线性方程组复习考试题
线性方程组练习题及解析
线性方程组练习题及解析线性方程组是数学中的重要概念,在各个领域都有广泛的应用。
解线性方程组需要掌握一定的求解方法和技巧。
本文将提供一些线性方程组的练习题,并给出详细解析,帮助读者更好地理解和应用线性方程组的知识。
练习题一:解下列线性方程组:1) 2x + y = 83x - y = 42) -3x + 4y = 72x - y = -33) x + 2y = 53x - y = 10解析一:1) 首先,将方程组进行消元,将y消去。
将第一个方程乘以3,得到6x + 3y = 24。
与第二个方程相加,得到9x = 28。
解得x = 28/9。
将x的值代入第一个方程,解得y = 16/9。
因此,该方程组的解为x = 28/9,y = 16/9。
2) 将第一个方程乘以2,得到-6x + 8y = 14。
与第二个方程相加,得到7y = 11。
解得y = 11/7。
将y的值代入第一个方程,解得x = 1/7。
因此,该方程组的解为x = 1/7,y = 11/7。
3) 将第一个方程乘以3,得到3x + 6y = 15。
与第二个方程相加,得到6x + 5y = 25。
解得x = 25/6。
将x的值代入第一个方程,解得y =5/6。
因此,该方程组的解为x = 25/6,y = 5/6。
练习题二:解下列线性方程组:1) x + 2y - z = 52x - y + 3z = 23x + y - 2z = 12) 2x - y + z = 4x + 3y - z = -33x - y + 2z = 73) x - 2y + z = 12x - y + 3z = -33x + y + 2z = 2解析二:1) 首先,将方程组进行消元,将y和z消去。
将第一个方程乘以2,得到2x + 4y - 2z = 10。
与第三个方程相加,得到5x + 3y = 11。
将第一个方程乘以3,得到3x + 6y - 3z = 15。
与第二个方程相加,得到5x +3z = 17。
线性方程组题目及答案
线性方程组题目及答案第一、填空题10章线性方程组1.线性方程组AX=b的增广矩阵A化成阶梯形矩阵后为−11d+1⎤⎦⎥则当d=2时,方程组AX=b有解,且有无穷多解。
2.当λ=1时,齐次方程组x1−x2=0x1+λx2=0有唯一解。
3.若线性方程组AX=b(b≠0)有唯一解,则AX=b的秩为n。
二、单项选择题1.线性方程组x1+x2=1x3+x4=0的解的情况是(B)只有解。
2.线性方程组AX=b只有解,则AX=b(b≠0)的解的情况是(B)可能无解。
3.当秩(A)=秩(AB)=n时,线性方程组AX=b(b≠0)有唯一解,其中n是未知量的个数。
答案为(C)秩(A)=秩(AB)=n。
三、解答题1.求解线性方程组x1−x2+3x3−x4=02x1−x2−x3+4x4=04x3+5x4=1解:因为系数矩阵A=[1 -1 3 -1.2 -1 -1 4.-4 0 5 0] 的秩为3,而增广矩阵1 -1 3 -1 0.2 -1 -1 4 0.-4 0 5 0 1] 化为阶梯形矩阵1 -1 3 -1 0.0 1 -7 6 0.0 0 1 -4 1] 所以,一般解为:x1=3x3-15x4-4x2x2=x4-3x3x3,x4是自由未知量)2.求解线性方程组x1+x2-2x3-x4=12x1+x2-2x3-3x4=2x1+3x2+ax3=b解:因为增广矩阵1 1 -2 -1 1.2 1 -2 -3 2.1 3 a b]化为阶梯形矩阵1 1 -2 -1 1.0 -1 2 -1 0.0 0 2a-3b 2b-a-3.0 0 0 0 0]当2a-3b≠0时,方程组无解。
当2a-3b=0时,方程组有解,且有无穷多解,此时一般解为:x1=1-3x3+x4x2=x3+x4x3自由,x4=(b-a)/6.3.就a,b的取值,讨论线性方程组x1+2x2+3x3=1x1+3x2+6x3=22x1+3x2+ax3=b解的情况。
解:因为系数矩阵A=[1 2 3.1 3 6.2 3 a]的秩为2,而增广矩阵1 2 3 1.1 3 6 2.2 3 a b]化为阶梯形矩阵1 2 3 1.0 1 3 1.0 0 a-6 b-4a]当a≠6时,方程组有唯一解。
线性代数复习题
线性代数复习题一、判断题 (正确在括号里打√,错误打×)1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即333332222211111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( )2. 若一个行列式等于零,则它必有一行(列)元素全为零,或有两行(列)完全相同,或有两行(列)元素成比例. ( )3. 若行列式D 中每个元素都大于零,则D > 0. ( )4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. ( )5. 若矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. ( )6. 若矩阵A 与矩阵B 等价,则矩阵的秩R (A ) = R (B ). ( )7. 零向量一定可以表示成任意一组向量的线性组合. ( )8. 若向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. ( )9. 向量组s ααα,...,,21中,若1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. ( ) 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. ( ) 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. ( ) 12. 齐次线性方程组一定有解. ( ) 13. 若λ为可逆矩阵A 的特征值,则1-λ为1-A 的特征值. ( ) 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. ( ) 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. ( ) 16. 若矩阵A 与矩阵B 相似,则R R =A B ()(). ( )二、单项选择题 1. 设行列式1311111223212122, ,a a a a m n a a a a ==则行列式=++232221131211a a a a a a( )n m + )A ( )( )B (n m +- m n - )C ( n m - )D (2. 行列式701215683的元素21a 的代数余子式21A 的值为 ( )33 )A (33 )B (- 56 )C ( 56 )D (-3. 四阶行列式111111111111101-------x 中x 的一次项系数为 ( )1 )A (-1 )B ( 4 )C (4 )D (- 4. 设,..................... ,......... (112)11,12,11,12122122221112111nnn n n nn n n nnn n n n a a a a a a a a a D a a a a a a a a a D ---==则D 2与D 1的关系是 ( )12 )A (D D =12 )B (D D -= 12)1(2)1( )C (D D n n --=1)1(2)1( )D (D D n n --=5. n 阶行列式ab b a bab a D n 0000000000=的值为 ( )n n b a + )A ( n n b a - )B (n n n b a 1)1( )C (+-+ )( )D (b a n +6. 已知,1002103211⎪⎪⎪⎭⎫ ⎝⎛=-A 则=*A ( )1 )A (2 )B (- 2 )C (3 )D (7. 设A 是n 阶方阵且5=A ,则=-1T )5(A ( )15 )A (+n 15 )B (-n 15 )C (--nn -5 )D (8. 设A 是n m ⨯矩阵,B 是m n ⨯矩阵)(n m ≠,则下列运算结果是m 阶方阵的是 ( )AB )A (T T )B (B ABA )C (T )( )D (B A +9. A 和B 均为n 阶方阵,且2222)(B AB A B A ++=+,则必有 ()E A = )A (E B = )B ( B A = )C ( BA AB = )D (10. 设A 、B 均为n 阶方阵,满足等式O AB =,则必有 ( )O B O A == )A (或 O B A =+ )B (0 0 )C (==B A 或 0 )D (=+B A11. 设A 是方阵,若有矩阵关系式AC AB =,则必有 ( )O A = )A ( O A C B =≠ )B (时 C B O A =≠ )C (时C B A =≠ 0 )D (时12. 已知方阵⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=133312321131131211232221333231232221131211 ,a a a a a a a a a a a a a a a a a a a a a B A ,以及初等变换矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=101010001 ,10000101021P P ,则有 ( )B P AP =21 )A ( B P AP =12 )B ( B A P P =12 )C ( B A P P =21 )D (13. 设A 、B 为n 阶对称阵且B 可逆,则下列矩阵中为对称阵的是 ( )A B AB 11 )A (--- A B AB 11 )B (--+ AB B 1 )C (- 2 )D ()(AB14. 设A 、B 均为n 阶方阵,下面结论正确的是 ( )(A) 若A 、B 均可逆,则A +B 可逆 (B) 若A 、B 均可逆,则AB 可逆 (C) 若A+B 可逆,则A -B 可逆(D) 若A +B 可逆,则A 、B 均可逆15. 下列结论正确的是 ( )(A) 降秩矩阵经过若干次初等变换可以化为满秩矩阵 (B) 满秩矩阵经过若干次初等变换可以化为降秩矩阵 (C) 非奇异阵等价于单位阵 (D) 奇异阵等价于单位阵 16. 设矩阵A 的秩为r ,则A 中 ( )(A) 所有r -1阶子式都不为0 (B) 所有r -1阶子式全为0 (C) 至少有一个r 阶子式不为0(D) 所有r 阶子式都不为0 17. 设A 、B 、C 均为n 阶矩阵,且ABC = E ,以下式子(1) BCA = E ,(2) BAC = E ,(3) CAB = E ,(4) CBA = E中,一定成立的是 ( ) (A) (1) (3)(B) (2) (3)(C) (1) (4)(D) (2) (4)18. 设A 是n 阶方阵,且O A =s (s 为正整数),则1)(--A E 等于 ( )AE -1)A ( 1 )B (--A E s A A A +++... )C (2 1... )D (-+++s A A E 19. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=412101213A ,*A 是A 的伴随矩阵,则*A 中位于(1, 2)的元素是 ( ) (A) -6(B) 6 (C) 2(D) -220. 已知A 为三阶方阵,R (A ) = 1,则 ( )3 )A (=*)(A R2 )B (=*)(A R1 )C (=*)(A R0 )D (=*)(A R21. 已知43⨯矩阵A 的行向量组线性无关,则矩阵A T 的秩等于 ( )(A) 1(B) 2(C) 3(D) 422. 设两个向量组s ααα ..., , ,21和s βββ ..., , ,21均线性相关,则 ( )(A) 存在不全为0的数s λλλ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββλλλ (2211)(B) 存在不全为0的数s λλλ ..., , ,21使得0=++++++)(... )( )(222111s s s βαβαβαλλλ(C) 存在不全为0的数s λλλ ..., , ,21使得0=-++-+-)(... )( )(222111s s s βαβαβαλλλ(D) 存在不全为0的数s λλλ ..., , ,21和不全为0的数s μμμ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββμμμ (2211)23. 设有4维向量组621 ..., , ,ααα,则 ( )(A) 621 ..., , ,ααα中至少有两个向量能由其余向量线性表示 (B) 621 ..., , ,ααα线性无关 (C) 621 ..., , ,ααα的秩为4 (D) 上述说法都不对24. 设321 , ,ααα线性无关,则下面向量组一定线性无关的是 ( )32 , , )A (αα0113(B) , 2, ααα133221 , , )C (αααααα+++133221 , , )D (αααααα---25. n 维向量组)3( ..., , ,21n s s ≤≤ααα线性无关的充要条件是 ( )(A) s ααα ..., , ,21中任意两个向量都线性无关(B) s ααα ..., , ,21中存在一个向量不能用其余向量线性表示 (C) s ααα ..., , ,21中任一个向量都不能用其余向量线性表示 (D) s ααα ..., , ,21中不含零向量 26. 下列命题中正确的是 ( )(A) 任意n 个n +1维向量线性相关(B) 任意n 个n +1维向量线性无关 (C) 任意n +1个n 维向量线性相关(D) 任意n +1个n 维向量线性无关27. 已知线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0......0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的系数行列式D =0,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解28. 已知非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112)222212111212111的系数行列式D =0,把D 的第一列换成常数项得到的行列式01≠D ,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解29. 已知A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关(D) A 的行向量线性相关30. 已知A 为n m ⨯矩阵,且方程组b Ax =有唯一解,则必有 ( )m R <),( )A (b An R <),( )B (b A m R =),( )C (b A n R =),( )D (b A31. 已知n 阶方阵A 不可逆,则必有 ( )n R <)( )A (A1)( )B (-=n R A0=A )C ((D) 方程组0=Ax 只有零解32. n 元非齐次线性方程组b Ax =的增广矩阵的秩为n +1,则此方程组 ( )(A) 有唯一解(B) 有无穷多解(C) 无解(D) 不能确定其解的数量33. 已知21 ,ηη是非齐次线性方程组b Ax =的任意两个解,则下列结论错误的是 ( )(A) 21ηη+是0=Ax 的一个解 (B))(2121ηη+是b Ax =的一个解 (C) 21ηη-是0=Ax 的一个解(D) 212ηη-是b Ax =的一个解34. 若4321 , , ,v v v v 是线性方程组0=Ax 的基础解系,则4321v v v v +++是该方程组的 ( )(A) 解向量(B) 基础解系(C) 通解(D) A 的行向量35. 若η是线性方程组b Ax =的解,ξ是方程0=Ax 的解,则以下选项中是方程b Ax =的解的是 ( ) (C 为任意常数)ξηC + )A (ξηC C + )B ( ξηC C - )C ( ξη+C )D (36. 已知n m ⨯矩阵A 的秩为1-n ,21 ,αα是齐次线性方程组0=Ax 的任意两个不同的解,k 为任意常数,则方程组0=Ax 的通解为 ( )1 )A (αk2 )B (αk )( )C (21αα+k)( )D (21αα-k37. n 阶方阵A 为奇异矩阵的充要条件是 ( )(A) A 的秩小于n0 )B (≠A(C) A 的特征值都等于零(D) A 的特征值都不等于零38. 已知A 为三阶方阵,E 为三阶单位阵,A 的三个特征值分别为3 ,2 ,1-,则下列矩阵中是可逆矩阵的是 ( )E A - )A (E A + )B ( E A 3 )C (+ E A 2 )D (-39. 已知21 ,λλ是n 阶方阵A 的两个不同特征值,对应的特征向量分别为21 ,ξξ,则 ( )(A) 1ξ和2ξ线性相关 (B) 1ξ和2ξ线性无关 (C) 1ξ和2ξ正交(D) 1ξ和2ξ的内积等于零40. 已知A 是一个)3( ≥n 阶方阵,下列叙述中正确的是 ( )(A) 若存在数λ和向量α使得αA αλ=,则α是A 的属于特征值λ的特征值 (B) 若存在数λ和非零向量α使得0=-αA E )(λ,则λ是A 的特征值 (C) A 的两个不同特征值可以有同一个特征向量(D) 若321 , ,λλλ是A 的三个互不相同的特征值,321 , ,ααα分别是相应的特征向量,则 321 , ,ααα有可能线性相关41. 已知0λ是矩阵A 的特征方程的三重根,A 的属于0λ的线性无关的特征向量的个数为k ,则必有 ( )3 )A (≤k3 )B (<k 3 )C (=k 3 )D (>k42. 矩阵A 与B 相似,则下列说法不正确的是 ( )(A) R (A ) = R (B )(B) A = BB A = )C ((D) A 与B 有相同的特征值43. n 阶方阵A 具有n 个线性无关的特征向量是A 与对角阵相似的 ( )(A) 充分条件(B) 必要条件(C) 充要条件(D) 既不充分也不必要条件44. n 阶方阵A 是正交矩阵的充要条件是 ( )(A) A 相似于单位矩阵E (B) A 的n 个列向量都是单位向量 (C) 1T -=A A(D) A 的n 个列向量是一个正交向量组45. 已知A 是正交矩阵,则下列结论错误的是 ( )1 )A (2=AA )B (必为1T 1 )C (A A =-(D) A 的行(列)向量组是单位正交组46. n 阶方阵A 是实对称矩阵,则 ( )(A) A 相似于单位矩阵E (B) A 相似于对角矩阵T 1 )C (A A =-(D) A 的n 个列向量是一个正交向量组47. 已知A 是实对称矩阵,C 是实可逆矩阵,AC C B T =,则 ( )(A) A 与B 相似(B) A 与B 不等价 (C) A 与B 有相同的特征值(D) A 与B 合同三、填空题1. 已知44513231a a a a a k i 是五阶行列式中的一项且带正号,则i = ,k = .2. 已知三阶行列式987654321=D ,ij A 表示元素ij a 对应的代数余子式,则与232221cA bA aA ++对应的三阶行列式为.3. 已知022150131=---x ,则x = . 4. 已知A ,B 均为n 阶方阵,且0 ,0≠=≠=b a B A ,则=T )2(B A ,=-121AB . 5. 已知A 是四阶方阵,且31=A ,则=-1A ,=--1*43A A . 6. 已知三阶矩阵A 的三个特征值分别为123-,,,则1*4---=A A . 7. 设矩阵⎪⎪⎭⎫⎝⎛=232221131211a a aa a a A ,B 是方阵,且AB 有意义,则B 是 阶矩阵,AB 是 行 列矩阵.8. 已知矩阵n s ij c ⨯=)( , ,C B A ,满足CB AC =,则A 与B 分别是 , 阶矩阵. 9. 可逆矩阵A 满足O E A A =--22,则=-1A .10. 已知T 3T 2T 1)2 ,3 ,1( ,) ,0 ,( ,)1 ,1 ,1(===αααy x ,若321 , ,ααα线性相关,则x ,y 满足关系式 .11. 矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 关. 12. 一个非齐次线性方程组的增广矩阵的秩比系数矩阵的秩最多大 .13. 设A 是43⨯矩阵,3)(=A R ,若21 ,ηη为非齐次线性方程组b Ax =的两个不同的解,则该方程的通解为 .14. 已知A 是n m ⨯矩阵,)( )(n r R <=A ,则齐次线性方程组0=Ax 的一个基础解系中含有解的个数为 .15. 已知方程组12312112323124x a x a x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭无解,则a = .16. 若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213211x x x x x x x x x λλ只有零解,则λ需要满足 .17. 已知矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,则x = .18. 已知向量α、β的长度依次为2和3,则向量内积[, ]+-=αβαβ .19. 已知向量⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=324 ,201b a ,c 与a 正交,且c a b +=λ,则=λ ,c = .20. 已知⎪⎪⎪⎭⎫ ⎝⎛-=111x 为⎪⎪⎪⎭⎫ ⎝⎛---=2135212b aA 的特征向量,则a = ,b = . 21. 已知三阶矩阵A 的行列式8=A ,且有两个特征值1-和4,则第三个特征值为 . 22. 设实二次型),,,,(54321x x x x x f 的秩为4,正惯性指数为3,则其规范形),,,,(54321z z z z z f 为 .23. 二次型233221321342),,(x x x x x x x x f +-=的矩阵为 .24. 已知二次型),,(z y x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--050532021,则此二次型=),,(z y x f .25. 已知二次型31212322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 要满足 .四、行列式计算1. 已知A ,B 为三阶方阵,2 ,1-==B A ,求行列式A AB 1*)2(-.2. 已知行列式219221612132402-----=D ,求4131211145A A A A ++-.3. 计算n 阶行列式2...010...201 (02)=n D ,其中主对角线上的元素都是2,另外两个角落的元素是1,其它元素都是0.4. 计算n 阶行列式xaa a xa a ax D n .........=.5. 计算n 阶行列式21...00000 (2100)0 (1)2100...012 =n D .6. 计算行列式dx cbad c x b a d c b x a d c b ax ++++.7. 计算行列式yy x xD -+-+=1111111111111111.8. 计算行列式3......3 (3)212121+++=n n n n x x x x x x x x x D .五、矩阵计算1. 设⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=042132 ,121043021B A ,求 (1)T AB ;(2)14-A .2. 已知⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=115202 ,212241222B A ,且X B AX +=,求X .3. 设⎪⎪⎪⎭⎫ ⎝⎛-=101020102A ,B 为三阶方阵,E 为三阶单位阵,且B A E AB +=+2,求B .4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2000120031204312 ,1000110001100011C B ,E 为四阶单位阵,且矩阵X 满足关系式E B C X =-T )(,求X .5. 已知⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=310021 ,110162031B A ,且B XA =,求X .6. 设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问:当k 取何值时,有 (1)1)(=A R ;(2)2)(=A R ;(3)3)(=A R .六、向量组的线性相关性及计算1. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1325 ,3214 ,2143 ,21114321αααα,求向量组4321 , , ,αααα的秩和一个最大线性无关向量组,并判断4321 , , ,αααα是线性相关还是线性无关.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 ,1301 ,3192 ,01414321αααα,求此向量组的秩和一个最大无关组,并将其余向量用该最大无关组线性表示.3. 当a 取何值时,向量组⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=a a a 2121 ,2121 ,2121321ααα线性相关?4. 将向量组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014 ,131 ,121321ααα规范正交化.七、线性方程组的解1. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=9410 ,1203 ,4231 ,30124321αααα,试判断4α是否为321 , ,ααα的线性组合;若是,则求出线性表达式.2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x .3. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x .4. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=++=++-=++022232212321321x k x x k kx x x k x x x 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.5. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321321321kx x k kx x kx kx x x k kx 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.6. 已知非齐次线性方程组b Ax =为⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 543215432543215432133453622 3232,问:当a 、b 取何值时,方程组b Ax =有无穷多个解?并求出该方程组的通解.7. 设方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值.8. 设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,已知321 , ,ηηη是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.9. 设非齐次线性方程组b Ax =的增广矩阵()b A A =,A 经过初等行变换为⎪⎪⎪⎭⎫ ⎝⎛---→300001311021011λ A ,则 (1) 求对应的齐次线性方程组0=Ax 的一个基础解系;(2) λ取何值时,方程组b Ax =有解?并求出通解.八、方阵的特征值与特征向量1. 已知⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=10000002 ,10100002y x B A ,若方阵A 与B 相似,求x 、y 的值.2. 设方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=210010000010010y A 的一个特征值为3,求y 的值.3. 已知三阶方阵A 的特征值为1、2、3-,求行列式E A A 231++-的值.4. 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值与对应的特征向量.5. 设⎪⎪⎪⎭⎫ ⎝⎛--=011101110A ,求可逆矩阵P ,使得AP P 1-为对角矩阵.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A ,求正交矩阵P ,使得AP P 1-为对角矩阵.7. 已知矩阵110430102-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A , 判断是否存在一个正交矩阵P , 使得1-=P AP Λ为对角矩阵.8. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛----=342432220A 的特征值为1、1、8-,求正交矩阵P ,使得AP P 1-为对角阵.九、二次型1. 当t 取何值时,32312123222132142244),,(x x x x x tx x x x x x x f +-+++=为正定二次型?2. 求一个正交变换把二次型123122331(,,)222f x x x x x x x x x =-++化成标准形.十、证明题1. 已知向量组r ααα ..., , ,21线性无关,而r r αααβααβαβ+++=+==... ..., , ,2121211,证明:向量组r βββ ..., , ,21线性无关.2. 设A 、B 都是n 阶对称阵,证明:AB 是对称阵的充要条件是AB = BA .3. 已知方阵A 满足O E A A =--1032,证明:A 与E A 4-都是可逆矩阵,并求出它们的逆矩阵.4. 设A 、B 为n 阶对称阵,且B 是可逆矩阵,证明:A B AB 11--+是对称阵.5. 设n 阶方阵A 的伴随矩阵为*A ,证明:1*-=n AA .6. 已知向量b 可由向量组321 , ,a a a 线性表示且表达式唯一,证明:321 , ,a a a 线性无关.7. 设321 , ,ααα是n 阶方阵A 的三个特征向量,它们的特征值互不相等,记321αααβ++=,证明:β不是A 的特征向量.8. 已知向量组321 , ,a a a 线性无关,3133222114 ,3 ,2a a b a a b a a b +=+=+=,证明:向量组321 , ,b b b 线性无关.9. 设0η是非齐次线性方程组b Ax =的一个特解,21 ,ξξ是对应的线性方程组0=Ax 的一个基础解系,证明:(1) 101202, ==++ηηξηηξ都是b Ax =的解;(2) 210 , ,ηηη线性无关.10. 已知A 是n 阶方阵,E 是n 阶单位阵,E A +可逆,且1))(()(-+-=A E A E A f ,证明:(1) E A E A E 2)))(((=++f ;(2) A A =))((f f .11. 设方阵A 与B 相似,证明:T A 与T B 相似.12. 已知方阵A 、B 都是正定阵,证明:B A +也是正定阵.13. 设n 阶行列式n D 的元素满足n j i a a ji ij ..., ,2 ,1 , ,=-=,证明:当n 为奇数时0=n D .14. 已知A 为正交阵,k 为实数,证明:若A k 也是正交阵,则1±=k .15. 设A 、B 均为n 阶正交矩阵,证明:(1) 矩阵AB 是正交阵;(2) 矩阵1-AB 是正交阵.16. 若A 是n 阶方阵,且T =AA E ,| A | =-1,这里E 为单位阵. 证明:| A +E | = 0.。
线性方程组练习题
线性方程组练习题引言:线性方程组是数学中的重要概念之一,它对于解决实际问题和研究抽象数学理论都有着重要意义。
本文将通过一些线性方程组的练习题,以帮助读者更好地理解线性方程组的概念、性质和解法。
一、一元一次线性方程组1、已知线性方程组:{ 2x + 3y = 7 (1)4x - 5y = 1 (2)求解方程组。
解:首先,我们可以使用消元法来求解方程组。
以第一个方程为基准,将第二个方程中的x消去:(2) * 2 - (1) * 4,得到:-14y = -13解得 y = 13/14。
将y的值代入方程(1)中,得到:2x + 3 * (13/14) = 7化简,得到:2x = 7 - 39/142x = 98/14 - 39/142x = 59/14解得x = 59/28。
综上所述,方程组的解为:x ≈ 2.107,y ≈ 0.929。
2、练习题:考虑以下线性方程组:{ 3x + 2y = 5 (1)5x - y = 1 (2)请你解答:该线性方程组有无解?若有解,求解方程组。
解:我们同样使用消元法来求解方程组。
以第一个方程为基准,将第二个方程中的x消去:(2) * 3 - (1) * 5,得到:-11y = 2解得 y = -2/11。
将y的值代入方程(1)中,得到:3x + 2 * (-2/11) = 5化简,得到:3x = 55/11 + 4/113x = 59/11解得x = 59/33。
综上所述,方程组的解为:x ≈ 1.788,y ≈ -0.181。
二、二元一次线性方程组1、已知线性方程组:{ 3x - 2y = 5 (1)2x + y = 1 (2)求解方程组。
解:我们可以使用消元法来求解方程组。
以第一个方程为基准,将第二个方程中的y消去: (2) * 3 + (1) * 2,得到:7x = 8解得 x = 8/7。
将x的值代入方程(2)中,得到:2 * (8/7) + y = 1化简,得到:y = 1 - 16/7y = -9/7综上所述,方程组的解为:x ≈ 1.143,y ≈ -1.286。
(精心整理)线性方程组练习题
(精心整理)线性方程组练习题一、单一线性方程组1. 求解下列线性方程组:(1)$$x-2y=3$$(2)$$2x+3y=4$$2. 求解下列线性方程组:(1)$$2x-3y+4z=1$$(2)$$3x-4y+5z=2$$(3)$$-x+y-2z=-3$$3. 求解下列线性方程组:(1)$$x-y+z=1$$(2)$$2x-3y-4z=-1$$(3)$$3x-4y+z=3$$二、多元线性方程组1. 求解下列多元线性方程组:(1)$$2x+y=3$$$$x-y=1$$2. 求解下列多元线性方程组:(1)$$x+2y+3z=4$$$$2x+y-3z=0$$$$3x-2y+5z=6$$3. 求解下列多元线性方程组:(1)$$x+y+z=1$$$$2x+y+3z=4$$$$x+3y+2z=3$$三、应用题1. 某商场一天销售了商品A、B两种,A、B两种商品单价分别为x元和y元,已知销售了x件A商品和y件B商品,总价为500元,且已知销售了10件A商品和5件B商品,总价为185元,求解方程组,并给出A商品和B商品的单价。
2. 某超市投放了两种品牌的巧克力A、B,其中A品牌单价为x元,B品牌单价为y元,已知某顾客购买了x份A品牌巧克力和y份B品牌巧克力,所付的总价为15元,且已知该顾客购买了两份A品牌巧克力和一份B品牌巧克力,所付的总价为6元,求解方程组,并给出A品牌和B品牌巧克力的单价。
四、挑战题1. 求解下列多元线性方程组:(1)$$2x-3y+4z=1$$$$x-2y+3z=0$$$$4x-3y+2z=-3$$2. 求解下列多元线性方程组:(1)$$2x+3y-z=1$$$$3x+4y-2z=2$$$$4x+5y-3z=4$$$$x-2y+z=3$$以上是一些关于线性方程组的练习题,希望能对你的学习有所帮助。
线性方程组习题一
线性方程组习题一一、填空题1. 非齐次线性方程组 AZ =b ( A 为mx n 矩阵)有唯一解的的充分必要条件是2. n +1个n 维向量,组成的向量组为线性|</2 -《1,口《3 -02,«1 -《3 线性无关。
A.辽,,&2,|]|,0.中至少有一个含有零向量;B.对任意一组不全为零的常数k1,k2,|il,kn ,有KS +k2b 2 +|H+kn b n =0 ;向量组。
3.设向量组a 1^2^3线性无关则常数l,m 满足时,向量组4.设n 阶矩阵A 的各行元素之和均为零,且 r (A )=门-1贝^ Ax =0的通解为5.若向量组O.I ^2^3线性无关,则向量组口2 +口1,口3 +口2,01 +036.已知四元非齐次线性方程组Ax= b (如 3 n 1宀2,"是它的三个解向量,其中q +“2 =(1,2,0,2)丁,*2 +% =(1,0,1,3)T,则齐次线性方程组的通解为[01=^17.设向量组P 1J^2, P 3由向量组a 1a 2a 3的线性表示式为{ ^=«1 卩3 =七1 +口2 +口3 1)2)-口2 +口3+ a^a 3 ,则向量组%,口2,03由向量组P 1,P 2,P 3的线性表示式为8.设秩(A )= r ,秩(B = s ,则秩9.设A 是n 阶方阵,秩(A )= n-2,则秩A二、项选择题A 、B 为n 阶矩阵,则秩(A+B ) ________________ > 秩(A ) + 秩(B ) B. < 秩(A ) + > max (秩(A ),秩(B ) ) D. < min (仔1. A . C.2.A 为n 阶矩阵,E r 为r 阶单位矩阵,则秩r 或=秩(A ) A.= C. < min (秩(A ) , r ) 3.已知向量组6,屯,川,5线性相关,则命题。
秩(B )秩(A ),秩(B ))0〕max (秩(A ), r ) B.= D.以上都不对成立。
数学课程线性方程组练习题及答案
数学课程线性方程组练习题及答案1. 练习题1.1 求解下列线性方程组:(1)3x + 2y = 72x - y = 4(2)2x + y - z = 6x - 3y + 2z = 43x - 2y - z = 1(3)x - 2y + z = 32x + y - 2z = -53x - y + 3z = 72. 答案(1)解:首先,我们可以通过消元法来求解该线性方程组。
将第二个方程的两边乘以2,得到2(2x - y) = 2(4),化简得4x - 2y = 8。
将这个结果与第一个方程相加,得到(3x + 2y) + (4x - 2y) = 7 + 8,化简得7x = 15,所以 x = 15/7。
接下来,将求得的 x 值代入任意一个方程(如第一个方程)中,可以得到:3(15/7) + 2y = 7,化简得2y = 7 - 45/7,化简得2y = -14/7,所以 y = -7/7。
因此,该线性方程组的解为 x = 15/7,y = -1。
(2)解:同样使用消元法求解该线性方程组。
将第二个方程的两边乘以2,得到2(x - 3y + 2z) = 2(4),化简得2x - 6y + 4z = 8。
将第三个方程的两边乘以3,得到3(3x - 2y - z) = 3(1),化简得9x - 6y - 3z = 3。
现在我们有以下三个方程:2x + y - z = 62x - 6y + 4z = 89x - 6y - 3z = 3将第一个方程中的 z 用第二个方程中的 z 的代数式表示,得到 z = 2x + y - 6。
将这个结果代入第三个方程中,可以得到:9x - 6y - 3(2x + y - 6) = 3,化简得3x - 3y = 15,所以 x - y = 5。
我们可以再次将 x - y = 5 代入第一个方程,得到:2x + y - (2x + 5) = 6,化简得 y = 11。
将求得的 y 值代入 x - y = 5,可以解得 x = 16。
第三章习题与复习题(线性方程组)---高等代数
习题3.11.用消元法解下列线性方程组(1)123131232312 264257x x x x x x x x -+=⎧⎪+=⎨⎪++=⎩ (2)⎪⎪⎩⎪⎪⎨⎧=+--=+-=+-=+-115361424524132321321321321x x x x x x x x x x x x(3)⎪⎩⎪⎨⎧=-++=-+-=--+8222635363432143214321x x x x x x x x x x x x (4) ⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++233453622032315432154325432154321x x x x x x x x x x x x x x x x x x x 2.设线性方程组1232123123424x x tx x tx x t x x x ++=⎧⎪-++=⎨⎪-+=-⎩ t 为何值时方程组无解? t 为何值时方程组有解?有解时,求其解. 3.设线性方程组1234123412341234231363315351012x x x x x x x x x x ax x x x x x b+++=⎧⎪+++=⎪⎨--+=⎪⎪--+=⎩ (1) a , b 为何值时方程组有唯一解? (2) a, b 为何值时方程组无解?(3) a , b 为何值时方程组有无穷多解?并求其一般解.习题3.21.设()()()1231,1,1,22,1,0,11,2,0,2ααα=--=-=--,, ,求 (1) 321ααα++ (2) 321532ααα+- 1211222. (1,0,,0) (0,1,,0)(0,0,,1),.n n n n a a a εεεεεε===+++设 维向量 , ,, 求()()3. 2 02,1 3 1,124αβγαγβ=-=-+=设2,,,4,2, ,,,求向量 ,使.4.设()()122,0,13,1,1αα==-, 满足 12234βαβα+=+ ,求 β .5.342112231231,.αβαβαβ+=+=-设(,,,), (,,,),求习题3.31. 判断向量 β 能否由向量1α,2α,3α,4α 线性表示,若可以,求出表达式. ()()()()()1234(1) 1,1,1,1 ,1,1,1,11,1,1,11,1,1,11,1,3,1βαααα=--==--=--=-,,, ()()()()()1,1,1,11,1,1,11,1,1,11,1,1,1,1,1,2,1 )2(4321--=--=--===ααααβ,,, ()()()()()3,0,1,37,1,1,40,1,0,17,3,1,23,1,3,4 )3(4321---==-==--=ααααβ,,, 1231231232. 120347110,,,011234(1) , , ,,;(2) , , ,,,;(3) , b a a b a b a b αααββαααβααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭设取何值时不能由线性表示取何值时能由唯一线性表示写出该表达式取何值123, ,,,βααα时能由线性表示且表达式不唯一写出全体表达式.3.判断下列向量组的线性相关性.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=70241202152101014 )1(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2131012021013312 )2(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=652111113211 )3(321ααα,,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=14044121302101130112 )4(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=7932 ,4354327697656324 )5(54321ααααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7023120233631121 )6(4321αααα,,,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=431003801053001 )7(321ααα,,12344. 12341234 12341234a a a a αααα+⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭设向量组,,, 12341234(1) , ,,,;2 , ,,,.a a αααααααα为何值时线性相关()为何值时线性无关5.讨论向量组12310112,,21425111a b ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭的线性相关性. 6.已知向量组1,,,,i n ααα线性无关,证明1,,,,(0)i n k k ααα≠线性无关.7.已知向量组12,,,n ααα线性无关, 1121212,,,,n n βαβααβααα==+=+++证明: 12,,,n βββ线性无关.8.设12,,,n ααα线性无关,nnn n n n nn n n a a a a a a a a a αααβαααβαααβ+++=+++=+++=22112222121212121111证明:n βββ,,,21 线性无关的充要条件是行列式D = n n n n nna a a a a a a a a 111212122212≠ 09.已知向量组m ααα,,,21 线性无关,设111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m证明:(1) 当m 为偶数时, m βββ,,,21 线性相关;(2)当m 为奇数时, m βββ,,,21 线性无关.习题3.41.求下列向量组的秩与一个极大线性无关组.(1)12344212 312101308αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,, (2)1234511005 2112, 153223ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,,(3)123450********* , 0111111011ααααα-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,, 2.求下列向量组的秩与一个极大无关组并将其余向量用求出的极大无关组线性表示.(1)12342104113410100124αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,(2)123452313712024 , 3283023743ααααα--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,, (3)123452183723075, 3258010320ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,,3.求向量组123411312000121135a b αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,,,的秩和一个极大无关组.4.设A 、B 均为m × n 阶矩阵,证明:R (A + B )≤ R (A )+ R (B ) 5.设向量组m ααα,,,21 ( m > 1 )的秩为r ,m m m m βαααβαααβααα-=+++=+++=+++,,,123213121证明:向量组m βββ,,,21 的秩为r .6.设A 为n × m 阶矩阵,B 为m × n 阶矩阵,且n > m ,证明 AB = 0 .习题3.51.求下列齐次线性方程组的一个基础解系并用它表出通解. (1) 123413412313424303 07 730x x x x x x x x x x x x x -+-=⎧⎪+-=⎪⎨++=⎪⎪+-=⎩ (2) 12345123451234512345202 +230322025220x x x x x x x x x x x x x x x x x x x x -+-+=⎧⎪-+-=⎪⎨--+-=⎪⎪-+-+=⎩2.设线性方程组123123123232082021430x x x x x x x x x λλλ---=⎧⎪-+--=⎨⎪+++=⎩()()()问λ为何值时, 该方程组有非零解?并求出它的全部解.3.设n 阶方阵A 的每行元素之和都为零,且R (A )= n -1 ,求方程组A X = 0的通解. 4.已知3阶非零矩阵B 的每个列向量都是线性方程组1231231232202030x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ 的解, 求λ的值. 5.已知线性方程组12342341242200 0x x x x x cx cx x cx x +++=⎧⎪++=⎨⎪++=⎩ 的基础解系由两个解向量构成,求c 的值与该方程组的通解. 6.设12313221211A t ⎛⎫⎪-⎪= ⎪⎪--⎝⎭B 是3阶非零矩阵,且AB=O , 求t 的值.习题3.61.解下列线性方程组(在有无穷多解时求出其结构式通解). (1)12312312312323424538213496x x x x x x x x x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩(2)1234124123401 222461x x x x x x x x x x x --+=⎧⎪⎪--=⎨⎪--+=-⎪⎩2.已知线性方程组1231231232123(2)320x x x x x a x x ax x ++=⎧⎪+++=⎨⎪+-=⎩ 无解,求a 的值.3.参数λμ,取何值时,线性方程组123412341234230327162x x x x x x x x x x x x λμ+-+=⎧⎪+++=⎨⎪---=⎩ 有解、无解?4. 参数a , b 为何值时,线性方程组12345123452345123451323 22635433x x x x x x x x x x a x x x x x x x x x b ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩有解、无解?在有解时,求其解.5. 参数a , b 为何值时,线性方程组1231231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩ 无解、有唯一解、有无穷多解?在有解时,求其解.6.向量123,,γγγ是四元非齐次线性方程组AX β=的解向量,()2R A =且 121321γγ⎛⎫ ⎪ ⎪+= ⎪ ⎪⎝⎭ ,231102γγ⎛⎫ ⎪ ⎪+= ⎪ ⎪-⎝⎭,132110γγ⎛⎫⎪ ⎪+= ⎪ ⎪⎝⎭求线性方程组AX β=的通解. 7.设线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1)若1234,,,a a a a 互不相同,证明方程组无解;(2)若1324,(0)a a k a a k k ====-≠,证明方程组有解,并求其通解.8.证明线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-=-=-515454343232121a x x ax x a x x a x x a x x 有解的充分必要条件是∑=51i i a = 0 ,并在有解时求其通解.9.设非齐次线性方程组A X = β 的解向量12,,,s γγγ,证明(1) 线性组合1122s s k k k γγγ+++是A X = β 的解的充分必要条件是k 1 + k 2 + … + k s = 1;(2)线性组合1122s s k k k γγγ+++是A X = 0 的解的充分必要条件是k 1 + k 2 + … + k s = 0.习题三 (A)一、填空题1.设123111111λααλαλ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,当λ满足 时, 123ααα,,线性相关; 当λ满足 时, 123ααα,,线性无关. 2.已知向量组123411110112,23243519t t αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭,, 线性相关, 则t 满足 .3.设向量组123ααα,,线性无关,则当参数l, m 满足 时,213213l m αααααα---,,也线性无关.4. 已知123ααα,,线性无关,若12123123242m m αααααααα+-++-,,也线性无关, 则m .5.设向量组123(, 0, )(, ,0)(0, , )a c b c a b ααα===,,线性无关, 则a , b , c 满足 . 6. 设向量组1234(2,1,1,1)(2,1,,)(3,2,1,),(4,3,2,1)a a a αααα====,,线性相关,且1a ≠, 则 a = .7. 当k = 时, 向量 ()Tk k 2,,0=β 可由向量组()T k 1,1,11+=α ,()()T T k k +=+=1,1,11,1,132αα, 线性表示且表示方法不唯一.()()()1231,2,1,1,2,0,,0,0,4,5,22, t t ααα=-==--=8.已知的秩为 则 .9. 设A = ⎪⎪⎪⎭⎫ ⎝⎛--11334221t , B 为3阶非零矩阵, 且A B = O , 则t = .10. 设B 为3阶非零矩阵,且B 的每个列向量都是方程组 ⎪⎩⎪⎨⎧=-+=+-=++030202321321321x x x x x x kx x x 的解,则k= ,B = .11. 设123,,ααα是齐次线性方程组AX = 0 的一个基础解系, 则当参数a 满足 时,122331a αααααα+++,,也是该方程组的基础解系.12. 已知向量组1234,,,αααα的秩为3, 且1234,,,αααα可由向量组123,,βββ线性表示, 则向量组123,,βββ必线性 .二、单项选择题1. 已知1143α⎛⎫ ⎪= ⎪ ⎪⎝⎭,221t α⎛⎫ ⎪= ⎪ ⎪-⎝⎭,3231α-⎛⎫⎪= ⎪ ⎪⎝⎭线性相关, 则t =( ) .(A ) 2 (B) -2 (C ) 3 (D ) –3 2.已知向量组1234αααα,,,线性无关, 则向量组( )线性无关.12233441122334411223344112233441A αααααααααααααααααααααααααααααααα+++++++-----++--() ,,,(B ) ,,,(C ) ,,,(D ) ,,,3. 对任意实数a , b , c 下列向量组线性无关的是( ).(A) (a , 1, 2), (2, b , 3), (0, 0, 0)(B) (b , 1, 1), (1, a , 3), (2, 3, c ), (a , 0, c ) (C) (1, a , 1, 1), (1, b , 1, 0), (1, c , 0, 0) (D) (1, 1, 1, a ), (2, 2, 2, b ), (0, 0, 0, c )4.若向量组 α , β , γ 线性无关, α , β , δ 线性相关, 则( ).(A ) α 必可由 β , γ , δ 线性表示 (B ) β 必不可由 α , γ , δ 线性表示 (C ) δ 必可由 α , β , γ 线性表示 (D ) δ 必不可由 α , β , γ 线性表示 5. 设同维向量组12121::,rr r mA B αααααααα+,,,,,,,,则下列说法正确的是( ). (A) A 组与B 组的线性相关性相同 (B) 当A 组线性无关时, B 组也线性无关 (C) 当B 组线性相关时, A 组也线性相关 (D) 当A 组线性相关时, B 组也线性相关 6. 下列说法正确的是( ). (A) 若1α,2α线性相关,1β ,2β线性相关, 则11βα+,22βα+一定线性相关(B) 若1α,2α 线性无关, β为任一向量, 则βα+1,βα+2一定线性无关(C) 若1α,2α ,…,m α( m ≥ 2 )线性相关, 则其中任何一个向量都可由其余向量线性表示 (D) 若n 维向量组1α,2α,… ,m α( m ≥ 2 )线性无关,则对于任意不全为零的数k 1, k 2 ,… , k m 一定有 θααα≠+++m m k k k 22117.已知向量组123ααα,,线性无关, 向量β可由123ααα,,线性表示, 向量γ不能由123ααα,,线性表示, 则对任意常数k , 必有( ).(A) 123,,, k αααβγ+线性无关 (B) 123,,, k αααβγ+线性相关 (C) 123,,, k αααβγ+线性无关 (D) 123,,, k αααβγ+线性相关8. 一个向量组的极大线性无关组( ). (A ) 个数唯一 (B) 个数不唯一(C ) 所含向量个数唯一 (D ) 所含向量个数不唯一9.已知任一n 维向量均可由n ααα,,,21 线性表示, 则n ααα,,,21 ( ).(A) 线性相关 (B) 秩等于n(C) 秩小于n (D) 秩不能确定10. 已知21346639A t ⎛⎫ ⎪= ⎪ ⎪⎝⎭, B 为三阶非零矩阵且AB =O ,则( ).(A)当t = 2时,B 的秩必为1 (B)当t = 2时,B 的秩必为2 (C)当t ≠2时,B 的秩必为1 (D)当t ≠ 2时,B 的秩必为211.设非齐次线性方程组A X = B 中未知量个数为n , 方程个数为m , 系数矩阵A 的秩为r ,则 ( ) .(A ) r = m 时,方程组A X = B 有解 (B) r = n 时,方程组A X = B 有唯一解 (C ) m = n 时,方程组A X = B 有唯一解 (D ) r < n 时,方程组A X = B 有无穷多解12.n 元线性方程组AX=B 有唯一解的充分必要条件是( ).(A ) 导出组AX=0仅有零解 (B ) A 为方阵,且∣A ∣≠0(C ) R(A) = n(D ) 系数矩阵A 的列向量组线性无关,且常数项向量B 可由A 的列向量组线性表示13.设A 是n 阶矩阵, α 是n 维列向量,若R ⎪⎪⎭⎫⎝⎛0TAαα = R (A ) ,则线性方程组 ( ).(A ) A X = α 必有无穷多解(B ) A X = α 必有唯一解 (C ) ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛y X A T0αα = 0仅有零解 (D ) ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛y X A T0αα = 0必有非零解 14.将齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵记为A , 若存在3阶矩阵B ≠ O使得AB =O , 则 ( ) .(A ) λ = -2且 B = 0 (B ) λ = -2且 B ≠ 0 (C ) λ = 1且 B = 0 (D ) λ = 1且 B ≠ 0 15. 已知123,,ααα是非齐次线性方程组AX=b 的3个解, 则下列( )不是导出组 AX = 0的解.(A) 1232ααα+- (B) 121()3αα- (C) 132αα- (D)311()2αα- 16. 已知123,,ααα是非齐次线性方程组AX=b 的3个解,则下列( )是AX = b 的解. (A) 1232ααα+- (B) 123ααα+- (C) 132αα- (D)311()2αα- 17. 已知123ααα,,是4元非齐次线性方程组AX=b 的3个不同的解且R (A ) =3,则下列( )是导出组AX = 0的基础解系.(A) 12312,ααααα+-- (B) 12αα- (C) 13αα+ (D) 3121,αααα--(B)1.设12312300111a b αααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1011=,=,010012011=,=,1221求a , b 的值,使向量组123ααα,,与向量组123βββ,,等价.122.,,,.r t t t r n ≤设是互不相同的数,21(1,,,,) (1,2,,)n i i i i t t t i r α-==证明:线性无关.3. ,, , 0. , , , a b c a b c abc αβγαβγθαβαγβγ++=≠设向量,,及数满足且证明和均与等价.4.设向量组123411321326,1511031p p αααα--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,(1)p 为何值时,1234,αααα,,线性无关, 并在此时将向量()4,1,6,10Tβ=用该向量组线性表示;(2)p 为何值时,1234,αααα,,线性相关,并在此时求出该向量组的秩和一个极大无关组. 5.求向量组1231111121111k k ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,的秩和一个极大无关组.6.,,A m n B n m m n AB E B ⨯⨯<=设为矩阵,为矩阵,且若证明的列向量组线性无关. 7.已知向量组123967ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭13=2,=0,-31与1232110a b βββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0=1,=,-1具有相同的秩且3β可由123ααα,,线性表示,求a , b 的值. 8.已知3阶矩阵B O ≠且B 的列向量都是线性方程组12312312320200x x x x x x ax x x +-=⎧⎪-+=⎨⎪+-=⎩ 的解.(1) 求a 的值; (2) 证明0B =. 9. 已知线性方程组⎪⎩⎪⎨⎧=++=++=++000322212321321x c x b x a cx bx ax x x x ,(1) 当a , b , c 满足何种关系时,方程组仅有零解?(2)当a , b , c 满足何种关系时,方程组有无穷多组解?求出其通解. 10. 两个齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++⎪⎪⎩⎪⎪⎨⎧=++=++=++00000011212111111121211111n tn t n n n n n mn m n n n n x b x b x b x b x b x b x a x a x a x a x a x a 与 的系数矩阵A 与B 的秩都小于n /2. 证明:这两个方程组必有相同的非零解. 11. 设12s ααα,,,为某齐次线性方程组的一个基础解系, 11122,t t βαα=+21223,t t βαα=+ 12112,,,s s t t t t βαα=+其中为任意常数. 问当12,t t 满足什么条件时, 12s βββ,,,也为该方程组的一个基础解系.12.设四元齐次线性方程组(Ⅰ)为 ⎩⎨⎧=-++=-+020324321321x x x x x x x , 且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 T T a a )(,)(8,4,2,11,2,1,221+-=+-=αα(1) 求方程组(Ⅰ)的一个基础解系; (2) a 为何值时,(Ⅰ)与(Ⅱ)有非零公共解?在有非零公共解时, 求出全部非零公共解.13.设 r n -γγγγ,,,,210 为非齐次线性方程组A X = β 的n - r +1个线性无关的解向量,其中r = R (A ).证明:00201,,,γγγγγγ----r n 是其导出组AX = 0的一个基础解系. 14.若线性方程组n n n n n nn n n a x a x b a x a x b a x a x b ++=⎧⎪++=⎪⎨⎪⎪++=⎩111112112211 的系数矩阵的秩等于矩阵B =1111110n n nnn na ab a a b b b ⎛⎫⎪⎪ ⎪ ⎪ ⎪⎝⎭的秩. 证明此方程组有解.12312315. 4, ()3, ,,,2200,20028.AX B R A αααααα==⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设元非齐次线性方程组已知为方程组的解其中求该方程组的通解16. 设线性方程组Ⅰ: 123123212302040x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩Ⅱ: 123 21x x x a ++=-有公共解, 求a 的值及所有公共解.。
线性方程组练习题
线性方程组练习题线性方程组是高中数学中的重要概念,掌握解线性方程组的方法对于学习和应用数学都具有重要意义。
下面,我将为大家提供一些线性方程组的练习题,帮助大家巩固和加深对线性方程组的理解和应用。
练习题一:解下列线性方程组:1. 2x + y = 44x - 3y = 72. 3x + 2y = 5x - y = -13. 5x + 3y = 93x - 2y = 4练习题二:求出下列线性方程组的解的个数,并判断是否有解:1. 3x + 5y = 76x + 10y = 142. 2x - 3y = 44x - 6y = 83. x + 2y = 32x + 4y = 6练习题三:判断下列线性方程组是否有无穷多解:1. 2x - 3y = 44x - 6y = 82. 3x + 2y = 66x + 4y = 123. 5x - 6y = 1010x - 12y = 20练习题四:求解以下线性方程组形成的矛盾方程组:1. 2x + 3y = 54x + 6y = 122. 3x - 4y = 96x - 8y = 183. 4x + 7y = 118x + 14y = 22练习题五:解下列线性方程组,并判断是否有解:1. 2x + y = 44x + 2y = 92. 3x + 2y = 5x - 2y = 13. 2x + 3y = 74x + 6y = 14在解这些线性方程组时,我们可以使用消元法、代入法或等量代换法等不同的方法。
根据具体的题目,选择合适的解题方法,并注意进行化简和整理,尽量将方程组化为简单的形式,以便于求解。
线性方程组的解的个数分为无解、唯一解和无穷多解三种情况。
通过判断线性方程组的系数矩阵经过行变换后的简化形式,我们可以确定解的个数。
对于无解的线性方程组,系数矩阵经过行变换后存在形如[0 0 a]的行,其中a为非零数。
对于唯一解的线性方程组,系数矩阵经过行变换后为一个单位矩阵。
考研数学一(线性方程组)历年真题试卷汇编1(题后含答案及解析)
考研数学一(线性方程组)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2011年试题,一)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)是方程组Ac=0的一个基础解系,则A*x=0的基础解系可为( ).A.α1,α3B.α1,α2C.α1,α2,α3D.α2,α3,α4正确答案:D解析:因为Ax=0基础解系含一个线性无关的解向量,所以rA=3,于是r(A*)=1,故A*x=0基础解系含3个线性无关的解向量,又A*A=|A|E=0且rA=3,所以A的列向量组中含A*x=0的基础解系,因为(1,0,1,0)T是方程组Ax=0的基础解系,所以α1+α3=0,故α1,α2,α4或α2,α3,α4线性无关,显然α2,α3,α4为A*x=0的一个基础解系,故选D.知识模块:线性方程组2.(2003年试题,二)设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(A)=秩(B),则Ax=0与Bx=0同解.以上命题中正确的是( ).A.①②B.①③C.②④D.③④正确答案:B解析:分析①一④,不难排除掉②,④,因为从系数矩阵的秩的大小关系,得不出它们的解的关系,而①,③的成立是因线性齐次方程组的解空间的维数与系数矩阵的秩的关系而得以保证的.设Ax=0的一个基础解系为α1,α2……αr,而Bx=0的一个基础解系为β1β2……βs,则r=n—rA,s=n一rB,若Ax=0的解全是Ax=0的解,则α1,…,αr可由β1β2……βS线性表示,即r≤s,从而rB≤rA,①成立;若Ax=0与Bx=0同解,则r=s,因而有rA=rB,综上,选B.齐次线性方程组Ax=0与Bx=0同解的充要条件是A,B的行向量组等价.知识模块:线性方程组3.(2002年试题,二)设有三张不同的平面,其方程分别为ai1x+ai2y+ai3z=bi,i=1,2,3,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为( ).A.B.C.D.正确答案:B解析:由题设,记系数矩阵、增广矩阵分别为由于rA=rB=2,所以线性方程组Ax=b有无穷多解,且相应的齐次方程组Ax=0的解空间维数为1,因此Ax=b 通解形如x=kα+β其中k为任意常数,α是Ax=0的基础解系,β是Ax=b的任一特解,这说明三个平面的公共点是一直线,因此选B.以本题为例,一般地,若rA≠rB,则三个平面无交点;若rA=rB=3。
(完整版)线性代数第四章线性方程组试题及答案.doc
充 1:当 A 列 秩 ( 或 A 可逆 ,A 在矩 乘法中有左消去律AB=0 B=0;AB=AC B=C.明B =(1,, ⋯,t ), AB = Ai =0,i=1,2, ⋯,s., , ⋯ , t 都是 AX =0212的解 . 而 A 列 秩 , AX =0 只有零解 ,i=0,i=1,2,⋯ ,s, 即 B =0.同理当 B 行 秩(或 B 可逆 ),AB 0 B T A T0 A T0A 0AB CB A C充 2如果 A 列 秩(或 A 可逆) , r( AB )=r( B ).分析 : 只用 明 次方程ABX =0 和 BX =0 同解 .( 此 矩 AB 和 B 的列向量 有相同的 性关系, 从而秩相等 .)明:是 ABX = 的解 AB = B =0( 用推 ) 是 BX = 的解 .于是 ABX =0 和 BX =0 确 同解 .同理当 B 行 秩(或B 可逆) , r( AB )=r( A ).例题一 . 填空1.A m 方 , 存在非零的 m × n 矩 B, 使 AB = 0 的充要条件是 ______.解: Ax 0 有非零解, r Am2.A n 矩 , 存在两个不相等的n 矩 B, C, 使 AB = AC 的充要条件是解: A B C 0 , B, C 不相等, Ax0 有非零解, r An3.若 n 元 性方程 有解, 且其系数矩 的秩r, 当 ______, 方程 有唯一解;当 ______ , 方程 有无 多解 .解:假 方程A m × n x = b, 矩 的秩 r ( A) r .当 r n , 方程 有惟一解 ; 当 r n , 方程 有无 多解 .4. 在 次 性方程 A m ×n x = 0 中 , 若秩 (A) = k 且 1, , ⋯ , r 是它的一个基 解2系 ,r = _____; 当 k = ______ , 此方程 只有零解。
线性方程组复习考试题
线性方程组复习考试题work Information Technology Company.2020YEAR线性方程组复习题一、填空1. 设()0,2,11=α,()3,0,12-=α,()4,3,23=α,则32132ααα-+=______________。
2. 设()0,0,11=α,()0,1,12=α,()1,1,13=α,()3,2,1=β,且有332211αααβx x x ++=,则=1x ______,=2x ______,=3x ______。
3. 若()2,0,11=α,()1,2,12-=α,()5,,23a =α线性无关,则=a _________。
4. 若向量组m ααα,,,21 线性无关,则其任何部分向量组必线性_____关。
5. 设3×3矩阵()21,,ααα=A ,()21,,ααβ=B ,其中21,,,ααβα均是3维向量,且3=A ,5=B ,则=+B A ___________。
6. 对于m 个方程n 个未知量的方程组0=AX ,若有r A r =)(,则方程组的基础解系中有________个解向量。
7. ⎩⎨⎧=-+-=+-0462023321321x x x x x x 的基础解系由_______个解向量组成。
8. 已知A 是4×3矩阵,且线性方程组B AX =有唯一解,则增广矩阵A 的秩是_________。
二、选择题1. 设有向量组(I) r ααα,,21 和(II) s βββ,,,21 ,向量组(I) 、(II)均线性相关,且向量组(I)可由向量组(II) 线性表示,则_________成立。
(A) 秩(I)≤ 秩(II) (B) s r ≤ (C) ≤r 秩(II) (D) s r ≥2. 设m ααα,,21 有二个最大无关组:(1)r i i i ααα,,21 和 (2)s j j j ααα,,21 ,则有_____成立。
小学五年级解线性方程组练习题
小学五年级解线性方程组练习题1. 解方程组:a. 3x + 2y = 102x - y = 4解答:将第二个方程中的变量y换成x的表达式,得到2x - (3x - 4) = 4,化简为 -x + 4 = 4,然后解得x = 0。
将x的值代入第一个方程中,得到3*0 + 2y = 10,化简为2y = 10,解得y = 5。
所以方程组的解是x = 0,y = 5。
b. 4x + 3y = 142x - 5y = -16解答:将第二个方程中的变量x换成y的表达式,得到2y -5(4y/3 + 16/3) = -16,化简为2y - 20y/3 - 80/3 = -16,然后解得y = 10。
将y的值代入第一个方程中,得到4x + 3*10 = 14,化简为4x + 30 = 14,解得x = -4。
所以方程组的解是x = -4,y = 10。
2. 解方程组:a. 2x + 5y = 223x - 4y = 7解答:将第一个方程中的变量y换成x的表达式,得到2x + 5(22 - 2x)/5 = 22,化简为2x + 110/5 - 10x/5 = 22,然后解得x = 5。
将x的值代入第一个方程中,得到2*5 + 5y = 22,化简为10 + 5y = 22,解得y = 2。
所以方程组的解是x = 5,y = 2。
b. 3x + y/2 = 44x - y = 14解答:将第一个方程中的变量y换成x的表达式,得到y = 8 - 6x。
将y的表达式代入第二个方程中,得到4x - (8 - 6x) = 14,化简为4x - 8 + 6x = 14,解得x = 3。
将x的值代入第一个方程中,得到3*3 + y/2 = 4,化简为9 + y/2 = 4,解得y = -10。
所以方程组的解是x = 3,y = -10。
3. 解方程组:a. 2x + 3y = 84x - 5y = -4解答:将第一个方程中的变量x换成y的表达式,得到2(8 -3y)/3 + 3y= 8,化简为16/3 - 6y/3 + 3y = 8,然后解得y = 10/3。
线性代数复习题
二、(10分) 计算 n 阶行列式 :
a1 +1 a2 L an-1
an
a1 a2 +2 L an-1
an
Dn = M
M
M
M
a1
a2 L an-1 +n-1 an
a1
a2 L
an- 1
an + n
2/6/2.2
2
三、(10分)
æ-4 2 0 0 ö
ç
÷
设A
=
ç ç
2 0
00 0 -7
0 3
÷÷ , 且BA
八、(5分) 已知A是实反对称矩阵(即满足 AT = - A), 试证
E - A2 为正定矩阵,其中E是单位矩阵.
6/6/2.2
复习题(二)参考答案
一、1. - 100;
æ1 6 0 0 ö
ç
÷
2. ç 1 3 1 3 0 ÷;
çè 1 2 1 2 1 2÷ø
3. k ¹ 0 且 k ¹ 3; 4. a = b = 0.
çè 3 1 2÷ø çè 3 1 2÷ø
五、(15分) l 取何实值时,线性方程组
ì l x1 - x2 = l
ïï l x2 - x3 = l
í ï
l
x3 -
x4
=
ቤተ መጻሕፍቲ ባይዱ
l
ïî- x1 + l x4 = l
有唯一解,无穷多解, 无解?在有无穷多解的
情况下求通解 .
4/6/2.1
六、1.(5分) 设A为正交矩阵且 det A = -1,证明 : - E - A不可逆.
的秩等于
.
2.设 A 为 n 阶方阵,且 det A = 2,则
解线性方程组专项练习及测试(含专练60道)
解线性方程组专项练习及测试(含专练60
道)
解线性方程组专项练及测试(含专练60道)
简介
本文档旨在提供一套解线性方程组的专项练及测试,包含60
道题目。
通过这些练和测试,你将能够加深对线性方程组的理解,
熟练掌握解决线性方程组的方法和技巧。
练题目
以下是60道解线性方程组的练题目,请你根据题目要求解答。
1. 题目1
2. 题目2
3. ...
...
60. 题目60
说明
首先,根据题目给出的线性方程组,你可以使用多种方法求解,包括代入法、减法法、矩阵法等。
请根据实际情况选择合适的方法
进行求解。
其次,每道题目都有唯一的解或无穷多解。
请根据题目给出的
信息判断线性方程组的解的情况,并给出解的形式。
最后,当你完成所有题目时,请仔细检查答案,并核对解的正
确性。
如果有任何疑问或不明确的地方,请不要犹豫,随时向老师
或同学寻求帮助。
重要提示
请注意,本文档中的题目仅供练和测试使用,不作为正式考试
的题目。
完成这些题目将有助于你巩固知识点和提高解决线性方程
组问题的能力。
祝你考试顺利,取得好成绩!
参考答案
以下是练题目的参考答案,供你参考。
1. 答案1
2. 答案2
3. ...
...
60. 答案60。
《线性方程组》单元测试题(含答案)
《线性方程组》单元测试题(含答案)线性方程组单元测试题(含答案)题目一给定以下线性方程组:- $2x + 3y = 7$- $4x - 2y = 1$求解该方程组。
答案一为了求解该线性方程组,我们可以使用消元法。
在第一个方程中,让我们需要消去x的系数,因此让我们将第一个方程乘以2得到$4x + 6y = 14$。
然后,我们可以将第二个方程减去得到:$(4x + 6y) - (4x - 2y) = 14 - 1$。
简化后得到:$8y = 13$。
解方程$8y = 13$,我们得到$y = \frac{13}{8}$。
将其代入第一个方程中,我们可以解出x:$2x + 3(\frac{13}{8}) = 7$。
简化后得到:$2x + \frac{39}{8} = 7$。
进一步简化,我们得到$2x =\frac{7}{8}$,解得$x = \frac{7}{16}$。
因此,该线性方程组的解为:$x = \frac{7}{16}$,$y =\frac{13}{8}$。
题目二给定以下线性方程组:- $3x - 2y = 5$- $5x + 4y = 7$求解该方程组。
答案二同样使用消元法来求解该线性方程组。
首先,我们可以通过乘以3和乘以5来消除x的系数。
将第一个方程乘以3得到$9x - 6y = 15$,将第二个方程乘以5得到$25x + 20y = 35$。
然后,我们将第一个方程乘以5和第二个方程乘以3相减,得到的方程组为:$(45x + 15y) - (25x + 20y) = 105 - 75$。
简化后得到$20x - 5y = 30$。
解方程$20x - 5y = 30$,我们可以得到$y = 4 - 4x$。
将其代入第一个方程中,我们可以解出x:$3x - 2(4 - 4x) = 5$。
简化后得到$3x - 8 + 8x = 5$,进一步简化得到$11x - 8 = 5$。
解得$x =\frac{13}{11}$。
线性方程组练习题及答案
线性方程组 练习题一、选择题.1.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A.1或2B. -1或-2C.1或-2D.-1或2.2. 设A 是s n ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是( ).A.A 的行向量组线性无关B.A 的列向量组线性无关C.A 的行向量组线性相关D.A 的列向量组线性相关3.设12m α,α,,α均为n 维向量,则下列结论中正确的是( ).AA.若对任一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++≠ααα,则12m α,α,,α线性无关 .B.若12m α,α,,α线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++=ααα . C.若11220m m k k k +++=ααα,则12m α,α,,α线性相关 .D.若向量组12m α,α,,α()3≥m 中任意两个向量都不成比例,则12m α,α,,α线性无关.4.向量[]11,1,1T α=-,[]22,,0T k α=,[]3,2,1Tk α=,k 为( )时,向量组1α,2α,3α线性相关.DA.3k ≠且2k ≠-B. 2k ≠-C.3k ≠D.3k =或2k =-5. 向量组s ααα 21,(2≥s )线性无关的充分必要条件是( ).(D ) A.s ααα 21,均不为零向量 B. s ααα 21,中任意两个不成比例 C.s ααα 21,中任意1-s 个向量线性无关D.s ααα 21,中任意一个向量均不能用其余1-s 个向量线性表示6.齐次线性方程组355⨯⨯1=A x 0解的情况是( ).A.无解B.仅有零解C.必有非零解D.可能有非零解,也可能没有非零解.7.设n 元齐次线性方程组的系数矩阵的秩()3R n =-A ,且123,,ξξξ为此方程组的三个线性无关的解,则此方程组的基础解系是( ). A. 12312,2,32+- -ξξξξξ B. 122331,,+-+ ξξξξξξ C.122132-2,-2,32+-+ ξξξξξξ D. 12231324,2+,++ - ξξξξξξ8.要使T 1(1,0,2)=ξ,T 2(0,1,1)=-ξ都是线性方程组=Ax 0的解,只要A 为( ).A. (211)-;B. 201011⎛⎫ ⎪⎝⎭;C. 102011-⎛⎫ ⎪-⎝⎭;D. 011422011-⎛⎫ ⎪-- ⎪ ⎪⎝⎭. 9.已知12,ββ是=Ax b 的两个不同的解,12,αα是相应的齐次方程组=Ax 0的基础解系,12,k k 为任意常数,则=Ax b 的通解是( ). A. 12()k k 12112-+++2ββααα B. 12()k k 12112++-+2ββαααC.12()k k 12112-+-+2ββαββD. 12()k k 12112++-+2ββαββ10.设n 阶矩阵A 的伴随矩阵*≠A 0 若1234,,,ξξξξ是非齐次线性方程组Ax =b 的互不相等的解,则对应的齐次线性方程组Ax =0的基础解系是( ). A.不存在 B.仅含一个非零解向量 C.含有两个线性无关的解向量; D.含有三个线性无关的解向量11.设有齐次线性方程组Ax =0和Bx =0,其中A ,B 均为m n ⨯矩阵,现有4个命题:① 若Ax =0的解均是Bx =0的解,则()()R R ≥A B ② 若()()R R ≥A B ,则Ax =0的解均是Bx =0的解 ③ 若Ax =0与Bx =0同解,则()()R R =A B ④ 若()()R R =A B ,则Ax =0与Bx =0同解 以上命题正确的是( ).A. ①,②B. ①,③C.②,④D.③,④12.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()=AB x 0( ). A.当n m >时仅有零解 B. 当n m >时必有非零解 C.当m n >时仅有零解 D.当m n >时必有非零解13.设A 是n 阶矩阵,α是n 维列向量. 若秩T0⎛⎫= ⎪⎝⎭αAα秩()A ,则线性方程组( ).A.=αAx 必有无穷多解B.=αAx 必有惟一解C.T0y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭αAαx 0仅有零解 D.T0y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭αAαx0必有非零解14.已知34⨯矩阵A 的列向量组线性无关,则=)(T A r ( ). A.1 B.2 C.3 D.415.设321,,ααα为齐次线性方程组0=Ax 的一个基础解系,则下列可作为该方程组基础解系的是( ).A.2121,,αααα+B. 133221,,αααααα+++C.2121,,αααα-D. 133221,,αααααα---16.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ). A. 1 B. 2 C. 3 D. 417.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( ). A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs+βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =018..设矩阵A 的秩为r ,则A 中( ). A.所有r -1阶子式都不为0B.所有r -1阶子式全为0C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为019.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ).A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解20.设n 阶方阵A 不可逆,则必有( ).A.秩(A)<nB.秩(A)=n -1C.A=0D.方程组Ax=0只有零解21.设n 维向量12,αα线性相关,则必定( ).A. 12,αα中有一零向量B. 矩阵12=(,)A αα的秩r A =1C. 12,αα的对应元素成比例D.1α不可由2α线性表示22.设A 为m n ⨯阶矩阵,非齐次线性方程组AX=b 对应的导出组AX=0,如果m n <,则( ).A.AX=b 必有无穷解B.AX=b 必有惟一解C.AX=0必有非零解D.AX=0必有惟一解23.n 元线性方程组AX=0有非零解的充要条件为( ).A.()R A n =B. 0A ≠C.0A =D.以上都不对24.线性方程组AX B =有解的充要条件是( ).A.()r A >0B. ()()r A r A =C. ()()r A r AB ≠D.()r A n =25.n 元线性方程组AX=b 有解的充要条件为( ). A.()(,)R A R A b = B. ()(,)R A R A b n == C.()(,)R A R A b n =< D.()(,)R A R A b n =≤26.向量组T T )0,1,0(,)0,0,1(21==αα,下列向量中可以由21,αα线性表出的是( ).A .T )3,2,1(B .T )3,2,0(C .T )3,0,1(D .T )0,2,1(27.设向量组A 能由向量组B 线性表示,则( ).A .)()(A RB R ≤ B .)()(A R B R <C .)()(A R B R =D .)()(A R B R ≥28.设A 为n m ⨯矩阵,则有( ). A .若n m <,则b Ax =有无穷多解B .若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量C .若A 有n 阶子式不为零,则b Ax =有唯一解D .若A 有n 阶子式不为零,则0=Ax 仅有零解29.设1α、2α是对应非齐次方程组Ax =b 的解,β是对应齐次方程组的解,则b Ax =一定有一个解是( ).A.1α+2αB.1α-2αC.β+1α+2αD.121233+-ααβ30.21γγ,是n 元非齐次方程组b Ax =的两个不同的解,且1)(-=n A r ,则 0=Ax 的通解为( ).A. )(1R k k ∈γB. )(2R k k ∈γC. )()(21R k k ∈+γγD. )()(21R k k ∈-γγ二、填空题.1. 设向量α=(1, 2, 0, 4)T , β=(3,1,-1,7)T ,向量γ满足2α-γ=β, 则γ=____________.2.已知向量α=(1, 2, 4, 0)T , β=(-3,2,6,2)T ,向量γ满足3α+2γ=β, 则γ= .3.向量组α=(1, -2, 3)T , β=(2,-4,a)T 线性相关,则=a .4.向量组()12341,0,1,(2,1,0),(0,1,1),(1,1,1)TT T T αααα====则向量线性 .5.当______=t 时,向量组)2,1,3(),3,2,1(),,3,2(-t 线性相关.6.设向量组T T T a )1,1,2(,),2,1(,)3,1,1(321-==-=ααα线性相关,则=a .7.设向量组T )0,0,1(1=α,T )0,1,0(2=α,则向量组21,αα的秩是 .8.矩阵⎪⎪⎭⎫⎝⎛-----100110111的秩等于__________.9.若R )(1234,,,4αααα=,则向量组123,,ααα是线性________.10.已知矩阵⎪⎪⎪⎭⎫⎝⎛--=a A 00011002011的秩)(A r =2,则=a ______.11.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=a a A 10012002011的秩)(A r =2,则=a ______.12.若齐次线性方程组1212 3 060x x x x λ-=⎧⎨-+=⎩有非零解,则λ= .13.当_________时候,n 元线性方程组0=Ax 有非零解,这里A 是n 阶方阵.14.设21ξξ,是非齐次线性方程组b Ax =的解向量,则21ξξ-是方程组______的解向量.15.方程组⎩⎨⎧=-=-003221x x x x 的基础解系是 .16.设齐次线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则=a .17.设向量(2,-3,5)与向量(-4,6,a )线性相关,则a= .18.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .19. 设A 是m ×n 矩阵,A 的秩为r(<n),则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .20.设齐次线性方程组01443=⨯⨯X A ,其系数矩阵的秩)(A r =2,则方程组的基础解系包含______个线性无关的解向量.21.有三维列向两组1α=()100T,()2110αT=,()3111αT=,()123βT=,且有112233βχαχαχα++=,123χχχ=_____ ,=_____,=_____22.若n 个 n 维列向量线性无关,则由此n 个向量构成的矩阵必是______ 矩阵.23.若向量组)()()()(12341,1,3,2,4,5,1,1,0,2,2,6,αααα===-=则此向量组的秩是______,一个极大无关组是______.24.已知向量组()()()1231,2,1,1,2,0,,0,0,4,5,2t ααα=-==--的秩为2,则t =____.25.当方程的个数等于未知数的个数时,=Ax b 有惟一解的充分必要条件是 .26.线性方程组121232343414,,,x x a x x a x x a x x a +=⎧⎪+=⎪⎨+=⎪⎪+=⎩有解的充分必要条件是 .27.设n 阶方阵A 的各行元素之和均为零,且()1R n =-A ,则线性方程组=Ax 0的通解为 .28.设A 为n 阶方阵,||0=A ,且kj a 的代数余子式0kj A ≠(其中,1k n ≤≤;1,2,,j n =),则=Ax 0的通解 .29.设11222221231111211111,,11n nn n n n n x a a a x a a a x a a a x ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A x b ,其中,(;,1,2,,)i j a a i j i j n ≠≠=,则非齐次线性方程组T =A x b 的解是=x .30.设方程123111111112a x a x a x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多个解,则a = .三、判断题.1.零向量一定可以表示成任意一组向量的线性组合. ( )2. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关.( ) 3.若=0时,,则向量组线性无关.( )4.若向量组与均线性无关,则,线性无关.( )5.方程个数小于未知量个数的线性方程组必有无穷解.( )6.同秩的两个向量组未必等价. ( )7.向量组中某向量能被其余向量表示,则去掉它不影响它的秩. ( )8.向量组中某向量不能被其余向量表示,则去掉它后向量组的秩必改变. ( )9.3个未知量,5个方程组成的方程组中,必有一个方程能被其余的方程线性表示. ( )10.不同秩的两个向量组必不等价. ( ) 11.向量组的向量各加一个分量,其秩不变. ( ) 12.方程组中自由未知量是唯一确定的.( ) 13.向量组12121,,,,,,s s a a a a a a -与等价,则向量组12,,,s a a a 线性相关.( ) 14.设12,ηη是齐次线性方程组AX=0的基础解系,则1212,3ηηηη--+也是AX=0的基础解.( )15.用列初等变换可以求解线性方程组,也可以用行初等变换求解线性方程组.( ).16.若A 为6阶方阵,齐次线性方程组AX =0的基础解系中解向量的个数为2,则R(A)=2.( )17.若n 维向量12,αα线性相关,则必定12,αα的对应元素成比例.( ) 18.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m A =.( ) 19.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m <A .( ) 20.设21,αα是齐次线性方程组0=AX 的解,那么12αα+也是该方程组0=AX 的解.( )21.设21,αα是非齐次线性方程组=AX b 的解,那么12αα+也是该方程组=AX b 的解.( )22.对于任意的矩阵A ,一定有T r r =()()A A .( )23.向量组123,,ααα中,任意两个向量均线性无关,则123,,ααα线性无关.( )24.设A 是m n ⨯矩阵,如果A 的n 个列向量线性无关,则()r A n =.( ) 25,设12,αα是n 维向量,且112212312,2,35βααβααβαα=-=+=+,则123,,βββ 必线性相关.( )26.设0Ax =是Ax b =的导出组,其中A 是m n ⨯矩阵,若()r A m =, 则Ax b =有解.( )请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ 同时成立.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.3.利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x ,当λ取何值时有解?并求出它的解.9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .13.求一个齐次线性方程组,使它的基础解系为:T T )0,1,2,3(,)3,2,1,0(11==ξξ.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.4. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .试证明s s k k k x ηηη+++= 2211也是它的解.5.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题24知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n k k ).第三章 线性方程组一、选择题.1.C2.D3.A4.D5.D6.C7.A8.A9.B 10.B 11.B 12.D 13.D 14.C 15.B. 16.C 17.D 18.C 19.A 20.A 21.C 22.C 23.B 24.B 25.A 26.D 27.D 28.D 29.D 30.D二、填空题.1. (-1,3,1,1)T2.(-3,-2,-3,1)T3. 64.相关5. 56.-47.28.39.无关 10.0 11.212.2 13. 0A = 14.0=Ax 15.⎪⎪⎪⎭⎫ ⎝⎛111 16.1 17.-1018.η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 19.n-r 20. 2 21.-1,-1,3 22.可逆 23.1,233;,ααα 24.3 25.||0≠A 26.43210a a a a -+-=.27.T 11(1,1,,1)1k k ⎛⎫⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.T (1,0,0,,0)=x . 30.-2部分题详解:25.解 因为()()R R n ==A A b 是=Ax b 有惟一解的充要条件.故由()R n =A 可得||0≠A .26.解 对方程组的增广矩阵施行初等行变换()12341100011000111001a a a a ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭B A b 12341231100011000110000a a a a a a a ⎛⎫⎪ ⎪→ ⎪ ⎪⎪-+-⎝⎭. 所以方程组有解的充要条件是()()R R =A B ,即43210a a a a -+-=.27.解 令111⎛⎫⎪⎪= ⎪ ⎪⎝⎭x ,显然x 满足方程组,又因为()1R n =-A ,所以()1n R -=A ,即方程组的基础解系中有一个向量,通解为T 11(1,1,,1)1k k ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.解 因为0=A ,又0kj A ≠,所以()1R n =-A ,并且有11220, ;||0, i k i k in kn i k a A a A a A i k ≠⎧+++=⎨==⎩.A所以()T12,,,k k kn A A A 是方程组的解,又因为()1R n =-A ,可知方程组的通解为()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.解 T (1,0,0,,0)=x . 30. -2三、判断题.1.√2. √3. √ 4.× 5.×6. ×7.×8. √9.√ 10.× 11.×12.√ 13.√ 14.√ 15.× 16.×17.√ 18.√ 19.× 20.√ 21.×22.√ 23.× 24.√ 25.√26.√请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立. 解 (1) 设)0,,0,0,1(11==e a032====m a a a满足m a a a ,,,21 线性相关,但1a 不能由,,,2m a a 线性表示.(2) 有不全为零的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ 原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111其中m e e ,,1 为单位向量,则上式成立,而 m a a ,,1 ,m b b ,,1 均线性相关.(3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )m m b a b a b a +++⇒,,,2211 线性无关取021====m a a a取m b b ,,1 为线性无关组满足以上条件,但不能说是m a a a ,,,21 线性无关的. (4) T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2=⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫ ⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r . 二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解: (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫ ⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202013. 利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.解 (1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛482032251345494751325394754317312514131233~r r r r r r --- ⎪⎪⎪⎪⎪⎭⎫⎝⎛53105310321043173125 2334~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛00003100321043173125 所以第1、2、3列构成一个最大无关组.(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r rr --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .解 (1)3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T T a a a ⎪⎪⎪⎭⎫ ⎝⎛--000032198204121~ 秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~⎪⎪⎪⎭⎫ ⎝⎛---0000189903121~秩为2,最大线性无关组为T Ta a 21,.5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x 故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1)对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2)对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.解 ⎪⎪⎪⎭⎫⎝⎛---------154224521222λλλλ 初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解. 当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解. 当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解. 此时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.解⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛----=---120010501121~225010501121~122313112123131223b a b a b a A r r r r r r(1)当2,02-≠≠+a a 即时,3)()(==A r A r ,方程组解唯一; (2)当12,01,02=-==-=+b a b a ,即时,32)()(<==A r A r ,方程组解有无穷多解; (3)当12,01,02≠-=≠-=+b a b a ,即时,3)(2)(=<=A r A r ,方程组无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .解 (1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=000041431004012683154221081~初等行变换A所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000019719141019119201~367824531232初等行变换A所以原方程组等价于⎪⎪⎩⎪⎪⎨⎧+-=+-=4324311971914191192x x x x x x取2,143==x x 得0,021==x x 取19,043==x x 得7,121==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=19071,210021ξξ(3)原方程组即为1212)1(------=n n x x n nx x取0,11321=====-n x x x x 得n x n -=取0,114312======-n x x x x x 得1)1(+-=--=n n x n取0,12211=====--n n x x x x 得2-=n x所以基础解系为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--=-21100010001),,,(121n n n ξξξ12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .解:由于2)(=B R ,所以可设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=43211001x x x x B 则由⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--=00001001825931224321x x x xAB 可得 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛592280200802301003014321x x x x ,解此非齐次线性方程组可得唯一解 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2125212114321x x x x ,故所求矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2125212111001B .13.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解:显然原方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x ,(R k k ∈21,)即⎪⎪⎩⎪⎪⎨⎧=+=+==14213212213223k x k k x k k x k x 消去21,k k 得⎩⎨⎧=+-=+-023032431421x x x x x x 此即所求的齐次线性方程组.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.解:由于矩阵的秩为3,134=-=-r n ,一维.故其对应的齐次线性方程组的基础解系含有一个向量,且由于321,,ηηη均为方程组的解,由 非齐次线性方程组解的结构性质得:齐次解齐次解齐次解=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-+-=+-6543)()()()()(22121321ηηηηηηη为其基础解系向量,故此方程组的通解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543k x ,)(R k ∈15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解:(1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=2100013011080101322351211250011~初等行变换B⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴0111,20138ξη(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-----=00000221711012179016124211635113251~初等行变换B ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴2011,0719,002121ξξη五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明:设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解,则4321,,,b b b b 线性相关. 综合得证. 2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明: 设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故⎪⎪⎩⎪⎪⎨⎧==++=+++000221rr r k k k k k k ⇔⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121 r k k k 因为0110011011≠= 故方程组只有零解,则021====r k k k 所以r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.证明: (1)反证法,假设r n -*ξξη,,,1 线性相关,则存在着不全为0的数r n C C C -,,,10 使得下式成立:0110=+++--*r n r n C C C ξξη (1)其中,00≠C 否则,r n -ξξ,,1 线性相关,而与基础解系不是线性相关的产生矛盾。
线性方程组题库
知识能力层次一、 填空(每题2分)1.设方程组⎩⎨⎧-=-=+22112122x x kx x kx x 有非零解,则=k 1± 。
2.线性方程组⎪⎩⎪⎨⎧=++=++=++0960654032321321321x x x x x x x x x λ有非零解,则=λ 12 。
3.方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛211111111321x x x a a a 有无穷多解,则=a 2- 。
4.非齐次线性方程组b AX =(A 为m n ⨯矩阵)有惟一解的的充分必要条件是________()()n b ,A r A r==____。
5.设A 是n 阶方阵,21,αα是齐次线性方程组O AX =的两个不同的解向量, 则 =A 0 。
6.设A 为三阶方阵,秩()2=A r,321,,ααα是线性方程组()0≠=b b AX的解,已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=+010131321ααα,,则线性方程组b AX =的通解为=α()为任意常数C ,C ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛111010 。
7.三元线性方程组b AX =的系数矩阵的秩()2=A r ,已知该方程组的两个解分别为 ⎪⎪⎪⎭⎫ ⎝⎛-=1111β,⎪⎪⎪⎭⎫⎝⎛-=1112β,则b AX =的全部解可表为k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭121012 。
8.设⎪⎪⎪⎪⎪⎭⎫⎝⎛=1686493436227521a A ,欲使线性齐次方程组O AX =的基础解系有两个解向量,则a =38。
9.当=a -3 时,线性方程组⎪⎩⎪⎨⎧=++=++=-+233321321321321x ax x ax x x x x x 无解。
10.方程组⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-321011032x x x =⎪⎪⎭⎫⎝⎛00的基础解系所含向量个数是___ _1______。
11.若5元线性方程组b AX =的基础解系中含有2个线性无关的解向量, 则()=A r3 。
线性代数--线性方程组题库
。
17、设向量组 A:α1,α2,α3 ;向量组 B:α1,α2,α3,α4 ;向量组 C:α1,α2,α3,α5 。
= 若 r(α1,α2,α3 ) r= (α1,α2,α3,α4 ) 3 , r(α1,α2,α3,α5 ) = 4 ,
则 r(α1,α2,α3,α5 − α4 ) = 。
1 2 1
17、向量组α1,α2 ,,αs 的秩为 r ,则( )。
(A)
α1,
α
2
,
,
α
s
中
r
个向量的部分组皆线性无关;
(B)α1,α2 ,,αs 中 r −1个向量的部分组皆线性无关;
(C)α1,α2 ,,αs 中 r −1个向量的部分组皆线性相关;
(D)
α1,
α
2
,
,
α
s
中任何
r
个向量的线性无关部分组与
-1-
题库
第三部分 线性方程组
14 、 设 四 元 非 齐 次 线 性 方 程 组 的 系 数 矩 阵 的 秩 为 3 , 已 知 η1,η2 ,η3 是 它 的 三 个 解 向 量 , 且
= η1 (2, 3, 4, 5)= T ,η2 +η3 (1, 2, 3, 4)T ,则该方程组的通解为
。
15、设齐次线性方程组为 x1 + x2 + + xn = ο ,则它的基础解系中所含解向量的个数为
。
16、设四元非齐次线性方程组 Ax = b 的系数矩阵的秩为 2,已知它的三个解向量为η1,η2 ,η3 ,且
η1 = (4, 3, 2,1)T ,η2 = (1, 3, 5,1)T ,η3 = (−2, 6, 3, 2)T ,则该方程组的通解为
线性方程组测试题
线性方程组测试题在代数学中,线性方程组是由多个线性方程组成的一组方程。
解线性方程组意味着找到满足所有方程的变量值。
本文将提供一套线性方程组测试题,旨在帮助读者巩固对线性方程组求解的理解与应用。
1. 题目一解下列线性方程组:2x + 3y = 74x - y = 112. 题目二求解下列线性方程组:x + y + z = 62x - y + z = 1x + 2y - z = 33. 题目三给定以下线性方程组:3x - 4y = 1-2x + 5y = -3求该线性方程组的解。
4. 题目四考虑以下线性方程组:2x - y + 3z = 2-x + 2y - z = -4x + y + 2z = 5求解该线性方程组并判断解的类型。
5. 题目五解下列线性方程组:x + y = 52x - y = 1如果有解,请求解,并给出解的几何解释;如果无解,请说明原因。
6. 题目六给定以下线性方程组:x + 2y = 73x + 4y = 182x - y = 4通过矩阵的方法求解该线性方程组。
7. 题目七确定以下线性方程组的解集并解释几何意义: x + y + z = 0x - y + z = 2x + y - z = -28. 题目八解下列线性方程组,并判断解的类型:x + y - z = 22x - y + z = 1x + 2y = 5如果有解,请求解;如果无解,请说明原因。
9. 题目九给定以下线性方程组:x + 2y + 3z = 12x - y + z = 6x + 5y - z = 3通过高斯消元法求解该线性方程组。
10. 题目十解下列线性方程组:x + y + z = 22x + y - z = -13x - y + 3z = 10并判断解的类型。
通过完成以上线性方程组测试题,相信读者对线性方程组的求解已经有了一定的掌握。
在实际应用中,线性方程组是十分常见的数学工具,它能够描述和解决许多实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性方程组复习题
一、填空
1. 设()0,2,11=α,()3,0,12-=α,()4,3,23=α,则32132ααα-+=______________。
2. 设()0,0,11=α,()0,1,12=α,()1,1,13=α,()3,2,1=β,且有332211αααβx x x ++=,则=1x ______,=2x ______,=3x ______。
3. 若()2,0,11=α,()1,2,12-=α,()5,,23a =α线性无关,则=a _________。
4. 若向量组m ααα,,,21 线性无关,则其任何部分向量组必线性_____关。
5. 设3×3矩阵()21,,ααα=A ,()21,,ααβ=B ,其中21,,,ααβα均是3维向量,且
3=A ,5=B ,则=+B A ___________。
6. 对于m 个方程n 个未知量的方程组0=AX ,若有r A r =)(,则方程组的基础解系中有________个解向量。
7. ⎩⎨⎧=-+-=+-0
462023321321x x x x x x 的基础解系由_______个解向量组成。
8. 已知A 是4×3矩阵,且线性方程组B AX =有唯一解,则增广矩阵A 的秩是_________。
二、选择题
1. 设有向量组(I) r ααα,,21 和(II) s βββ,,,21 ,向量组(I) 、(II)均线性相关,且向量组(I)可由向量组(II) 线性表示,则_________成立。
(A) 秩(I)≤ 秩(II) (B) s r ≤ (C) ≤r 秩(II) (D) s r ≥
2. 设m ααα,,21 有二个最大无关组:(1)r i i i ααα,,21 和 (2)s j j j ααα,,21 ,则有_____成立。
(A) s r ,不一定相等 (B) m s r =+ (C) m s r <+ (D) (1)中的向量必可由(2)线性表示,(2)中的向量必可由(1)线性表示 3. 设21,αα是0=AX 的解,21,ββ是B AX =的解,则__________ (A) 112βα+是0=AX 的解 (B) 21ββ+是B AX =的解
(C) 21αα+是0=AX 的解 (D) 21ββ-是B AX =的解 4. 设s ααα,,21 是齐次线性方程组0=AX 的基础解系,则________。
(A) s ααα,,21 线性相关 (B) 0=AX 的任意1+s 个解向量线性相关 (C) n A r s =-)( (D) 0=AX 的任意1-s 个解向量线性相关
5. 设21,αα是⎩⎨⎧=-=-+0
21
21321x x x x x 的二个解,则__________。
(A) 21αα-是⎩⎨⎧=-=-+02021321x x x x x 的解 (B) 21αα+是⎩⎨⎧=-=-+020
21321x x x x x 的解
(C) 12α是⎩⎨⎧=-=-+02121321x x x x x 的解 (D) 22α是⎩⎨⎧=-=-+021
21321x x x x x 的解
6. n 元齐次线性方程组系数矩阵的秩n r <,则方程组_________。
(A) 有r 个解向量线性无关 (B) 的基础解系由r 个解向量组成 (C) 的任意r 个线性无关的解向量是它的基础解系 (D) 必有非零解 7. 设A 是n m ⨯阶矩阵,且r A r =)(,则线性方程组B AX =____________。
(A) 当n r =时有唯一解 (B) 当有无穷多解时,通解中有r 个自由未知量 (C) 当0=B 时只有零解 (D) 有无穷多解时,通解中有r n -个自由未知量 8. 设A 是n m ⨯矩阵,A 经过有限次初等变换变成B ,则下列结论不一定成立的是_____。
(A) B 也是n m ⨯矩阵 (B) )()(B r A r = (C) A 与B 等价 (D) 齐次线性方程组0=AX 与0=BX 同解
三、已知()2,1,11-=α,()1,1,02-=α,()λα,3,23-=,()μβ,2,1-=,问μλ,为何
值时(1) 唯一表示 (2) 无穷多个表示 (3) 不能表示。
四、已知()1,3,1,11=α,()3,1,1,12--=α,()9,8,2,53--=α,()7,1,3,14-=α,求向 量组4321,,,αααα的秩和最大无关组,并用这个最大无关组表示其余向量。
五、问b a ,为何值时,方程组()⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1
232312204321432
4
324321ax x x x b x x a x x x x x x x x
(1)有唯一解 (2)无解 (3)无穷多解,并用基础解系表示通解。
六、判别齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=--+=--+=--+=+--0230333402202432143214
3214321x x x x x x x x x x x x x x x x
有否零解?若有,用基础解系表示其通解。
七、解矩阵方程B AX X +=,其中
⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭
⎫
⎝⎛--=350211B
八、设四元非齐次线性方程组系数矩阵的秩是3,已知321,,ααα是它的三个解向
量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=20141α,⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛=+210132αα,求这个方程组的通解。