超精密加工技术

合集下载

超精密加工技术PPT培训课件

超精密加工技术PPT培训课件
详细描述
在模具加工中,超精密加工技术能够加工出高精度、高光洁 度的模具表面,提高模具的使用寿命和制件的精度,广泛应 用于塑料模具、压铸模具等领域。
航空航天零件加工
总结词
超精密加工技术在航空航天领域的应 用,涉及发动机叶片、涡轮盘等复杂 零件的加工。
详细描述
由于航空航天领域对零件的精度和性 能要求极高,超精密加工技术能够实 现复杂零件的高精度、高效率加工, 提高航空航天器的性能和安全性。
特种加工原理
特种加工是指利用物理、化学或电学等 非传统机械能来去除材料的一种加工方 法。与传统的切削和磨削加工相比,特 种加工具有更高的加工精度和更广泛的
加工适应性。
常见的特种加工方法包括激光束加工、 电子束加工、离子束加工、等离子体加 工等。这些方法利用高能束流或等离子 体与工件表面相互作用,实现材料的快
误差补偿技术
热误差补偿
通过对机床热误差的测量和建模, 实现对热误差的有效补偿,提高
加工精度。
运动误差补偿
通过对机床运动误差的测量和建 模,实现运动误差的补偿,提高
加工精度。
综合误差补偿
综合运用热误差和运动误差补偿 技术,实现对超精密加工过程中
各种误差的有效补偿。
04 超精密加工技术的应用案 例
光学元件加工
加工精度提升
超精密加工技术面临的技术瓶颈之一是如何进一步提高加工精度 和表面质量。
材料限制
某些特殊材料在超精密加工过程中容易出现裂纹、变形等问题,如 何克服这些材料限制是亟待解决的问题。
加工效率与成本控制
提高加工效率并降低成本是超精密加工技术发展的关键,需要不断 优化工艺参数和设备性能。
新材料加工的挑战
医疗器械
超精密加工技术在医疗器械领域的 应用广泛,如人工关节、心脏瓣膜 等高精度医疗设备的制造。

超精密加工技术结课作业

超精密加工技术结课作业

超精密加工技术结课作业摘要超精密加工技术是现代机械制造业中先进制造技术最主要的发展方向,已经成为在全球市场竞争中取胜的关键技术,体现了一个国家的综合国力。

超精密加工技术已直接影响到一个国家尖端科技和国防工业的发展,发展国防航空工业,研发高端精密仪器设备等都需要具有超精密加工技术的制造设备。

同时超精密加工技术也代表了现代制造技术的前沿,是发展未来先进制造技术的基础,因此,发展超精密加工技术受到了世界各国的高度重视。

目前,超精密加工技术的发展趋势是:高精度、高效率、高稳定性、高自动化。

随着时代的发展,现在超精密加工技术日趋成熟,主要分为超精密切削、超精密磨削、超精密特种加工等。

虽然超精密加工迄今尚无确切的定义,但是它仍然在向更高的层次发展。

我相信在人类的创新思维以及先进制造模式的促进下,超精密技术必定会得到不断的完善。

关键词:先进制造技术超精密加工加工精度加工类型发展趋势1概述通常,按加工精度划分,机械加工技术可分为一般加工、精密加工、超精密加工三种,随着时代的发展和社会的进步,先进制造技术不断革新,超精密加工技术的发展已是社会所趋。

超精密加工技术,在现代机械制造业中占据着重要地位,在提高机械产品的性能、质量,提高其稳定性和可靠性,提高生产效率等方面发挥着至关重要的作用。

超精密加工是一个十分广泛的加工领域,它包括了所有能使零件的形状、位置和尺寸精度达到微米和亚微米范围的机械加工方法,一般主要指加工精度为0.1µm,表面粗糙度小于Ra0.01µm的加工方法,同时目前超精密加工也正在向纳米级加工技术发展。

目前,超精密加工的核心技术主要掌握在西方发达国家手中,在超精密加工技术领域处于领先地位的国家主要是美国、英国和日本。

美国是开始超精密加工技术研究最早的国家,也是迄今在超精密加工仍处于领先地位的国家。

英国的克兰菲尔德精密工程研究所在超精密加工方面的研究成果也是享誉全球,是当今世界上超精密工程的研究中心之一。

超精密加工技术的发展及对策

超精密加工技术的发展及对策

超精密加工技术的发展及对策
1超精密加工技术的发展
超精密加工技术的发展为新材料的应用,新型机械的开发和精密电子设备的设计提供了基础技术。

它的应用领域涵盖了从航空航天到医疗器械,从芯片制造到高端家用电器,从汽车到电子产品。

在过去几十年中,超精密加工技术发展迅速,逐渐成为实现进步,满足我们日常生活需要的重要手段。

2超精密加工技术特点
超精密加工技术不仅对机械性能提出了更高要求,而且要求对工件尺寸和表面精度都必须有着较高的要求。

因此,提高工件表面精度的方法是提高加工和检测的准确性。

深度精度是指工件加工的精确度,也就是说,深度精度在一定范围内是恒定的,因此可以确保部件的精度,提高部件的整体精度,从而改善部件的质量和可靠性。

3超精密加工技术对策
伴随超精密加工技术发展,急需要完善体系,全面提高技术水平。

需要改善并完善设备、技术计算、检测等相关环节,提高技术方面的综合能力。

另外,针对不同行业的不同要求,研发更多的立体特种设备,加强培训,提高技术水平和技术创新能力。

再者,要加强技术和科研机构之间的交流和合作,不断完善技术创新体系。

最后,加大和企业之间的技术交流和经验交流,提问现实生产中的应用性,提高企业准确高效实施和维护超精密加工技术的能力。

随着科技的进步,超精密加工技术在日常生活中起到了重要的作用,它的发展能够直接带来更佳的生活质量。

同时为了更好的发展,要加强技术支持,提升技术水平,增加技术的应用性,从而让超精密加工技术发挥更大的作用。

第2章 精密超精密加工技术概论

第2章 精密超精密加工技术概论

8
材料去除单位与相关因素
去除材料的单位为10 时将以龟裂的形式发生破坏; 去除材料的单位为 -3cm时将以龟裂的形式发生破坏;以微米 时将以龟裂的形式发生破坏 以微米(µm) 级尺寸去除,则表现为位错;而以Å级去除则为原子单位去除 级去除则为原子单位去除。 级尺寸去除,则表现为位错;而以 级去除则为原子单位去除。 按去除尺寸单位分,可以把Ⅲ 区间称为普通精度, 按去除尺寸单位分,可以把Ⅲ一Ⅳ区间称为普通精度,Ⅱ一Ⅲ区间 为精密加工,I—Ⅱ区间为超精密加工。 为精密加工, Ⅱ区间为超精密加工。
13
超 精 密 加 工 的 材 料
各种产品与所要求的精度范围
加工精度范围 普 通 加 工 精密 加工 200um 300um 机械产品
一般机器零件、 家用机器、 一般机器零件 、 家用机器 、 通用齿轮、 通用齿轮 、 螺纹 、 打字机零 汽车零件、 件、汽车零件、缝纫机零件
电子产品
光学产品
通用电气机具( 开关、 通用电气机具 ( 开关 、 电 照相机壳体 动机) 动机) 照相机快门、照相机镜筒。 照相机快门、照相机镜筒。 电子零件外壳、小型电机、 电子零件外壳、小型电机、 半导体、二极管。 半导体、二极管。 透镜、棱镜、半导体纤维、 透镜、棱镜、半导体纤维、 接口。 接口。
0.5um 超 精 密 加 工
VTR 磁头、磁尺、电荷耦 精密透镜、精密棱镜、光 磁头、磁尺、 精密透镜、精密棱镜、 曝光版、 合器件、 石英振子、磁泡、 学分析尺、 曝光版 合器件 、 石英振子 、 磁泡 、 学分析尺、IC曝光版、激 IC元件、磁控管。 元件、 元件 磁控管。 光反射镜、多面反射镜、 光反射镜、多面反射镜、 X射线反射镜 射线反射镜 光学平晶、 光学平晶、精密非涅尔透 衍射光栅、光盘。 镜、衍射光栅、光盘。

超精密加工技术的概念

超精密加工技术的概念

超精密加工技术的概念
嘿,朋友们!今天咱来唠唠超精密加工技术。

你说这超精密加工技术啊,就好比是一位超级细腻的艺术家,在微观世界里精雕细琢。

咱平常生活里用的好多东西,可都离不开它呢!比如说你那手机,里面的芯片,那可都是经过超精密加工技术打磨出来的呀。

要是没有它,咱的手机能那么厉害吗?能那么流畅地玩游戏、看视频吗?
你再想想那些高端的医疗器械,那得精细到啥程度啊!这超精密加工技术就像是一双神奇的手,能把各种材料雕琢成我们需要的模样,而且精度高得吓人。

这就好像是在头发丝上绣花,难不难?当然难啦!但人家就是能做到。

你说这技术咋就这么牛呢?它能把误差控制在极小极小的范围内,小到你都没法想象。

就好比你要在一粒米上刻字,还得刻得特别清楚,这得有多厉害啊!而且它加工出来的东西,表面光滑得像镜子一样,这可都是技术的功劳啊。

你看看那些航天设备,里面的零件哪个不是靠超精密加工技术打造的?要是精度不够,那还不得出大问题啊!这就像是盖房子,根基不牢,房子能稳吗?超精密加工技术就是那个稳固的根基呀。

咱普通人可能觉得这离我们挺远的,其实不然。

咱生活中的点点滴滴都有它的影子呢。

就说你戴的眼镜吧,镜片的制作也得靠它呀。

还有那些精密的仪器仪表,没有超精密加工技术,它们能那么准确地工作吗?
这超精密加工技术就像是一个隐藏在幕后的英雄,默默地为我们的生活贡献着。

它让我们的科技不断进步,让我们的生活变得更加美好。

咱可得好好珍惜这技术带来的便利呀,可别不当回事儿。

反正我觉得吧,超精密加工技术就是牛,不服不行啊!它就是那个能创造奇迹的魔法,让一切不可能都变成可能。

你说呢?。

超精密加工

超精密加工
第三节 超精密加工
一 超精密加工的概念
起源:1962年,美国Union Carbide公司研制成功首台超精密车床。 定义:在一定的发展时期,加工精度和加工表面质量达到最高水平 的各种加工方法的总称。 超精密加工的概念及其与一般加工和精密加工的精度界限是相对的。 目前,在工业发达国家,一般加工是指加工精度不高于1m的加工技 术,与此相应,精密加工是指加工精度为1~0.1m、表面粗糙度小于 Ra0.1~0.02m的加工技术,超精密加工是指加工精度高于0.1m、表 面粗糙度小于0.01m的加工技术。
(美国)光学金刚石超精水平的重要标志之一。 在尖端科技产品和现代化武器的制造中占有重要地位。
作为测量标准的所谓“原器”( “标准球”、“光学平 晶”),卫星的姿态轴承,大规模集成电路的硅片,计 算机磁盘,复印机磁鼓和激光打印机的多面镜等都需要 进行超精密加工。 现代机械工业之所以要致力于提高加工精度,主要原因 在于提高制造精度后:
飞机发动机转子叶片:加工精度由60m提高到12m, 表面粗糙度Ra由0.5m减小到0.2m,则发动机的压缩 效率将从89%提高到94%。
三 超精密加工的特点、应用范围及分类
1. 超精密加工的特点
1) 遵循精度“进化”原则 2) 属于微量切削(极薄切削) 3) 影响因素众多,是一个系
统工程 4) 与自动化技术关系密切 5) 综合应用各种加工方法 6) 加工和检测一体化
图5-19 (美)光学金刚石超精 密车床
2. 超精密加工的分类和应用范围
1) 超精密切削加工,如金刚石刀具 超精密车削,微孔钻削等;
2) 超精密磨料加工,如超精密磨削, 超精密研磨等;
3) 超精密特种加工,如电子束加工,
离子束加工及光刻加工等;

《超精密加工技术》PPT课件

《超精密加工技术》PPT课件

1〕砂带与工件柔性接触,磨粒载荷小,且均匀,工件受 力、热作用小,加工质量好〔 Ra 值可达 0.02μm〕。
2〕静电植砂,磨粒 有方向性,尖端向 上 〔 图 12〕 , 摩 擦 生热小,磨屑不易 堵塞砂轮,磨削性 能好。
磨粒 粘接剂 规格涂层 基带 图12 静电植砂砂带结构
3〕强力砂带磨削,磨削比〔切除工件重量与砂轮磨耗重量 之比〕高,有“高效磨削〞之称。
➢由聚氨基甲酸〔乙〕 酯制成,磨料直径 0.1~0.01μm
图13 弹性发射加工原理
➢ 机理:微切削+被加工材料的微塑性流动作用
一、 精细与超精细加工技术
★ 液体动力抛光 ➢ 工作原理〔图14〕
工具运动方向 抛光工具
➢抛光工具上开有锯齿槽, 抛光液
磨粒
靠楔形挤压和抛光液的反
弹,增加微切削作用。
工件
一、 精细与超精细加工技术
概述
◆精细加工 —— 在一定的开展时期,加工精度和外表质量 到达较高程度的加工工艺。
超精细加工 —— 在一定的开展时期,加工精度和外表质 量到达最高程度的加工工艺。 ◆瓦特改进蒸汽机 —— 镗孔精度 1mm
20 世纪 40 年代 —— 最高精度 1μm 20 世纪 末 ——
工件
砂带
b)砂带定心外圆磨削 (接触轮式)
支承板 主动轮
砂带 工件 c)砂带定心外圆磨削
(接触轮式)
砂带
接触轮
砂带
接触轮 d)砂带内圆磨削
(回转式)
工件
工件
砂带
工作台
e)砂带平面磨削 (支承板式)
支承轮 f)砂带平面磨削
(支承轮式)
图11 几种砂带磨削形式
一、 精细与超精细加工技术

超精密加工技术的发展现状

超精密加工技术的发展现状

超精密加工技术的发展现状超精密加工技术的发展现状,哎呀,真是个让人觉得又神奇又复杂的话题啊!咱们得先了解一下超精密加工是什么。

它其实就是用极高的精度来加工材料,想想看,能把东西做到这么精准,真是令人叹为观止。

现在的制造业可离不开它,尤其是在航空、医疗、电子这些领域,越是高端的东西,越离不开超精密加工。

想象一下,微米级别的加工,那得多细腻啊!说真的,这技术的发展,真的是让人感觉到科技的力量。

在这过程中,咱们得提到几项关键技术,比如说光刻、超声波加工,还有激光加工。

光刻技术可谓是个“大明星”,在芯片制造中大显身手,像是在细致的画布上作画,光线勾勒出无数精致的图案。

超声波加工呢,哎,别小看它,利用声波的振动来加工,能把很多材料轻松处理掉,真是个“小帮手”。

激光加工嘛,嘿,那可是一把双刃剑,精准又快速,火花四溅的场景让人忍不住想为它点赞。

不过,话说回来,技术再先进,也得面对一些挑战。

比如说,成本问题。

超精密加工的设备可不是白菜价,维护保养更是个大开销。

这让很多小企业在这条路上犹豫不决,真是让人心疼。

材料的选择也非常重要,有些材料在超精密加工中表现得特别好,而有些则像个“死胖子”,怎么都弄不动。

为了追求更好的效果,研究人员们可是费尽心思,真是“煞费苦心”啊。

还有就是人才的培养。

这方面可不能马虎,超精密加工需要的人才既要有理论知识,又要有丰富的实践经验。

现在的大学里,很多学校已经开始设置相关课程,目的就是希望能培养出更多的技术人才,未来可得靠他们“撑门面”呢。

真心希望越来越多的人能加入这个行业,给我们带来更多的惊喜。

说到应用,超精密加工的舞台可大了!像航天器、手术刀、手机的内部零件等等,几乎无处不在。

你看看,航天器上那些复杂的零部件,没有超精密加工,恐怕就飞不起来了!还有手术刀,医生可不能用个普通的刀子,精细的切口直接关系到手术的成功与否,这可是关乎生命的大事啊!而手机的微小零件,哪个能离开超精密加工的加持?所以说,这技术的重要性,不用多说,大家都懂。

第5章 精密、超精密加工技术

第5章 精密、超精密加工技术

• 和表面粗糙度的检验,而且要测量加工设备 的精度和基础零部件的精度。 • 高精度的尺寸和几何形状可采用分辨率为 0.1~0.01µ m,的电子测微计、分辨率为 0.01~0.001µ m的电感测微仪或电容测微仪来 测量。圆度还可以用精度为0.01µ m的圆度仪 来测量。
加工设备必须具有高精度的主轴系统、进给 系统(包括微位移装臵),现在的超精密车 床,其主轴回转精度可达0.02µ m,导轨直线 度可达1000000:0.025,定位精度可达 0.013µ m,进给分辨率可达0.005µ m。其回转 零件应进行精密的动平衡。
• 2)高刚度
• 包括静刚度和动刚度,不仅要注意零件本身
• 精密和超精密磨料加工是利用细粒度的磨粒 和微粉主要对黑色金属、硬脆材料等进行加 工,按具体地加工方法分为精密和超精密磨 削,加工精度可达5~0.5µ m,表面粗糙度 Ra0.05~0.008µ m);精密和超精密研磨(加 工精度可达10~0.1µ m,表面粗糙度 Ra0.01~0.008µ m);
合金等刀具进行精密和超精密切削,这些刀
具材料的切削效果不如金刚石,但能加工黑
色金属。对黑色金属等硬脆材料的精密加工
和超精密加工,一般多采用磨削、研磨、抛
光等方法。
• 精密和超精密磨削时,通常采用粒度240#~W7
或更细的白刚玉或铬刚玉磨料和树脂结合剂
制成的紧密组织砂轮,经金刚石精细修整后
• 进行加工。
• 出现了精密电火花加工、精密电解加工、精
密超声波加工、分子束加工、电子束加工、
离子束加工、原子束加工、激光加工、微波
加工、等离子体加工、光刻、电铸及变形加
工等。
• 4.复合加工
• 复合加工是将几种加工方法叠合在一起,发 挥各种加工方法的长处,达到高质量(加工

超精密加工讲座心得体会

超精密加工讲座心得体会

一、讲座背景随着科技的飞速发展,精密加工技术已成为制造业的核心竞争力之一。

为了提高我国精密加工技术水平,培养高素质的技术人才,我国教育部联合相关部门,举办了“超精密加工讲座”。

我有幸参加了此次讲座,收获颇丰。

二、讲座内容概述本次讲座邀请了国内知名专家、学者和企业家,围绕超精密加工技术、发展趋势、应用领域等方面进行了深入探讨。

讲座内容主要包括以下几个方面:1. 超精密加工技术概述超精密加工技术是指在微米、纳米尺度上,对材料进行去除、整形、改性等加工处理的技术。

它涉及材料科学、机械工程、光学、电子学等多个学科领域。

2. 超精密加工技术发展趋势随着科学技术的不断发展,超精密加工技术呈现出以下发展趋势:(1)加工精度不断提高,向纳米级发展;(2)加工设备向自动化、智能化方向发展;(3)加工工艺向绿色、环保方向发展;(4)加工材料向多功能、复合化方向发展。

3. 超精密加工技术应用领域超精密加工技术在航空航天、电子信息、医疗器械、精密仪器等领域具有广泛的应用前景。

例如,航空航天领域的发动机叶片、涡轮盘等关键部件,以及电子信息领域的芯片、光器件等,都离不开超精密加工技术。

4. 超精密加工技术在我国的发展现状及对策我国超精密加工技术起步较晚,但近年来发展迅速。

为推动我国超精密加工技术发展,讲座专家提出了以下对策:(1)加大政策支持力度,鼓励企业投入研发;(2)加强人才培养,提高技术队伍素质;(3)推动产学研结合,促进技术创新;(4)加强国际合作,引进先进技术。

三、心得体会1. 提高认识,增强紧迫感通过参加此次讲座,我深刻认识到超精密加工技术在国家发展中的重要性。

面对国际竞争,我国必须加快超精密加工技术发展,提高自主创新能力。

作为一名相关领域的从业者,我深感责任重大,要不断提高自身素质,为我国超精密加工技术发展贡献力量。

2. 学习先进技术,提升自身能力讲座中,专家们介绍了许多先进的超精密加工技术,让我对这一领域有了更深入的了解。

精密和超精密加工技术的新进展

精密和超精密加工技术的新进展

精密和超精密加工技术的新进展精密和超精密加工技术是指不断追求更高精度、更细粒度、更小误差和更高效率的加工方法和技术。

这些技术广泛应用于航空航天、医疗器械、微电子、光学仪器等领域,对于产品的性能和质量有着至关重要的影响。

近年来,精密和超精密加工技术取得了许多突破性进展,本文将就此展开讨论。

精密加工技术是在传统机械加工的基础上发展起来的,通过精细的切削、研磨和抛光等手段,实现高精度、高光洁度的加工目标。

近年来,精密加工技术的发展取得了长足的进步,主要表现在以下几个方面:新型加工设备的研发和应用不断取得突破。

例如,五轴联动数控机床、激光加工机、电子束加工机等新型设备的出现,使得复杂零件的精密加工变得更加高效和准确。

新型加工材料的应用也取得了重要进展。

例如,工程塑料、陶瓷、复合材料等高性能非金属材料的广泛应用,使得精密加工的领域得以进一步拓展。

精密加工技术的智能化和自动化水平不断提升。

智能化加工设备能够实现自适应加工、无人值守加工等功能,提高加工效率和质量稳定性。

超精密加工技术是指比精密加工技术更为精细、精确的加工方法和技术。

随着科技的不断进步,超精密加工技术的应用越来越广泛,主要包括以下几个方面:超精密加工技术广泛应用于微电子领域。

微电子产业对于芯片的精度和光洁度要求极高,超精密加工技术能够实现高精度、高效率的微米级加工,对于提升微电子产业的发展水平和竞争力具有重要意义。

超精密加工技术在光学仪器领域也有着广泛的应用。

光学仪器对于透镜、反射镜等光学元件的精度和表面质量要求极高,超精密加工技术能够实现高精度、高稳定性的光学元件加工,对于提高光学仪器的性能和精度具有重要作用。

再次,超精密加工技术在航空航天领域也有着重要的应用。

航空航天领域对于零件的精度和可靠性要求极为严格,超精密加工技术能够实现高精度、高稳定性的零件加工,对于提升航空航天领域的产品质量和性能具有重要意义。

近年来,精密和超精密加工技术的研究和应用不断取得新的进展,在新型加工设备、新型加工材料和智能化加工等方面都取得了重要突破。

《精密超精密加工》课件

《精密超精密加工》课件

04
精密超精密加工材料
金属材料
01
02
03
钢铁
常用的金属材料,具有高 强度、耐磨性和耐腐蚀性 ,适用于各种精密超精密 加工应用。
铜合金
具有良好的导热性和导电 性,广泛用于电子和通信 行业。
钛合金
具有高强度、轻质和耐腐 蚀性,常用于航空和医疗 领域。
非金属材料
陶瓷
具有高硬度、耐高温和化学稳定性,适用于高精度和 高硬度的加工需求。
详细描述
防止加工过程中的损伤需要从多个方面入手,包括优化刀具设计、选择合适的切削参数 、加强刀具管理和维护等。此外,采用新型的涂层技术和刀具材料也是防止损伤的有效
手段。
06
பைடு நூலகம்
精密超精密加工的应用案例
航空航天领域的应用案例
总结词
精密超精密加工技术在航空航天领域的应用广泛,涉 及发动机叶片、涡轮盘、航空仪表等关键部件的制造 。
这些技术包括离子束加工、电子束加工、激光束加工等。这些技术通常具有更高的加工精度和更广泛 的适用范围,可以应用于各种不同的材料和领域。
03
精密超精密加工设备与工具
超精密切削加工设备
01
超精密切削加工设备主要用于高 精度零件的切削加工,其特点是 切削精度高、加工表面质量好、 加工效率高。
02
常见的超精密切削加工设备包括 数控机床、激光切割机、水切割 机等。
汽车工业领域的应用案例
总结词
精密超精密加工技术在汽车工业领域的应用主要涉及 汽车发动机、变速器、制动系统等关键零部件的制造 。
详细描述
在汽车工业领域,精密超精密加工技术主要用于制造汽 车发动机、变速器、制动系统等关键零部件。这些零部 件的性能对汽车的性能和安全性有重要影响。精密超精 密加工技术能够提高零部件的精度和耐磨性,降低摩擦 和阻力,提高燃油经济性和排放性能。同时,还能缩短 产品研发周期,提高生产效率,降低制造成本。

超精密加工技术概述

超精密加工技术概述

超精密加工技术概述摘要:随着社会的发展,工业产品精细化程度逐步提高,传统的机械加工技术已经远远不能满足人们的需求,机械加工向着更高精度的方向发展。

本文主要介绍超精密加工技术的产生背景、概念、国内外的发展状况、几种超精密加工技术和对未来超精密加工技术发展的展望。

关键词:超精密加工技术背景概念发展状况发展趋势一.产生的背景制造技术的发展已经有几千年的历史,石器时代、铜器时代、铁器时代都有着制造技术发展的足迹。

直至近代,随着第一次工业革命的完成,传统的机械制造技术出现了,传统的机械加工技术主要包括车削、铣削、钻削和磨削。

随着人类社会的进一步发展,现代科学技术的迅猛发展,机械工业、电子工业、航空航天工业、化学工业等,尤其是国防工业部门,要求尖端科学技术产品向高精度、高速度、大功率、小型化方向发展,以及在高温、高压、重载荷或腐蚀环境下长期可靠地工作。

为了适应这些要求,各种新结构、新材料和复杂形状的精密零件大量出现,其结构和形状越来越复杂,材料的性能越来越强韧,对精度要求越来越高,对加工表面粗糙度和完整性要求越来越严格,使机械制造面临着一系列严峻的任务:(1)解决各种难切削材料的加工问题。

如硬质合金、钛合金、耐热钢、不锈钢、淬火钢、金刚石、石英以及锗、硅等各种高硬度,高强度、高韧性、高脆性的金属及非加工。

(2)解决各种特殊复杂型面的加工问题。

如喷气涡轮机叶片、整体涡轮、发动机机匣、锻压模等的立体成型表面,各种冲模、冷拔模等特殊断面的型孔,炮管内膛线、喷油嘴,喷丝头上的小孔、窄缝等的加工。

(3)解决各种超精密、光整零件的加工问题。

如对表面质量和精度要求很高的航天航空陀螺仪、精密光学透镜、激光核聚变用的曲面镜、高灵敏度的红外传感器等零件的精细表面加工,形状和尺寸精度要求在0.1皮米以上,表面粗糙度尺寸要求在0.01微米以上。

(4)特殊零件的加工问题。

如大规模集成电路、光盘基片、复印机和打印机的感光鼓、微型机械和机器人零件、细长轴、薄壁零件、弹性元件等低刚度零件的加工。

精密加工 第二讲 精密超精密加工

精密加工 第二讲  精密超精密加工
HIGH EDUCATION PRESS
精密与特种加工
主切削力FZ——它垂直于水
平面,通常与切削速度的方 向一致,在一般切削情况下,
该分力最大。 径向切削力 FY——它在基面
内,并与进给方向相垂直。 FY 是沿切削深度方向上的分 力,它不做功,但能使工件
HIGH EDUCATION PRESS
精密与特种加工
精密切削研究最早从金刚石车削开始——金刚 石铣削——金刚石镗削,来加工型面和内孔。刀具 材料从金刚石刀具材料——立方氮化硼、复合陶瓷 等。
HIGH EDUCATION PRESS
精密与特种加工
HIGH EDUCATION PRESS
精密与特种加工
HIGH EDUCATION PRESS
精密与特种加工
切入角
过渡切削过程
HIGH EDUCATION PRESS
精密与特种加工
过渡切削:切削时,刀具的切削刃与工件表面存 在的关系。 弹性滑动——塑性滑动——切削——塑性滑动—— 弹性滑动 零件的最终工序的最小切入深度应小于或等于零件 的加工精度。因此最小切入深度反应加工精度。 在精密切削中,采用的是微量切削方法,切入深度 较小,切削功能主要由刀具切削刃的刃口圆弧承担,能 否从被加工材料上切下切屑,主要取决于刀具刃口圆弧 处被加工材料质点受力情况。
HIGH EDUCATION PRESS
精密与特种加工




自然界中存在的最硬物质,熔 经仔细琢磨后,成为装饰 品——钻石。 点高。 无色透明、正八面体形状的 固体,加工后有夺目光泽。 划玻璃、切割大理石、加工 坚硬的金属,装在钻探机的钻头 钻凿坚硬的岩层。
HIGH EDUCATION PRESS

超精密加工制造技术

超精密加工制造技术

超精密加工制造技术
超精密加工制造技术
超精密加工技术是指采用高精度机床加工超精密零件的技术,其中包括超精密磨削、超精密磨珩、超精密切削和超精密冲压等技术。

超精密加工技术可以减少零件的误差,使零件具有较小的尺寸和高精度的表面粗糙度,以及较大的精度和可靠性。

超精密加工技术的主要应用领域包括机械制造、电子信息、航天航空、船舶制造、汽车制造等,其主要用于生产超小型、精密度高的微型零件。

超精密加工技术的应用需要具备一定的技术要求,例如,机床要具有良好的稳定性、精度和加工速度;刀具要经过特殊处理,以提高切削效率和精度;切削液要经过特殊处理,以提高切削效果,减少加工时间;加工过程中要进行完善的程控制和检测,以保证加工的精度和可靠性等。

此外,在超精密加工技术中,还需要采用计算机支持的精密测量、数控技术以及激光切削、电子束加工技术等新技术来提高精密零件的加工精度和可靠性。

- 1 -。

超精密加工技术

超精密加工技术

2020年4月7日
Page 4
概述
• 超精密加工技术是衡量一个国家先进制造技术水 平的重要指标之一,是先进制造技术的基础和关 键。
• 当代的精密工程、微细工程和纳米技术是现代制 造技术的前沿,也是明天技术的基础。
• 目前,在工业发达国家中,一般工厂能稳定掌握 的加工精度是1μm。
2020年4月7日
Page 33
超精密加工技术的机床设备
• 超精密机床是实现超精密切削的首要条件,各国 都投人大量人力物力研制超精密切削用机床。目 前水平最高的是美国。其代表作是LLL实验室l 983年研制成功的DTM-3型大型超精密车床,和l 984年研制成功的大型光学金刚石车床LODTM。 该机床采用空气轴承主轴和高压液体静压主轴, 刚度高,动态性能好。
2020年4月7日
Page 19
超精密加工范畴
• 在机械制造行业,已经改变了过去那种将精密机 床放在后方车间,仅用于加工工具,卡具,量具 的陈规。现在,工业发达国家已经将精密机床搬 到前方车间,直接用于产品零件的加工。
2020年4月7日
Page 20
超精密加工范畴
• 精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加 工各种镜面、它成功地解决了高精度陀螺仪,激 光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨,例如解决了大规模集 成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工,如电子束,离子束加工,美国 超大规模集成电路线宽达到0.1μm。
2020年4月7日
Page 30
超精密加工技术的现状
• 我国的超精密加工技术在70年代末期有了长足进 步,80年代中期出现了具有世界水平的超精密机 床和部件。

超精密加工制造技术

超精密加工制造技术

超精密加工制造技术
超精密加工制造技术
超精密加工制造技术是指采用精密加工制造技术,利用激光、电子束、水刀、高速钻以及特种机床,对零部件或组件进行加工,以达到更高精度,更优质品质的制造目的。

目前,超精密加工制造技术主要用于航空、航天、船舶、汽车、医疗设备等高端产品的制造。

它能够满足产品的精密度需求,提高制造材料的品质,并减少制造成本。

超精密加工制造技术有多种,如激光切割技术、EDM(电子束机)技术、高速钻加工技术、高压水刀技术、精密机床加工技术等。

这些技术的应用将极大地提高产品的加工精度,减少加工损耗,从而满足客户对产品加工精度的要求。

超精密加工制造技术有其特定的要求,需要选用正确的机床、加工参数、工艺条件和制造材料,以保证制造出精确的零件或组件。

因此,超精密加工制造技术对制造者具有重大意义,它为制造者提供了一种制造更精确的零件和组件的方法,从而满足客户的高要求。

而且,利用超精密加工制造技术也可以大大节省加工成本,从而提高制造的竞争力。

- 1 -。

超精密加工技术详解

超精密加工技术详解

超精密加工技术——试论述AFM,接触式粗糙度测量仪及白光干涉仪对表面粗糙度的测试原理及应用范围1.1 AFM对表面粗糙度的测试原理AFM 是一种类似于STM 的微观技术,它的许多元件和STM是共同的,如用于三维扫描的电压陶瓷系统以及反馈控制器等。

它和STM 最大的不同是用一個对微弱作用力极其敏感的微观臂针尖代替了STM隧道针尖,并以探测原子间的微小作用力(Vander Walls’ Force)代替了STM 的微小穿透电流。

因为这样所以AFM 不在像STM 局限于样品必须为导体才行,AFM 适用于导体和非导体,它的应用范围比STM 广泛的多,因此AFM为目前最被广泛应用在工业界的扫描探针式显微术。

但值得注意的是AFM 的解析度并沒有STM 来的的好!AFM的探针,一般是利用半导体工业的平面制程方法一体成行的。

为了使探针有原子级的解析度,探针乃呈角锥形,使顶端只具有一颗或数颗稳定原子;为使探针具高灵敏的原子力感应度,角锥形探针底部乃连接与一杠杆的前缘,此杠杆弯曲程度将反映出原子力的大小。

为测量弯曲度的大小,常用的方法是打一雷射光与悬臂上,而反射回來的雷射光則利用一能区分光点位置的感光二极体来接收,如此便能得到悬臂受原子力弯曲的程度,进而得到原子力图像。

(AFM工艺由美国与萨诸塞州Dynetics公司开发的Dynaflow磨料流加工工艺(AFM)是一种强迫含磨料的介质在工件表面或孔中往复运动的金属精加工工艺, 它具有广泛的应用前景。

AFM当最先出现时, 它主要用于清除金属件中难于到达的内通道及相交部位的毛刺。

它特别适用于加工难加工合金材料制成的结构复杂的航空元件。

近年来, 它已被用于精加工流体动力元件中表面粗糙度要求达0.127µm的不能接近的内表面。

AFM的基本原理:介质速度最大时, 磨光的能力也最大。

这里, 夹具的结构起着重要作用, 它决定着介质速度在何处最大。

夹具用于使工件定位和建立介质流动轨迹, 是精加工所选择部位而不触及相邻部位的关键所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档