基于Matlab车牌图像识别的设计与实现毕业设计论文
基于MATLAB的车牌定位算法设计 电子信息工程毕业设计论文
北京联合大学信息学院毕业设计题目:基于MATLAB的车牌定位算法设计姓名:学号:2009080403104学院:信息学院专业:电子信息工程同组人:指导教师:协助指导教师:2011年5月12日摘要车牌自动识别系统是现代智能交通管理的重要组成部分,可用于各级各类车辆管理场所。
与传统的车辆管理方法相比,它大大地提高了管理效率与水平,节省了人力、物力,实现了车辆管理的科学化、规范化,对交通治安起到了一定的保障作用,因此有着广泛的应用前景。
车牌自动识别系统一般包括车牌定位、字符分割和字符识别三个模块。
它的研究主要涉及到模式识别、人工智能、计算机视觉、数字图像处理等众多学科领域。
车牌的定位、分割更是该系统的关键,由于图像场景的复杂性以及车牌位置和图像质量的不可预知性,牌照定位分割系统一直都未做到令人满意,所以有必要对其进行进一步的研究。
本文通过对大量资料的搜集、整理,总结了近年来国内外在车牌定位分割领域的最新研究成果和进展,对车牌区域的固有特征和目前的车牌定位、分割技术进行了分析和比较,提出了自己的观点并设计了一个车牌定位、分割系统。
本文利用MATLAB工具实现车牌定位算法研究。
利用灰度修正.滤波和图像增强等处理方法.较好地消除了图像的噪音,提高了图像质量。
通过对车牌特征的研究,利用边缘扫描方法实现车牌定位。
关键词:车牌定位;倾斜矫正;图像预处理;图像分割AbstractVehicles License Plate Recognition System(LPRS),which is all important part of the contemporary Intelligent Transportation System(ITS),can be applied to vehicle management situations of all levels and all kinds.Compared with traditional vehicles managements,LPRS has greatly improved the efficiency and level of management and saved manpower and material resources,laying a good foundation for the realization of standardized management.We Call safely come to the conclusion that LPRS has already improved the order of the traffic system, illustrating a good prospect of application for us.Generally, the LPR system consists of three modules:license plate location、character segmentation and character recognition.Its study concerns various disciplines including Pattern Recognition、Artificial Intelligence,Computer Vision、Digital Image Processing and SO 011.It is the location and segmentation of license plates standing at the heart of LPR system.Considering that the complexity of image background and the uncertainly of plate position and image quality,it is necessary to do further research into it.By summarizing the latest research achievements and development in the area of license plate location and segmentation both here and abroad,this paper, after making a deep comparison between the intrinsic characteristics of license plate and the current location and segmentation technologies on it,proposes its own understanding and designs a new LP location and segmentation system.The paper introduces a method of car license plate location and realizes a system of car license plate location based on MATLAB.The pre--processing methods including gray level modification,filter and image enhancement,are used to improve image quality and cut image noise.Car license plate location is realized by the method of edge detection and according to the car plate feature.key words:License plate location;Slant correction;Image pre--process ;car Image Segmentation.目录摘要 (1)Abstract (2)引言 (4)一、绪论 (5)1 . 1 、课题的背景和意义 (5)1 . 2、国内外研究状况 (5)1 . 3、车牌识别系统的应用范围 (6)二、系统概述 (9)三、硬件系统设计 (10)3.1、硬件系统设计 (10)3.2、各模块功能 (10)3.3、各模块与DSP的接口设计 (10)3.4.系统原理图和生成的PCB板 (15)四、在MATLAB环境下实现车牌定位的功能 (17)4.1、车牌定位系统介绍 (17)4.2、图像预处理 (17)4.3、灰度化 (18)4.4、图像边缘检测 (20)4.5、形态学处理 (21)4.6、车牌提取 (23)五、结论 (25)问题和不足: (26)不足之处: (27)六、主要参考资料如下: (28)七、致谢 (29)引言随着我国交通运输的不断发展,智能交通系统(Intelligent Traffic System,简称ITS)的推广变的越来越重要,而作为ITS的一个重要组成部分,车辆牌照识别系统(vehicle license plate recognition system,简称LPR)对于交通管理、治安处罚等工作的智能化起着十分重要的作用。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能交通系统的快速发展,车牌识别技术已成为智能交通系统的重要组成部分。
车牌识别技术能够有效地对车辆进行身份识别、交通监控、违法查处等,对于提高交通管理效率和保障交通安全具有重要意义。
本文将基于MATLAB平台,对车牌识别系统进行深入研究。
二、车牌识别系统概述车牌识别系统主要由图像采集、预处理、特征提取和识别四个部分组成。
首先通过摄像头等设备采集包含车牌的图像,然后对图像进行预处理,包括去噪、二值化、边缘检测等操作,使车牌图像更加清晰。
接着,通过特征提取算法提取出车牌上的字符特征,最后通过识别算法对字符进行识别,实现车牌号码的识别。
三、MATLAB在车牌识别系统中的应用MATLAB是一种强大的数学计算软件,具有强大的图像处理和机器学习功能,非常适合用于车牌识别系统的研究和开发。
在车牌识别系统中,MATLAB可以用于图像预处理、特征提取和识别等各个环节。
1. 图像预处理在MATLAB中,可以使用图像处理工具箱中的各种函数对车牌图像进行预处理。
例如,可以使用imread函数读取图像,使用imnoise函数添加噪声模拟实际环境中的干扰,使用gray2ind 函数进行图像二值化等。
此外,MATLAB还提供了许多滤波器和边缘检测算法,如Sobel算子和Canny算子等,可以用于去除图像中的噪声和增强边缘信息。
2. 特征提取特征提取是车牌识别系统中的关键环节。
在MATLAB中,可以使用各种算法对车牌图像进行特征提取。
例如,可以使用投影法、连通域法等算法对车牌字符进行分割和定位,然后使用模板匹配、神经网络等算法对字符进行特征提取和分类。
此外,MATLAB还提供了许多机器学习算法,如支持向量机、决策树等,可以用于训练和优化车牌识别模型。
3. 识别算法在特征提取后,需要使用识别算法对字符进行识别。
在MATLAB中,可以使用各种分类器对字符进行识别。
例如,可以使用最近邻分类器、贝叶斯分类器等基于统计的分类器,也可以使用神经网络、支持向量机等基于机器学习的分类器。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能化交通系统的不断发展,车牌识别技术在现代交通管理中发挥着越来越重要的作用。
基于MATLAB的车牌识别系统研究,能够为智能交通系统提供准确、高效的车牌信息处理手段。
本文旨在介绍基于MATLAB的车牌识别系统的基本原理、方法以及实际应用。
二、车牌识别系统基本原理车牌识别系统主要包括图像预处理、车牌定位、字符分割和字符识别四个基本环节。
基于MATLAB的车牌识别系统采用数字图像处理技术,对采集到的车牌图像进行处理,以实现车牌的准确识别。
1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是去除图像中的噪声、增强图像的对比度,以便于后续的车牌定位和字符分割。
MATLAB提供了丰富的图像处理函数,如滤波、二值化、边缘检测等,可以有效地实现图像预处理。
2. 车牌定位车牌定位是车牌识别系统的关键环节,主要采用颜色分割、形态学方法、投影分析等方法。
在MATLAB中,可以通过颜色空间转换、阈值分割等手段,提取出车牌区域,为后续的字符分割和识别提供基础。
3. 字符分割字符分割是将车牌图像中的每个字符进行分离的过程。
在MATLAB中,可以采用投影法、连通域法等方法进行字符分割。
首先对车牌区域进行垂直投影,根据投影峰值的分布情况,确定每个字符的位置,然后进行水平投影,进一步确定每个字符的宽度,从而实现字符的精确分割。
4. 字符识别字符识别是车牌识别系统的最后一步,主要是对分割后的字符进行识别。
在MATLAB中,可以采用模板匹配、神经网络等方法进行字符识别。
模板匹配法是通过将待识别的字符与标准字符模板进行比对,找出最相似的字符作为识别结果。
神经网络法则是通过训练大量的样本数据,建立字符识别的模型,从而实现高精度的字符识别。
三、MATLAB在车牌识别系统中的应用MATLAB作为一种强大的数学计算软件,在车牌识别系统中发挥着重要作用。
首先,MATLAB提供了丰富的图像处理函数和算法库,可以方便地实现图像的预处理、车牌定位、字符分割和字符识别等过程。
基于matlab图像处理的车牌识别系统_毕业设计论文
基于matlab图像处理的车牌识别系统目录摘要 (1)第一章绪论 (3)1.1研究背景及意义 (3)1.2车牌系统简介 (4)1.2.1国内外现状 (5)1.2.2车牌识别难点 (6)1.3 MATLAB的简介 (7)1.3 MATLAB语言特点 (8)第二章图像预处理 (8)2.1 图像采集 (8)2.2 图像预处理 (9)2.2.1 图像灰度化 (9)2.2.2 图像增强 (11)第三章车牌定位与分割 (12)3.1 车牌定位 (13)3.2 车牌分割 (17)3.3 车牌进一步处理 (17)第四章字符分割和归一化 (18)4.1 字符分割 (19)4.2 字符归一化 (19)4.3 字符识别 (20)第五章汽车号牌识别系统实现与分析 (22)5.1 系统实现 (22)5.2 系统分析 (25)总结 (28)参考文献 (29)致谢 (30)摘要随着二十一世纪到来,经济快速发展和人们生活水平显著提高,汽车逐渐成为家庭的主要交通工具。
汽车的产量快速增多,车辆流动也变得越来越频繁,因此给交通带来了严重问题,如交通堵塞、交通事故等,智能交通系统(Intelligent Transportation System)的产生就是为了从根本上解决交通问题。
在智能交通系统中车牌识别技术占有重要位置,车牌识别技术的推广普及必将对加强道路管理、城市交通事故、违章停车、处理车辆被盗案件、保障社会稳定等方面产生重大而深远的影响。
该设计主要研究基于MATLAB软件的汽车号牌设别系统设计,系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五大核心部分。
系统的图像预处理模块是将图像经过图像灰度化、图像增强、边缘提取、二值化等操作,转换成便于车牌定位的二值化图像;利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字图像、形态学等技术对车牌进行定位;字符的分割采用的方法是将二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的阈值则切割,从而完成字符的分割;字符识别运用模板匹配算法完成。
基于Matlab的车牌识别系统设计论文 【完整】.
中国矿业大学模式识别--------------------------------------------------------------------------------------------------------------------------------------------------------------------——基于matlab的车牌识别系统设计指导教师: 梁志贞周世斌姓名:田凯班级:信科10-1班学号: 08103476时间:二〇一三年六月目录1 绪论 (2)1.1 车牌号识别研究背景 (2)1.2 车牌号识别技术研究现状和趋势 (3)1.3 车牌识别研究内容 (4)2 车牌识别系统设计原理概述 (5)3 车牌识别系统程序设计 (7)3.1 图像读取及车牌区域提取 (7)3.2 字符切割 (14)3.3字符识别 (17)4 仿真结果及分析 (19)4.1 车牌定位及图像读取及其图像处理 (19)4.2 车牌字符分割及其图像处理 (20)4.3 车牌字符识别及其图像处理 (21)5 结论 (21)附录:程序清单 (22)1 绪论1.1 车牌号识别研究背景随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。
微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
作为信息来源的自动检测、图像识别技术越来越受到人们的重视。
近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。
汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。
基于Matlab的车牌识别(论文)
基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:车辆→图像采集→图像预处理→车牌定位→字符分割→字符定位→输出结果基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
基于MATLAB的车牌定位系统设计与开发论文
车辆牌照识别系统(vehicle license plate recognition system,简称LPR)是现代智能交通系统中的一项重要研究课题,是实现智能交通的重要环节,涉及领域异常广阔。
智能交通系统可以在不影响汽车正常行驶的状态下自动完成对牌照的有效识别,很显然这一技术的发明对于交通管理工作起到了很大的推动作用。
目前,车辆牌照识别技术已经广泛应用于高速公路的监测,电子收费,交通违规管理,安全停车管理,偷盗车辆辨别等重要领域。
由于牌照拍摄场景的复杂性以及车牌位置和图像质量的不可预知性,车牌定位系统一直都未做到令人满意,所以车牌定位一直是这个领域研究的热点。
因此对于汽车牌照识别技术的研究具有重要的现实意义。
车牌识别技术主要包括车牌定位和车牌识别两部分,而车牌定位是该系统的关键之一。
本文针对车牌识别系统中关于静态图片中的车牌定位问题。
在车牌定位系统中,在MATLAB开发平台上,我们分别对图像预处理、图像的边缘检测和分割的若干方法进行编程实验,通过对静态图片进行灰度变换,二值化,中值滤波等一系列处理,提出了基于垂直边缘检测算子的车牌定位方法,根据汽车牌照区域的垂直边缘统计特性,从图像中确定可能存在的牌照候选区,在利用车牌几何形状的特点对这些候选区进行筛选,得到车牌位置,为进一步的字符识别打下基础。
关键词:车牌定位;图像处理;边缘检测;MATLABThe vehicle license plate recognition system (vehicle license plate recognition system, referred to as LPR) is an important research subject in modern intelligent transportation system, is an important part of realizing intelligent transportation, relates to the very broad filed. Intelligent transportation systems can auto-complete state does not affect the normal driving license identification, it is clear that the invention of this technology for traffic management has played a significant role in promoting. At present, the vehicle license plate recognition technology has been widely used in highway monitoring, electronic toll collection, traffic violation management, security, parking management, vehicle theft to identify important areas such as. License shooting scene complexity as well as the license plate location and image quality of the unpredictability of the, license plate positioning system, none has been done satisfactorily, so license plate location has been a hot research of this area. Therefore, the vehicle license plate recognition technology has important practical significance.License plate recognition technology mainly includes two parts of the license plate location and license plate recognition, the license plate location is one of the keys of the system. In this paper, the license plate location for license plate recognition system on a static picture. License plate positioning system, in the MATLAB development platform, we use image preprocessing, image edge detection and segmentation method for programming experiment, by gray-scale transformation of the still pictures, the two values, median filtering and a series of processing,put forward license plate location method based on vertical edge detection operator,according to the vertical edges of the statistical characteristics of the vehicle license area,identify possible license candidate from the image,on the use of license plate geometry characteristics of these candidate screening,license plate location, and lay the foundation for further character recognition.Keywords:License plate location; image processing; edge detection; MATLAB目录摘要 (I)ABSTRACT (II)目录........................................................................................................................................... I II 1 绪论 (1)1.1本课题的研究背景和意义 (1)1.2国内外的发展概况 (1)1.3本课题主要研究的内容 (2)1.4我国车牌的特点 (2)1.5设计的总体思想 (3)1.6本文各章节内容安排 (3)1.7开发工具及运行环境 (3)2 基础知识和技术介绍 (5)2.1基础知识 (5)2.2MATLAB简介 (6)3 车牌定位详细设计 (11)3.1图像预处理 (12)3.1.1 车牌的基本特征 (12)3.1.2 彩色图像的灰度化 (12)3.1.3 图像灰度变换 (17)3.1.4 线性变换 (17)3.1.5 分段线性灰度变换 (18)3.1.6 非线性灰度变换 (19)3.1.7 图像平滑 (19)3.2平滑处理 (19)3.2.1 噪声的基本概念 (19)3.2.2 空间域平滑 (20)3.2.3 频率域平滑 (22)3.3图像边缘检测 (22)3.3.1 引言 (22)3.3.2 梯度算子 (22)3.3.3 Roberts算子 (23)3.3.4 Prewitt算子 (23)3.3.5 Sobel算子 (24)3.3.6 Canny算子 (25)3.3.7 Laplacian算子 (26)3.4牌照的定位与分割 (27)3.4.2 牌照区域的分割 (32)3.4.3 车牌图像二值化 (32)3.4.4 中值滤波 (34)3.4.5 字符的分割与归一化 (36)3.5本章小结 (37)4 车牌定位系统实现与测试 (39)4.1系统构成 (39)4.2实验结果及分析 (39)4.3本程序对其他图片的识别效果 (44)4.4本章小结 (50)5 结论与展望 (51)5.1结论 (51)5.2研究工作的展望 (51)致谢 (53)参考文献 (54)1 绪论1.1 本课题的研究背景和意义20世纪90年代以来,随着我国经济的快速发展,人民生活水平的不断提高,国内高速公路、城市道路、停车场建设越来越多,汽车数量急剧增加。
基于MATLAB的车牌识别系统研究
毕业论文基于MATLAB的车牌识别系统研究姓名:学院:专业:班级:指导教师:2016 年6 月1日天津工业大学毕业论文任务书题目基于MATLAB的车牌识别系统研究学生姓名学院名称电子与信息工程学院专业班级课题类型教师科研课题课题意义近几年,车牌识别系统作为智能交通的一个重要方向越来越受到重视。
车牌识别系统可以应用于停车场管理系统、智能交通管理系统、小区车辆管理系统等各个领域,对交通管理及治安管理有着十分重要的作用。
虽然目前已有一些车牌识别系统相关产品出现,但是对其算法的研究发展从没有停止。
研究车牌识别系统的现有技术,在研究的基础上开发出一个基于MATLAB 的车牌号识别系统。
该设计方案仅进行MATLAB软件的开发,图像采用能够清楚显示的汽车图片,软件包括车牌定位、车牌字符分割及车牌字符识别三个模块。
任务与进度要求利用MATLAB,对车牌识别系统进行研究。
2016.3.1-2016.3.31 查阅相关文献资料,翻译外文文献;2016.4.1-2016.4.30进行理论知识分析,编写软件,系统调试;2016.5.1-2016.5.31整理资料,撰写论文;2016.6.1-2016.6.2准备毕业答辩。
主要参考文献[1] 赵丹,丁金华,基于MATLAB的车牌识别,大连理工学报,2008.6[2] 王刚,冀小平,基于MATLAB的车牌识别系统研究,电子设计工程,2009.11[3] 徐辉,基于MATLAB实现汽车车牌自动识别系统,人工智能及检测技术2010.6[4] MATLAB R2007图像处理技术与应用,王爱玲,叶明生,邓秋香,电子工业出版社,2008.1[5] 张德丰,MATLAB模糊系统设计,国防工业出版社,2009.2[6] 郭大波,陈礼民,卢朝阳,韩丽萍.基于车牌底色识别的车牌定位方法.计算机工程与设计,2003,4(5):81~89.[7] 刘伟铭,赵雪平. 一种基于扫描行的汽车车牌定位算法. 计算机工程与应用,2004,223~225.起止日期2016.01.09~2016.06.01 备注院长教研室主任指导教师毕业设计(论文)开题报告表姓名学院电子与信息工程学院专业电子信息科学与技术班级题目基于MATLAB的车牌识别系统研究指导教师一、与本课题有关的国内外研究情况、课题研究的主要内容、目的和意义:与本课题有关的国内外研究情况:车辆牌照在交通系统管理中有着重要的作用,从20世纪90年代初,国外的研究人员就已经开始了对车牌识别的相关研究,其中具有代表性的工作有:R.Parisi利用DSP和神经网络技术开发出了一套车牌识别系统。
基于MATLAB的车牌识别系统研究(课设参考文献)
1.2.3 车牌识别技术的发展趋势
5
上海交通大学硕士学位论文
绪论
车牌识别技术作为智能交通系统中的关键技术,在各国学者的共同努力下,已 经得到了长足的发展,并且已经得到了不同程度的实际应用,但目前还存在着种种 不足。
对于未来车牌识别产品的技术发展趋势, 汉王科 技智能 交通部 总经理 乔炬认 为。首先,由于市场需求不同,对识别产品的需求也有差异,因此就要求研发针对 不同细分市场的车牌识别产品。其次,随着算法的不断改进,基于视频触发技术的 车牌识别产品将得到大范围的应用,但是视频触发技术取代外触发装置尚需时日。 第三,现在的车牌识别系统设备过多,系统集成难度大,系统稳定性差,系统维护 是一个让人头疼的问题。随着技术不断进步,以往多个设备实现的功能可能由一个 设备实现。
为基础的车牌识别系统,识别率分别为 81.25%、85%、91.25%。日本对车牌图像的 获取也做了大量的研究,并为系统产业化做了大量工作。Luis [4]开发的系统应绪论
公路收费站,全天识别率达到了 90%以上,即使在天气不好的情况下也达到了 70%。 国外对车牌识别的研究起步早,总体来讲其技术已比较领先,同时由于他们车牌种 类单一,规范程度较高,易于定位识别,目前,已经实现了产品化,并在实际的交 通系统中得到了广泛的应用。由于中国车牌的格式与国外有较大差异,所以国外关 于识别率的报道只具有参考价值,其在中国的应用效果可能没有在其国内的应用效 果好,但其识别系统中采用的很多算法具有很好的借鉴意义。
上海交通大学硕士学位论文
绪论
1 绪论
1.1 研究背景
1990 年,美国智能交通学会 CITS America 提出了智能交通系统(ITS)的概念。 目前,智能交通系统已经在世界上经济发达国家的一些城市及高速公路系统中得到 了广泛应用。我国在该领域的研究起步较晚,但随着全球范围智能交通技术研究的 兴起及奥运会的成功举办,智能交通在我国也逐渐进入了应用阶段,相应的,我国 也加快了对智能交通技术研究的步伐,智能交通技术的研究现已进入快速发展期。
基于Matlab的车牌识别系统毕设论文
车牌定位、车牌字符切分及车牌字符识别三个模块。车牌定位模块中提出了基于小波变 换的车牌边缘提取的算法,以及车牌二次定位的算法,提高了系统在光照条件较差的情 况下的定位准确率,该算法对于各种底色的车牌具有良好的适应性;车牌的二值化采用 了改进的 Otus 算法,重新划分了其两维直方图的区域,改进后的算法大大减少了运
关键词:车牌识别;车牌定位;倾斜矫正;字符分割;字符识别
Design of license plate recognition system based on Matlab
ABSTRACT
As an important direction of intelligent traffic management, PRL (Plate Recognition of License System)has been more and more attention. PRL can be applied to the parking management system, the intelligent traffic management system, the vehicle management system and the other areas,.And plays an important role in public security management of transportation management. Although there are some vehicle plate recognition system related products to appear at present, their algorithm's research and development have never stopped. This paper firstly make a deep research on the existing technologies of PRL. And develop a PRL-system with the software of Matlab. The design just Matlab software .The PRL-system take the existing-picture as the target without the collecting program.The software of PRL-system consist of three modules:The license area locating,license plate character segment,and the recognition of every character.The modules of license area locating use edge detection algorithm based on wavelet transform,which has good adaptability for more quantity of background or license are.The program of take the RGB-picture to binary-picture by Otus,divide the two dimensional histogram of area.Character-cut cutting to the trough for
毕业设计论文基于matlab的车牌识别系统的设计(附程序+详解注释)
车牌号识别系统是基于图像处理技术的基础进行研究的。本课题图像处理分为以下几方面:
1.图像数字化
其目的是将模拟形式的图像通过数字化设备变为数字计算机可用的离散的图像数据。
2.图像变换
为了达到某种目的而对图像使用一种数学技巧,经过变换后的图像更为方便、容易地处理和操作。
3.图像增强
图像增强的主要目标是改善图像的质量。采用某些处理技术来突出图像中的某些信息,削弱或消除某些无关信息,从而有目的地强调图像的整体或局部特征,让观察者能看到更加直接、清晰的分析和处理图像。直方图修正、灰度变换、强化图像轮廓等都是常用的手段。
车牌识别系统是一项科技含量很高的多种技术结合的产品,主要有计算机视觉、数字图像处理、数字视频处理、模式识别等技术组成。也是智能交通系统的核心技术,产生于60年代。在80年代,由于城市交通问题日益严重,美国和欧洲许多国家投入了大量的人力和物力,建立了自动化高速公路网,安装了摄像、雷达探测系统和光纤网络,简历智能交通系统。在美国、欧洲、日本等发达国家的带动下,世界各国也开始简历智能交通系统。由于公路车流量日益增大、道路交通日益拥挤,车辆管理相对越来越困难,因此各个发达国家和发展中国家都在积极建设适应未来交通运输需求的智能交通系统。
焦作大学
毕业设计(论文)说明书
作者:学号:
学院(系):信息工程学院
基于Matlab的车牌自动识别技术研究与实现(基于Matlab的车牌二值化、阈值分割)
学位申请人:指导教师:学科专业:软件工程 学位类别:工学学士2012年 06月 题目:基于Matlab 的车牌二值化、阈值分割西安工业大学毕业设计(论文)任务书院(系)计算机学院专业软件工程班080605 姓名陈章权学号0806051011.毕业设计(论文)题目:基于Matlab车牌自动识别技术的研究与实现2.题目背景和意义:车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。
它以数字图像处理、模式识别、计算机视觉等技术基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程。
通过一些后续处理手段可以实现停车场收费管理、交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管等等功能。
对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。
3.设计(论文)的主要内容:要求学生使用Matlab工具对车牌识别进行开发。
主要研究内容包括:(1)图像数据采集和预处理(2)二值化研究(3)系统实现和效果评价4.设计的基本要求及进度安排(含起始时间、设计地点):要求熟悉数字图像处理的基本知识,熟悉matlab编程毕业设计的进度安排如下:1~3周:准备所需资料,详细设计,开题报告,准备开题答辩。
4~12周:完成界面设计开发,详细设计,编程及调试。
13~15周:系统测试。
16~17周:书写毕业设计论文。
18周:改进完善,提交毕业论文,准备答辩。
5.毕业设计(论文)的工作量要求:*或实习(天数):18周①实验(时数)*:无②图纸(幅面和张数)③其他要求:毕业论文不少于15000字。
指导教师签名:年月日学生签名:年月日系(教研室)主任审批:年月日说明:1本表一式二份,一份由学生装订入附件册,一份教师自留。
2 带*项可根据学科特点选填。
毕I-2基于Matlab的车牌自动识别技术的研究与实现摘要车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别(License Plate Recognition,简称LPR)系统是一种集成了计算机视觉和数字图像处理技术的高级应用。
随着智能交通系统的快速发展,车牌识别技术已成为交通管理、车辆监控和安全防范等领域的重要技术手段。
本文将详细介绍基于MATLAB的车牌识别系统的研究,包括系统设计、算法实现以及实验结果分析等方面。
二、系统设计2.1 系统架构基于MATLAB的车牌识别系统主要包括预处理、车牌定位、字符分割和字符识别四个模块。
首先,通过预处理模块对图像进行去噪、二值化等操作;然后,车牌定位模块利用颜色空间转换和形态学方法定位车牌区域;接着,字符分割模块将车牌区域分割成单个字符;最后,字符识别模块对分割后的字符进行识别,输出车牌号码。
2.2 图像预处理图像预处理是车牌识别的基础,主要包括灰度化、去噪、二值化等操作。
灰度化将彩色图像转换为灰度图像,便于后续处理;去噪则采用滤波等方法消除图像中的噪声;二值化将灰度图像转换为二值图像,便于后续的特征提取和识别。
三、车牌定位3.1 颜色空间转换车牌定位的关键在于准确提取出车牌区域。
通过将图像从RGB颜色空间转换到HSV或YCbCr颜色空间,可以更好地提取出车牌的颜色特征。
在转换后的颜色空间中,车牌区域通常具有较为明显的颜色特征,便于后续的定位和分割。
3.2 形态学方法形态学方法是一种常用的图像处理方法,包括腐蚀、膨胀、开运算和闭运算等操作。
通过形态学方法可以对车牌区域进行精确的定位和分割,提取出完整的车牌区域。
四、字符分割与识别4.1 字符分割字符分割是将车牌区域分割成单个字符的过程。
通常采用的方法包括投影分析、连通域分析和模板匹配等。
投影分析通过计算车牌区域的投影特征,将车牌区域分割成多个字符;连通域分析则通过检测图像中的连通区域,将每个字符单独提取出来;模板匹配则利用预先定义的字符模板,对车牌区域进行匹配和分割。
基于MATLAB平台下的车牌识别系统设计
3、实验改进
3、实验改进
根据实验结果,我们发现车牌定位和字符分割模块是影响系统性能的关键因 素。因此,我们计划从以下两个方面进行改进:
3、实验改进
1、针对车牌定位模块,尝试引入更多的特征提取方法,以便更准确地定位车 牌区域;
2、针对字符分割模块,研究更为稳健的连通域分析方法,减少误分割和漏分 割。
三、实验结果与分析
1、实验设置
1、实验设置
为了评估车牌识别系统的性能,我们构建了一个包含200张车牌图像的数据集, 其中包含了不同的光照条件、车牌位置和尺寸。评估指标主要包括准确率、召回 率和运行时间。
2、实验结果分析
2、实验结果分析
经过大量实验,我们得到了以下结果: 1、车牌定位模块的准确率为95%,召回率为90%;
1、需求分析
3、适应性:系统应能适应不同的环境条件,包括不同的光照条件、车牌位置 和车牌尺寸等;
1、需求分析
4、可靠性:系统应具备一定的可靠性,能够稳定运行,保证识别结果的准确 性。
2、总体设计
2、总体设计
在总体设计阶段,我们将车牌识别系统分解为以下几个模块: 1、车牌定位模块:该模块主要负责寻找并定位车牌区域,排除其他干扰因素;
基于MATLAB平台下的车牌识别 系统设计
01 一、引言
目录
02
二、车牌识别系统设 计
03 三、实验结果与分析
04 四、结论与展望
05 参考内容
一、引言
一、引言
随着社会的快速发展和科技的不断进步,智能化交通管理成为了研究的热点。 车牌识别系统作为智能化交通管理的重要组成部分,能够自动识别车辆身份,提 高交通监管能力和服务质量。本次演示将基于MATLAB平台,设计一套车牌识别系 统,旨在提高车牌识别的准确性和效率,为智能交通管理提供有力支持。
基于MATLAB的车牌分割与数字识别系统毕业论文
学号:南湖学院毕业设计(论文)题目:基于MATLAB的车牌分割与数字识别算法设计作者届别系别机械与电子工程系专业电子信息工程指导老师职称完成时间2013.05摘要车牌识别技术是智能道路交通管理的重要容,其识别的准确性和可靠性直接影响到交通管理系统的性能。
车牌识别技术包括车牌图像获取、车牌定位、车牌分割、车牌校正、车牌字符分割、车牌字符归一化和车牌字符识别,本文重点针对车牌图像的分割和车牌数字的识别进行了算法研究和设计,同时也对其它步骤进行了探讨。
论文首先对获取的车牌图像进行了预处理,包括车牌图像增强、车牌区域提取、车牌几何校正以与车牌字符分割和归一化,然后设计了BP网络算法,最后在MATLAB平台上设计实现了以上各种算法。
实验结果表明,本文中的分割算法能准确的获取字符区域并实现对字符的分割和归一化,经过训练后的BP网络能稳定、可靠的实现对分割后字符的识别,实验结果达到预期要求。
关键词:MATLAB;车牌分割;图像预处理;数字识别AbstractLicense plate recognition technology is an important content of intelligent traffic management, accuracy and reliability identification directly affects the performance of traffic management system. License plate recognition technology include license plate image acquisition, license plate location, license plate segmentation, license plate correction, license plate character segmentation, normalization of license plate character segmentation and license plate character recognition. This paper mainly design and research on the algorithm for license plate image segmentation and license plate number recognition, but also for other steps. Firstly, the thesis get the license plate image preprocessing, including license plate image enhancement, plate region extraction, plate geometric correction and license plate character segmentation and normalization, and then designs the BP network algorithm, finally use the MATLAB platform to design algorithms to implement above. Experimental results show that the segmentation algorithm in this thesis can obtain character area and realize the character segmentation and normalization accurately, after training the BP network can implement the recognition for character segmentation stably and reliably, the experimental reaches expectation.Keywords: MATLAB; License plate segmentation; Image preprocessing; Digital identification目录摘要IABSTRACTI1 绪论11.1引言11.2车牌识别技术概述11.3车牌分割和数字识别的发展历史和现状2 1.4车牌分割和数字识别在车牌识别中的作用31.5本文的主要容与结构安排32 车牌分割方法42.1车牌获取42.2车牌预处理42.3车牌分割73 车牌数字识别方法113.1数字识别概述113.2车牌数字特点113.3基于神经网路的车牌数字识别134 基于MATLAB的算法设计与实现154.1MATLAB概述154.2车牌分割算法设计154.3车牌字符识别算法设计245 总结与展望315.1总结315.2展望31参考文献32致 341 绪论1.1 引言近年来,由于国外的交通迅速发展,车牌识别系统作为数字摄像、计算机信息管理、图像分割和图形识别技术在智能交通领域得到广泛的应用,该项技术成为了智能交通管理系统中不可或缺的重要组成部分,例如道路交通监控、交通事故现场勘察、交通违章自动记录、高速公路超速管理系统、小区智能化管理等各方面,是智能交通管理系统中高效、时效的最重要手段之一[1-2]。
基于MATLAB的车牌识别系统设计与实现
基于MATLAB的车牌识别系统设计与实现作者:张文俊李小兰来源:《电脑知识与技术》2024年第15期关键词:智能交通;车辆牌照识别技术;MATLAB;图像处理;形态学处理 0引言随着经济的不断发展,汽车已成为人们交通出行的常用选择。
随着车辆数量的增加,交通管理问题变得更加突出,智能化车辆管理成为道路交通管理的重点。
在智能化车辆管理中,车辆牌照识别(VehicleLi⁃censePlateRecognition,VLPR)技术显得尤为重要,可应用于停车场管理、高速公路违法车辆监控识别、小区智慧车辆管理等场景。
车牌作为车辆的唯一标识,是车辆的“身份证”,如何进行快速、实时、准确的车辆牌照识别是关键。
要实现车辆牌照的精确识别,有多种方法可选:基于特征提取的方法[1]、基于模板匹配的方法[2]、基于分类器的方法[3]、基于神经网络的方法[4]等。
基于特征提取的车牌识别方法对于处理车牌畸变、倾斜或光照不均等复杂背景下的识别效果较好,但需要消耗大量计算资源,当数据量过大时会导致识别速度变慢。
基于分类器和基于神经网络的识别方法虽然能够快速处理不同类型的车牌并识别字符,但需要大量训练数据和计算资源,并需要根据评估结果反复调整模型参数。
而基于模板匹配的方法快速简单,不需要大量数据作为训练支撑,因此本文选择研究基于模板匹配的车辆识别方法。
考虑到车牌图像的角度、大小和字体等问题,本文引入结构相似性度量(SSIM)值来计算字符的匹配程度,從而成功识别出车牌号码。
1相关方法概述在车牌号码识别的过程中,图像质量的好坏直接影响最终识别结果的准确率。
为了改善图像质量,在处理车牌图像时需要进行一系列的预处理操作,以去除背景噪声和干扰信息。
经过预处理后,能够增强图像中目标区域特征,有助于后续的车牌定位、分割和识别。
车牌区域的分割是识别过程中的关键步骤之一。
文献[5]提到了基于二值图像像素分割的方法,利用阈值将图像转换为黑白形式,并通过标记连通区域来实现分割。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB车牌图像识别的设计与实现摘要车牌图像识别系统是现代智能交通管理的重要组成部分之一。
车牌识别系统使车辆管理更智能化,数字化,有效提升了交通管理的方便性和有效性。
车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别等五大核心部分。
本文主要介绍图像预处理、车牌定位、字符分割三个模块的实现方法。
其中图像预处理模块是将图像灰度化和用Roberts算子进行边缘检测。
车牌定位和分割采用的是利用数学形态法来确定车牌位置,再利用车牌彩色信息的彩色分割法来完成车牌部位分割。
字符的分割采用的方法是以二值化后的车牌部分进行垂直投影,然后在对垂直投影进行扫描,从而完成字符的分割。
最后使用MATLAB软件环境进行字符分割的仿真实验,结果表明该方法具有良好的性能。
关键词:图像处理,车牌定位,字符分割The Design and Implementation of License Plate ImageRecognition Based on MATLABABSTRACTLicense plate image recognition is an important of the modern intelligent traffic management. License plate recognition system to make more intelligent vehicle management, digital, Effective traffic management to enhance the convenience and effectiveness.License plate recognition system includes image acquisition, image preprocessing, license plate localization, character segmentation, character recognition and other five core parts. In this paper, preprocessing, license plate localization, character segmentation method for the realization of three modules. This is the image preprocessing module and the use of the image grayscale Roberts edge detection operator steps. License plate location and segmentation using mathematical morphology method is used to determine the license plate location,Re-use license plate color segmentation method of color information to complete the license plate area segmentation. Character segmentation approach is based on the license plate after the binary part of the vertical projection, Then scan in the vertical projection, thus completing the character segmentation. This article is described for the core part and use the MATLAB software environment, the simulation experiments for character segmentation.Key words: plate recognition, location, character segmentation目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1 车牌图像识别研究的背景 (1)1.2 研究车牌图像识别的目的和意义 (2)1.3 车牌号识别技术研究现状和趋势 (3)1.3.1 国内外车牌图像识别研究现状 (3)1.3.2 我国车牌特点 (3)1.3.3 车牌图像识别技术的应用前景 (4)1.3.4 车牌图像识别技术的发展趋势 (5)1.4 车牌图像识别研究内容 (5)2 车牌识别系统设计原理概述 (7)2.1 车牌在图像中的位置提取 (7)2.2 字符分割 (8)2.3 字符识别 (8)3 车牌识别系统程序设计 (10)3.1 开发环境的选择 (10)3.2 设计方案 (10)3.3 图像预处理 (11)3.3.1 图像灰度化 (11)3.3.2 图像的边缘检测 (12)3.4 车牌定位和分割 (15)3.4.1 车牌定位 (15)3.4.2 车牌位置提取 (17)3.4.3 对定位后的彩色车牌进行进一步的处理 (17)3.5 字符分割与归一化 (18)3.5.1 字符分割 (18)3.5.2 字符归一化 (19)3.6 字符识别 (19)4 实验结果及分析 (21)5 展望与总结 (23)致谢 (24)参考文献 (25)附录 (1)基于MA TLAB车牌图像识别的设计与实现 11绪论1.1 车牌图像识别研究的背景现代社会已进入信息时代,随着计算机技术、通信技术和计算机网络技术的发展,自动化信息处理能力和水平不断提高,作为现代社会主要交通工具之一的汽车在人们的生产生活的各个领域得到大量使用,对他的信息进行自动采集和管理具有十分重要的意义,成为信息处理技术的一项重要研究课题。
此外,智能交通系统,简称ITS(Intelligent Traffic System)已成为现代社会道路交通发展趋势。
只能交通系统,是在当代科学技术高速发展的背景下产生的。
其目标在于将现金的计算机处理技术、数据通信技术、自动控制技术等综合应用于地面交通管理体系,从而建立起一种高效、准确、实时的交通管理系统。
公路交通基础建设的不断发展和车辆管理体制的不断完善,为以视觉监控为基础的智能交通系统的实际应用打下了良好基础。
在智能交通系统中,车牌图像自动识别系统是一个非常重要的发展方向。
车牌自动识别系统简称ALPRS或LPRS,该系统可以对车辆进行自动登记、验证、监视、报警。
系统应用场合包括:高速公路,桥梁,隧道等收费管理系统。
城市交通车辆管理,智能小区、智能停车场管理,车牌验证,车流统计等。
同时,汽车牌照自动识别的基本方法还可以应用到其他检测和识别领域,所以车牌自动识别问题已成为现代交通工程领域中研究的重点和热点问题之一。
车牌识别系统是一项科技含量很高的多种技术结合的产品,主要有计算机视觉、数字图像处理、数字视频处理、模式识别等技术组成。
也是智能交通系统的核心技术,产生于60年代。
在80年代,由于城市交通问题日益严重,美国和欧洲许多国家投入了大量的人力和物力,建立了自动化高速公路网,安装了摄像、雷达探测系统和光纤网络,建立智能交通系统。
在美国、欧洲、日本等发达国家的带动下,世界各国也开始建立智能交通系统。
由于公路车流量日益增大、道路交通日益拥挤,车辆管理相对越来越困难,因此各个发达国家和发展中国家都在积极建设适应未来交通运输需求的智能交通系统车牌图像识别的难点:(a)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。
(b)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。
(c)牌照多样性。
其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,陕西科技大学毕业设计说明书 2通常只有一种。
而我国则根据不同车型、用途,规定了多种牌照格式,例如分为军车、警车、普通车等。
我国标准车牌照是由汉字、英文字母和阿拉伯数字组成的,汉字的识别与字母和数字的识别有很大的不同,增加了识别的难度。
(d)我国汽车牌照的底色和字符颜色多样,蓝底白字、黄底黑字、黑底白字、红底黑字、绿底白字等多种。
(e)由于环境、道路或人为因素造成汽车牌照污染严重使得车牌的对比度降低,特征不是很明显,即使在定位准确的情况下,字符的识别也会受到很大影响。
目前在国内存在多种牌照格式,且存在以上种种困难和特殊性,加大了我国车牌图像识别的难度,因而如何提高识别率和识别处理的实时性及实用性成了一个重要的研究课题。
1.2 研究车牌图像识别的目的和意义车牌识别系统的主要任务是分析和处理摄取到的复杂背景下的车辆图像,定位分割牌照,最后自动识别汽车牌照上的字符,车牌识别是利用车辆牌照的唯一性来识别和统计车辆,它是以数字图像处理、模式识别、计算机视觉等技术为基础的智能识别系统。
在现代化交通发展中车牌识别系统是制约交通系统智能化、现代化的重要因素,车牌识别系统应该能够从一幅图像中自动提取车辆图像,自动分割牌照图像,对字符进行正确识别,从而降低交通管理工作的复杂度。
车牌识别系统将获取的车辆图像进行一系列的处理后,以字符串的形式输出结果,这样不但数据量小,便于存储,操作起来也更容易,因此车牌识别系统的便捷性是人工车牌识别所不能比拟的,它蕴藏着很大的经济价值和发展空间,对车牌识别技术的研究是非常有的意义的。
在车牌识别系统中最为重要的两个技术是车牌定位和车牌字符识别,这两个技术的好坏直接影响到整个车牌识别系统的实时性和准确性。
国内外己有不少学者对车牌定位技术做了大量的研究,但在实际的应用中还没有一个有效可行的方法,如由于车辆抖动造成车牌图像的歪斜、由于污迹和磨损造成车牌字符的模糊、由于光照不均造成车牌图像的模糊等都会或多或少影响到车牌定位的准确度。
针对以上实际情况,很多学者开始在鉴于车牌图像本身特征的基础上研究车牌定位技术,并先后提出了一些有效的定位方法,以减小种种主、客观因素对车牌定位准确度的影响。
然而智能交通的不断发展使得对车牌定位系统有了更高的要求,主要表现在系统的实时性和准确性。
车牌字符识别的实质是对车牌上的汉字、字母和数字进行快速准确的识别并以字符串的形式输出识别结果,字符识别技术是整个车牌识别系统的关键。
车牌识别系统与其它图像识别系统相比较而言要复杂的多,在字符识别中,汉字识别是最难也是最关键的部分,很多国外较为成熟的车牌识别系统无法进入中国市场的原因就在于无法有效的识别汉字。