2015学年山东省济宁市曲阜市七年级(上)数学期中试卷带参考答案
数学-2015上-七年级-期中考试-答案-联考
2015学年第一学期七年级期中考试数学试卷答案一、填空题(每小题2分,共30分)1、 +11a b ; 2、14 ; 3、 -6a ; 4、-2.4×610 ;5、54-a; 6、194 ; 7、 +--+-2232415732z x x y x y x y ;8、12 ; 9、-+2269x xy y ; 10、-22259y x ;11、5813+m n;12、19=-k ; 13、1352 ; 14、20 ; 15、222+m n二、选择题(每小题2分,共8分)16、B 17、A 18、A 19、 D三、简答题(每小题5分,共35分)20、当23a =-时原式= 221323⎛⎫-+ ⎪⎝⎭- ( 1分) =41923+- (1分) == 13923-(1分)= 136-(2分)21、原式=22(35)b c a -- 2分=222(93025)b bc c a -+- 2分= 22293025b bc c a -+- 1分22、原式= )32(2c b a -+= 222494612a b c ab ac bc +++-- 5分(其他计算方法酌情给分)23、原式=2222112()36643xy y x x y -+-⋅ 2分=22222222112363636643xy x y y x y x x y -+-⋅ 1分=3324426924x y x y x y -+- 2分24、原式=()()222x a a x -+⎡⎤⎣⎦ 1分= ()2224x a - 2分 = 4224168x a x a -+ 2分25、原式=333244184227a b a b a a b ⋅-⋅ 2分 = 64644427a b a b - 2分 = 6410427a b - 1分 26、2222(4263)33x x x x x x x +----+>- 1分 2222426333x x x x x x x +--++->- 1分 2236433x x x x -+>- 1分34x ->- 1分43x < 1分四.解答题(本题共4题, 27、28题每题6分,29题7分,30题8分,共27分))27、 ∵ A -2B =13-x∴ 2B=A-(3x-1) 1分22231x x x =-+-+ 1分=2243x x -+ 1分∴B= 2322x x -+ 1分 ∴B+A= 2322x x -++222+-x x 1分 = 27332x x -+ 1分 28、()4222222m n -=⨯,()323333nm +=⨯ 1分 422222m n +-=,32333n m ++= 2分 4222m n =,3533n m += 1分4m=2n, 3n=m+5 1分解得m=1,n=2 1分29、(1)444a b a b += 1分()()2222a b = 2分22m n = 1分(2)623a a a = 2分mp = 1分30、( 1 ) S=()()34b t a a t b --- 1分 =334bt ab at ab --+ 1分 =()3b a t ab -+(结果写成3bt at ab -+也可以) 1分(2) 30b a -= 1分3a b = 1分(3)227xa yb ab ++=222921xb yb b ++=()2921x y b ++ 1分 〖 ()921x y ++应该是完全平方数,x 、y 是正整数。
曲阜7年级期中试卷数学【含答案】
曲阜7年级期中试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 下列哪个数是质数?A. 12B. 17C. 20D. 213. 下列哪个数是立方数?A. 8B. 27C. 64D. 1254. 下列哪个数是平方数?A. 36B. 49C. 50D. 815. 下列哪个数是等差数列?A. 2, 4, 6, 8, 10B. 1, 3, 5, 7, 9C. 3, 6, 9, 12, 15D. 5, 10, 15, 20, 25二、判断题(每题1分,共5分)1. 2是偶数。
()2. 9是质数。
()3. 16是立方数。
()4. 25是平方数。
()5. 1, 3, 5, 7, 9是等差数列。
()三、填空题(每题1分,共5分)1. 2 + 3 = __2. 5 2 = __3. 4 × 6 = __4. 18 ÷ 3 = __5. 7² = __四、简答题(每题2分,共10分)1. 请简述偶数和奇数的区别。
2. 请简述质数和合数的区别。
3. 请简述立方数和平方数的区别。
4. 请简述等差数列和等比数列的区别。
5. 请简述因数和倍数的区别。
五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 小红有10个糖果,她给了小华3个糖果,小红还剩下几个糖果?3. 一个长方形的长是6厘米,宽是4厘米,请计算这个长方形的面积。
4. 一个正方形的边长是5厘米,请计算这个正方形的面积。
5. 请列出前5个正整数。
六、分析题(每题5分,共10分)1. 请分析并解释为什么2是偶数,而3是奇数。
2. 请分析并解释为什么4是平方数,而6不是平方数。
七、实践操作题(每题5分,共10分)1. 请用图形表示出2 + 3的结果。
2. 请用图形表示出4 × 6的结果。
八、专业设计题(每题2分,共10分)1. 设计一个等腰三角形,其中底边长为10厘米,腰长为12厘米,并计算其面积。
20150912七年级上学期期中数学试卷 附答案
七年级上学期期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.下列结果为负数的是( )A.|﹣5| B.﹣62C.﹣(﹣7)D.(﹣8)22.下列各项是同类项的是( )A.ab2与a2b B.xy与2y C.ab与ab D.5ab与8ab23.数a,b在数轴上的对应点如图所示,则下列不等式中错误的是( )A.ab>0 B.a+b<0 C.a﹣b<0 D.4.下列各式中,运算正确的是( )A.4a+b=4ab B.23x+4=27x C.﹣(3x﹣2)=2﹣3x D.﹣2(x﹣4)=﹣2x+45.下列说法中,正确的是( )A.近似数3.76与3.760意义一样B.近似数3.2万精确到千位C.近似数30.000精确到个位D.近似数5.449精确到十分位是5.56.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是( )A.﹣x2+2x+2 B.﹣x2+x+2 C.x2﹣x+2 D.﹣x2+x﹣27.小明的爸爸买了一种股票,每股10元,如表记录了在一周内该股票的涨跌的情况(用正数记股价比前一日的上涨数,用负数记股价比前一日的下跌数),该股票这五天中的最高价是( )星期一二三四五股票跌涨(元)0.2 0.35 ﹣0.15 0.2 ﹣0.3A.10.6元B.10.55元C.10.4元D.10.2元8.对于方程(x﹣)﹣=1,甲、乙、丙丁四位同学变形如下,其中变形正确的是( )甲:12(x﹣)﹣4(2x﹣1)=24乙:+=1丙:x﹣﹣x﹣=1丁:6(4x﹣3)﹣2(2x﹣1)=12.A.甲和丙B.甲和丁C.丙和丁D.只有甲二、填空题(共8小题,每小题2分,满分16分)9.如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为__________吨.10.如图所示是一住宅的建筑平面图(图中长度单位:m).用式子表示这所住宅的建筑面积是__________m2.11.为了解决辽河两岸人民几十年的交通不便的问题,连接营口、盘锦的辽河大桥正式开通,全长约4400米,4400用科学记数表示为__________.12.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”__________个.13.若﹣3x m+7y2与2x5y n的和仍为单项式,则m n=__________.14.小明做作业时,不小心把方程中等号右边一个常数污染了:2y﹣=■,小明翻看书后的答案,此方程的解为y=﹣,请你帮小明确定■所表示的数是__________.15.按照如图所示的操作步骤,若输入x的值为﹣2,则输出的值为__________.16.如图所示的对话.淇淇和嘉嘉做数学游戏.假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y的值为__________.三、解答题(共8小题,满分68分)17.计算:(1)(﹣12)﹣(﹣)+(﹣8)﹣(2)16÷(﹣2)3﹣(﹣)×(﹣4)18.先化简,再求值:2(ab+ab2)﹣3(ab﹣1)﹣2ab2,其中a=﹣2014,b=.19.解方程:2(3x﹣)﹣(4x+2)=(3x﹣9)20.十二届全国人大常委第十次会议经表决,通过了关于设立烈士纪念日决定,以法律形式将每年9月30日设立为烈士纪念日,并规定每年9月30日国家举行纪念烈士活动.今年9月30日某中学师生就从学校前往烈士陵园开展纪念烈士活动,行走路线分为三段,其中沿“园林大道”走了3a米,沿“二一九路”走了4(6a﹣25)米,沿“烈士山路”走了8(a+25)米.(1)求师生从学校步行到烈士陵园所走的路程.(2)已知a=100,师生步行的平均速度为每分钟60米,求师生从学校到达烈士陵园用了多少分钟?21.请你认真阅读下列材料计算:(﹣)÷(﹣+﹣)解法1:原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:将原式的除数与被除数互换(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣根据你对所提供的材料的理解,选择适当的方法计算下面的算式:(﹣)÷(﹣﹣+﹣)22.关于x的一元一次方程=﹣1,王小明在去分母时,方程右边的﹣1的项没有乘以6,因而求得的解是x=4.试求a的值,并求出原方程的正确解.23.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?24.观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2 (﹣3)×(﹣4)×(﹣5)=﹣60三个角上三个数的和1+(﹣1)+2=2 (﹣3)+(﹣4)+(﹣5)=﹣12积与和的商﹣2÷2=﹣1,(2)请用你发现的规律求出图④中的数y和图⑤中的数x.一、选择题(共8小题,每小题2分,满分16分)1.下列结果为负数的是( )A.|﹣5| B.﹣62C.﹣(﹣7)D.(﹣8)2考点:有理数的乘方.分析:利用绝对值、相反数的意义,有理数的乘方运算法则计算.解答:解:A、|﹣5|=5,不是负数;B、﹣62=﹣36,是负数;C、﹣(﹣7)=7,不是负数;D、(﹣8)2=64,不是负数.故选B.点评:本题主要考查了有理数的一些运算的基本知识,学生要牢固掌握.2.下列各项是同类项的是( )A.ab2与a2b B.xy与2y C.ab与ab D.5ab与8ab2考点:同类项.分析:根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,结合选项即可解答.解答:解:A、ab2与a2b,相同字母的指数不同,不是同类项;B、xy与2y,所含字母不同,不是同类项;C、ab与ab,是同类项;D、5ab与8ab2,相同字母的指数不同,不是同类项.故选C.点评:本题考查了同类项的定义,关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,还要注意同类项与字母的顺序无关,几个常数项也是同类项.3.数a,b在数轴上的对应点如图所示,则下列不等式中错误的是( )A.ab>0 B.a+b<0 C.a﹣b<0 D.考点:数轴.分析:根据数轴上a、b两数的符号及大小关系,逐一判断.解答:解:由数轴可知,a<b<0,则A、ab>0,本选项正确;B、a+b<0,本选项正确;C、a﹣b<0,本选项正确;D、>1,本选项错误;故选D.点评:本题考查了数轴的运用.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.4.下列各式中,运算正确的是( )A.4a+b=4ab B.23x+4=27x C.﹣(3x﹣2)=2﹣3x D.﹣2(x﹣4)=﹣2x+4考点:合并同类项;去括号与添括号.分析:根据合并同类项的法则:合并同类项,系数相加字母和字母的指数不变;去括号法则即可判断.解答:解:A、4a+b=4ab,故选项错误;B、23x+4=27x,故选项错误;C、﹣(3x﹣2)=2﹣3x,故选项正确;D、﹣2(x﹣4)=﹣2x+4,故选项错误;故选C.点评:本题考查了合并同类项的法则,去括号法则,正确记忆法则是关键.5.下列说法中,正确的是( )A.近似数3.76与3.760意义一样B.近似数3.2万精确到千位C.近似数30.000精确到个位D.近似数5.449精确到十分位是5.5考点:近似数和有效数字.分析:A、近似数3.76与3.760两个精确度不一样;B、近似数3.2万精确到千位;C、近似数30.000精确到千分位;D、根据四舍五入的方法即可得到结果.解答:解:A、近似数3.76表示精确到百分位,而3.760表示精确到千分位,所以表示的意义不一样,故此选项错误;B、近似数3.2万精确到千位,故此选项正确;C、近似数30.000精确到千分位,故此选项错误;D、近似数5.449精确到十分位是5.4,故此选项错误;故选:B.点评:此题主要考查了近似数与有效数字,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.6.已知一个多项式与2x2﹣3x﹣1的和等于x2﹣2x﹣3,则这个多项式是( )A.﹣x2+2x+2 B.﹣x2+x+2 C.x2﹣x+2 D.﹣x2+x﹣2考点:整式的加减.分析:设此多项式为A,再根据整式的加减法则进行计算即可.解答:解:设此多项式为A,则A=(x2﹣2x﹣3)﹣(2x2﹣3x﹣1)=﹣x2+x﹣2.故选D.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.7.小明的爸爸买了一种股票,每股10元,如表记录了在一周内该股票的涨跌的情况(用正数记股价比前一日的上涨数,用负数记股价比前一日的下跌数),该股票这五天中的最高价是( )星期一二三四五股票跌涨(元)0.2 0.35 ﹣0.15 0.2 ﹣0.3 A.10.6元B.10.55元C.10.4元D.10.2元考点:正数和负数.分析:根据有理数的加法,可得每天的价格,根据有理数的大小比较,可得答案.解答:解:一10+0.2=10.2元,二10.2+0.35=10.55元,三10.55﹣0.15=10.4元,四10.4+0.2=10.6元,五10.6﹣0.3=10.3元,10.6>10.55>10.4>10.3>10.2,最高价格是10.6元,故选:A.点评:本题考查了正数和负数,利用了有理数的加法,有理数的大小比较.8.对于方程(x﹣)﹣=1,甲、乙、丙丁四位同学变形如下,其中变形正确的是( )甲:12(x﹣)﹣4(2x﹣1)=24乙:+=1丙:x﹣﹣x﹣=1丁:6(4x﹣3)﹣2(2x﹣1)=12.A.甲和丙B.甲和丁C.丙和丁D.只有甲考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号变形得到结果,即可做出判断.解答:解:方程两边乘以24得:12(x﹣)﹣4(2x﹣1)=24,甲正确;方程整理得:﹣=1,乙错误;方程去括号得:x﹣﹣x+=1,丙错误;去分母得:4x﹣3﹣8x+4=24,并错误,故选D.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.二、填空题(共8小题,每小题2分,满分16分)9.如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为﹣5吨.考点:正数和负数.专题:应用题.分析:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为﹣5吨.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.如图所示是一住宅的建筑平面图(图中长度单位:m).用式子表示这所住宅的建筑面积是(x2+2x+18)m2.考点:列代数式.分析:由图可知,这所住宅的建筑面积=三个长方形的面积+一个正方形的面积.解答:解:由图可知,这所住宅的建筑面积为x2+2x+12+6=x2+2x+18(米2).故答案是:(x2+2x+18).点评:本题考查了列代数式.观察图形的特点,把不规则图形转化为常见图形,再求面积.11.为了解决辽河两岸人民几十年的交通不便的问题,连接营口、盘锦的辽河大桥正式开通,全长约4400米,4400用科学记数表示为4.4×103.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:4400=4.4×103.故答案为:4.4×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”5个.考点:等式的性质.分析:设“●”“■”“▲”分别为x、y、z,根据前两个天平列出等式,然后用y表示出x、z,相加即可.解答:解:设“●”“■”“▲”分别为x、y、z,由图可知,2x=y+z①,x+y=z②,②两边都加上y得,x+2y=y+z③,由①③得,2x=x+2y,∴x=2y,代入②得,z=3y,∵x+z=2y+3y=5y,∴“?”处应放“■”5个.故答案为:5.点评:本题考查了等式的性质,根据天平平衡列出等式是解题的关键.13.若﹣3x m+7y2与2x5y n的和仍为单项式,则m n=4.考点:合并同类项.专题:计算题.分析:利用同类项的定义求出m与n的值,即可确定出所求式子的值.解答:解:∵﹣3x m+7y2与2x5y n的和仍为单项式,∴两单项式为同类项,即m+7=5,n=2,解得:m=﹣2,n=2,则m n=(﹣2)2=4.故答案为:4点评:此题考查了合并同类项,熟练掌握同类项定义是解本题的关键.14.小明做作业时,不小心把方程中等号右边一个常数污染了:2y﹣=■,小明翻看书后的答案,此方程的解为y=﹣,请你帮小明确定■所表示的数是﹣.考点:一元一次方程的解.分析:把y=﹣代入2y﹣=■来求■所表示的数.解答:解:把y=﹣代入2y﹣=■,得2×(﹣)﹣=﹣=■,故答案是:﹣.点评:本题考查了一元一次方程的解得应用,关键是得出关于■的方程,通过做此题培养了学生的理解能力和计算能力.15.按照如图所示的操作步骤,若输入x的值为﹣2,则输出的值为﹣2.考点:代数式求值.专题:图表型.分析:把x的值代入程序中计算即可确定出y的值.解答:解:把x=﹣2代入得:y=(﹣2)2÷4﹣3=1﹣3=﹣2,故答案为:﹣2点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.如图所示的对话.淇淇和嘉嘉做数学游戏.假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y的值为3.考点:整式的加减.专题:图表型.分析:根据题意列出整式,再合并同类项即可.解答:解:由题意得,y=﹣x=x+3﹣x=3.故答案为:3.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.三、解答题(共8小题,满分68分)17.计算:(1)(﹣12)﹣(﹣)+(﹣8)﹣(2)16÷(﹣2)3﹣(﹣)×(﹣4)考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣12+﹣8﹣=﹣19;(2)原式=16÷(﹣8)﹣×4=﹣2.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:2(ab+ab2)﹣3(ab﹣1)﹣2ab2,其中a=﹣2014,b=.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=2ab+2ab2﹣3ab+3﹣3ab2=﹣ab+3,当a=﹣2014,b=时,原式=﹣(﹣2014)×+3=1+3=4.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:2(3x﹣)﹣(4x+2)=(3x﹣9)考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,把x系数化为1,即可求出解.解答:解:去括号得:6x﹣1﹣2x﹣1=x﹣3,移项得:6x﹣2x﹣x=1+1﹣3,合并同类项得:3x=﹣1,系数化成1得:x=﹣.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.十二届全国人大常委第十次会议经表决,通过了关于设立烈士纪念日决定,以法律形式将每年9月30日设立为烈士纪念日,并规定每年9月30日国家举行纪念烈士活动.今年9月30日某中学师生就从学校前往烈士陵园开展纪念烈士活动,行走路线分为三段,其中沿“园林大道”走了3a米,沿“二一九路”走了4(6a﹣25)米,沿“烈士山路”走了8(a+25)米.(1)求师生从学校步行到烈士陵园所走的路程.(2)已知a=100,师生步行的平均速度为每分钟60米,求师生从学校到达烈士陵园用了多少分钟?考点:列代数式;代数式求值.分析:(1)先根据路程=步行速度×步行时间,得到小明从家到学校的路程,再根据骑自行车时间=路程÷骑自行车速度,即可用代数式表示骑自行车到学校所需的时间;(2)把a=100,代入代数式即可求得骑自行车到学校的路程,然后由时间=路程÷速度求得师生从学校到达烈士陵园所用的时间.解答:解:(1)师生从学校步行到烈士陵园的路程为:3a+4(6a﹣25)+8(a+25)=3a+24a﹣100+8a+200=35a+100;(2)当a=100时35a+100=35×100+100=3600,3600÷60=60(分钟).答:师生从学校步行到烈士陵园所走的路程是3600米,师生到达烈士陵园用了60分钟.点评:考查了列代数式,代数式求值,关键是熟悉路程、速度和时间之间的关系.21.请你认真阅读下列材料计算:(﹣)÷(﹣+﹣)解法1:原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:将原式的除数与被除数互换(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣根据你对所提供的材料的理解,选择适当的方法计算下面的算式:(﹣)÷(﹣﹣+﹣)考点:有理数的除法.专题:阅读型.分析:法1:原式先计算括号中的加减运算,再计算除法运算即可得到结果;法2:将原式除数与被除数互换求出值,即可确定出原式的值.解答:解:法1:原式=(﹣)÷[﹣﹣(+)]=(﹣)÷(﹣)=(﹣)÷(﹣)=(﹣)×(﹣)=;法2:将原式的除数与被除数互换,(﹣﹣+﹣)÷(﹣)=(﹣﹣+﹣)×(﹣42)=7+9﹣28+24=12,则原式=.点评:此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.22.关于x的一元一次方程=﹣1,王小明在去分母时,方程右边的﹣1的项没有乘以6,因而求得的解是x=4.试求a的值,并求出原方程的正确解.考点:一元一次方程的解.专题:计算题.分析:把x=4代入看错的方程求出a的值,确定出所求方程,求出解即可.解答:解:把x=4代入4x﹣2=3x+3a﹣1得:a=1,∴原方程为=﹣1,去分母得2(2x﹣1)=3(x+1)﹣6,去括号得4x﹣2=3x+3﹣6,移项得4x﹣3x=3+2﹣6,合并同类项得x=﹣1.点评:此题考查了一元一次方程的解,熟练掌握运算法则是解本题的关键.23.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?考点:一元一次方程的应用.专题:应用题.分析:由(1)得v下=(v上+1)千米/小时.由(2)得S=2v上+1由(3)、(4)得2v上+1=v下+2.根据S=vt求得计划上、下山的时间,然后可以得到共需的时间为:上、下上时间+山顶游览时间.解答:解:设上山的速度为v,下山的速度为(v+1),则2v+1=v+1+2,即上山速度是2千米/小时.则下山的速度是3千米/小时,山高为5千米.则计划上山的时间为:5÷2=2.5(小时),计划下山的时间为:1小时,则共用时间为:2.5+1+1=4.5(小时),所以出发时间为:12:00﹣4小时30分钟=7:30.答:孔明同学应该在7点30分从家出发.点评:本题考查了应用题.该题的信息量很大,是不常见的应用题.需要进行相关的信息整理,只有理清了它们的关系,才能正确解题.24.观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2 (﹣3)×(﹣4)×(﹣5)=﹣60三个角上三个数的和1+(﹣1)+2=2 (﹣3)+(﹣4)+(﹣5)=﹣12积与和的商﹣2÷2=﹣1,(2)请用你发现的规律求出图④中的数y和图⑤中的数x.考点:规律型:数字的变化类.专题:压轴题.分析:(1)根据图形和表中已填写的形式,即可求出表中的空格;(2)根据图①②③可知,中间的数是三个角上的数字的乘积与和的商,列出方程,即可求出x、y的值.解答:解:(1)图②:(﹣60)÷(﹣12)=5,图③:(﹣2)×(﹣5)×17=170,(﹣2)+(﹣5)+17=10,170÷10=17.图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2 (﹣3)×(﹣4)×(﹣5)=﹣60 (﹣2)×(﹣5)×17=170三个角上三个数的和1+(﹣1)+2=2 (﹣3)+(﹣4)+(﹣5)=﹣12 (﹣2)+(﹣5)+17=10积与和的商﹣2÷2=﹣1,(﹣60)÷(﹣12)=5,170÷10=17(2)图④:5×(﹣8)×(﹣9)=360,5+(﹣8)+(﹣9)=﹣12,y=360÷(﹣12)=﹣30,图⑤:=﹣3,经检验x=﹣2是原方程的根,∴图⑤中的数为﹣2.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.。
2015七年级(上)期中数学试卷附答案
七年级(上)期中数学试卷一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=99.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=011.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6二、填空题(每题4分,共32分)13.平方得的数是,立方得﹣8的数是,倒数是﹣的数是,的相反数是.14.数轴上表示有理数﹣3.5与4.5两点的距离是.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=.16.38400万千米用科学记数表示为米.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:=24.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有项,其中﹣xy4的系数是.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?参考答案与试题解析一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(5的相反数)+5=0,则5的相反数是﹣5.故选:B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个考点:正数和负数.分析:先化简,再根据小于0的是负数即可求解.解答:解:在﹣(﹣6)=6,﹣(﹣6)2=﹣36,﹣|﹣6|=﹣6,(﹣6)2=36中,负数有﹣(﹣6)2,﹣|﹣6|,一共2个.故选C.点评:本题主要考查了正数和负数的意义,判断一个数是正数还是负数,关键是看它比0大还是比0小.3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a考点:列代数式.分析:根据数的表示,用数位上的数字乘以数位即可.解答:解:这个两位数是:10a+b.故选C.点评:本题考查了列代数式,比较简单,主要是数的表示方法.4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒考点:列代数式(分式).专题:应用题.分析:通过桥洞所需的时间为=(桥洞长+车长)÷车速.解答:解:它通过桥洞所需的时间为秒.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.注意此时路程应为桥洞长+车长.5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.考点:整式的加减.分析:此题可先列出所求代数式的两倍,然后再除以2即可.解答:解:依题意得[(a+2b)﹣(﹣2a+b)]÷2=.故选D.点评:整式的加减运算实际上就是去括号、合并同类项.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn考点:同类项.分析:同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项.并且与字母的顺序无关.解答:解:A、62与x2字母不同不是同类项;B、4ab与4abc字母不同不是同类项;C、0.2x2y与0.2xy2字母的指数不同不是同类项;D、nm和﹣mn是同类项.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=9考点:有理数的除法;有理数的减法;有理数的乘方.专题:计算题.分析:原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.解答:解:A、﹣12﹣8=﹣20,错误;B、(﹣)÷(﹣4)=﹣×(﹣)=,错误;C、﹣5﹣(﹣2)=﹣5+2=﹣3,正确;D、﹣32=﹣9,错误.故选C.点评:此题考查了有理数的除法,乘方,以及乘法,熟练掌握运算法则是解本题的关键.9.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y考点:整式的加减.分析:根据题意得出:(x3﹣3x2y)﹣(3x2y﹣3xy2),求出即可.解答:解:根据题意得:(x3﹣3x2y)﹣(3x2y﹣3xy2)=x3﹣3x2y﹣3x2y+3xy2=x3﹣6x2y+3xy2,故选C.点评:本题考查了整式的加减的应用,主要考查学生的计算能力.10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=0考点:单项式;代数式;列代数式;合并同类项.分析:分别利用单项式以及代数式和合并同类项法则分析得出即可.解答:解:A、单项式﹣πx3的系数是﹣π,故此选项错误;B、0和a都是代数式,此选项正确;C、数a的与这个数的和表示为+a,故此选项错误;D、合并同类项﹣n2﹣n2=﹣2n2,故此选项错误.故选:B.点评:此题主要考查了单项式、代数式以及合并同类项的定义,正确把握相关性定义是解题关键.11.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处考点:数轴.专题:计算题.分析:由题意知,可看作书店为原点,文具店在书店西边20米处,即﹣20米,玩具店位于书店东边100米处,即+100米,解答出即可.解答:解:根据题意得:文具店在书店西边20米处,玩具店位于书店东边100米处,∴书店看作原点时,玩具店为100米,文具店为﹣20米,∴小明的位置为:40﹣60=﹣20,∴小明的位置为:﹣20米,∴小明的位置在文具店.故答案为A.点评:本题考查了数轴,规定了原点、正方向、单位长度的直线叫做数轴,学生掌握数轴的定义,是解答本题的关键.12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,b+3=0,a﹣2=0,解得a=2,b=﹣3,所以,b a=(﹣3)2=9.故选B.点评:本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、填空题(每题4分,共32分)13.平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.考点:有理数的乘方;相反数;倒数.专题:计算题.分析:原式利用有理数的乘方,相反数,以及倒数的定义计算即可得到结果.解答:解:平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.故答案为:±;﹣2;﹣4;﹣1点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.14.数轴上表示有理数﹣3.5与4.5两点的距离是8.考点:数轴.专题:计算题.分析:有理数﹣3.5与4.5两点的距离实为两数差的绝对值.解答:解:由题意得:有理数﹣3.5与4.5两点的距离为|﹣3.5﹣4.5|=8.故答案为:8.点评:本题考查了数轴的知识,属于基础题,难度不大,注意两点之间的距离即是两数差的绝对值.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=7.考点:同类项.分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得m,n的值,代入求解即可.解答:解:∵3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,∴m﹣1=3,n﹣2=1,∴m=4,n=3,则m+n=7.故答案为:7.点评:本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.38400万千米用科学记数表示为 3.84×108米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300 670用科学记数法表示为3.84×108.故答案为3.84×108.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是x(15﹣x).考点:列代数式.分析:根据周长是30,一边是x,求出另一边是15﹣x,再根据长方形的面积公式即可求解.解答:解:∵周长是30,∴相邻两边的和是15,∵一边是x,∴另一边是15﹣x.∴面积是:x(15﹣x).故答案为:x(15﹣x).点评:本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:3×7+(4﹣1)=24.考点:有理数的混合运算.专题:计算题;开放型.分析:24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯一.解答:解:答案不唯一,如:3×7+(4﹣1)=24.点评:此题考查有理数混合运算的灵活程度,可以提高学生的学习兴趣.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.考点:整式的加减;多项式.分析:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,由此可确定多项式2x2y3﹣x3y﹣xy4﹣5x4y3的项数,根据单项式的系数的定义确定﹣xy4的系数.解答:解:代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.故答案为:四,﹣1.点评:本题考查了多项式的定义,多项式中每个单项式叫做多项式的项,单项式中的数字因数叫做单项式的系数.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是9.考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.考点:作图-三视图;由三视图判断几何体.分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.解答:解:如图所示:点评:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.考点:数轴.专题:计算题.分析:数轴上点的移动规律是“左减右加”.依据规律计算即可.解答:解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.点评:本题考查了数轴的知识,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).考点:有理数的混合运算.分析:(1)先化简,再分类计算;(2)先算乘方和括号里面的加法,再算除法,最后算减法;(3)先算乘方和除法,再算括号里面的减法,再算乘法,最后算加法;(4)利用乘法分配律简算.解答:解:(1)原式=﹣7+15+25=33;(2)原式=9﹣(﹣)÷=9﹣(﹣)×12=9+11=20;(3)原式=﹣1×(4﹣9)+3×(﹣)=﹣1×(﹣5)﹣4=5﹣4=1;(4)原式=﹣24×(﹣)+(﹣24)×﹣24×(﹣)=20﹣9+1=12.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)考点:整式的加减.分析:(1)(2)(3)直接合并整式中的同类项即可;(4)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:(1)3a+2a﹣7a=﹣2a;(2)﹣4x2y+8xy2﹣9x2y﹣21xy2=﹣13x2y﹣13xy2;(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn=m2n+4mn2+mn;(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)=a+b﹣4a+6b+3a﹣2b=5b.点评:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(3)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=3x﹣8x+2﹣3+2x=﹣3x﹣1,当x=﹣时,原式=1﹣1=0;(2)原式=10a2﹣14ab+18b2﹣42a2+6ab﹣9b2=﹣32a2﹣8ab+9b2,当a=,b=﹣时,原式=﹣18+4+4=﹣10;(3)原式=4x3+x2﹣2x3+x2=2x3+x2,当x=﹣3时,原式=﹣81+15=﹣66;(4)原式=5x2﹣2xy+xy+6﹣4x2=x2﹣xy+6,当x=﹣2,y=时,原式=4+1+6=11.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.考点:折线统计图;正数和负数;算术平均数.专题:应用题.分析:(1)根据上周日的收入依次加减即可解答;(2)根据平均数=总收入÷天数进行求解;(3)根据(2)的数据,可以作出折线图,然后分析即可.解答:解:(1)星期五该小店的收入情况为20+10﹣5﹣3+6﹣2=26(元);(2)星期一20+10=30元,星期二30﹣5=25元,25﹣3=22元,22+6=28元,28﹣2=26元,(30+25+22+28+26)÷5=26.2(元);(3)画折线统计图:正确结论例如:这五天中收入最高的是星期一为30元.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.熟练掌握对统计图的分析和平均数的计算.要理解极差的概念,能够根据计算的数据进行综合分析.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?考点:数轴.分析:(1)根据题目的叙述1个单位长度表示1千米,即可表示出;(2)根据(1)得到的数轴,得到表示小明家与小彬家的两点之间的距离,利用1个单位长度表示1千米,即可得到实际距离;(3)把三次所行路程相加即可,(4)路程是20千米,乘以0.5即可求得耗油量.解答:解:(1)如图所示:(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,(4)耗油量是:20×0.2=4升.答:小明家距小彬家7.5千米,这趟路货车共耗油4升.点评:本题考查了数轴,利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.。
2015-2016学年度第一学期期中考试七年级数学附答案
2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。
1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。
9.如果将盈利2万元记作2万元,那么-4万元表示_________________。
10. 绝对值等于6的数是___________。
11. 2ab+b 2+( )=3ab-b 2。
12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。
2015~2016学年第一学期初一数学期中考试试卷及答案
2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。
2015七年级(上)期中数学试卷 附答案
七年级(上)期中数学试卷一、选择题(每题2分,共18分)1.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A. 271×108 B. 2.71×109 C. 2.71×1010 D. 2.71×10112.如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元3.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣2<1 C.﹣2<﹣3<1 D. 1<﹣3<﹣24.下列四个实数中,是无理数的为()A. 0 B.﹣3 C.π D.5.实数a,b在数轴上的位置如图所示,以下说法正确的是()A. a+b=0 B. b<a C. ab>0 D. |b|<|a|6.下列各组是同类项的一组是()A. xy2与﹣x2y B. 3x2y与﹣4x2yz C. a3与b3 D.﹣2a3b与ba37.化简m﹣n﹣(m+n)的结果是()A. 0 B. 2m C.﹣2n D. 2m﹣2n8.已知﹣x+2y=6,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A. 84 B. 144 C. 72 D. 3609.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A. 2M﹣3N B. 2M﹣N C. 3M﹣2N D. 4M﹣N二、填空题(每题2分,共18分)10.计算:﹣2+3= .11.若a与﹣5互为相反数,则a= ;若b的绝对值是,则b= .12.一个圆柱形蓄水池,底面半径r,高为h,如果这个蓄水池蓄满水,可蓄水.13.一个长方形的宽为x厘米,长比宽的2倍多1厘米,则长方形的周长为厘米.14.将(a+b)看作一个整体,则5(a+b)﹣3(a+b)﹣7(a+b)= .15.减去﹣3m等于5m2﹣3m﹣5的式子是.16.若(a2﹣3a﹣1)+A=a2﹣a+4,则A= .17.如图,程序运算器中,当输入﹣1时,则输出的数是.18.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.三、解答题(第19题20分,第20题8分,共28分)19.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)﹣﹣+(3)9+5×(﹣3)﹣(﹣2)2+4(4)﹣5﹣[﹣1.5﹣(4.5﹣4)].20.计算(1)(﹣5)3×[2﹣(﹣6)]﹣300÷5(2)(﹣)÷(﹣)+(﹣2)2×(﹣14)四、解答题(第21题16分,第22题6分,共22分)21.化简或先化简求值(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b(3)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.22.(1)根据要求列出代数式:①m的3倍与n的一半的和;②m与3的积减去n.(2)比较所列两个代数式的大小(直接写出结果)五、解答题(第23题6分,第24-25题每题4分,共14分)23.有3张如图所示的卡片,用它们可以拼成各种形状不同的四边形.(1)画出所有可能拼成的四边形;(2)计算其中两个所拼四边形的周长和与周长差.24.阅读下列解题过程:为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+...+2100=2101﹣1,仿照以上方法计算1+3+32+33+ (32014)25.阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”规定,运算符号“+、﹣、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规划进行,最后运动到竖线下方的“○”中,将a、b、c、d、e 连接起来,构成一个算式.如,“+”号根据规则就应该沿减号方向运动,最后向下进入“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式a÷b×c﹣d+e.解决问题:(1)根据图2所示的“天梯”写出算式,并计算当a=﹣6,b=﹣1.52,c=﹣2,d=,c=﹣时所写算式的值;(2)添加1条横线,使图2中最后结果的“﹣”、“+”位置互换;(3)在图3中设计出一种“天梯”,使列出的算式为a×b÷c+d﹣e.参考答案与试题解析一、选择题(每题2分,共18分)1.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A. 271×108 B. 2.71×109 C. 2.71×1010 D. 2.71×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将27100000000用科学记数法表示为:2.71×1010.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.如果收入80元记作+80元,那么支出20元记作()A. +20元 B.﹣20元 C. +100元 D.﹣100元考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选:B.点评:此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.比较﹣3,1,﹣2的大小,下列判断正确的是()A.﹣3<﹣2<1 B.﹣2<﹣2<1 C.﹣2<﹣3<1 D. 1<﹣3<﹣2考点:有理数大小比较.分析:本题是对有理数的大小比较,根据有理数性质即可得出答案.解答:解:有理数﹣3,1,﹣2的中,根据有理数的性质,∴﹣3<﹣2<0<1.故选:A.点评:本题主要考查了有理数大小的判定,难度较小,熟知两个负数,绝对值大的其值反而小是解答此题的关键.4.下列四个实数中,是无理数的为()A. 0 B.﹣3 C.π D.考点:无理数.分析:根据无理数是无限不循小数,可得答案.解答:解:A、是有理数,故A错误;B、是有理数,故B错误;C、是无理数,故C正确;D、是有理数,故D错误;故选:C.点评:本题考查了无理数,无理数是无限不循环小数.5.实数a,b在数轴上的位置如图所示,以下说法正确的是()A. a+b=0 B. b<a C. ab>0 D. |b|<|a|考点:实数与数轴.专题:常规题型.分析:根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.解答:解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.点评:此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.6.下列各组是同类项的一组是()A. xy2与﹣x2y B. 3x2y与﹣4x2yz C. a3与b3 D.﹣2a3b与ba3考点:同类项.分析:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.解答:解:A、未知数指数不同;B、C组中未知数不同,所以错误;D、﹣2a3b与ba3符合同类项的条件.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.7.化简m﹣n﹣(m+n)的结果是()A. 0 B. 2m C.﹣2n D. 2m﹣2n考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.解答:解:原式=m﹣n﹣m﹣n=﹣2n.故选C.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.8.已知﹣x+2y=6,则3(x﹣2y)2﹣5(x﹣2y)+6的值是()A. 84 B. 144 C. 72 D. 360考点:代数式求值.专题:整体思想.分析:因为﹣x+2y=6,所以x﹣2y=﹣6,可直接代入3(x﹣2y)2﹣5(x﹣2y)+6解答.解答:解:因为﹣x+2y=6,所以x﹣2y=﹣6.则3(x﹣2y)2﹣5(x﹣2y)+6=3×(﹣6)2﹣5×(﹣6)+6=144故选B.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x﹣2y=﹣6的值,然后利用“整体代入法”求代数式的值.9.如果M=3x2﹣2xy﹣4y2,N=4x2+5xy﹣y2,则8x2﹣13xy﹣15y2等于()A. 2M﹣3N B. 2M﹣N C. 3M﹣2N D. 4M﹣N考点:整式的加减.分析:本题涉及去括号法则、合并同类项两个考点,解答时根据每个考点作出回答.根据已知条件逐项算出各项的值判断即可.解答: A、原式=﹣6x2﹣19xy﹣5y2;B、原式=2x2﹣9xy﹣7y2;C、原式=x2﹣16xy﹣10y2;D、原式=8x2﹣13xy﹣15y2.故选D.点评:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.合并同类项的时候,字母应平移下来,只对系数相加减.二、填空题(每题2分,共18分)10.计算:﹣2+3= 1 .考点:有理数的加法.分析:根据有理数的加法法则,从而得出结果.解答:解:﹣2+3=1.故答案为:1.点评:此题主要考查了有理数的加法运算,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.11.若a与﹣5互为相反数,则a= 5 ;若b的绝对值是,则b= .考点:绝对值;相反数.分析:一个数的相反数就是在这个数前面添上“﹣”号.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣5的相反数是5,如果a与﹣5互为相反数,那么a=5;||=,所以b=.故答案为:5;点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.一个圆柱形蓄水池,底面半径r,高为h,如果这个蓄水池蓄满水,可蓄水πr2h .考点:列代数式.分析:根据圆柱的体积=底面积×高列出代数式即可.解答:解:水池可畜水:πr2h.故答案是:πr2h.点评:本题考查了列代数式及圆柱体积的求法,熟记圆柱的体积公式是解题的关键.13.一个长方形的宽为x厘米,长比宽的2倍多1厘米,则长方形的周长为(6x+2)厘米.考点:整式的加减.专题:计算题.分析:由于一个长方形的宽为x厘米,长比宽的2倍多1厘米,则一个长方形的长为(2x+1)厘米,再根据长方形的周长的定义得到长方形的周长=2(x+2x+1),然后去括号,合并同类项即可.解答:解:∵一个长方形的宽为x厘米,长比宽的2倍多1厘米,∴一个长方形的长为(2x+1)厘米,∴长方形的周长=2(x+2x+1)=2x+4x+2=6x+2(厘米).故答案为(6x+2).点评:本题考查了整式的加减:整式的加减运算就是合并同类项.14.将(a+b)看作一个整体,则5(a+b)﹣3(a+b)﹣7(a+b)= ﹣5(a+b).考点:合并同类项.分析:根据合并同类项,系数相加字母部分不变,可得答案.解答:解:原式=(5﹣3﹣7)(a+b)=﹣5(a+b),故答案为:﹣5(a+b).点评:本题考查了合并同类项,把(a+b)看作一个整体是解题关键.15.减去﹣3m等于5m2﹣3m﹣5的式子是5m2﹣6m﹣5 .考点:整式的加减.分析:此题只需设这个式子为A,则A﹣(﹣3m)=5m2﹣3m﹣5,求得A的值即可.解答:解:由题意得,设这个式子为A,则A﹣(﹣3m)=5m2﹣3m﹣5,A=5m2﹣3m﹣5﹣3m=5m2﹣6m﹣5.故答案为:5m2﹣6m﹣5.点评:本题考查了整式的加减,比较简单,容易掌握.熟练掌握运算法则是解本题的关键.16.若(a2﹣3a﹣1)+A=a2﹣a+4,则A= 2a+5 .考点:整式的加减.分析:先把括号里面的整式移到等号右边,然后按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:A=a2﹣a+4﹣(a2﹣3a﹣1)=a2﹣a+4﹣a2+3a+1=2a+5.故答案为;2a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.17.如图,程序运算器中,当输入﹣1时,则输出的数是7 .考点:有理数的混合运算.专题:图表型.分析:首先理解清题意,知道此题分两种情况,且只有运算的数值大于3时才能输出结果.解答:解:(﹣1+4)×(﹣2)+(﹣3)=3×(﹣2)+(﹣3)=﹣6﹣3=﹣9<3(﹣9+4)×(﹣2)+(﹣3)=(﹣5)×(﹣2)+(﹣3)=10﹣3=7>3.故答案为:7.点评:此题的关键是知道计算顺序,明白当运算的结果小于3时要再重新计算,直到结果大于3,输出结果为止.18.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.专题:压轴题;规律型.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).点评:此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.三、解答题(第19题20分,第20题8分,共28分)19.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)﹣﹣+(3)9+5×(﹣3)﹣(﹣2)2+4(4)﹣5﹣[﹣1.5﹣(4.5﹣4)].考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式去括号,计算即可得到结果.解答:解:(1)原式=﹣﹣+2=﹣1+2=1;(2)原式=﹣+﹣=﹣+=﹣;(3)原式=9﹣15﹣1=﹣7;(4)原式=﹣5+1.5+4.5﹣4=﹣10.5+6=﹣4.5.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.计算(1)(﹣5)3×[2﹣(﹣6)]﹣300÷5(2)(﹣)÷(﹣)+(﹣2)2×(﹣14)考点:有理数的混合运算.专题:计算题.分析:(1)首先算括号里的,利用有理数的减法法则;减去一个数等于加上它的相反数,2﹣(﹣6)=2+6;再算乘方,(﹣5)3表示3个﹣5相乘得﹣125,再算乘除,两数相乘(或相除),同号得正,异号得负,首先确定好符号,然后把绝对值相乘(或相除);最后再算加减即可以得到答案.(2)首先算括号里的﹣=;再算乘方,(﹣2)2表示2个﹣2相乘得4,再算乘除,两数相乘(或相除),同号得正,异号得负,首先确定好符号,然后把绝对值相乘(或相除);最后再算加减即可以得到答案.解答:解:(1)原式=(﹣5)3×(2+6)﹣300÷5,=(﹣5)3×8﹣300÷5,=﹣125×8﹣300÷5,=﹣1000﹣60,=﹣1060.(2)原式=÷(﹣)+4×(﹣14),=﹣1+(﹣56),=﹣57.点评:此题主要考查了有理数的加减,乘除,乘方的混合运算,计算时要把握两个关键:①计算顺序,②符号的确定.四、解答题(第21题16分,第22题6分,共22分)21.化简或先化简求值(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b(3)m﹣(m﹣1)+3(4﹣m),其中m=﹣3.(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.考点:整式的加减;整式的加减—化简求值.分析:(1)(2)先去括号,然后合并同类项即可;(3)(4)先去括号、合并同类项,然后再代入求值即可.解答:解:(1)3x2y3+(﹣4x2y3)﹣(﹣x2y3)=3x2y3﹣4x2y3+x2y3=0;(2)ab﹣[3a2b﹣(4a2b+ab)﹣4a2b]+3a2b=ab﹣3a2b+4a2b+ab+4a2b+3a2b=ab+8a2b;(3)m﹣(m﹣1)+3(4﹣m),=m﹣m+1+12﹣3m,=﹣4m+13,当m=﹣3时,原式=﹣4×(﹣3)+13=12+13=25;(4)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y,=2x﹣2y,当x=﹣2,y=2时,原式=2×(﹣2)﹣2×2=﹣4﹣4=﹣8.点评:此题考查的知识点是整式的混合运算﹣化简求值,关键是先去括号、合并同类项进行化简,然后代入求值.22.(1)根据要求列出代数式:①m的3倍与n的一半的和;②m与3的积减去n.(2)比较所列两个代数式的大小(直接写出结果)考点:列代数式;整式的加减.分析:(1)①m的3倍即3m,n的一半即n,二者相加即可.②m与3的积表示为3m,然后减去n.(2)利用作差法比较它们的大小.解答:解:①依题意得 3m+n;②依题意得 3m﹣n;(2)∵(3m+n)﹣(3m﹣n)=n.∴当n>0时,3m+n>3m﹣n;当n<0时,3m+n<3m﹣n;当n=0时,3m+n=3m﹣n.点评:此题考查的知识点是列代数式,关键是能够正确运用数学语言,即代数式来表示题意.五、解答题(第23题6分,第24-25题每题4分,共14分)23.有3张如图所示的卡片,用它们可以拼成各种形状不同的四边形.(1)画出所有可能拼成的四边形;(2)计算其中两个所拼四边形的周长和与周长差.考点:整式的加减;列代数式;图形的剪拼.分析:(1)拼成各种形状不同的四边形,需让相等的边重合,可先从常见的图形等腰梯形入手,然后进行一定转换;(2)根据作出的图形求出周长,然后求出周长差.解答:解:(1)所作图形如图所示:(2)第一个四边形的周长为:4a+2b,第二个四边形的周长为:2a+4b,则周长差为:(4a+2b)﹣(2a+4b)=2a﹣2b.点评:本题考查了整式的加减,着重考察了学生的动手操作能力,让相等的边重合,构造四边形即可.24.阅读下列解题过程:为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+...+2100=2101﹣1,仿照以上方法计算1+3+32+33+ (32014)考点:有理数的乘方.专题:阅读型.分析:利用题中的方法求出原式的值即可.解答:解:设M=1+3+32+33+…+32014,①①式两边都乘以3,得3M=3+32+33+…+32015,②②﹣①得:2M=32015﹣1,即M=,则原式=.点评:此题考查了有理数的乘方,弄清题中的方法是解本题的关键.25.阅读理解:图1中的每相邻两条线间,有从上至下的几条横线(即“桥”),这样就构成了“天梯”规定,运算符号“+、﹣、×、÷”在“天梯”的竖线与横线上运动,它们在运动过程中按自上而下,且逢“桥”必过的规划进行,最后运动到竖线下方的“○”中,将a、b、c、d、e连接起来,构成一个算式.如,“+”号根据规则就应该沿减号方向运动,最后向下进入“○”中,其余3个运算符号分别按规则运动到“○”中后,就得到算式a÷b×c﹣d+e.解决问题:(1)根据图2所示的“天梯”写出算式,并计算当a=﹣6,b=﹣1.52,c=﹣2,d=,c=﹣时所写算式的值;(2)添加1条横线,使图2中最后结果的“﹣”、“+”位置互换;(3)在图3中设计出一种“天梯”,使列出的算式为a×b÷c+d﹣e.考点:有理数的混合运算.专题:阅读型.分析:(1)根据题意确定出图2所示的“天梯”表示的算式,把a,b,c,d,e代入计算即可求出值;(2)根据题意画出粗线,如图所示;(3)如图3所示,设计出一种“天梯”满足题意即可.解答:解:(1)由题意得:ab﹣c+d+e,当a=﹣6,b=﹣1.52=﹣2.25,c=﹣2,d=,e=﹣时,原式=﹣6×(﹣2.25)﹣(﹣2)÷+(﹣)=;(2)加的横线见图2中的粗线部分,该横线应该在第二栏的第二座“桥”附近,可以添加在第二座“桥”的上方或下方,但不能超过第二座“桥”相邻的其他“桥”,这样就可以使图2中最后结果的“﹣”、“+”位置互换;(3)如图3所示.点评:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.。
2015—2016学年度第一学期七年级数学期中试卷
2015—2016学年度第一学期七年级数学期中试卷注意事项:全卷满分100分,考试时间100分钟.考生答题全部答在答题卡上,答在本试卷上无效.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.答选择题必须用2B 钢笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定地,在其他位置答题一律无效. 作图必须用2B 钢笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2-的相反数是( )A .12 B .2 C .12- D .2- 2.2008年我国的国民生产总值约130800亿元,那么130800用科学记数法表示正确的是( ) A .51.30810⨯ B .413.0810⨯ C .41.30810⨯D .21.30810⨯3.下列各组是同类项的一组是( ) A .5xy 与2xyzB .2与7-C .22x y -与25y xD .3ac 与7bc4.下列各组数中,数值相等的是( ) A .23和32B .23-和()23-C .()32-和32-D .()2--和2--5.单项式222x yz -的系数和次数分别是( )A .2-,2B .2-,5C .12-,2D .12-,56.以下各正方形的边长是无理数的是( ) A .面积为3的正方形 B .面积为1.44的正方形 C .面积为25的正方形 D .面积为16的正方形二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 7.112-的倒数是__________;()20151-=__________. 8.比较大小:234⎛⎫- ⎪⎝⎭__________12-)(填“<”、“=”、“>”).9.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是__________.10.多项式232x x -+-的次数为__________,项数为__________.11.钢笔每支2元,钢笔每支0.5元,n 支钢笔和m 支钢笔共__________元. 12.有理数a 、b 、c 在数轴上的位置如图,化简a b c b +--的结果为__________.13.如图所示的阴影部分面积用代数式表示为__________.14.长方形的周长为53a b +,其中一边长为2a b -,则这个长方形的另一边长为__________.(写出化简后的结果)15.已知2235x x -+的值为9,则代数式2468x x -+的值为__________.16.观察下列图形,它们是按一定规律排列的,依照此规律,第n 个图形有__________个太阳.(图4)(图3)(图2)(图1)三、解答题(本大题共8小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(4分)画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.132-,4,2.5,1,7,5- 18.计算:((1)(2)每题4分,(3)(4)每题5分,共18分) (1)24+(-14)+(-16)+8;(2)()142722449-÷⨯÷-;(3)()357124468⎛⎫-+-⨯- ⎪⎝⎭;(4)()()341110.5243⎡⎤---÷⨯--⎣⎦.19.计算:(第(1)题4分,第(2)(3)题5分,共14分)(1)3257x y x y -+--(2)()()5322a a b a b +---(3)()()22222222x y xy x y x xy y +---- 20.(6分)先化简再求值:222214332332x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中34x =,1y =-.21.(6分)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米? (2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由. 22.(5分)如图,两摞规格完全相同的课本整齐叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本课本的厚度为__________cm ;(2)若有一摞上述规格的课本x 本,整齐叠放在讲台上,请用含x 的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当56x =时,若从中取走14本,求余下的课本的顶部距离地面的高度.23.(5分)从2开始的连续偶数相加,它们和的情况如下表:(1)根据表中的规律,直接写出24681012+++++=__________.(2)根据表中的规律猜想:24682S n =+++++=__________(用n 的代数式表示) (3)利用上题中的公式计算102104106200++++的值(要求写出计算过程). 24.(10分) 【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()3-④,读作“3-的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(0a ≠)记作n a ,读作“a 的圈n 次方”. 【初步探究】(1)直接写出计算结果:2=█__________,12⎛⎫-= ⎪⎝⎭█__________.(2)关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数n ,1=1█C .3=4██D .负数的圈奇数次方结果是负数,负数的圈子偶数次方结果是正数 【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?=(12)2=2×122④=2÷2÷2÷2除方(1)试一试:依照上面的算式,将下列运算结果直接写成幂.的形式. ()3=-█__________; 5=█__________;1=2⎛⎫- ⎪⎝⎭█__________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于__________; (3)算一算:23111123423⎛⎫⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭███.。
2015-2016学年度第一学期七年级期中数学试卷(含答案)
2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( ) A 2 B 3 C 6 D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π= ,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分) (1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=-(3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+ 23-+;35-+- ()()35-+-;05+-()05+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分)1.对任意有理数,,,a b c d ,规定一种新运算:bc ad d c b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.若()1111112c a b a b =-++,()2222212c a b a b =-++,()3333312c a b a b =-++…, ()1007100710071007200721b a b ac ++-=.设1231007S c c c c =++++…,求S 的最大值和最小值,并给出相应的分组方案.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>==(2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。
1.2015学年第一学期七年级数学期中试卷(4稿)
2015学年第一学期七年级数学期中试题卷亲爱的同学:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分.2.答题前,请在答题卷的密封区内填写学校、准考证号、班级和姓名等.3.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应.4.不能使用计算器.一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的 正确选项,不选、多选、错选,均不得分)1.下列各数中最小的是…………………………………………………………………( ▲ )A. 2015-B. 12015C. 12015-D. 2015 2.下列选项是无理数的为………………………………………………………………( ▲ )A. 31- B. 4 C. 3.1 D. π- 3.绝对值小于6且大于3的整数有……………………………………………………( ▲ ) A. 1个 B. 2个 C. 3个 D. 4个41的值在……………………………………………………………………( ▲ )A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间5.下列各组代数式中,属于同类项的是………………………………………………( ▲ )A. 2x 2y 与2xy 2B. xy 与-xyC. 2x 与2xyD. 2x 2与2y 26.下列各式中,合并同类项正确的是…………………………………………………( ▲ )A. -a +3a = 2B. x 2-2x 2 =-xC. 2x + x = 3xD. 3a +2b = 5ab7.若33=+x ,则2)3(+x 的平方根是………………………………………………( ▲ )A. 81B. 81±C. 9±D. 3±8.实数a ,b 在数轴上的位置如图所示,以下说法正确的是…………………………( ▲ )A. a +b =0B. b <aC. ab >0D. |b |<|a |9.现有无理数13,11,10,其中在22和32之间有……………………………( ▲ )A. 1 个B. 2个C. 3 个D. 4个10.若,9,422==b a 且0<ab ,则b a -的值为………………………………………( ▲ )A. 5±B. 2-C.5D.5-二、认真填一填(本题有6小题,每小题4分,共24分)11.数轴上的一个点在点-2.5的右边,相距4个单位长度,则这个点所表示的数为 ▲ .12.下列代数式中:21,,3,,,222b a b m a a x a +-+--- 属于单项式的有: ▲ ;属于多项式的有: ▲ .13.请写出两个正无理数,使得他们的和为有理数 ▲ .14.数383900用四舍五入法精确到千位取近似值后,用科学记数法应表示为 ▲ .15.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212……请你观察它们的构成规律,用你发现的规律写出第8个等式为 ▲ .16.任何实数a ,可用[]a 表示不超过a 的最大整数,如[][]13,44==,现对72进行如下操作:[][][]122887272321=→=→=→次第次第次第,这样对72只需进行3次操作后变为1,类似地,①对81只需进行 ▲ 次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是 ▲ .三、解答题(本题有8题,共66分,各小题都要写出解答过程)17.(本题6分) 计算(1)2)3(42⨯-- (2)16643+-18.(本题6分)计算(1))66()1153121(-⨯⨯- (2)324)31(3)21(2-÷+-÷-19.(本题6分)先化简,再求值.(1)1)13(2+---a a ,其中9-=a .(2))96()5.44(222+---+ab a ab a ,其中6,32=-=b a .20.(本题8分)如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A 、B 表示的数是互为相反数,那么点C 表示的数是多少?(2)如果点D 、B 表示的数是互为相反数,那么点C 表示的数是正数还是负数,图中表示的5个点中,哪一个点表示的数的绝对值最小,最小的绝对值是多少?21.(本题8分)如图,每个小正方形的边长均为1,求图中阴影正方形的面积和边长.22.(本题8分)出租车司机小王某天上午的营运全是在东西走向的光明大道上进行的,如果规定向东为正,向西为负,若把小王接车的光明大道上的人民广场处记为0千米,记这天下午小王行车里程分别为(单位:千米):-2,+5,-1,+10,-15,-3,则小王行驶完上述里程后,(1)车在光明大道的什么位置处?(2)若出租车的耗油量为0.1升/千米,这天上午小王开车共耗油多少升?23.(本题12分)我们自从有了用字母表示数,发现表达有关的数和数量关系更加的简洁明了,从而更助于我们发现更多有趣的结论,请你按要求试一试:(1)用代数式表示:①a 与b 的差的平方;②a 与b 两数平方和与a ,b 两数积的2倍的差.(2)当3,2a b ==-时,求第(1)题中①②所列的代数式的值.(3)由第(2)题的结果,你发现了什么等式?(4)利用你发现的结论,求:20152-4030×2013+20132的值.24.(本题12分)观察下列等式:第1个等式:1111133a 12==⨯-⨯(); 第2个等式:21113521a 35=⨯-⨯=(); 第3个等式:31115721a 57=⨯-⨯=(); 第4个等式:41117921a 79=⨯-⨯=(); ……请解答下列问题:(1)按以上规律列出第5个等式:a 5= ▲ = ▲ ;(2)按以上规律列出第2015个等式:a 2015= ▲ = ▲ ;(3)求a1+a2+a3+a4+…+a2016的值.。
七年级上册数学期中考试题含答案 鲁教版(五四制)
鲁教版七年级上册数学期中考试试题考生注意: 1、考试时间90分钟2、全卷共五道大题,总分120分一、填空题(每小题3分,共36分)1.计算:ab ab ab 21)232(2∙-=2.若∠α与∠β的两边分别平行,且∠α=23°,则∠β的度数为____________. 3. 有一道计算题:(-a 4)2,李老师发现全班有以下四种解法,①(-a 4)2 =(-a 4)(-a 4)=a 4·a 4=a 8; ②(-a 4)2 =-a 4×2 =-a 8;③(-a 4)2 =(-a )4×2 =(-a )8 =a 8;④(-a 4)2 =(-1×a 4)2 =(-1)2·(a 4)2 =a 8; 你认为其中完全正确的是(填序号)4.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2为___________度5.若2×8n ×16n =222,则n=_______6.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C ,D 分别落在C′,D′上,EC′交AD 于点G ,已知∠EFG=58°,那么∠BEG=___________ 度..7. 若4a 2-kab+9b 2是完全平方式,则常数k 的值为_________8. 因修筑公路需要在某处开凿一条隧道,为了加快进度,决定在如图所示的A 、B 两处同时开工.如果在A 地测得隧道方向为北偏东620,那么在B 地应按 方向施工,就能保证隧道准确接通.9. 一个角的补角等于这个角的余角的4倍,这个角是________. 10.若1(2)1a a +-=,则a =11.已知x-y=2,则x 2-y 2-4y=__________12.计算:=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛-20112011512125_____________二、选择题(每小题3分,共30分)13.有一种原子的直径约为0.00000053米,它可以用科学计数法表示为( ). A .53×107米 B .5.3×107米 C .5.3×10-7米 D .5.3×10-8米14.若A ,B ,C 是直线l 上的三点,P 是直线l 外一点,且PA=5cm ,PB=4cm ,PC=3cm ,则点P 到直线L 的距离( ) A .等于3cm B .大于3cm 而小于4cm C .不大于3cm D .小于3cm 15、下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,过一点有且只有一条直线与已知直线垂直. (3)在同一平面内,两条直线的位置关系只有相交,平行两种. (4)不相交的两条直线叫做平行线.(5)有公共顶点且有一条公共边的两个角互为邻补角. A .1个B .2个C .3个D .4个16、如果( )×23262b a b a -=,则( )内应填的代数式是 A. 23ab -B. ab 3-C. ab 3D. 23ab17、如果63)212)(122(=+-++b a b a ,那么=+b a ( )北B 8题A .±4B .64C .32D .±818.下列说法:①两条直线被第三条直线所截,内错角相等;②相等的角是对顶角;③互余的两个角一定都是锐角;④互补的两个角一定有一个为钝角,另一个角为锐角。
2015-2016学年度第一学期七年级期中数学试卷(含答案)
2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A 2B 3C 6D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π=,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分)(1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=- (3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+23+;35-+-)()35-+-;05+-()5+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分) 1.对任意有理数,,,a b c d ,规定一种新运算:bc ad dc b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>== (2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max 100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。
2015年秋人教版七年级上期中数学试卷及答案
10
8.下列各对数中,数值相等的是( )
A. 32 与 22 B. 23 与 (2)3
C. 32 与 (3) 2 D. 3 22 与 (3 2) 2
9. 下 列 各 组 中 , 不 是 同 类 项 的 是 ( )
C 如果两个数的绝对值相等,那么这两个数相等 D. 互为相反数的两个数的绝对值相等
12.如图,数轴上两点 A,B 表示的有理数分别是 a 和 b,那么下列结论正确的是
( ).
A. ab>0 B. b-a>0
a A 0 B
1
17.化简: 4xy 3( xy 2x) (6 分)
3
18.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是-13℃,小红此时在
山脚测得温度是 5℃。已知该地区高度每增加 1000 米,气温大约降低 6℃。问这座山
C. 绝 对 值 等 于 3 的 数 是 -3 D. 绝 对 值 不 大 于 2 的 数 是 ± 2, ± 1, 0
14. 已知 m 3 (n 2)2 0 ,则 m 2n 的值为( )
A. 4 B. 1 C. 0 D. 4
1
7.在-2 、0.5、 0 、- 这四个有理数中,最小的数是( )
10
1
C. >0 D. ab2>0 (第 12 题)
b
13. 下 列 说 法 中 正 确 的 是 ( )
A. 一 个 数 的 绝 对 值 一 定 大 于 这 个 数 的 相 反 数 B. 若 |a|=-a, 则 a≤ 0
C. 7ab-3ab=4 D. a 3 a 2 a 5
【解析版】济宁市曲阜市2014-2015学年七年级上期中数学试卷
考点:相反数. 分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 解答: 解:2014 的相反数是﹣ 2014. 故选:B. 点评:本题考查了相反数的概念,在一个数的前面加上负号就是这个数的相反数.
4.某种速冻水饺的储藏温度是﹣ 18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺
5.在下列各组单项式中,不是同类项的是(
)
A.﹣ x2y 和﹣ yx2 B.﹣ 3 和 100
C.﹣ x2yz 和﹣ xy2z D.﹣ abc 和 abc
考点:同类项. 分析:根据同类项的定义:所含字母相同,相同字母的指数相同,即可判断. 解答: 解:A、是同类项; B、两个常数项是同类项; C、所含的字母的指数不同,因而不是同类项; D、是同类项. 故选 C. 点评:本题考查了同类项的定义,同类项定义中的两个“相同”: (1)所含字母相同; (2)相同字母的指数相同,是易混点,因此成了 2015 届中考的常考点.
(1)(
)×(﹣ 12 )
(2)﹣ ( )2﹣ [(﹣ 2)3+(1﹣ 0.6×
].
)
18.(1)(8a2b﹣ 6ab2)﹣ 2(3a2b﹣ 4ab2) (2)3x2﹣ [5x﹣ ( x﹣ 3)+2x2].
19.先化简,再求值:2x3+4x﹣ x2﹣ (x+3x2﹣ 2x3),其中 x=﹣ 3.
B.﹣ 2014
C.﹣ 6 C.
D.6 D.
4.某种速冻水饺的储藏温度是﹣ 18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺
的是(
)
A.﹣ 17℃
B.﹣ 22℃
C.﹣ 18℃
D.﹣ 19℃
5.在下列各组单项式中,不是同类项的是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年山东省济宁市曲阜市七年级(上)期中数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.(3分)﹣3的绝对值是()A.3 B.﹣3 C.﹣ D.2.(3分)(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.63.(3分)2014的相反数是()A.2014 B.﹣2014 C.D.4.(3分)某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃5.(3分)在下列各组单项式中,不是同类项的是()A.﹣x2y和﹣yx2B.﹣3和100 C.﹣x2yz和﹣xy2z D.﹣abc和abc 6.(3分)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7n B.28mn C.7m+4n D.11mn7.(3分)北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么()A.汉城与纽约的时差为13小时B.汉城与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时8.(3分)下列运算正确的是()A.﹣2(3x﹣1)=6x﹣1 B.﹣2(3x﹣1)=﹣6x+1 C.﹣2(3x﹣1)=﹣6x﹣2D.﹣2(3x﹣1)=﹣6x+29.(3分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或3010.(3分)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505二、填空题(每小题3分,共18分,只要求填写最后结果)11.(3分)的倒数是.12.(3分)比较大小;﹣﹣;﹣33(﹣3)3.13.(3分)我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是.14.(3分)绝对值大于1而小于5的负整数是.15.(3分)若﹣a3b x+2与3a2﹣y b是同类项,则y=,x=.16.(3分)根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三、解答题17.(6分)计算:(1)()×(﹣12)(2)﹣()2﹣[(﹣2)3+(1﹣0.6×)].18.(8分)(1)(8a2b﹣6ab2)﹣2(3a2b﹣4ab2)(2)3x2﹣[5x ﹣(x﹣3)+2x2].19.(5分)先化简,再求值:2x3+4x ﹣x2﹣(x+3x2﹣2x3),其中x=﹣3.20.(6分)已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.21.(6分)“十一”黄金周刚过,攀枝花市政府统计:在7天长假期间,每天前来我市旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):单位:万人(1)若9月30日的旅游人数记为a,请用a的代数式表示10月2日的旅游人数.(2)请判断这7天中游客人数最多的是哪天?最少的是哪天?各有多少万人?22.(7分)如图的数阵是由一些奇数组成的.(1)如图框中的四个数中,若设第一行的第一个数为x,用含x的代数式表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,他们的和为2014?若存在,请求出中四个数中最大的数;若不存在,请说明理由.23.(7分)A,B分别为数轴上的两点,点A对应的数为﹣20,点B对应的数为100.(1)请写出与A,B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B出发,以6单位/秒速度向左移动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒速度向右运动,设两只电子蚂蚁在C相遇,你知道点C对应的数是多少吗?24.(7分)观察下列计算:=1﹣,=,,…(1)第n个式子是;(2)从计算结果中找规律,利用规律计算:++++…+.2014-2015学年山东省济宁市曲阜市七年级(上)期中数学试卷参考答案与试题解析一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.(3分)﹣3的绝对值是()A.3 B.﹣3 C.﹣ D.【解答】解:﹣3的绝对值是3.故选:A.2.(3分)(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.6【解答】解:原式=﹣2×3=﹣6.故选:C.3.(3分)2014的相反数是()A.2014 B.﹣2014 C.D.【解答】解:2014的相反数是﹣2014.故选:B.4.(3分)某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.5.(3分)在下列各组单项式中,不是同类项的是()A.﹣x2y和﹣yx2B.﹣3和100 C.﹣x2yz和﹣xy2z D.﹣abc和abc【解答】解:A、是同类项;B、两个常数项是同类项;C、所含的字母的指数不同,因而不是同类项;D、是同类项.故选:C.6.(3分)买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7n B.28mn C.7m+4n D.11mn【解答】解:∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选:A.7.(3分)北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么()A.汉城与纽约的时差为13小时B.汉城与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时【解答】解:汉城与纽约的时差为9﹣(﹣5)=14小时;汉城与多伦多的时差为9﹣(﹣4)=13小时;北京与纽约的时差为8﹣(﹣5)=13小时;北京与多伦多的时差为8﹣(﹣4)=12小时.故选:B.8.(3分)下列运算正确的是()A.﹣2(3x﹣1)=6x﹣1 B.﹣2(3x﹣1)=﹣6x+1 C.﹣2(3x﹣1)=﹣6x﹣2 D.﹣2(3x﹣1)=﹣6x+2【解答】解:A、﹣2(3x﹣1)=﹣6x+2,故本选项错误;B、﹣2(3x﹣1)=﹣6x+2,故本选项错误;C、﹣2(3x﹣1)=﹣6x+2,故本选项错误;D、﹣2(3x﹣1)=﹣6x+2,故本选项正确;故选:D.9.(3分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6 C.﹣2或6 D.﹣2或30【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.10.(3分)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.505【解答】解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B.二、填空题(每小题3分,共18分,只要求填写最后结果)11.(3分)的倒数是.【解答】解:﹣1的倒数为:1÷(﹣1)=1÷(﹣)=﹣.故答案为:﹣.12.(3分)比较大小;﹣<﹣;﹣33=(﹣3)3.【解答】解:根据有理数比较大小的方法,可得﹣<﹣;﹣33=(﹣3)3.故答案为:<、=.13.(3分)我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是 6.75×104.【解答】解:67500=6.75×104.故答案为:6.75×104.14.(3分)绝对值大于1而小于5的负整数是﹣2,﹣3,﹣4.【解答】解:设此数为x.则有1<|x|<5,∵x<0,∴x=﹣2,﹣3,﹣4,故答案为:﹣2,﹣3,﹣4.15.(3分)若﹣a3b x+2与3a2﹣y b是同类项,则y=﹣1,x=﹣1.【解答】解:∵﹣a3b x+2与3a2﹣y b是同类项,∴2﹣y=3,x+2=1,解得,y=﹣1,x=﹣1;故答案是:﹣1;﹣1.16.(3分)根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.三、解答题17.(6分)计算:(1)()×(﹣12)(2)﹣()2﹣[(﹣2)3+(1﹣0.6×)].【解答】解:(1)原式=﹣5+4﹣9=﹣10;(2)原式=﹣+8+=8.18.(8分)(1)(8a2b﹣6ab2)﹣2(3a2b﹣4ab2)(2)3x2﹣[5x﹣(x﹣3)+2x2].【解答】解:(1)原式=8a2b﹣6ab2﹣6a2b+ab2=2a2b+2ab2=2ab(a+b);(2)原式=3x2﹣[x+3+2x2]=3x2﹣x﹣3﹣2x2=x2﹣x﹣3.19.(5分)先化简,再求值:2x3+4x ﹣x2﹣(x+3x2﹣2x3),其中x=﹣3.【解答】解:原式=2x3+4x ﹣x2﹣x﹣3x2+2x3=4x3﹣x2+3x,当x=﹣3时,原式=﹣108﹣30﹣9=﹣147.20.(6分)已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.【解答】解:(1)3A﹣2B+2,=3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当时,3A﹣2B+2=.21.(6分)“十一”黄金周刚过,攀枝花市政府统计:在7天长假期间,每天前来我市旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):单位:万人(1)若9月30日的旅游人数记为a,请用a的代数式表示10月2日的旅游人数.(2)请判断这7天中游客人数最多的是哪天?最少的是哪天?各有多少万人?【解答】解:(1)根据题意,10月2日的旅游人数为:a+1.6+0.8=a+2.4(万人);(2)根据题意列得:由表格得到:10月3日人数最多,为(a+2.8)万人,10月7日人数最少,为(a+0.6)万人.22.(7分)如图的数阵是由一些奇数组成的.(1)如图框中的四个数中,若设第一行的第一个数为x,用含x的代数式表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,他们的和为2014?若存在,请求出中四个数中最大的数;若不存在,请说明理由.【解答】解:(1)设第一行第一个数为x,则其余3个数依次为x+2,x+8,x+10.(2)根据题意得:x+x+2+x+8+x+10=200,解得:x=45.∴这四个数依次为45,47,53,55.答:这四个数依次为45,47,53,55.(3)不存在.理由如下:∵4x+20=2014,解得:x=498.5.x不为整数,不合题意,故不存在.23.(7分)A,B分别为数轴上的两点,点A对应的数为﹣20,点B对应的数为100.(1)请写出与A,B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B出发,以6单位/秒速度向左移动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒速度向右运动,设两只电子蚂蚁在C相遇,你知道点C对应的数是多少吗?【解答】解:(1)点M所对应的点为x,依题意得:x﹣(﹣20)=100﹣x,所以x+20=100﹣x,解得x=40.答:与A,B两点距离相等的点M所对应的数是40;(2)∵A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100,∴AB=100+20=120,设t秒后P、Q相遇,∵电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,∴6t+4t=120,解得t=12秒;∴此时点P走过的路程=6×12=72,∴此时C点表示的数为100﹣72=28.答:C点对应的数是28.24.(7分)观察下列计算:=1﹣,=,,…(1)第n个式子是=﹣;(2)从计算结果中找规律,利用规律计算:++++…+.【解答】解:(1)∵第一个式子为:=1﹣,第二个式子为:=,第三个式子为:,第四个式子为:…,∴第n个式子为:=﹣.故答案为:=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。