<<.本题选择D 选项. 9.D解析:D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.10.D解析:D【解析】【分析】求出圆的标准方程,确定最短弦的条件,利用弦长公式进行求解即可.【详解】圆的标准方程为(x ﹣3)2+(y +1)2=10,则圆心坐标为C (3,﹣1),半径为10 过E 的最短弦满足E 恰好为C 在弦上垂足,则CE 22(32)[11]5=-+--=(), 则|AB |222(10)(5)25=-=,故选D .【点睛】本题主要考查圆的标准方程的求解,以及直线和圆相交的弦长问题,属于中档题.11.A解析:A【解析】【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积.【详解】由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.12.B解析:B【解析】【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果.【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点,所以BD AC ⊥,又1AC CC C =I ,所以BD ⊥平面11AAC C ,1C F Q 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =I ,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143x x ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =, 所以112AF FA =或者12AF FA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题13.【解析】【分析】利用条件两两垂直且把三棱锥扩展为正方体球的直径即是正方体的体对角线长由球的表面积公式求解【详解】先把三棱锥扩展为正方体则正方体的体对角线的长为所以球的半径为所以球的表面积为【点睛】本 解析:3π【解析】【分析】利用条件PA ,PB ,PC 两两垂直,且1PA PB PC ===把三棱锥P ABC -扩展为正方体,球的直径即是正方体的体对角线长,由球的表面积公式求解.【详解】先把三棱锥P ABC -3,所以球的半径为3 所以球的表面积为234π3π⨯=⎝⎭.【点睛】 本题主要考查了球的体积公式:343V r π=球(其中r 为球的半径)及长方体的体对角线长公式:222l a b c =++,,a b c 分别是长方体的长、宽、高).14.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个 解析:相交【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =,圆心到直线0x y +=的距离2d =,Q 圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,222222a a ∴-= 即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则2MN =,3R r +=Q ,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.15.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积解析:【解析】试题分析:设圆柱的底面半径为,高为,底面积为,体积为,则有,故底面面积,故圆柱的体积. 考点:圆柱的体积 16.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上解析:22 【解析】【分析】首先根据数形结合分析可知线段PQ 的长度的最小值转化为PQ 在平面ABCD 上投影线段的最小值,然后转化为点到直线的距离的最小值.【详解】当//PQ 平面ABCD 时,线段PQ 与其在平面ABCD 上投影相等,当PQ 与平面ABCD 不平行时,PQ 是斜线段,大于其在平面ABCD 上投影的长度, ∴求线段PQ 的最小值就是求其在平面ABCD 上投影的最小值, 点P 在平面ABCD 的投影是点C ,点Q 在平面ABCD 的投影在BD 上, ∴求线段PQ 的最小值转化为点C 到BD 的距离的最小值,连接,AC BD ,交于点O ,AC BD ⊥,∴点C 到BD 的距离的最小值22CO =.故答案为:22【点睛】 本题考查几何体中距离的最小值,意在考查空间想象能力和数形结合分析问题的能力,属于中档题型.17.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的 解析:【解析】根据抛物线的定义,可知1PR PF =-,而PQ 的最小值是1PC -,所以PQ PR +的最小值就是2PF PC +-的最小值,当,,C P F 三点共线时,此时PF FC +最小,最小值是()()2231305CF =--+-= ,所以PQ PR +的最小值是3.【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题,考查了转化与化归能力,圆外的点和圆上的点最小值是点与圆心的距离减半径,最大值是距离加半径,抛物线上的点到焦点的距离和到准线的距离相等,这样转化后为抛物线上的点到两个定点的距离和的最小值,即三点共线时距离最小.18.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角 5 【解析】【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离.【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,151,,22AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得5BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题. 19.4【解析】试题分析:圆的圆心为圆心到直线的距离为所以点到直线的距离的最小值是5-1=4考点:直线和圆的位置关系解析:4【解析】试题分析:圆的圆心为()0,0,1r =,圆心到直线34250x y +-=的距离为2225534d -==+,所以点到直线34250x y +-=的距离的最小值是5-1=4考点:直线和圆的位置关系20.【解析】【分析】【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状 解析:15,66⎛⎫ ⎪⎝⎭【解析】【分析】【详解】试题分析:如图,正方体ABCD-EFGH ,此时若要使液面不为三角形,则液面必须高于平面EHD ,且低于平面AFC .而当平面EHD 平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD 的体积1 6,并且<正方体ABCD-EFGH体积-三棱柱B-AFC体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法三、解答题21.(1)3y=或34120x y+-=;(2)12[0,]5.【解析】【分析】(1)两直线方程联立可解得圆心坐标,又知圆C的半径为1,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆C的圆心在直线l:24y x=-上可设圆C的方程为[]22()(24)1x a y a-+--=,由2MA MO=,可得M 的轨迹方程为22(1)4x y++=,若圆C上存在点M,使2MA MO=,只需两圆有公共点即可.【详解】(1)由24,{1,y xy x=-=-得圆心()3,2C,∵圆C的半径为1,∴圆C的方程为:22(3)(2)1x y-+-=,显然切线的斜率一定存在,设所求圆C的切线方程为3y kx=+,即30kx y-+=.232311kk-+=+,∴2(43)0k k+=,∴0k=或34k=-.∴所求圆C的切线方程为3y=或34120x y+-=.(2)∵圆C的圆心在直线l:24y x=-上,所以,设圆心C为(,24)a a-,则圆C的方程为[]22()(24)1x a y a-+--=.又∵2MA MO=,∴设M 为(,)x y =22(1)4x y ++=,设为圆D . 所以点M 应该既在圆C 上又在圆D 上,即圆C 和圆D 有交点,∴2121-≤+,由251280a a -+≥,得a R ∈, 由25120a a -≤,得1205a ≤≤. 综上所述,a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. 考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆C 上存在点M ,使2MA MO =问题转化为,两圆有公共点问题是解决问题的关键所在.22.(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】【分析】(Ⅰ)取PD 中点G ,连接AG 、FG ,由题意结合中位线性质可得//FG AE 且FG AE =,即可得四边形FGAE 为平行四边形,进而可得//FE AG ,再由线面平行的判定即可得证;(Ⅱ)由线面垂直的性质和正方形的性质可得DO ⊥平面PAC ,进而可得DO AF ⊥,由平面几何知识可得AF PO ⊥,再由线面垂直的判定即可得证.【详解】(Ⅰ)证明:取PD 中点G ,连接AG 、FG ,Q E ,F 分别为AB ,PC 的中点,底面ABCD 为正方形 ∴//FG CD 且12FG CD =,//AE CD 且12AE CD =, ∴//FG AE 且FG AE =,∴四边形FGAE 为平行四边形,∴//FE AG ,又FE ⊄平面PAD ,AG ⊂平面PAD ,∴//EF 平面PAD .(Ⅱ)证明:Q 底面ABCD 为正方形,PA ⊥平面ABCD ,∴PA DO ⊥,AC DO ⊥,Q PA AC A =I ,∴DO ⊥平面PAC ,∴DO AF ⊥,在PAC V 中,设PO AF H =I ,如图,由题知90PAC ∠=o , O ,F 分别为AC ,PC 的中点,∴AF FC =即CAFFCA ??, 设PA a =,则2AC a =,2AO =, ∴APO ACP V V ∽,∴APOPCA ??,∴90AHP ∠=o 即AF PO ⊥, 又PO OD O =I ,∴AF ⊥平面POD .【点睛】本题考查了线面平行和线面垂直的判定,考查了空间思维能力,属于中档题.23.(1)证明见解析;(215 【解析】【分析】(1)平面AOB ⊥平面AOC ,OC OA ⊥,可证OC ⊥平面AOB ,即可证明结论; (2)取OB 中点E ,连DE ,则//DE AO ,CDE ∠(或补角)为异面直线AO 与CD 所成的角,解Rt CDE ∆,即可求出结论.【详解】(1)平面AOB ⊥平面AOC ,平面AOB I 平面AOC OA =, ,OC OA OC ⊥⊂平面,AOC OC ∴⊥平面AOB ,OC ⊂Q 平面,COD ∴平面COD ⊥平面AOB ;(2)取OB 中点E ,连DE ,D 为AB 的中点,//DE AO ∴,CDE ∠(或补角)为异面直线AO 与CD 所成的角,,,,OA OB OA OC OB OC O OA ⊥⊥=∴⊥Q I 平面BOC ,DE ∴⊥平面BOC ,CE ⊂平面,BOC DE CE ∴⊥,在Rt AOB V 中,30OAB ∠=︒,斜边4AB =, 2223,2,3,()52OB OA OB OC DE CE OC ∴===∴==+=, 15tan 3CE CDE DE ∴∠==, 所以异面直线AO 与CD 所成角的正切值为153.【点睛】本题考查空间线、面位置关系,证明直线与平面垂直,注意空间垂直间的相互转化,求异面直线所成的角,要掌握空间角的解题步骤,“做”“证”“算”缺一不可,考查直观想象能力,属于中档题.24.(1)见解析;(2413【解析】【分析】(1)取PA 的三等分点F ,法一,利用线面平行的判定定理证明.法二,利用面面平行判定定理证明;(2)法一,利用等积转换即B ECD E BCD V V --=,即可求得,法二,利用空间向量法,求点到面的距离.【详解】(1)解法一:取PA 的三等分点F ,连结,DF EF ,则13PF PA =又因为13PE PB =,所以13EF AB =且//EF AB , 因为13CD AB =且//AB CD ,所以EF CD =且//EF CD ,四边形CDFE 是平行四边形,所以//CE DF ,又平面DF ⊂平面 PAD ,CE ⊄平面 PAD ,所以//CE 平面 PAD .解法二:取AB 的三等分点G ,连结,FG CG ,则13AG AB =, 又因为13PE PB =, 所以23EG PA =且//EG PA ,EG ⊄平面PAD , PA ⊂平面PAD , //EG ∴平面PAD , 因为13CD AB =且//AB CD ,所以AG CD =且//AG CD , 四边形ADCG 是平行四边形.所以//AD CG ,CG ⊄平面PAD ,DA ⊂平面PAD ,//CG ∴平面PAD ,又因为EG CG G ⋂=,,EG CG ⊂平面CEG ,所以平面//CEG 平面PAD ,又因为CE ⊂平面CEG ,所以//CE 平面PAD .(2)解法一:设点B 到平面ECD 的距离为h .因为2PA AD ==,PD =222PA AD PD +=,所以,PA AD ⊥,因为,PA AB AB AD A ⊥⋂=,所以PA ⊥平面ABCD , 点E 平面ABCD 的距离是43,3DF ==, 12112BCD S ∆=⨯⨯=,11122ECD S CD DF ∆=⨯⨯=⨯=, 因为B ECD E BCD V V --=,所以,1141,333h h =⨯⨯= 点B 到平面ECD解法二:设点B 到平面ECD 的距离为h .因为2PA AD ==,PD =222PA AD PD +=所以,PA AD ⊥,因为,PA AB AB AD A ⊥⋂=,所以PA ⊥平面ABCD , 分别以,,AD AB AP 为x 轴y 轴z 轴,建立空间坐标系,4(0,0,0),(0,3,0),(2,1,0),(2,0,0),0,1,3A B C D E ⎛⎫ ⎪⎝⎭’40,2,3BE ⎛⎫=- ⎪⎝⎭u u u r , 设平面CDE 法向量1(,,)n x y z =u r , 因为04203y x z =⎧⎪⎨-+=⎪⎩,所以1(2,0,3)n =u r , 设BE 与平面ECD 所成角为θ, 则 点B 到平面ECD的距离11||cos BE n h BE n θ⋅====u u u r u r u u u r u r 点B 到平面ECD 的距离为【点睛】本题主要考查的是直线与平面平行的证明,点到面的距离的求法,以空间向量法求距离的应用,及解题时要注意认真审题,注意等价转化思想的合理应用,是中档题.25.(1)1a =±;(2)(1,2)Q ;350x y +-=.【解析】【分析】(1)由平行可知系数的关系为21a =,进而可求a 的值; (2)整理直线1l 方程可知()120a x y -+-=,由1020x y -=⎧⎨-=⎩可求得定点坐标.由分析知,当当(5,0)P -在直线上的射影为(1,2)Q 时,点P 到直线1l 距离最大,由1PQ l ⊥可求出1l 的斜率,结合已知的1l 的方程,可求出此时a 的值,进而可求出直线1l 的方程.【详解】解:(1)12//l l Q ,21a ∴=,解得1a =±检验:当1a =时12:30:20l x y l x y +-=++=,符合12//l l当1a =-时12:10:20l x y l x y -+=-+=,符合12//l l综上:1a =±.(2)解:1:20l ax y a +--=Q 整理可得()120a x y -+-= ,由1020x y -=⎧⎨-=⎩, 解得12x y =⎧⎨=⎩ ,所以定点(1,2)Q .则当(5,0)P -在直线上的射影为(1,2)Q 时,距离最大. 此时1PQ l ⊥ ,直线PQ 的斜率为201153PQk -==+,则1l 的斜率113PQ k k =-=- , 即3a -=-,解得3a =,此时直线1l 的方程为350x y +-=.【点睛】本题考查了两点斜率的求解,考查了直线平行、垂直.本题的难点是分析何时点P 到直线1l 的距离最大.易错点是做第一问时,求出1a =± 后未检验.对于已知直线平行,根据系数关系求出参数值后,应带回直线方程进行验证.26.(1)证明见解析;(2)证明见解析;(3)23. 【解析】【分析】(1)由题意可知DE P AB ,从而得证;(2)要证平面1ACB ⊥平面DEF ,转证EF ⊥平面1ACB ,即证AC EF ⊥,1EF CB ⊥; (3)利用等积法即可得到结果.【详解】(1)证明:因为三棱柱111ABC A B C -中,11A B P AB ,又因为,D E 分别为1111,AC B C 的中点,所以DE P 11A B ,于是DE P AB , AB ⊄平面DEF ,DE ⊂平面DEF ,所以AB P 平面DEF .(2) 在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC所以1CC AC ⊥,1CC BC ⊥,又AC BC ⊥,1BC CC C ⋂=,1,BC CC ⊂平面11C BC B , 所以AC ⊥平面11C BC B ,EF ⊂平面11C BC B ,所以AC EF ⊥ ,又因为12BC CC ==, 1CC BC ⊥,所以侧面11C BC B 为正方形,故11BC CB ⊥ , 而,E F 分别为111,B C BB 的中点,连结1BC ,所以EF ‖1BC , 所以1EF CB ⊥ ,又1AC CB C ⋂=,1,AC CB ⊂平面1ACB , 所以EF ⊥平面1ACB ,又EF ⊂平面DEF ,所以平面1ACB ⊥平面DEF .(3) 1111233E ACB A ECB ECB V V S AC --∆==⋅= . 【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.。

【压轴卷】高中必修二数学下期中第一次模拟试题(及答案)

【压轴卷】高中必修二数学下期中第一次模拟试题(及答案)

【压轴卷】高中必修二数学下期中第一次模拟试题(及答案)一、选择题1.已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( ) A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=I ,n m ⊥,则n α⊥ 2.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( )A .22(1)(1)5x y ++-=B .22(1)(1)5x y -++=C .22(1)(1)5x y -++=D .22(1)(1)5x y ++-=3.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( ) A .6πB .5πC .4πD .3π4.已知(2,0)A -,(0,2)B ,实数k 是常数,M ,N 是圆220x y kx ++=上两个不同点,P 是圆220x y kx ++=上的动点,如果M ,N 关于直线10x y --=对称,则PAB ∆面积的最大值是( )A .32-B .4C .6D .32+5.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a << 6.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = ) A .1B .1-C .2-或1D .2或17.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm8.点A 、B 、C 、D 在同一个球的球面上,2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( )A .1256πB .8πC .2516πD .254π9.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个B .2个C .3个D .4个10.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB .32C .4πD .3411.若圆锥的高等于底面直径,则它的底面积与侧面积之比为 A .1∶2 B .13C .15D 3212.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题13.经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.14.如图,在正方体1111—ABCD A B C D 中,M N ,分别为棱111C D C C ,的中点,有以下四个结论:①直线AM 与1CC 是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与1MB 是异面直线; ④直线AM 与1DD 是异面直线. 其中正确的结论的序号为________.15.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .16.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,M 为B 1C 1中点,连接A 1B ,D 1M ,则异面直线A 1B 和D 1M 所成角的余弦值为________________________.17.直线与圆交于两点,则________.18.若圆1C :220x y ax by c ++++=与圆2C :224x y +=关于直线21y x =-对称,则c =______.19.如图,在四棱锥P ABCD -中,PA ⊥底面,,//,2,1ABCD AD AB AB DC AD DC AP AB ⊥====,若E 为棱PC 上一点,满足BE AC ⊥,则PEEC=__________.20.如图所示,二面角l αβ--为60,,A B o是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.三、解答题21.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)74l m x m y m +++--=0,(m ∈R ).(1)证明:无论m 取何值,直线l 过定点;(2)求直线l 被圆C 截得的弦长最短时m 的值及最短弦长.22.如图1所示,在等腰梯形ABCD 中,4524AB CD BAD AB CD ∠=︒==∥,,,点E 为AB 的中点.将ADE ∆沿DE 折起,使点A 到达P 的位置,得到如图2所示的四棱锥P EBCD -,点M 为棱PB 的中点.(1)求证:PD MCE ∥平面;(2)若PDE EBCD ⊥平面平面,求三棱锥M BCE -的体积.23.在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点. (1)求证:平面EFG ∥平面ABC . (2)求证:BC SA ⊥.24.如图,在Rt AOB V 中,30OAB ∠=︒,斜边4AB =,Rt AOC V 可以通过Rt AOB V 以直线AO 为轴旋转得到,且平面AOB ⊥平面AOC .动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值.25.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(1)求证://DM 平面APC ; (2)求证:BC ⊥平面APC ;(3)若4BC =,10AB =,求三棱锥D BCM -的体积.26.如图,直三棱柱111ABC A B C -的底面是边长为4的正三角形,M ,N 分别是BC ,1CC 的中点.(1)证明:平面AMN ⊥平面11B BCC ;(2)若直线1A C 与平面11A ABB 所成的角为30°,试求三棱锥M ANC -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】由题设,,αβ⊥ 则A. 若m α⊂,则m β⊥,错误;B. 若m α⊂,n β⊂,则m n ⊥ 错误;D. 若m αβ⋂=,n m ⊥,当n β⊄ 时不能得到n α⊥,错误. 故选C.2.A解析:A 【解析】 【分析】由题意得:圆心在直线x=-1上,又圆心在直线x+y=0上,故圆心M 的坐标为(-1,1),再由点点距得到半径。

【易错题】高中必修二数学下期中一模试卷(含答案)(2)

【易错题】高中必修二数学下期中一模试卷(含答案)(2)

【易错题】高中必修二数学下期中一模试卷(含答案)(2)一、选择题1.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( )A .4330x y --=B .3430x y --=C .3440x y --=D .4340x y --=2.陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )A .1073πB .32453π+C .16323π+D .32333π+ 3.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256πC .25πD .100π 4.在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A .23πB .43πC .53πD .2π5.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b6.点A 、B 、C 、D 在同一个球的球面上,AB=BC=2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256π B .8π C .2516π D .254π 7.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为22,则a 的值为( ) A .-2或2 B .12或32 C .2或0D .-2或0 8.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ;(3)平面//EAB 平面FGT ;(4)直线//BC 直线AE .A .1个B .2个C .3个D .4个9.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB 3C .4πD 3 10.已知ABC V 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,5BC =三棱锥O ABC -的体积为43,则球O 的表面积为( ) A .22π B .743π C .24π D .36π11.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列说法错误..的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行12.若圆的参数方程为12cos ,32sin x y θθ=-+⎧⎨=+⎩(θ为参数),直线的参数方程为21,61x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆的位置关系是( )A .相交且过圆心B .相交但不过圆心C .相切D .相离二、填空题13.经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.14.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD V 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是__________.15.在学习公理四“平行于同一条直线的两条直线平行”时,有同学进行类比,提出了下列命题:① 平行于同一平面的两个不同平面互相平行;② 平行于同一直线的两个不同平面互相平行;③ 垂直于同一直线的两个不同平面互相平行;④ 垂直于同一平面的两个不同平面互相平行;其中正确的有________16.直线与圆交于两点,则________.17.已知一束光线通过点()3,5A -,经直线l :0x y +=反射,如果反射光线通过点()2,5B ,则反射光线所在直线的方程是______.18.已知直线:0l x my m ++=,且与以A (-1,1)、B (2,2)为端点的线段相交,实数m 的取值范围为___________.19.在各棱长均为1的正四棱锥P ABCD -中,M 为线段PB 上的一动点,则当AM MC +最小时,cos AMC ∠=_________20.如图,已知圆锥的高是底面半径的2倍,侧面积为π,若正方形ABCD 内接于底面圆O ,则四棱锥P ABCD -侧面积为__________.三、解答题21.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,2AD =,25PD =,4AB PB ==,60BAD ∠=︒.(1)求证:AD PB ⊥;(2)E 是侧棱PC 上一点,记PE PCλ=,当PB ⊥平面ADE 时,求实数λ的值 22.如图,在直三棱柱111ABC A B C -中,D 是BC 的中点.AB AC ⊥,1AB AC ==,12AA =.(Ⅰ)求直线1AC 与平面11BCC B 所成角的正弦值;(Ⅱ)求二面角1A A B C --的余弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,AC 与BD 交于点O ,E ,F 分别为AB ,PC 的中点.(Ⅰ)求证:EF ∥平面PAD ;(Ⅱ)求证:AF ⊥平面POD .24.如图,在Rt AOB V 中,30OAB ∠=︒,斜边4AB =,Rt AOC V 可以通过Rt AOB V 以直线AO 为轴旋转得到,且平面AOB ⊥平面AOC .动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值.25.如图,在四棱锥P ABCD -中,CB ⊥平面PBD ,AD ⊥平面PBD ,PH BD ⊥于H ,10CD =,8BC AD ==.(1)求证:CD PH ⊥;(2)若13BH BD =,12PH BD =,在线段PD 上是否存在一点M ,使得HM ⊥平面PAD ,且直线HA 与平面PAD 所成角的正弦值为3525.若存在,求PM 的长;若不存在,请说明理由.26.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形. (1)求证:BD PC ⊥;(2)若平面PBC 与平面PAD 的交线为l ,求证://BC l .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.2.D解析:D【解析】【分析】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成.根据柱体、锥体的体积计算公式即得该陀螺模型的体积.【详解】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成. 所以该陀螺模型的体积222113242333233333V πππ=⨯⨯+⨯⨯+⨯⨯⨯=+. 故选:D .【点睛】本题考查三视图,考查学生的空间想象能力,属于基础题. 3.C解析:C【解析】【分析】【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD 为等腰直角三角形, 其外心为BD 中点1O ,设O 为AD 中点,则O 为外接球球心, 半径长度为1522AD =, 所以表面积为25π.4.C解析:C【解析】【分析】【详解】由题意可知旋转后的几何体如图:直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥 故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积. 5.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 6.D解析:D【解析】试题分析:根据题意知,ABC V 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S V 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =V ,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO V 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D. 考点:球内接多面体,球的表面积. 7.C解析:C【解析】【分析】把圆的方程化为标准方程,找出圆心坐标,根据点到直线的距离公式列出关于a 的方程,求出方程的解得到a 的值即可.【详解】把圆的方程化为标准式为:22(1)(2)5x y -+-=,所以圆心坐标为(1,2).则圆心到直线0x y a -+=的距离2d ==, 即11a -=,化简得11a -=或11a -=-,解得:2a =或0a =.所以a 的值为0或2.故选C.【点睛】本题考查学生会将圆的一般式方程化为标准式方程,灵活运用点到直线的距离公式化简求值.8.C解析:C【解析】【分析】(1)翻折时使得平面ABE ⊥平面ABC ,由面面垂直的性质定理得出BC ⊥平面ABE ,从而使得(1)有可能;(2)翻折时使得点E 、F 两点重合,利用勾股定理可证得此时AE CE ⊥,即AE FC ⊥;(3)翻折时使得平面ABE 和平面BCF 同时与平面ABC 垂直,利用面面垂直的性质定理、直线与平面平行的判定定理以及面面平行的判定定理可证明出平面//EAB 平面FGT ;(4)利用反证法,可推出//BC AE 不成立.【详解】(1)翻折时,若平面ABE ⊥平面ABC ,由于ABC ∆是以B 为直角顶点的等腰直角三角形,则BC AB ⊥,又Q 平面ABE I 平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABE ,AE ⊂Q 平面ABC ,此时AE BC ⊥;(2)设AB BC a ==,则2AC a =,且有AE CF a ==,翻折时,若点E 、F 重合,则AE CE a ==,222AE CE AC ∴+=,此时,AE CE ⊥,即AE FC ⊥;(3)如下图所示:翻折时,若平面ABE 和平面BCF 同时与平面ABC 垂直,取AB 的中点D ,连接DE 、FG 、GT 、FT .ABE ∆Q 是等边三角形,且D 为AB 的中点,DE AB ⊥∴.Q 平面ABE ⊥平面ABC ,平面ABE I 平面ABC AB =,DE ⊂平面ABE .DE ∴⊥平面ABC ,同理可证FG ⊥平面ABC ,//DE FG ∴,DE ⊄Q 平面FGT ,FG ⊂平面FGT ,//DE ∴平面FGT .G Q 、T 分别为BC 、AC 的中点,//AB GT ∴,AB ⊄Q 平面FGT ,GT ⊂平面FGT ,//AB ∴平面FGT .DE AB D =Q I ,∴平面//EAB 平面FGT ;(4)假设AE 与BC 可能平行,BC AB ⊥Q ,则AE AB ⊥,事实上60BAE ∠=o , 即AE 与AB 不垂直,假设不成立,因此,AE 与BC 不可能平行.因此,可能正确命题的个数为3.故选:C.【点睛】本题考查的是线面位置关系的判定,判断时要熟悉线面、面面平行与垂直的判定、性质定理,考查推理能力,属于中等题.9.A解析:A【解析】【分析】设BC 的中点是E ,连接DE ,由四面体A′­BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E,因为AB =AD =1,BD 由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形所以DE 为球体的半径2DE =2432S ππ== 故选A【点睛】 求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.10.C解析:C【解析】【分析】由已知可得三角形ABC 为直角三角形,斜边BC 的中点O '就是ABC V 的外接圆圆心,利用三棱锥O ABC -的体积,求出O 到底面的距离,可求出球的半径,然后代入球的表面积公式求解.【详解】在ABC V 中,∵2AB =,4AC =,BC =AB AC ⊥,则斜边BC 的中点O '就是ABC V 的外接圆的圆心, ∵三棱锥O ABC -的体积为43, 11424323OO '⨯⨯⨯⨯=,解得1OO '=,221(5)6R =+=, 球O 的表面积为2424R ππ=. 故选C .【点睛】本题考查球的表面积的求法,考查锥体体积公式的应用,考查空间想象能力和计算能力,属于基础题.11.D解析:D 【解析】 【分析】先利用三角形中位线定理证明//MN BD ,再利用线面垂直的判定定理定义证明MN 与1CC 垂直,由异面直线所成的角的定义证明MN 与AC 垂直,即可得出结论.【详解】如图:连接1C D ,BD ,Q 在三角形1C DB 中,//MN BD ,故C 正确.1CC ⊥Q 平面ABCD ,1CC BD ∴⊥,MN ∴与1CC 垂直,故A 正确;AC BD ^Q ,//MN BD ,MN ∴与AC 垂直,B 正确;∵//MN BD ,MN ∴与11A B 不可能平行,D 错误 故选:D . 【点睛】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键.12.B解析:B 【解析】 【分析】根据题意,将圆和直线的参数方程变形为普通方程,分析可得圆心不在直线上,再利用点到直线的距离公式计算可得圆心(1,3)-到直线320y x --=的距离2d <,得到直线与圆的位置关系为相交. 【详解】根据题意,圆的参数方程为1232x cos y sin θθ=-+⎧⎨=+⎩(θ为参数),则圆的普通方程为22(1)(3)4x y ++-=,其圆心坐标为(1,3)-,半径为2.直线的方程为2161x t y t =-⎧⎨=-⎩(t 为参数),则直线的普通方程为13(1)y x +=+,即320y x --=,圆心不在直线上.∴圆心(1,3)-到直线320y x --=的距离为25d ==<,即直线与圆相交. 故选A. 【点睛】本题考查直线、圆的参数方程,涉及直线与圆的位置关系,解答本题的关键是将直线与圆的参数方程变形为普通方程.二、填空题13.【解析】【分析】先求出两相交直线的交点设出平行于直线的直线方程根据交点在直线上求出直线方程【详解】联立直线的方程得到两直线的交点坐标平行于直线的直线方程设为则所以直线的方程为:故答案为:【点睛】本题 解析:1934011x y ++= 【解析】 【分析】先求出两相交直线的交点,设出平行于直线3470x y +-=的直线方程,根据交点在直线上,求出直线方程. 【详解】联立直线的方程23103470x y x y ++=⎧⎨+-=⎩,得到两直线的交点坐标135(,)1111-,平行于直线3470x y +-=的直线方程设为340x y c ++=,则1353()4()+01111c ⋅-+⋅= 所以直线的方程为:1934011x y ++= 故答案为:1934011x y ++= 【点睛】本题考查了直线的交点,以及与已知直线平行的直线方程,考查了学生概念理解,转化与划归的能力,属于基础题.14.【解析】当位于的中点点与中点重合随点到点由得平面则又则因为所以故综上的取值范围为点睛:立体几何中折叠问题要注重折叠前后垂直关系的变化不变的垂直关系是解决问题的关键条件解析:1,12⎛⎫⎪⎝⎭【解析】当F 位于DC 的中点,点D 与AB 中点重合,1t =. 随F 点到C 点,由CB AB ⊥,CB DK ⊥, 得CB ⊥平面ADB ,则CB BD ⊥.又2CD =,1BC =,则BD =. 因为1AD =,2AB =, 所以AD BD ⊥,故12t =. 综上,t 的取值范围为1,12⎛⎫⎪⎝⎭.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.15.①③【解析】【分析】对4个命题分别进行判断即可得出结论【详解】解:①平行于同一平面的两个不同平面互相平行正确;②平行于同一直线的两个不同平面互相平行或相交不正确;③垂直于同一直线的两个不同平面互相平解析:①③ 【解析】 【分析】对4个命题分别进行判断,即可得出结论. 【详解】解:①平行于同一平面的两个不同平面互相平行,正确; ②平行于同一直线的两个不同平面互相平行或相交,不正确; ③垂直于同一直线的两个不同平面互相平行,正确; ④垂直于同一平面的两个不同平面互相平行或相交,不正确.故答案为:①③. 【点睛】本题考查类比推理,考查学生分析解决问题的能力,属于基础题.16.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根 解析:【解析】 【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长. 【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得, 结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.17.【解析】【分析】计算关于直线的对称点为计算直线得到答案【详解】设关于直线的对称点为故故故反射光线为:化简得到故答案为:【点睛】本题考查了直线的反射问题找出对称点是解题的关键 解析:27310x y -+=【解析】 【分析】计算()3,5A -关于直线0x y +=的对称点为()15,3A -,计算直线1A B 得到答案.【详解】设()3,5A -关于直线0x y +=的对称点为()1,A x y ,故51335022y x x y -⎧=⎪⎪+⎨-+⎪+=⎪⎩,故()15,3A -. 故反射光线为1A B :()532525y x -=-++,化简得到27310x y -+=. 故答案为:27310x y -+=.【点睛】本题考查了直线的反射问题,找出对称点是解题的关键.18.【解析】【分析】由直线系方程求出直线所过定点再由两点求斜率求得定点与线段两端点连线的斜率数形结合求得实数的取值范围【详解】解:由直线可知直线过定点又如图∵∴由图可知直线与线段相交直线的斜率或斜率不存解析:21,32⎡⎤-⎢⎥⎣⎦【解析】 【分析】由直线系方程求出直线所过定点,再由两点求斜率求得定点与线段两端点连线的斜率,数形结合求得实数m 的取值范围. 【详解】解:由直线:0l x my m ++=可知直线过定点()0,1P -, 又()1,1A -,()2,2B ,如图∵()11201PA K --==---,123022PB K --==-,∴由图可知,直线与线段相交,直线l 的斜率(]3,2,2k ⎡⎫∈-∞-+∞⎪⎢⎣⎭U ,或斜率不存在, ∴(]13,2,2m ⎡⎫-∈-∞-+∞⎪⎢⎣⎭U ,或0m =, 即203m -≤<或102m <≤,或0m =, ∴21,32m ⎡⎤∈-⎢⎥⎣⎦故答案为:21,32⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查直线系方程的应用,考查了直线的斜率计算公式,考查了数形结合的解题思想方法,属于中档题.19.【解析】【分析】将侧面和侧面平展在一个平面上连即可求出满足最小时点的位置以及长解即可求出结论【详解】将侧面和侧面平展在一个平面上连与交点即为满足最小正四棱锥各棱长均为在平展的平面中四边形为菱形且在正解析:13-【解析】 【分析】将侧面PAB 和侧面PBC 平展在一个平面上,连AC ,即可求出满足AM MC +最小时,点M 的位置,以及,AM CM 长,解AMC V ,即可求出结论. 【详解】将侧面PAB 和侧面PBC 平展在一个平面上, 连AC 与PB 交点即为满足AM MC +最小, 正四棱锥P ABCD -各棱长均为1,在平展的平面中四边形PABC 为菱形,且60PAB ∠=o ,AM MC ==P ABCD -中,AC =在ACM V 中,222332144cos 32324AM CM AC AMC AM CM +-+-∠===-⋅⋅. 故答案为:13-.【点睛】本题考查线线角,要注意多面体表面的长度关系转化为共面的长度关系,考查直观想象能力,属于中档题.20.【解析】分析:设圆锥底面半径为则高为母线长为由圆锥侧面积为可得结合利用三角形面积公式可得结果详解:设圆锥底面半径为则高为母线长为因为圆锥侧面积为设正方形边长为则正四棱锥的斜高为正四棱锥的侧面积为故答解析:5. 【解析】分析:设圆锥底面半径为r ,则高为2r, 由圆锥侧面积为π,可得2r =a =,利用三角形面积公式可得结果. 详解:设圆锥底面半径为r ,则高为2h r =, 因为圆锥侧面积为π,r ππ∴⨯=,25r =, 设正方形边长为a,则2224,a r a ==,正四棱锥的斜高为()223242a h r +=,∴正四棱锥的侧面积为21365426225a r r ⨯⨯⨯==,故答案为65. 点睛:本题主要考查圆锥的性质、正四棱锥的性质,以及圆锥的侧面积、正四棱锥的侧面积,属于中档题,解答本题的关键是求得正四棱锥底面棱长与圆锥底面半径之间的关系.三、解答题21.(1)证明见解析;(2)34. 【解析】 【分析】(1)证明AD BD ⊥,利用平面PBD ⊥平面ABCD ,交线为BD ,可得AD ⊥平面PBD ,从而AD PB ⊥;(2)作//EF BC ,交PB 于点F ,连接AF ,连接DF ,PBD ∆中,由余弦定理求得cos 25BPD ∠=,即可得出结论.【详解】(1)证明:在ABD △中,2AD =Q ,4AB =,60BAD ∠=︒, ∴由余弦定理可得23BD =,222AD BD AB ∴+=,AD BD ∴⊥. ∵平面PBD ⊥平面ABCD ,交线为BD ,AD ∴⊥平面PBD ,又PB ⊂平面PBD AD PB ∴⊥.(2)解:作//EF BC ,交PB 于点F ,连接AF , 由////EF BC AD 可知A ,D ,E ,F 四点共面,连接DF ,所以由(1)的结论可知,PB ⊥平面ADE ,当且仅当PB DF ⊥. 在PBD △中,由4PB =,23BD =25PD = 余弦定理求得cos 25BPD ∠=,∴在Rt PDF V中,cos 3PF PD BPD =∠=,因此34PE PF PC PB λ=== 【点睛】本题考查立体几何有关知识,考查线面、面面垂直,考查运算能力,属于中档题. 22.23.【解析】 【分析】(Ⅰ)由题意结合线面垂直的判定可得AD ⊥平面11BCC B ,则1AC D ∠即为直线1AC 与平面11BCC B所成的角,求得AD =,1AC =后即可得解; (Ⅱ)作1AE A B ⊥,垂足为E ,连接1A C ,CE,由题意可得BE =,由余弦定理可得295CE =,进而可得90BEC ∠=o ,则AEC ∠即为二面角1A A B C --的平面角,再由余弦定理即可得解. 【详解】(Ⅰ)Q 三棱柱111ABC A B C -是直三棱柱,∴1BB ⊥平面ABC ,∴1BB AD ⊥, Q AB AC =,D 是BC 的中点,∴AD BC ⊥,又1BB BC B =I ,∴AD ⊥平面11BCC B ,∴1AC D ∠即为直线1AC 与平面11BCC B 所成的角, Q 1AB AC ==,12AA =,∴2AD =,1AC =∴11sin AD AC D AC ∠===, ∴直线1AC 与平面11BCC B(Ⅱ)作1AE A B ⊥,垂足为E ,连接1A C ,CE ,Q 1AB AC ==,112AA A C ==,∴11A B AC ==,BC = 由1ABE A BA V V ∽可得BE =,AE = 在1A BC V中,2221111cos 2A B BC AC A BC A B BC +-∠===⋅,∴在EBC V 中,22292cos 5CE BE BC BE BC EBC =+-⋅⋅∠=即355CE =, ∴222CE BE BC +=即90BEC ∠=o , ∴AEC ∠即为二面角1A A B C --的平面角,在AEC V 中,222491255cos 232535255AE CE AC AEC AE CE +-+-∠===⋅⨯⨯. ∴二面角1A A B C --的余弦值为23.【点睛】本题考查了线面角和面面角的求解,考查了空间思维能力和计算能力,属于中档题. 23.(Ⅰ)证明见解析;(Ⅱ)证明见解析. 【解析】 【分析】(Ⅰ)取PD 中点G ,连接AG 、FG ,由题意结合中位线性质可得//FG AE 且FG AE =,即可得四边形FGAE 为平行四边形,进而可得//FE AG ,再由线面平行的判定即可得证;(Ⅱ)由线面垂直的性质和正方形的性质可得DO ⊥平面PAC ,进而可得DO AF ⊥,由平面几何知识可得AF PO ⊥,再由线面垂直的判定即可得证. 【详解】(Ⅰ)证明:取PD 中点G ,连接AG 、FG ,Q E ,F 分别为AB ,PC 的中点,底面ABCD 为正方形∴//FG CD 且12FG CD =,//AE CD 且12AE CD =,∴//FG AE 且FG AE =,∴四边形FGAE 为平行四边形, ∴//FE AG ,又FE ⊄平面PAD ,AG ⊂平面PAD ,∴//EF 平面PAD .(Ⅱ)证明:Q 底面ABCD 为正方形,PA ⊥平面ABCD ,∴PA DO ⊥,AC DO ⊥,Q PA AC A =I ,∴DO ⊥平面PAC , ∴DO AF ⊥,在PAC V 中,设PO AF H =I ,如图,由题知90PAC ∠=o , O ,F 分别为AC ,PC 的中点,∴AF FC =即CAFFCA ??,设PA a =,则2AC a =,22AO a =, ∴APO ACP V V ∽,∴APO PCA ??,∴90AHP ∠=o 即AF PO ⊥,又PO OD O =I ,∴AF ⊥平面POD . 【点睛】本题考查了线面平行和线面垂直的判定,考查了空间思维能力,属于中档题. 24.(1)证明见解析;(2)153. 【解析】 【分析】(1)平面AOB ⊥平面AOC ,OC OA ⊥,可证OC ⊥平面AOB ,即可证明结论; (2)取OB 中点E ,连DE ,则//DE AO ,CDE ∠(或补角)为异面直线AO 与CD 所成的角,解Rt CDE ∆,即可求出结论. 【详解】(1)平面AOB ⊥平面AOC ,平面AOB I 平面AOC OA =,,OC OA OC ⊥⊂平面,AOC OC ∴⊥平面AOB ,OC ⊂Q 平面,COD ∴平面COD ⊥平面AOB ;(2)取OB 中点E ,连DE ,D 为AB 的中点,//DE AO ∴,CDE ∠(或补角)为异面直线AO 与CD 所成的角,,,,OA OB OA OC OB OC O OA ⊥⊥=∴⊥Q I 平面BOC ,DE ∴⊥平面BOC ,CE ⊂平面,BOC DE CE ∴⊥,在Rt AOB V 中,30OAB ∠=︒,斜边4AB =, 2223,2,3,()52OB OA OB OC DE CE OC ∴===∴==+=, 15tan 3CE CDE DE ∴∠==, 所以异面直线AO 与CD 所成角的正切值为15.【点睛】本题考查空间线、面位置关系,证明直线与平面垂直,注意空间垂直间的相互转化,求异面直线所成的角,要掌握空间角的解题步骤,“做”“证”“算”缺一不可,考查直观想象能力,属于中档题.25.(1)证明见详解(2)存在,95PM =【解析】【分析】(1)由线面垂直的性质定理可证AD PH ⊥,再由BD PH ⊥即可求证;(2)要证HM ⊥平面PAD ,即证MH PD ⊥,可作HM PD ⊥,连接AM ,经几何关系验证,恰好满足直线HA 与平面PAD 所成角的正弦值为3525,求得95PM =; 【详解】(1)AD ⊥平面PBD ,PH 在平面PBD 上,所以,AD PH ⊥,又BD PH ⊥,AD 交BD 于D ,所以,PH ⊥平面ABCD ,所以,PH CD ⊥(2)由题可知,6BD =,又13BH BD =,所以4HD =,132PH BD ==,5PD =,要证HM ⊥平面PAD ,由题设可知AD ⊥平面PBD ,则AD HM ⊥,即证HM PD ⊥, 作HM PD ⊥,在PHD ∆中,由等面积法可知125PH HD HM PD ⋅==, 2245HA HD AD =+=,直线HA 与平面PAD 所成角正弦值即为12355sin 2545HAM ∠==,此时3393555PH PM ==⨯= 【点睛】本题考查线面垂直的证明,由线面垂直和线面角反求满足条件的点具体位置,逻辑推理与数学计算能力,属于中档题26.(1)见解析;(2)见解析【解析】【分析】(1)要想证明线线垂直,可以考虑线面垂直.已知底面ABCD 是菱形,显然有BD AC ⊥ ,已知PA ⊥平面ABCD ,可以得到PA BD ⊥,这样就可以根据线面垂直的判定定理,证明出BD ⊥平面APC ,进而可以证明出BD PC ⊥;(2)可以先证明出线面平行,然后利用线面平行的性质定理证明出//BC l .【详解】(1)证明:连接AC ,交BD 于点O .∵四边形ABCD 为菱形,所以BD AC ⊥又∵PA ⊥平面ABCD ,BD ⊂ 平面ABCD ,∴PA BD ⊥又∵PA AC A ⋂=, PA ⊂平面PAC , AC ⊂平面PAC∴BD ⊥平面APC ,又∵PC ⊂平面APC∴ BD PC ⊥(2)∵四边形ABCD 为菱形,∴//BC AD∵AD ⊂平面PAD ,BC ⊄平面PAD .∴//BC 平面PAD .又∵BC ⊂平面PBC ,平面PBC ⋂平面PAD l =.∴//BC l .【点睛】本题考查了线面垂直的判定定理、线面平行的判定定理以及性质定理.关键是考查了转化思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【易错题】高中必修二数学下期中第一次模拟试题(带答案)(2)一、选择题1.已知a ,b 是两条异面直线,且a b ⊥r r,直线c 与直线a 成30°角,则c 与b 所成的角的大小范围是( ) A .[]60,90︒︒B .[]30,90︒︒C .[]30,60︒︒D .[]45,90︒︒2.水平放置的ABC V 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .83.已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .644.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离5.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .42B .32C .322D .226.已知圆O :2224110x y x y ++--=,过点()1,0M 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( )A .42B .24C .212D .67.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( )A .1-或2B .1-C .2D .不存在8.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A .153B .53C .64D .1049.如图在正方体中,点为线段的中点. 设点在线段上,直线与平面所成的角为,则的取值范围是( )A .B .C .D .10.若圆的参数方程为12cos ,32sin x y θθ=-+⎧⎨=+⎩(θ为参数),直线的参数方程为21,61x t y t =-⎧⎨=-⎩(t 为参数),则直线与圆的位置关系是( ) A .相交且过圆心B .相交但不过圆心C .相切D .相离11.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,ABC V 是等腰三角形,BA BC =,123AC CC ==,,D 是AC 的中点,点F 在侧棱1A 上,若要使1C F ⊥平面BDF,则1AFFA 的值为( )A .1B .12或2 C .22或2 D .13或3 12.α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( ) A .m ,n 是平面α内两条直线,且//m β,//n β B .α内不共线的三点到β的距离相等 C .α,β都垂直于平面γD .m ,n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.点(5,2)到直线()1(21)5m x m y m -+-=-的距离的最大值为________.14.如图,在ABC∆中,6 AB BC==,90ABC∠=o,点D为AC的中点,将ABD△沿BD折起到的位置,使PC PD=,连接PC,得到三棱锥P BCD-,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是__________.15.已知,m n为直线,,αβ为空间的两个平面,给出下列命题:①,//mnm nαα⊥⎧⇒⎨⊥⎩;②,////mn m nαβαβ⊂⎧⎪⊂⇒⎨⎪⎩;③,//mmααββ⊥⎧⇒⎨⊥⎩;④,//mm nnββ⊥⎧⇒⎨⊥⎩.其中的正确命题为_________________.16.已知直线:0l x my m++=,且与以A(-1,1)、B(2,2)为端点的线段相交,实数m的取值范围为___________.17.小明在解题中发现函数()32xf xx-=-,[]0,1x∈的几何意义是:点(),x x[]()0,1x∈与点()2,3连线的斜率,因此其值域为3,22⎡⎤⎢⎥⎣⎦,类似地,他研究了函数()32xg xx-=-,[]0,1x∈,则函数()g x的值域为_____18.已知PA垂直于平行四边形ABCD所在平面,若PC BD⊥,则平行四边形ABCD一定是___________.19.如图,已知圆锥的高是底面半径的2倍,侧面积为π,若正方形ABCD内接于底面圆O,则四棱锥P ABCD-侧面积为__________.20.已知四面体ABCD的外接球球心O在棱CD上,3,CD=2,则A、B两点在四面体ABCD的外接球上的球面距离是________.三、解答题21.已知点()1,0P,圆22:6440C x y x y+-++=.(1)若直线l 过点P 且到圆心C 的距离为2,求直线l 的方程;(2)设过点()0,1Q -的直线m 与圆C 交于A 、B 两点(m 的斜率为负),当||4AB =时,求以线段AB 为直径的圆的方程.22.如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,AB BC CF DE ⊥=,45BAC ∠=o ,求平面FGH 与平面ACFD 所成角(锐角)的大小.23.已知圆C 的圆心坐标()1,1,直线l :1x y +=被圆C 截得弦长为2. (1)求圆C 的方程;(2)从圆C 外一点()2,3P 向圆引切线,求切线方程.24.如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .25.在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AA AC AC AB BC =====,且点O 为AC 中点.(1)证明:1A O ⊥平面ABC ; (2)求三棱锥1C ABC -的体积.26.如图,三棱柱111ABC A B C -中,平面11AAC C ⊥平面11AA B B ,平面11AACC ⊥平面ABC ,12AB AC AA ===,点P 、M 分别为棱BC 、1CC 的中点,过点B 、M 的平面交棱1AA 于点N ,使得AP ∥平面BMN .(1)求证:AB ⊥平面11AAC C ; (2)若四棱锥B ACMN -31A AC ∠的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】将异面直线所成的角转化为平面角,然后由题意,找出与直线a 垂直的直线b 的平行线,与直线c 平行线的夹角. 【详解】在直线a 上任取一点O ,过O 做//c c ',则,a c '确定一平面α,过O 点做直线b 的平行线b ',所有平行线b '在过O 与直线a 垂直的平面β内, 若存在平行线1b '不在β内,则1b '与b '相交又确定不同于β的平面, 这与过一点有且仅有一个平面与一条直线垂直矛盾,所以b '都在平面β内, 且,l αβαβ⊥=I ,在直线c '上任取不同于O 的一点P ,做PP l '⊥于P ',则PP β'⊥,POP '∠为是c '与β所成的角为60︒, 若b l '⊥,则,b b c α'''⊥⊥,若b '不垂直l 且不与l 重合, 过P '做P A b ''⊥,垂足为A ,连PA ,则b '⊥平面PP A ',所以b PA '⊥,即1,cos 2OA OP OA PA AOP OP OP '⊥∠=<=, 60AOP ∠>︒,综上b '与c '所成角的范围为[60,90]︒︒,所以直线b 与c 所成角的范围为[]60,90︒︒. 故选:A.【点睛】本题考查异面直线所成角,空间角转化为平面角是解题的关键,利用垂直关系比较角的大小,属于中档题.2.B解析:B 【解析】 【分析】依题意由111A B C △的面积为22114B C =,所以8BC =,2AC =,根据勾股定理即可求AB . 【详解】依题意,因为111A B C △的面积为2 所以1111122sin 452AC B C ︒=⨯⋅=1112222B C ⨯⨯⨯,解得114B C =, 所以8BC =,2AC =,又因为AC BC ⊥, 由勾股定理得:22228268217AB AC BC =+=+==故选B . 【点睛】本题考查直观图还原几何图形,属于简单题. 利用斜二测画法作直观图,主要注意两点:一是与x 轴平行的线段仍然与x '轴平行且相等;二是与y 轴平行的线段仍然与y '轴平行且长度减半.3.A解析:A 【解析】 【分析】设底面ABCD 的边长为a ,四棱锥的高为h ,可得22122a h h =-,得出四棱锥的体积关于h 的函数()V h ,求出V 的极大值点,即可得到四棱锥的体积的最大值. 【详解】正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,设底面ABCD 的边长为a ,四棱锥的高为h ,设正四棱锥的底面ABCD 的中心为1O . 则22a OA =,1PO ⊥ 平面ABCD . 则22211OO O A OA +=,即()2222332a h ⎛⎫+-= ⎪ ⎪⎝⎭,可得22122a h h =-. 则该四棱锥的体积为()221112233V a h h h h =⨯=- 令()()2122f h h hh =-,则()2246f h h h'=-当04h <<时,()0f h '>,()f h 单调递增. 当4h >时,()0f h '<,()f h 单调递减.所以当4h =时,该四棱锥的体积有最大值,最大值为:()216412424433⨯⨯-⨯⨯=. 故选:A【点睛】本题考查了四棱锥与球的组合体,求椎体的体积,关键是利用了导数求体积的最值.属于中档题.4.B解析:B 【解析】 化简圆到直线的距离,又两圆相交. 选B5.B解析:B 【解析】 【分析】根据使得90APB ∠=︒的点P 在以AB 为直径的圆上,再分析轨迹圆与圆C 的关系即可. 【详解】由题, 使得90APB ∠=︒的点P 在以AB 为直径的圆上,又两点(),A m m -,(),B m m -, 所以圆心为()0,0.()222m m m +-=.故P 的轨迹方程为2222x y m +=.又由题意知,当圆()()22:341C x y -+-=内切于222x y m +=时m 取最大值. 2223416m =+=,故32m =故选:B 【点睛】本题主要考查了圆与圆的位置关系,重点是根据90APB ∠=︒求出点P 的轨迹.属于中等题型.6.B解析:B 【解析】 【分析】设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==,22121216162S AC BD d d =⋅=--,利用均值不等式得到最值. 【详解】 2224110x y x y ++--=,即()()221216x y ++-=,圆心为()1,2O -,半径4r =.()1,0M 在圆内,设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==.222222121211222161622S AC BD r d r d d d =⋅=⨯--=--2212161624d d ≤-+-=,当22121616d d -=-,即122d d ==时等号成立.故选:B . 【点睛】本题考查了圆内四边形面积的最值,意在考查学生的计算计算能力和转化能力.7.C解析:C 【解析】 【分析】直接根据直线平行公式得到答案.直线20ax y +-=和直线()2140x a y +-+=平行,则()12a a -=,解得2a =或1a =-.当1a =-时,两直线重合,排除. 故选:C . 【点睛】本题考查了根据直线平行求参数,意在考查学生的计算能力,多解是容易发生的错误.8.D解析:D 【解析】 【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N , 所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角, 设正三棱柱的各棱长为2,则115,22,3C N BC BN ===, 设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 42522θ+-==⨯⨯, 即异面直线AM 与1BC 所成角的余弦值为10,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.9.B解析:B【分析】 【详解】设正方体的棱长为,则,所以,.又直线与平面所成的角小于等于,而为钝角,所以的范围为,选B.【考点定位】空间直线与平面所成的角.10.B解析:B 【解析】 【分析】根据题意,将圆和直线的参数方程变形为普通方程,分析可得圆心不在直线上,再利用点到直线的距离公式计算可得圆心(1,3)-到直线320y x --=的距离2d <,得到直线与圆的位置关系为相交. 【详解】根据题意,圆的参数方程为1232x cos y sin θθ=-+⎧⎨=+⎩(θ为参数),则圆的普通方程为22(1)(3)4x y ++-=,其圆心坐标为(1,3)-,半径为2.直线的方程为2161x t y t =-⎧⎨=-⎩(t 为参数),则直线的普通方程为13(1)y x +=+,即320y x --=,圆心不在直线上.∴圆心(1,3)-到直线320y x --=的距离为33(1)22102519d -⨯--==<+,即直线与圆相交. 故选A. 【点睛】本题考查直线、圆的参数方程,涉及直线与圆的位置关系,解答本题的关键是将直线与圆的参数方程变形为普通方程.11.B【解析】【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果.【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点,所以BD AC ⊥,又1AC CC C =I ,所以BD ⊥平面11AAC C ,1C F Q 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =I ,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143x x ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =, 所以112AF FA =或者12AF FA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.12.D解析:D【分析】A 中,根据面面平行的判定定理可得:α∥β或者α与β相交.B 中,根据面面得位置关系可得:α∥β或者α与β相交.C 中,则根据面面得位置关系可得:α∥β或者α与β相交.D 中,在直线n 上取一点Q ,过点Q 作直线m 的平行线m ′,所以m ′与n 是两条相交直线,m ′⊂β,n ⊂β,且m ′∥β,n ∥α,根据面面平行的判定定理可得α∥β,即可得到答案.【详解】由题意,对于A 中,若m ,n 是平面α内两条直线,且m∥β,n∥β,则根据面面平行的判定定理可得:α∥β或者α与β相交.所以A 错误.对于B 中,若α内不共线的三点到β的距离相等,则根据面面得位置关系可得:α∥β或者α与β相交.所以B 错误.对于C 中,若α,β都垂直于平面γ,则根据面面得位置关系可得:α∥β或者α与β相交.所以C 错误.对于D 中,在直线n 上取一点Q ,过点Q 作直线m 的平行线m′,所以m′与n 是两条相交直线,m′⊂β,n ⊂β,且m′∥β,n∥α,根据面面平行的判定定理可得α∥β,所以D 正确.故选D .【点睛】本题主要考查了平面与平面平行的判定与性质的应用,其中解答中灵活运用平面与平面平行额判定与性质进行判定是解答的关键,着重考查学生严密的思维能力和空间想象能力,属于基础题.二、填空题13.【解析】【分析】先判断过定点可得点到直线的距离的最大值就是点与点的距离从而可得结果【详解】化简可得由所以过定点点到直线的距离的最大值就是点与点的距离为故答案为【点睛】本题主要考查直线过定点问题以及两解析:【解析】【分析】先判断()()1215m x m y m -+-=-过定点()9,4-,可得点(5,2)到直线()()1215m x m y m -+-=-的距离的最大值就是点(5,2)与点()9,4-的距离,从而可得结果.【详解】化简()()1215m x m y m -+-=-可得m ()()2150x y x y +--+-=,由2109504x y x x y y +-==⎧⎧⇒⎨⎨+-==-⎩⎩,所以()()1215m x m y m -+-=-过定点()9,4-,点(5,2)到直线()()1215m x m y m -+-=-的距离的最大值就是点(5,2)与点()9,4-==故答案为【点睛】本题主要考查直线过定点问题以及两点间距离公式的应用,考查了转化思想的应用,属于中档题. 转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本解法将求最大值的问题转化成了两点间的距离的问题来解决,转化巧妙. 14.【解析】【分析】由题意得该三棱锥的面PCD 是边长为的正三角形且BD ⊥平面PCD 求出三棱锥P ﹣BDC 的外接球半径R =由此能求出该球的表面积【详解】由题意得该三棱锥的面PCD 是边长为的正三角形且BD ⊥平解析:7π【解析】【分析】由题意得该三棱锥的面PCD 的正三角形,且BD ⊥平面PCD ,求出三棱锥P﹣BDC 的外接球半径R =2,由此能求出该球的表面积. 【详解】由题意得该三棱锥的面PCD 的正三角形,且BD ⊥平面PCD ,设三棱锥P ﹣BDC 外接球的球心为O ,△PCD 外接圆圆心为O 1,则OO 1⊥面PCD ,∴四边形OO 1DB 为直角梯形,由BD O 1D =1,OB =OD ,得OB∴三棱锥P ﹣BDC 的外接球半径R , ∴该球的表面积S =4πR 2=474π⨯=7π. 故答案为:7π.【点睛】本题考查三棱锥外接球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方思想,是中档题. 15.③④【解析】关于①也会有的结论因此不正确;关于②也会有异面的可能的结论因此不正确;容易验证关于③④都是正确的故应填答案③④解析:③④【解析】关于①,也会有n ⊂α的结论,因此不正确;关于②,也会有,m n 异面的可能的结论,因此不正确;容易验证关于③④都是正确的,故应填答案③④.16.【解析】【分析】由直线系方程求出直线所过定点再由两点求斜率求得定点与线段两端点连线的斜率数形结合求得实数的取值范围【详解】解:由直线可知直线过定点又如图∵∴由图可知直线与线段相交直线的斜率或斜率不存 解析:21,32⎡⎤-⎢⎥⎣⎦【解析】【分析】由直线系方程求出直线所过定点,再由两点求斜率求得定点与线段两端点连线的斜率,数形结合求得实数m 的取值范围.【详解】 解:由直线:0l x my m ++=可知直线过定点()0,1P -,又()1,1A -,()2,2B ,如图∵()11201PA K --==---,123022PB K --==-, ∴由图可知,直线与线段相交,直线l 的斜率(]3,2,2k ⎡⎫∈-∞-+∞⎪⎢⎣⎭U ,或斜率不存在, ∴(]13,2,2m ⎡⎫-∈-∞-+∞⎪⎢⎣⎭U ,或0m =, 即203m -≤<或102m <≤,或0m =, ∴21,32m ⎡⎤∈-⎢⎥⎣⎦ 故答案为:21,32⎡⎤-⎢⎥⎣⎦. 【点睛】 本题主要考查直线系方程的应用,考查了直线的斜率计算公式,考查了数形结合的解题思想方法,属于中档题.17.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得解析:2] 【解析】【分析】根据斜率的几何意义,()g x =表示函数y =(2,3)连线的斜率,数形结合,即可求解.【详解】 ()g x =为点(x 与点(2,3)连线的斜率,点([0,1]x x ∈在函数[0,1]y x =∈图像上, (1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-, 最小值为过A点与[0,1]y x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入[0,1]y x =∈得,320,0,14(32)0kx k k k k --=≠∆=--=,即281210k k -+=,解得34k +=或34k =当34k +=3[0,1]4==-,当k =3[0,1]==+ 不合题意,舍去, ()g x值域为2]. 故答案为:3[2]4+.【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.18.菱形【解析】【分析】【详解】根据题意画出图形如图∵PA垂直平行四边形ABCD所在平面∴PA⊥BD又∵PC⊥BDPA⊂平面PACPC⊂平面PACPA∩PC=P∴BD⊥平面PAC又∵AC⊂平面PAC∴A解析:菱形【解析】【分析】【详解】根据题意,画出图形如图,∵PA垂直平行四边形ABCD所在平面,∴PA⊥BD,又∵PC⊥BD,PA⊂平面PAC,PC⊂平面PAC,PA∩PC=P.∴BD⊥平面PAC又∵AC⊂平面PAC∴AC⊥BD又ABCD是平行四边形∴平行四边形ABCD一定是菱形.故答案为菱形19.【解析】分析:设圆锥底面半径为则高为母线长为由圆锥侧面积为可得结合利用三角形面积公式可得结果详解:设圆锥底面半径为则高为母线长为因为圆锥侧面积为设正方形边长为则正四棱锥的斜高为正四棱锥的侧面积为故答65.【解析】分析:设圆锥底面半径为r,则高为2r5r,由圆锥侧面积为π,可得25 5r=,结合2a r=,利用三角形面积公式可得结果.详解:设圆锥底面半径为r ,则高为2h r =,因为圆锥侧面积为π,r ππ∴⨯=,2r =设正方形边长为a ,则2224,a r a ==,=,∴正四棱锥的侧面积为21462a r ⨯⨯==,. 点睛:本题主要考查圆锥的性质、正四棱锥的性质,以及圆锥的侧面积、正四棱锥的侧面积,属于中档题,解答本题的关键是求得正四棱锥底面棱长与圆锥底面半径之间的关系.20.【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点且O A =OB =OC =OD 进而在△A0B 中利用余弦定理求得cos ∠AOB 的值则∠AOB 可求进而根据弧长的计算方法求得答案【详解】解:球心解析:23π 【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点,且OA =OB =OC =OD ,进而在△A 0B 中,利用余弦定理求得cos ∠AOB 的值,则∠AOB 可求,进而根据弧长的计算方法求得答案.【详解】解:球心到四个顶点距离相等,故球心O 在CD 中点,则OA =OB =OC =OD =1,再由AB =A 0B 中,利用余弦定理cos ∠AOB 11312112+-==-⨯⨯, 则∠AOB 23π=,则弧AB 23π=•123π=. 故答案为:23π. 【点睛】本题主要考查了余弦定理的应用、四面体外接球的性质等,考查了学生观察分析和基本的运算能力. 三、解答题21.(1)1x =或0y =;(2)()()22134x y -++=.【解析】【分析】(1)对直线l 的斜率是否存在进行分类讨论,利用圆心到直线l 的距离等于2可求得直线l 的方程;(2)先通过点到直线的距离及勾股定理可解得直线m 的斜率,然后将直线m 的方程与圆的方程联立,求出线段AB 的中点,作为圆心,并求出所求圆的半径,进而可得出所求圆的方程.【详解】(1)由题意知,圆C 的标准方程为()()22329x y -++=,∴圆心()3,2C -,半径3r =,①当直线l 的斜率k 存在时,设直线的方程为()01y k x -=-,即kx y k 0--=, 则圆心到直线l的距离为2d ==,0k ∴=.∴直线l 的方程为0y =;②当直线l 的斜率不存在时,直线l 的方程为1x =,此时圆心C 到直线l 的距离为2,符合题意.综上所述,直线l 的方程为1x =或0y =;(2)依题意可设直线m 的方程为1y kx =-,即()100kx y k --=<,则圆心()3,2C -到直线m的距离d === 22320k k ∴+-=,解得12k =或2k =-, 又0k <Q ,2k ∴=-,∴直线m 的方程为210x y ---=即210x y ++=,设点()11,A x y 、()22,B x y ,联立直线m 与圆C 的方程得()()22210329x y x y ++=⎧⎪⎨-++=⎪⎩, 消去y 得251010x x -+=,122x x ∴+=,则线段AB 的中点的横坐标为1212x x +=,把1x =代入直线m 中得3y =-, 所以,线段AB 的中点的坐标为()1,3-, 由题意知,所求圆的半径为:122AB =, ∴以线段AB 为直径的圆的方程为:()()22134x y -++=.【点睛】本题考查利用圆心到直线的距离求直线方程,同时也考查了圆的方程的求解,涉及利用直线截圆所得弦长求参数,考查计算能力,属于中等题.22.(Ⅰ)略;(Ⅱ)60o【解析】试题分析:(Ⅰ)思路一:连接,DG CD ,设CD GF O ⋂=,连接OH ,先证明//OH BD ,从而由直线与平面平行的判定定理得//BD 平面HDF ;思路二:先证明平面//FGH 平面ABED ,再由平面与平面平行的定义得到//BD 平面HDF .(Ⅱ)思路一:连接,DG CD ,设CD GF O ⋂=,连接OH ,证明,,GB GC GD 两两垂直, 以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -,利用空量向量的夹角公式求解;思路二:作HM AC ⊥于点M ,作MN GF ⊥于点N ,连接NH ,证明MNH ∠即为所求的角,然后在三角形中求解.试题解析:(Ⅰ)证法一:连接,DG CD ,设CD GF O ⋂=,连接OH ,在三棱台DEF ABC -中,2,AB DE G =为AC 的中点可得//,DF GC DF GC =所以四边形DFCG 为平行四边形则O 为CD 的中点又H 为BC 的中点所以//OH BD又OH ⊂平面,FGH BD ⊂平面,FGH所以//BD 平面FGH .证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点可得//,,BH EF BH EF =所以四边形BHFE 为平行四边形可得//BE HF在ABC ∆中,G 为AC 的中点,H 为BC 的中点,所以//GH AB又GH HF H ⋂=,所以平面//FGH 平面ABED因为BD ⊂平面ABED所以//BD 平面FGH(Ⅱ)解法一:设2AB =,则1CF =在三棱台DEF ABC -中,G 为AC 的中点 由12DF AC GC ==, 可得四边形DGCF 为平行四边形,因此//DG CF又FC ⊥平面ABC所以DG ⊥平面ABC在ABC ∆中,由,45AB BC BAC o ⊥∠=,G 是AC 中点, 所以,AB BC GB GC =⊥因此,,GB GC GD 两两垂直,以G 为坐标原点,建立如图所示的空间直角坐标系G xyz -所以())()()0,0,0,2,0,0,2,0,0,0,1G B C D 可得()22,0,2,122H F ⎛⎫ ⎪ ⎪⎝⎭ 故()22,2,1GH GF ⎫==⎪⎪⎝⎭u u u r u u u r 设(),,n x y z r =是平面FGH 的一个法向量,则由0,{0,n GH n GF ⋅=⋅=u u u r r u u u r r 可得0{20x y z +=+= 可得平面FGH 的一个法向量(1,2n r =-因为GB uuu r 是平面ACFD 的一个法向量,)2,0,0GB =u u u r所以21cos ,222GB n GB n GB n ⋅===⋅u u u r r u u u r r u u u r r 所以平面与平面所成的解(锐角)的大小为60o解法二: 作HM AC ⊥于点M ,作MN GF ⊥于点N ,连接NH由FC ⊥平面ABC ,得HM FC ⊥又FC AC C ⋂=所以HM ⊥平面ACFD 因此GF NH ⊥ 所以MNH ∠即为所求的角在BGC ∆中,12//,,22MH BG MH BG == 由GNM ∆∽GCF ∆可得,MN GM FC GF= 从而6MN =由MH ⊥平面,ACFD MN ⊂平面ACFD得,MH MN ⊥因此tan 3HM MNH MN∠==所以60MNH ∠=o所以平面FGH 与平面ACFD 所成角(锐角)的大小为60o .考点:1、空间直线与平面的位置关系;2、二面角的求法;3、空间向量在解决立体几何问题中的应用.23.(1)()()22111x y -+-=;(2)2x =和3460x y -+=.【解析】【分析】()1设圆C 的半径为r ,根据圆心坐标写出圆的标准方程,利用点到直线的距离公式求出圆心到直线l 的距离即为弦心距,然后根据垂径定理得到其垂足为弦的中点,由弦长的一半,圆心距及半径构成的直角三角形,根据勾股定理列出关于r 的方程,求出方程的解即可得到r 的值,从而确定圆C 的方程;()2当切线方程的斜率不存在时,显然得到2x =为圆的切线;当切线方程的斜率存在时,设出切线的斜率为k ,由p 的坐标和k 写出切线方程,利用点到直线的距离公式求出圆心到所设直线的距离d ,根据直线与圆相切,得到d 等于圆的半径,列出关于k 的方程,求出方程的解即可得到k 的值,从而确定出切线的方程,综上,得到所求圆的两条切线方程.【详解】(1)设圆C 的标准方程为: ()()22211x y r -+-= (0)r >圆心()1,1C 到直线10x y +-=的距离:2d ==,则22211122r d =+=+=⎝⎭∴圆C 的标准方程: ()()22111x y -+-=(2)①当切线斜率不存在时,设切线: 2x =,此时满足直线与圆相切. ②当切线斜率存在时,设切线: ()32y k x -=-,即23y kx k =-+则圆心()1,1C 到直线230kx y k --+=的距离:1d ==解得: 43k =,即34k = 则切线方程为: 3460x y -+=综上,切线方程为: 2x =和3460x y -+=24.(1)见解析;(2)见解析.【解析】【分析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可.【详解】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.25.(1)证明见解析;(2)1.【解析】试题分析:(1)利用等腰三角形的性质可得1A O AC ⊥,利用面面垂直的性质可得1A O ⊥平面ABC ,根据线面垂直的性质可得结论;(2)先证明11||A C 平面ABC ,可得1C 到平面ABC 的距离等于1A 到平面ABC 的距离,利用等积变换及棱锥的体积公式可得11113C ABC A ABC ABC V V S AO --∆==⋅= 11233132⨯⨯=. 试题解析:(1)∵11AA A C =,且O 为AC 的中点.∴1A O AC ⊥.又∵平面11AA C C ⊥平面ABC ,平面11AA C C ⋂平面ABC AC =,且1AO ⊂平面11AAC C ,∴1A O ⊥平面ABC .∵BC ⊂平面ABC ,∴1A O BC ⊥.(2)∵11||A C AC ,11A C ⊄平面ABC ,AC ⊂平面ABC ,∴11||A C 平面ABC .即1C 到平面ABC 的距离等于1A 到平面ABC 的距离. 由(1)知1A O ⊥平面ABC 且22113AO AA AO=-=.∴三棱锥1C ABC -的体积: 11113C ABC A ABC ABC V V S AO --∆==⋅= 11233132⨯⨯⨯⨯=. 26.(1)见解析;(2)3. 【解析】(1)在平面ABC 中,过点B 作棱AC 的垂线,垂足为D ,Q 平面11AAC C ⊥平面ABC ,∴ BD ⊥平面11AAC C . 在平面11AA B B 中,过点B 作棱1AA 的垂线,垂足为E ,Q 平面11AAC C ⊥平面11AA B B ,∴BE ⊥平面11AAC C .Q 过点B 与平面11AAC C 垂直的直线有且只有一条,∴BE 与BD 重合,又∵平面ABC I 平面11AA B B AB =,∴BE 与BD 重合于AB ,所以AB ⊥平面11AAC C .(2)设BM 的中点为Q ,连接PQ ,NQ , Q 点P 为棱BC 的中点,∴PQ ∥CM 且PQ =12 CM , Q 1AA ∥1CC ,∴PQ ∥AN ,∴P 、Q 、N 、A 四点共面, ∵AP ∥平面BMN ,∴AP ∥NQ ,∴四边形PQNA 是平行四边形,∴PQ =AN , ∵M 为1CC 的中点且12AB AC AA ===,∴1CM =,∴PQ =AN =12, 设梯形ACMN 的高为h ,Q 2AB =, ∴111132×2322B ACMN h V h -⎛⎫+ ⎪⎝⎭=⨯==,∴3h = ∴13sin h A AC AC ∠==,∴1A AC ∠3。

相关文档
最新文档