初二数学经典习题 正方形(提高)巩固练习

合集下载

专题5-5正方形专项提升训练(重难点培优)--2023-2024学年八年级数学(0002)

专题5-5正方形专项提升训练(重难点培优)--2023-2024学年八年级数学(0002)

【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【浙教版】专题5.5正方形专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•阜平县期末)下列说法正确的是()A.菱形的四个内角都是直角B.矩形的对角线互相垂直C.正方形的每一条对角线平分一组对角D.平行四边形是轴对称图形2.(2022春•巴中期末)下列说法正确的是()A.四边相等的四边形是正方形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直平分的四边形是菱形D.对角线相等的四边形是矩形3.(2022春•唐河县期末)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为()A.120°B.135°C.145°D.150°4.(2022春•青秀区校级期末)如图,正方形ABCD的对角线AC,BD交于点O,E、F分别为AO、AD的中点,若EF=3,则OD的长是()A.3B.4C.5D.65.(2022春•肥城市期中)如图,E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE 相交于点G,下列结论中正确的是()①AF=BE;②AF⊥BE;③AG=GE;④S△ABG=S四边形CEGF.A.①②③B.①②④C.①③④D.②③④6.(2022秋•舞钢市期中)如图,正方形ABCD中,点P和H分别在边AD、AB上,且BP=CH,AB=15,BH=8,则BE的长是()A.B.5C.7D.7.(2022•大渡口区校级模拟)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若,则线段AC的长为()A.B.C.D.8.(2021秋•吉州区期末)如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线CF滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点B与点E重合时,四边形ACDF是菱形C.当点E为BC中点时,四边形ACDF是矩形D.四边形ACDF不可能是正方形9.(2022秋•金水区校级期中)已知四边形ABCD是平行四边形,下列结论中错误的有()①当AB=DC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.1个B.2个C.3个D.4个10.如图,在边长为15的正方形ABCD中,点E、点F分别是BC、AB上的点,连接DE、DF、EF,满足∠DEF=∠DEC.若AF=3,则EF的长为()A.12B.13C.14D.15二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•北京期中)如果正方形的一条对角线长为3,那么该正方形的面积为.12.(2021秋•太原期末)添加一个条件,使矩形ABCD是正方形,这个条件可能是.13.(2022春•岱岳区期末)如图,在正方形ABCD中,点F为边CD上一点,BF与AC交于点E.若∠CBF =25°,则∠AED的大小为度.14.(2022秋•和平区校级期末)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,正方形ABCD的边长为3,BE=1,则DF的长为.15.(2022春•吴中区校级月考)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG 为边作一个正方形AEFG,线段EB和GD相交于点H若AB=2,AG=,则EB=.16.如图,在正方形ABCD中,AB=6,点F在边DC上运动(不包含两个端点),点E是边BC的中点,连接AE,AF,EF.当△AEF为等腰三角形,AE为底边时,CF的长为.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•周至县期末)如图,在正方形ABCD中,点E、F分别在边BC、AB上,且AF=BE,AE、DF相交于点O.求证:∠BAE=∠ADF.18.(2022•越秀区校级一模)如图,正方形ABCD中,点P,Q分别为CD,AD边上的点,且DQ=CP,连接BQ,AP.求证:BQ⊥AP.19.(2021•陕西模拟)如图,正方形ABCD的对角线AC与BD交于点O.过点C作CE∥BD,过点D作DE∥AC,CE与DE交于点E,求证:DE=CE.20.(2022春•东莞市校级期中)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)21.(2022秋•牡丹区校级月考)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上点,过点D作DE⊥BC交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC再满足条件时,四边形CDBE是正方形(直接填写答案).22.(2022•崂山区一模)如图,正方形ABCD,点P在边BC的延长线上,连接AP交BD于F,过点C作CG∥AP交BD于点G,连接AG,CF.(1)求证:△ADF≌△CBG;(2)判断四边形AGCF是什么特殊四边形?请说明理由.23.(2021秋•宁阳县期末)如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,且∠CGD=∠DGE,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)猜想:△DEH的形状,并说明理由.(2)猜想BH与AE的数量关系,并证明.。

华师大版数学八年级下册_《正方形》提高训练

华师大版数学八年级下册_《正方形》提高训练

《正方形》提高训练一、选择题(本大题共5小题,共25.0分)1.(5分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形2.(5分)如图,正方形ABCD中,点E、F、G分别为边AB、BC、AD上的中点,连接AF、DE交于点M,连接GM、CG,CG与DE交于点N,则结论①GM⊥CM;②CD=DM;③四边形AGCF是平行四边形;④∠CMD=∠AGM中正确的有()个.A.1B.2C.3D.43.(5分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°4.(5分)正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.45.(5分)正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.7.(5分)如图,已知正方形ABCD的边长为8,点O是AD上一个定点,AO=5,点P从点A出发,以每秒1个单位长的速度,按照A→B→C→D的方向,在正方形的边上运动,设运动的时间为t(秒),当t的值为时,△AOP是等腰三角形.8.(5分)如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA 的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.9.(5分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.10.(5分)如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在Rt△ABC中,∠ACB=90°,AC的垂直平分线EF交AC于点D,交AB于点F,且CE=BF.(1)求证:四边形AECF是菱形;(2)填空:当∠BAC的度数为时,四边形AECF是正方形.12.(10分)已知:如图,在平行四边形ABCD中,BC=AC,E,F分别是AB,CD的中点,连接CE并延长交DA的延长线于M,连接AF并延长交BC的延长线于N.(1)求证:△ABN≌△CDM;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.13.(10分)已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.14.(10分)已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形15.(10分)如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D =90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?《正方形》提高训练参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形【分析】利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.∴EF=EH,EF⊥EH,∵BD=2EF,AC=2EH,∴AC=BD,AC⊥BD,即四边形ABCD满足对角线相等且垂直,选项D满足题意.故选:D.【点评】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.2.(5分)如图,正方形ABCD中,点E、F、G分别为边AB、BC、AD上的中点,连接AF、DE交于点M,连接GM、CG,CG与DE交于点N,则结论①GM⊥CM;②CD=DM;③四边形AGCF是平行四边形;④∠CMD=∠AGM中正确的有()个.A.1B.2C.3D.4【分析】要证以上问题,需证CN是DN是垂直平分线,即证N点是DM中点,利用中位线定理即可,利用反证法证明④不成立即可.【解答】解:∵AG∥FC且AG=FC,∴四边形AGCF为平行四边形,故③正确;∴∠GAF=∠FCG=∠DGC,∠AMN=∠GND在△ADE和△BAF中,∵,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠ADE+∠AEM=90°∴∠EAM+∠AEM=90°∴∠AME=90°∴∠GND=90°∴∠DE⊥AF,DE⊥CG.∵G点为AD中点,∴GN为△ADM的中位线,即CG为DM的垂直平分线,∴GM=GD,CD=CM,故②错误;在△GDC和△GMC中,∵,∴△GDC≌△GMC(SSS),∴∠CDG=∠CMG=90°,∠MGC=∠DGC,∴GM⊥CM,故①正确;∵∠CDG=∠CMG=90°,∴G、D、C、M四点共圆,∴∠AGM=∠DCM,∵CD=CM,∴∠CMD=∠CDM,在Rt△AMD中,∠AMD=90°,∴DM<AD,∴DM<CD,∴∠DMC≠∠DCM,∴∠CMD≠∠AGM,故④错误.故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用及平行四边形的性质的运用.在解答中灵活运用正方形的中点问题解决问题,灵活运用了几何图形知识解决问题.3.(5分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE ﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故选:B.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.4.(5分)正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.4【分析】由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.【解答】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°∵△AEF是等边三角形∴AE=AF=EF,∠EAF=∠AEF=60°∵AD=AB,AF=AE∴△ABF≌△ADE∴BF=DE∴BC﹣BF=CD﹣DE∴CE=CF故①正确∵CE=CF,∠C=90°∴EF=CE,∠CEF=45°∴AF=CE,∵∠AED=180°﹣∠CEF﹣∠AEF∴∠AED=75°故②③正确∵AE=AF,CE=CF∴AC垂直平分EF故④正确故选:D.【点评】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.5.(5分)正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8B.C.D.【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【解答】解:∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴∴∴DS=∴∴阴影部分的面积S=S正方形ABCD﹣S△ABR﹣S△RDS=4×4﹣﹣=故选:D.【点评】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS 的面积是解此题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为4.【分析】由正方形的性质可得AO=CO=BO=DO=2,AC⊥BD,由BE=DF,可得OE =OF,可证四边形AECF是菱形,由勾股定理可求CE=,即可求四边形AECF的周长.【解答】解:设AC与BD交于点O,∵四边形ABCD是正方形,∴AO=CO=BO=DO=2,AC⊥BD,∵BE=DF=1,∴OE=OF=3,且OA=OC,∴四边形AECF是平行四边形,又∵AC⊥BD∴四边形AECF是菱形∴AE=CE=CF=AF,在Rt△COE中,CE===∴四边形AECF的周长为4故答案为:4【点评】本题考查了正方形的性质,菱形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.7.(5分)如图,已知正方形ABCD的边长为8,点O是AD上一个定点,AO=5,点P从点A出发,以每秒1个单位长的速度,按照A→B→C→D的方向,在正方形的边上运动,设运动的时间为t(秒),当t的值为5或10.5或20时,△AOP是等腰三角形.【分析】由正方形的性质可得AB=BC=CD=AD=8,∠D=90°,OD=3,分AP=AO,AP=PO,AO=OP三种情况讨论,由等腰三角形的性质可求t的值.【解答】解:∵四边形ABCD是正方形∴AB=BC=CD=AD=8,∠D=90°∵AO=5,∴OD=3若AP=AO=5,即t=若AP=OP,即点P在AO的垂直平分线上,∴点P在BC上,且BP=2.5∴t=若AO=OP=5,即点P在CD上,∴PD==4∴t=故答案为:5或10.5或20【点评】本题考查了正方形的性质,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.8.(5分)如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.【分析】过点E作EM∥AB,交AC于点M,由题意可证ME∥AB∥CD,△ADF≌△CDE,可得AF=CE=ME,根据平行线分线段成比例可得,,,即可求PQ的长.【解答】解:如图,过点E作EM∥AB,交AC于点M,∵四边形ABCD是正方形∴AD=CD=BC=4,∠ADC=∠DAB=∠DCE=90°,∠ACE=45°,AB∥CD,∴∠CDE+∠ADE=90°,AC=4∵DF⊥DE,∴∠FDA+∠ADE=90°∴∠CDE=∠FDA,且∠DAF=∠DCE=90°,AD=CD,∴△ADF≌△CDE(AAS)∴AF=CE,∵点E是BC中点,∴CE=BE=BC=AF,∵ME∥CD∴∠DCE=∠MEB=90°,且∠ACB=45°∴∠CME=∠ACB=45°,∴ME=CE=BC,∵ME∥AB,AB∥CD,∴ME∥AB∥CD,∴,,,∴MQ=AQ,AM=CM=2,CP=2MP,∴MQ=,MP=∴PQ=MQ+MP=【点评】本题考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例等性质,灵活运用相关的性质定理、综合运用知识是解题的关键.9.(5分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.【分析】根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【解答】解:∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=5﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴,x=,故答案为:.【点评】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.10.(5分)如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=.【分析】首先利用勾股定理求出DE,再利用三角形的面积公式求出OA即可.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE==,∵AO⊥DE,∴×DE×AO=×AE×AD,∴AO=.故答案为.【点评】本题考查正方形的性质,勾股定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在Rt△ABC中,∠ACB=90°,AC的垂直平分线EF交AC于点D,交AB于点F,且CE=BF.(1)求证:四边形AECF是菱形;(2)填空:当∠BAC的度数为45°时,四边形AECF是正方形.【分析】(1)由线段垂直平分线的性质可得CE=AE,CF=AF,AC⊥EF,CD=AD,由平行线分线段成比例可得AF=BF,可得CE=AF=CF=AE,则可得结论;(2)由菱形的性质可得∠BAC=∠FCA=45°,可得∠AFC=90°,可得四边形AECF 是正方形.【解答】证明:(1)∵EF垂直平分AC,∴CE=AE,CF=AF,AC⊥EF,CD=AD,∵∠ACB=90°,AC⊥EF∴BC∥EF,∴∴AF=BF,又∵CE=BF,∴CE=AF=CF=AE∴四边形AECF是菱形(2)当∠BAC=45°时,四边形AECF是正方形.理由如下:∵AF=CF∴∠BAC=∠FCA=45°,∴∠AFC=90°,且四边形AECF是菱形∴四边形AECF是正方形.故答案为:45°【点评】本题考查了正方形的判定,菱形的判定和性质,线段垂直平分线的性质等知识,灵活运用这些性质进行推理是本题的关键.12.(10分)已知:如图,在平行四边形ABCD中,BC=AC,E,F分别是AB,CD的中点,连接CE并延长交DA的延长线于M,连接AF并延长交BC的延长线于N.(1)求证:△ABN≌△CDM;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.【分析】(1)根据平行四边形得到AB=CD,AB∥CD,∠B=∠D,根据线段中点的定义得到AE=AB,CF=CD,推出四边形AECF是平行四边形,得到四边形AECF是矩形,根据全等三角形的判定定理得到结论;(2)根据直角三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠B=∠D,∵E,F分别是AB,CD的中点,∴AE=AB,CF=CD,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC=CB,∴CE⊥AB,∴∠AEC=90°,∴四边形AECF是矩形,∴∠BAN=∠DCM=90°,在△ABN与△CDM中,,∴△ABN≌△CDM(ASA);(2)解:当∠B=45°时,四边形AECF是正方形,理由:∵BC=AC,∴∠B=∠BAC=45°,∵E是AB的中点,∴CE⊥AB,∴AE=EC,∴矩形AECF是正方形.【点评】本题考查了正方形的判定,全等三角形的判定和性质,等腰三角形的性质,平行四边形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.13.(10分)已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据菱形的判定定理即可得到结论;(4)根据正方形的判定定理即可得到结论.【解答】证明:(1)由已知得AD∥BC,AD=BC,∵M、N分别是AD和BC的中点,∴AM=AD,CN=BC,AM=CN,∵AM∥CN,AM=CN,∴四边形AMCN是平行四边形;(2)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是矩形;(3)∵∠ACD=90°,M是AD的中点,∴AM=CM,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是菱形;(4)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知四边形AMCN是平行四边形,∴四边形AMCN是矩形,∵∠ACD=90°,M是AD的中点,∴AM=CM,∴四边形AMCN是菱形,∴四边形AMCN是正方形【点评】本题考查了平行四边形、矩形、菱形、正方形的判定,熟练掌握判定定理是解题的关键.14.(10分)已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形【分析】由正方形的性质可得AO=CO,BO=DO,AC⊥BD,可得EO=FO,由对角线互相平分的四边形是平行四边形可得四边形AECF是平行四边形,即可证四边形AECF 是菱形.【解答】证明:如图,连接AC交BD于点O,∵四边形ABCD是正方形,∴AO=CO,BO=DO,AC⊥BD,∵BE=DF∴DO﹣DF=BO﹣BE∴FO=EO,且AO=CO∴四边形AECF是平行四边形,又∵AC⊥BD∴四边形AECF是菱形【点评】本题考查了正方形的性质,菱形的判定,熟练运用正方形的性质解决问题是本题的关键.15.(10分)如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D =90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?【分析】(1)由题意可得BP=CQ,BE=CP,由“SAS”可证△BPE≌△CQP;(2)由全等三角形的性质可得BP=CP=5,BE=CQ=6,即可求点Q的速度.【解答】解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10﹣4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CQP∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CQP此时点Q的运动速度为6÷=(cm/s)【点评】本题考查了正方形的性质,全等三角形的判定和性质,熟练运用全等三角形的性质解决问题是本题的关键.。

中考数学总复习《正方形》专项提升训练(带答案)

中考数学总复习《正方形》专项提升训练(带答案)

中考数学总复习《正方形》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________ 1. 如图,在四边形ABCD中,对角线AC,BD相交于点O .第1题图(1)若四边形ABCD是平行四边形,请添加条件__________,使四边形ABCD是正方形;【判定依据】__________________________;(2)若四边形ABCD是矩形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________;(3)若四边形ABCD是菱形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________.2. 如图,在正方形ABCD中,对角线AC,BD相交于点O.(1)∠ABC=________,∠BAC=________,∠COD=________;(2)若AB=3,则BC=________,CD=________;(3)若OA=2,则AC=________,BD=________,AD=________;(4)若OA=4,则正方形ABCD 的面积是________,周长是________.第2题图知识逐点过考点1 正方形的性质及面积边四条边都相等,对边平行角四个角都是直角1.对角线相等且互相①________;对角线2.每一条对角线平分一组对角对称性既是轴对称图形,又是中心对称图形,有4条对称轴,对称中心是两条②________的交点面积公式S=a2=12l2【温馨提示】正方形的两条对角线把正方形分成四个全等的等腰直角三角形考点2 正方形的判定边1.有一组邻边相等,并且有一个角是③________的平行四边形是正方形(定义);2.有一组邻边④________的矩形是正方形角有一个角是⑤________的菱形是正方形对角线1.对角线⑥________的矩形是正方形;2.对角线⑦________的菱形是正方形;3.对角线互相⑧__________的四边形是正方形考点3 平行四边形、矩形、菱形、正方形的关系从边、角的角度看从对角线的角度看考点4 中点四边形概念依次连接任意一个四边形各边中点所得的四边形原图形任意四边形矩形菱形正方形对角线相等的四边形对角线垂直的四边形对角线垂直且相等的四边形中点四边形形状平行四边形菱形矩形正方形菱形矩形正方形【温馨提示】连接特殊四边形中点的四边形面积是原图形的一半教材原题到重难考法与正方形有关的证明与计算例如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF.你能找出图中的全等三角形吗?选择其中一对进行证明.例题图变式题1. 结合角度求线段长如图,正方形ABCD的边长为4,点F为对角线AC上一点,连接BF,当∠CBF=22.5°时求AF的长.第1题图2. 过点F作AB边的垂线如图,在正方形ABCD中,F是对角线AC上一点,作EF⊥AB于点E,连接DF,若BC=6,BE=2,求DF的长.第2题图3. 过点F分别作AB,BC边的垂线如图,F是正方形ABCD对角线AC上一点,过点F分别作FE⊥AB,FG⊥BC,垂足分别为点E,G,连接DF,EG.(1)求证:EG=DF;(2)若正方形的边长为3+3,∠BGE=30°,求DF的长.第3题图真题演练命题点正方形性质的相关计算1. 如图,正方形ABCD的边长为4,延长CB至点E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K .则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN∶S△ADM =1∶4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个第1题图2. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.第2题图基础过关1. 正方形具有而菱形不具有的性质是()A. 对角线平分一组对角B. 对角线相等C. 对角线互相垂直平分D. 四条边相等2. 若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等3.如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第3题图4. 如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A. 2αB. 90°-2αC. 45°-αD. 90°-α第4题图5.在矩形ABCD中,对角线AC,BD相交于点O,试添加一个条件_________________________ 使得矩形ABCD为正方形.6. 如图,在边长为2的正方形ABCD中,点E在AD上,连接EB,EC,则图中阴影部分的面积是__________.第6题图7. 七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板,如图所示,由5个等腰直角三角形,1个正方形和1个平行四边形组成,则图中阴影部分的面积为__________dm2.第7题图8. 如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为__________.第8题图9. 如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=7,点F为DE的中点,若△CEF的周长为32,则OF的长为__________.第9题图10. 如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.第10题图综合提升11. 如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A. 23B. 352 C. 5+1 D. 10第11题图12. 如图,在正方形ABCD 中,点E 为BD 上一点,DE =3BE ,连接AE ,过点E 作AE 的垂线,交CD 于点F ,连接AF 交BD 于点G .下列结论:①sin ∠BAE =13 ;②∠EAF =45°;③点F 为CD 的中点;④BE +DG =GE .其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个第12题图13. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE ,△ABF ,△BCG ,△CDH )和中间一个小正方形EFGH 拼成的大正方形ABCD 中,∠ABF >∠BAF ,连接BE .设∠BAF =α,∠BEF =β,若正方形EFGH 与正方形ABCD 的面积之比为1∶n ,tan α=tan 2β,则n =( ) A. 5 B. 4 C. 3 D. 2第13题图参考答案1. (1)AC =BD ,且AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直且相等的平行四边形是正方形(答案不唯一); (2)AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直的矩形是正方形; (3)∠ABC =90°(答案不唯一)【判定依据】有一个角是直角的菱形是正方形.2. (1)90°,45°,90°;(2)3,3;(3)4,4,22 ;(4)32,162 . 教材原题到重难考法例 解:△ABC ≌△ADC ,△ABF ≌△ADF ,△CDF ≌△CBF ,理由如下: ∵四边形ABCD 是正方形∴AB =AD =BC =CD ,∠DAC =∠BAC =∠DCA =∠BCA =45° 在△ABC 和△ADC 中 ⎩⎪⎨⎪⎧AB =AD ∠BAC =∠DAC AC =AC∴△ABC ≌△ADC (SAS) 在△ABF 和△ADF 中 ⎩⎪⎨⎪⎧AB =AD ∠BAF =∠DAF AF =AF∴△ABF ≌△ADF (SAS) 在△DCF 和△BCF 中 ⎩⎪⎨⎪⎧DC =BC ∠DCF =∠BCF CF =CF∴△DCF ≌△BCF (SAS).(选择其中任意一对证明即可) 1. 解:在正方形ABCD 中,∠ABC =90°,AB =BC ∴∠BAC =∠BCA =45° ∵∠CBF =22.5°∴∠ABF =∠ABC -∠CBF =90°-22.5°=67.5°∴∠AFB =180°-∠BAC -∠ABF =180°-45°-67.5°=67.5° ∴∠ABF =∠AFB ∴AF =AB =4.2. 解:如解图,连接BF第2题解图∵四边形ABCD是正方形∴AB=BC=6,∠EAF=45°∵EF⊥AB∴EF=AE=AB-BE=6-2=4∴BF=BE2+EF2=25∵正方形ABCD关于AC对称∴DF=BF=25.3. (1)证明:如解图,连接FB.∵四边形ABCD为正方形∴DA=AB,∠DAC=∠BAC∵AF=AF∴△DAF≌△BAF∴DF=BF∵四边形ABCD为正方形∴∠ABC=90°∵FG⊥BC,FE⊥AB∴∠FGB=∠FEB=90°∴∠FGB=∠FEB=∠ABC=90°∴四边形FEBG是矩形∴EG=FB∴EG=DF;(2)解:∵正方形的边长为3+3,∠BGE=30°∴BC=3+3∴BG=BC-CG=3+3-CG∵∠BGE=30°∴BG=3BE∵AC为正方形ABCD的对角线∴∠DCF=∠BCF=45°∵FG⊥BC∴∠FGC=∠FGB=90°∴∠CFG=45°∴FG=CG∵四边形FEBG是矩形∴EB=FG∴FG=CG=EB设FG=CG=EB=x∴GE=2x∴BG=3BE=3x∵BG=BC-CG=3+3-x∴3+3-x=3x∴x=3∴GE=2x=23∴DF=BF=GE=23.第3题解图知识逐点过①垂直平分②对角线③直角④相等⑤直角⑥互相垂直⑦相等⑧垂直平分且相等真题演练1. C 【解析】∵四边形EFGB 是正方形,EB =2,∴FG =BE =2,∠FGB =90°,∵四边形ABCD 是正方形,H 为AD 的中点,∴AD =4,AH =2,∠BAD =90°,∴∠HAN =∠FGN ,AH =FG ,∵∠ANH =∠GNF ,∴△ANH ≌△GNF (AAS),故①正确;∴∠AHN =∠HFG ,∵AG =FG =2=AH ,∴AF =2 FG =2 AH ,∴∠AFH ≠∠AHF ,∵AD ∥FG ,∴∠AHF =∠HFG ,∴∠AFN ≠∠HFG ,故②错误;∵△ANH ≌△GNF ,∴AN =12 AG =1,∵GM=BC =4,∴AH AN =GM AG=2,∵∠HAN =∠AGM =90°,∴△AHN ∽△GMA ,∴∠AHN =∠AMG ,∠MAG =∠HNA ,∴AK =NK ,∵AD ∥GM ,∴∠HAK =∠AMG ,∴∠AHK =∠HAK ,∴AK =HK ,∴AK =HK =NK ,∵FN =HN ,∴FN =2NK ;故③正确;∵延长FG 交DC 于M ,∴四边形ADMG 是矩形,∴DM =AG =2,∵S △AFN =12 AN ·FG =12 ×2×1=1,S △ADM=12 AD ·DM =12×4×2=4,∴S △AFN ∶S △ADM =1∶4,故④正确. 2. 15 【解析】如解图,∵四边形ABCD ,ECGF ,IGHK 均为正方形,∴CD =AD =10,CE =FG =CG =EF =6,∠CEF =∠F =90°,GH =IK =4,∴CH =CG +GH =10,∴CH =AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ (AAS),∴CJ =DJ =5,∴EJ =1,∵GL ∥CJ ,∴△HGL ∽△HCJ ,∴GL CJ =GH CH =25,∴GL =2,∴FL =4,∴S阴影=S梯形EJLF=12 (EJ +FL )·EF =12(1+4)×6=15.第2题解图基础过关1. B2. D 【解析】如解图,点E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12 BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第2题解图3. C 【解析】 ∵边长为3的正方形OBCD 两边与坐标轴正半轴重合,∴OB =BC =3,∴C (3,3).4. A 【解析】如解图,将△ADF 绕点A 顺时针旋转90°得到△ABG ,则AF =AG ,∠DAF =∠BAG .∵∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠GAE =∠EAF =45°.在△GAE 和△F AE 中,⎩⎪⎨⎪⎧AG =AF ∠GAE =∠F AE AE =AE ,∴△GAE ≌△F AE (SAS),∴∠AEF =∠AEG .∵∠BAE =α,∴∠AEB =90°-α,∴∠AEF =∠AEB =90°-α,∴∠FEC =180°-∠AEF -∠AEB =180°-2(90°-α)=2α.第4题解图5. AB =BC (答案不唯一,符合条件即可,如:AC ⊥BD ) 【解析】∵邻边相等的矩形是正方形,∴可添加条件AB =BC ;∵对角线互相垂直的矩形是正方形,∴还可以添加条件AC ⊥BD .6. 2 【解析】如解图,过点E 作EF ⊥BC 于点F .∵四边形ABCD 是正方形,∴AB =BC =2,AD ∥BC ,∴EF =AB =2,∴S △BCE =12 BC ·EF =12×2×2=2.∵S 正方形ABCD =BC 2=22=4,∴S阴影=S 正方形ABCD -S △BCE =4-2=2.第6题解图7. 2 【解析】如解图,依题意得OD =22 AD =22 ,OE =12OD =2 ,∴图中阴影部分的面积为OE 2=(2 )2=2(dm 2).第7题解图8. 3 【解析】如解图,过点P 作PF ⊥AB 于点F .∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第8题解图9.172【解析】∵CE =7,△CEF 的周长为32,∴CF +EF =32-7=25.∵点F 为DE 的中点,∴DF =EF .∵四边形ABCD 为正方形,∴∠BCD =90°,BC =CD ,∴CF =EF =DF =252,∴DE =25,∴在Rt △DCE 中,CD =DE 2-CE 2 =24,∴BC =CD =24.∵点O 为BD 的中点,∴OF 是△BDE 的中位线,∴OF =12 (BC -CE )=12 (24-7)=172 .10. (1)证明:∵四边形ABCD 为正方形 ∴AB =AD ,∠A =∠D =90°. ∵MF ∥AD ∴∠DFM =90° ∴四边形ADFM 为矩形 ∴MF =AD =AB . ∵MN 垂直平分BE ∴∠BOM =90° ∴∠ABE +∠BMO =90°. ∵∠FMN +∠BMO =90° ∴∠ABE =∠FMN . 在△ABE 和△FMN 中⎩⎪⎨⎪⎧∠A =∠MFN AB =FM ∠ABE =∠FMN∴△ABE ≌△FMN (ASA); (2)解:如解图,连接ME . ∵MN 垂直平分BE ∴ME =BM .设BM =x ,则AM =8-x ,ME =x .在Rt △AME 中,由勾股定理得ME 2=AE 2+AM 2,即x 2=62+(8-x )2. 解得x =254 ,即BM =254.在Rt △ABE 中,由勾股定理得BE =62+82 =10. ∵∠MBO =∠EBA ,∠MOB =∠A ∴△BOM ∽△BAE ∴OM AE =BMBE∴OM =AE ·BM BE =6×25410 =154 .由(1)知△ABE ≌△FMN ∴MN =BE =10∴ON =MN -OM =10-154 =254.第10题解图11. B 【解析】∵四边形ABCD 是正方形,∴BC ⊥AB ,CD ∥AB ,CD =AB .∵EF ⊥AB ,∴EF ∥BC ,∴AE EC =AF FB .∵AF =2,FB =1,∴AE EC =21 .∵CD ∥AB ,∴CD ∥AG ,∴∠DCE=∠GAE ,∠CDE =∠AGE ,∴△DCE ∽△GAE ,∴AG CD =AE CE =21,∴AG =2CD ,∴CD =AB =BG .∵∠DCM =∠GBM =90°,∠DMC =∠GMB ,∴△DCM ≌△GBM (AAS),∴DM=GM =12 DG .∵AF =2,FB =1,∴AB =3.∵AD =AB =3,∴AG =6,∴在Rt △DAG 中,DG =32+62 =35 ,∴MG =352.12. B 【解析】 如解图,延长AE 交BC 于点H .∵四边形ABCD 是正方形,∴AD =AB ,AD ∥BC ,∴△ADE ∽△HBE ,∴AD HB =DEBE ,∵DE =3BE ,∴AD =3HB ,∴AB =3HB ,在Rt △ABH 中,由勾股定理得AH =AB 2+HB 2 =10 HB ,∴sin ∠BAE =HB AH =1010 ,①错误;如解图,过点E 分别作AB ,CD 的垂线,交AB ,CD 于点M ,N ,∴∠AME =∠ENF =90°,∴∠AEM +∠MAE =90°,∵∠AEF =90°,∴∠AEM +∠NEF =90°,∴∠MAE =∠NEF ,∵∠MBE =45°,∴MB =ME ,∵AB =MN ,∴AM =EN ,∴△AME ≌△ENF ,∴AE =EF ,∵∠AEF =90°,∴∠EAF =45°,②正确;∵△AME ≌△ENF ,∴ME =NF =MB ,∵BE =2 ME ,∴CF =2ME =2 BE ,∵DE =3BE ,∴BD =4BE ,∴CD =22BD =22 BE ,∴CD =2CF ,∴点F 为CD 的中点,③正确;∵点F 为CD 的中点,∴DF =12 CD =12 AB ,∵AB ∥CD ,∴△FDG ∽△ABG ,∴DG BG =DF AB =12 ,∴DG =13 BD ,GB =23 BD ,设BE =x ,则DE =3x ,BD =4x ,∴DG =43 x ,GB =83 x ,∴GE =GB -BE =53 x ,∴BE +DG =73 x ≠GE ,④错误.第12题解图13. C 【解析】设BF =a ,AF =b ,则AB =a 2+b 2 ,EF =b -a ,∴tan α=tan ∠BAF =BFAF=a b ,tan β=tan ∠BEF =BF EF =a b -a .∵正方形EFGH ∽正方形ABCD ,∴S 正方形EFGH S 正方形ABCD =(EFAB )2=EF 2AB 2 =(b -a )2a 2+b 2 =1n .∵tan α=tan 2β,∴a b =a 2(b -a )2 .∴(b -a )2=ab ,b 2+a 2-2ab =ab ,∴a 2+b 2=3ab ,∴n =a 2+b 2(b -a )2=a 2+b 2ab =3abab =3.。

初二数学正方形的复习题

初二数学正方形的复习题

初二数学正方形的复习题初二数学正方形的复习题数学是一门需要不断练习的学科,而对于初二学生来说,正方形是一个重要的几何概念。

在这篇文章中,我们将通过一些复习题来巩固对正方形的理解和运用。

1. 设正方形ABCD的边长为a,求正方形的周长和面积。

解析:正方形的周长等于四条边的长度之和,即4a;面积等于边长的平方,即a^2。

2. 已知正方形ABCD的周长为36cm,求其边长和面积。

解析:设正方形的边长为a,根据题意可得4a=36,解方程可得a=9cm。

因此,正方形的边长为9cm,面积为a^2=81cm^2。

3. 正方形EFGH是正方形ABCD的内接正方形,若正方形ABCD的边长为8cm,求正方形EFGH的边长和面积。

解析:由于正方形EFGH是正方形ABCD的内接正方形,所以正方形EFGH的边长等于正方形ABCD的边长的一半,即4cm。

正方形EFGH的面积等于边长的平方,即16cm^2。

4. 在正方形ABCD中,连接对角线AC和BD,交于点O。

若AC的长度为10cm,求OD的长度。

解析:由于正方形的对角线相等且垂直平分对方角,所以OD的长度等于AC的一半,即5cm。

5. 在正方形ABCD中,连接对角线AC和BD,交于点O。

若OD的长度为6cm,求AC的长度。

解析:由于正方形的对角线相等且垂直平分对方角,所以AC的长度等于OD 的两倍,即12cm。

6. 已知正方形ABCD的面积为64cm^2,求其对角线的长度。

解析:设对角线的长度为d,根据正方形的面积公式可得d^2=2(边长)^2,即d^2=2(8)^2=128。

解方程可得d=√128=8√2 cm。

通过以上的复习题,我们巩固了对正方形的理解和运用。

正方形是几何学中的基础概念,熟练掌握正方形的性质和计算方法,对于进一步学习几何学和解决实际问题都是非常重要的。

希望同学们能够通过不断的练习和思考,提升数学水平,取得优异的成绩!。

人教版八年级数学下册正方形(提高)典型例题讲解+练习及答案

人教版八年级数学下册正方形(提高)典型例题讲解+练习及答案

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】正方形(提高)责编:康红梅【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】【特殊的平行四边形(正方形)知识要点】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、正方形的性质1、(2016•哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【思路点拨】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【答案与解析】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ【总结升华】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.举一反三:【变式1】如图四边形ABCD是正方形,点E、K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.以线段DE、DG为边作DEFG.(1)求证:DE=DG,且DE⊥DG.(2)连接KF,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想.Y【答案】证明:(1)∵四边形ABCD是正方形,∴ DC=DA,∠DCE=∠DAG=90°.又∵ CE=AG,∴△DCE≌△DAG,∴∠EDC=∠GDA,DE=DG.又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°,∴ DE⊥DG.(2)四边形CEFK为平行四边形.证明:设CK,DE相交于M点,∵四边形ABCD和四边形DEFG都是正方形,∴ AB∥CD,AB=CD,EF=DG,EF∥DG;∵ BK=AG,∴ KG=AB=CD.∴四边形CKGD为平行四边形.∴ CK=DG=EF,CK∥DG∥EF∴四边形CEFK为平行四边形.【特殊的平行四边形(正方形)例9】【变式2】如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是_______.【答案】2;提示:阴影部分面积等于正方形面积的一半.类型二、正方形的判定2、(2015•闸北区模拟)如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC 的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.【思路点拨】(1)根据线段垂直平分线的性质,可得AF=CF,再根据等角的余角相等可得∠B=∠BAF,所以AF=BF.(2)由AAS可证△AEG≌△CEF,所以AG=CF.由一组对边平行且相等的四边形是平行四边形得四边形AFCG是平行四边形,进而证得四边形AFCG是菱形,最后根据有一个角为直角的菱形是正方形得证四边形AFCG是正方形.【答案与解析】证明:(1)∵AD=CD,点E是边AC的中点,∴DE⊥AC.即得DE是线段AC的垂直平分线.∴AF=CF.∴∠FAC=∠ACB.在Rt△ABC中,由∠BAC=90°,得∠B+∠ACB=90°,∠FAC+∠BAF=90°.∴∠B=∠BAF.∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵点E是边AC的中点,∴AE=CE.在△AEG和△CEF中,,∴△AEG≌△CEF(AAS).∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF.即得点F是边BC的中点.又∵AB=AC,∴AF⊥BC.即得∠AFC=90°.∴四边形AFCG是正方形.【总结升华】本题考查的是正方形的判定方法,考查了线段垂直平分线的性质、全等三角形的判定与性质等基础知识的灵活运用,判别一个四边形是正方形主要是根据正方形的定义及其性质.举一反三:【变式】(2015春•上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.【答案】(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AHG=90°,∴∠DHG+∠AHG=90°,∴∠GHE=90°,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG 的面积=CG •FQ=×2×2=2.类型三、正方形综合应用3、E、F 分别是正方形ABCD 的边AD 和CD 上的点,若∠EBF=45°.(1)求证:AE+CF=EF.(2)若E 点、F 点分别是边DA、CD 的延长线上的点,结论(1)仍成立吗?若成立,请证明,若不成立,写出正确结论并加以证明.【答案与解析】证明:(1)延长DC,使CH=AE,连接BH,∵四边形ABCD 是正方形,∴∠A=∠BCH=90°,又AB=BC,CH=AE,∴ Rt△BAE≌Rt△BCH,∴∠1=∠2,BE=BH.又∵∠1+∠3+∠4=90°,∠4=45°,∴∠1+∠3=45°,∠2+∠3=45°,⎧BE =BH ,在△EBF 和△HBF 中,⎪⎨∠EBF =∠HBF ,⎪⎩BF =BF ,∴△EBF≌△HBF,∴ EF=FH=FC+CH=AE+CF.即AE+CF=EF.(2)如图所示:不成立,正确结论:EF=CF-AE.证明:在CF 上截取CH=AE,连接BH.∵四边形ABCD 是正方形,∴在Rt△EAB 和Rt△HCB 中,⎧⎪AE =CH ,⎨∠EAB =∠HCB =90°,⎪⎩AB =BC ,∴ Rt△EAB≌Rt△HCB,∴ BE=BH,∠EBA=∠HBC.∵∠HBC +∠ABH=90°,∴∠EBA +∠ABH=90°.又∵∠EBF=45°,∴∠HBF=45°,即∠EBF=∠HBF.⎧BE=BH,⎪在△EBF和△HBF中⎨∠EBF=∠HBF,⎪BF=BF,⎩∴△EBF≌△HBF,∴ EF=FH=CF-CH=CF-AE,即EF=CF-AE.【总结升华】本题主要考察正方形的性质,全等三角形的性质和判定,关键在于用“截长补短”的方法正确地作出辅助线.4、正方形ABCD的对角线交点为O,如图所示,AE平分∠BAC交BC于E,交OB于F,求证:EC=2FO.【思路点拨】在平面几何中,要证明一条线段等于另一条线段的2倍或1,通常采用折半2法或加倍法.而折半法又可分直接折半法和间接折半法;加倍又可分直接加倍法和间接加倍法.这就需要学生仔细研究,找到解决问题的合适方法.【答案与解析】证法一:(间接折半法)如图①所示.∵∠3=∠1+∠4,∠5=∠2+∠6.而∠1=∠2,∠4=∠6=45°.∴∠3=∠5,BE=BF.取AE的中点G,连接OG,∵ AO=OC,∴ OG 1 EC.2由∠7=∠5,∠8=∠3,∴∠7=∠8,∴ FO=GO.∴ EC=2OG=2FO.证法二:(直接折半法)如图②所示.由证法一得BE=BF.取EC的中点H,连接OH.∵ AO=OC,∴ OH∥AE.∴∠BOH=∠BFE=∠BEF=∠BHO.∴ BO=BH,∴ FO=EH.∴ EC=2EH=2FO.证法三:(直接加倍法)如图③所示.由证法一得BE=BF.在OD上截取OM=OF,连接MC.易证Rt△AOF≌Rt△COM.∴∠OAF=∠OCM,∴ AE∥MC.由∠BMC=∠BFE=∠BEF=∠BCM,∴ FM=EC.∴ EC=FM=2FO.【总结升华】若题目中涉及线段的倍半关系和中点问题时,要联想中位线定理,利用中点构造中位线,要注意从不同的角度进行思构,构造不同的辅助线来解决问题.举一反三:【变式】在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图①,易证EG=CG,且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.【答案】解:(1)EG=CG,且EG⊥CG.(2)EG=CG,且EG⊥CG.证明:延长FE交DC延长线于M,连MG,如图③,∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴ BE=CM,∠EMC=90°,又∵ BE=EF,∴ EF=CM.∵∠EMC=90°,FG=DG,∴ MG=1FD=FG.2∵ BC=EM,BC=CD,∴ EM=CD.∵ EF=CM,∴ FM=DM,∴∠F=45°.又FG=DG,∠CMG=1∠EMD=45°,2∴∠F=∠GMC,∴△GFE≌△GMC,∴ EG=CG,∠FGE=∠MGC,∵ MG⊥DF,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°即∠EGC=90°,∴ EG⊥CG.。

中考数学复习《正方形》专项提升训练(附答案)

中考数学复习《正方形》专项提升训练(附答案)

中考数学复习《正方形》专项提升训练(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是( )A.矩形B.菱形C.矩形或菱形D.正方形2.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )A.22.5°B.25°C.23°D.20°3.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.16B.12C.24D.184.如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,则∠E=( )A.90°B.45°C.30°D.22.5°5.将一正方形纸片按图中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )6.如图所示,两个含有30°角的完全相同的三角板ABC 和DEF 沿直线l 滑动,下列说法错误的是( )A.四边形ACDF 是平行四边形B.当点E 为BC 中点时,四边形ACDF 是矩形C.当点B 与点E 重合时,四边形ACDF 是菱形D.四边形ACDF 不可能是正方形 7.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形8.已知一个无盖长方体的底面是边长为1的正方形,侧面是长为2的长方形,现展开铺平.如图,依次连结点A ,B ,C ,D 得到一个正方形,将周围的四个长方形沿虚线剪去一个直角三角形,则所剪得的直角三角形较短直角边与较长直角边的比是( )A.12B.13C.23D.459.如图,正方形ABCD 的对角线交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,而且这两个正方形的边长相等.无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的( )A.12B.13C.14D.1510.如图,点O(0,0),A(0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2027的坐标是( )A.(0,21013)B.(21013,21013)C.(21014,0)D.(21014,﹣21014) 二、填空题11.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .12.如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为 .13.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20.则图2中Ⅱ部分的面积是.14.若正方形的面积是9,则它的对角线长是 .15.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_______cm.16.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;则S3﹣S2=.三、解答题17.如图,已知点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE.求证:(1)EF=FP=PQ=QE;(2)四边形EFPQ是正方形.18.如图,菱形ABCD的对角线AC、BD相交于点O,分别延长OA、OC到点E、F,使AE=CF,依次连接B、F、D、E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=________°时,四边形BFDE是正方形.19.如图,已知在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.20.如图,在正方形ABCD中,E,F分别为AD,CD边上的点,BE,AF交于点O,且AE=DF.(1)求证:△ABE≌△DAF;(2)若BO=4,DE=2,求正方形ABCD的面积.21.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE 于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.22.如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.23.在几何探究问题中,经常需要通过作辅助线(如,连接两点,过某点作垂线,作延长线,作平行线等等)把分散的条件相对集中,以达到解决问题的目的.(1)(探究发现)如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF.通过探究,可发现BE,EF,DF之间的数量关系为________(直接写出结果).(2)(验证猜想)同学们讨论得出下列三种证明思路(如图1):思路一:过点A作AG⊥AE,交CD的延长线于点G.思路二:过点A作AG⊥AE,并截取AG=AE,连接DG.思路三:延长CD至点G,使DG=BE,连接AG.请选择一种思路证明(探究发现)中的结论.(3)(应用)如图2,点E,F分别在正方形ABCD的边BC,CD上,且BC=3BE,∠EAF =45°,设BE=t,试用含t的代数式表示DF的长.参考答案1.D.2.A3.A.4.D5.B.6.B.7.D.8.C.9.C.10.B11.答案为:45°.12.答案为:45°.13.答案为:100.14.答案为:3 2.15.答案为:1或2.16.答案为:52 .17.证明:(1)∵四边形ABCD是正方形∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD ∵AF=BP=CQ=DE∴DF=CE=BQ=AP在△APF和△DFE和△CEQ和△BQP中∴△APF≌△DFE≌△CEQ≌△BQP(SAS)∴EF=FP=PQ=QE;(2)∵EF=FP=PQ=QE∴四边形EFPQ是菱形∵△APF≌△BQP∴∠AFP=∠BPQ∵∠AFP+∠APF=90°∴∠APF+∠BPQ=90°∴∠FPQ=90°∴四边形EFPQ是正方形.18.证明:(1)在菱形ABCD中,BA=BC∴∠BAC=∠BCA∴∠BAE=∠BCF.在△BAE与△BCF中BA=BC,∠BAE=∠BCF,AE=CF∴△BAE≌△BCF(SAS).(2)20.19.证明:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ20.证明:(1)∵四边形ABCD是正方形∴AB=AD,∠BAE=∠D=90°又AE=DF∴△ABE≌△DAF;(2)∵△ABE≌△DAF∴∠FAD=∠ABE又∠FAD+∠BAO=90°∴∠ABO+∠BAO=90°∴△ABO∽△EAB∴AB:BE=BO:AB,即AB:6=4:AB∴AB2=24所以正方形ABCD面积是24.21.解:(1)∵四边形ABCD是正方形∴∠ADG=∠C=90°,AD=DC又∵AG⊥DE∴∠DAG+∠ADF=90°=∠CDE+∠ADF∴∠DAG=∠CDE∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H∵E是BC的中点∴BE=CE又∵∠C=∠HBE=90°,∠DEC=∠HEB∴△DCE≌△HBE(ASA)∴BH=DC=AB,即B是AH的中点又∵∠AFH=90°∴Rt△AFH中BF=12AH=AB.22.解:(1)PB=PQ.证明:连接PD ∵四边形ABCD是正方形∴∠ACB=∠ACD,∠BCD=90°,BC=CD又∵PC=PC∴△DCP≌△BCP(SAS)∴PD=PB,∠PBC=∠PDC∵∠PBC+∠PQC=180°,∠PQD+∠PQC=180°∴∠PBC=∠PQD∴∠PDC=∠PQD∴PQ=PD∴PB=PQ(2)PB=PQ.证明:连接PD同(1)可证△DCP≌△BCP∴PD=PB,∠PBC=∠PDC∵∠PBC=∠Q∴∠PDC=∠Q∴PD=PQ∴PB=PQ.23.解:(1)EF=BE+DF.(2)思路三:延长CD至点G,使DG=BE,连接AG. ∵正方形ABCD∴AB=AD,∠B=∠ADC=90°∵BE=DG∴△ABE≌△ADG(SAS)∴AE=AG,∠BAE=∠DAG∵∠EAF=45°∴∠BAE+∠DAF=45°∴∠GAF=∠GAD+∠DAF=45°∴∠GAF=∠EAF∴AF=AF∴△EAF≌△GAF(SAS)∴EF=GF=BE+DF.(3)由题意可知,CE=2t,设DF=x,则CF=3t-x,EF=2t+x ∴在RtCEF中,EF2=CE2+CF2∴(x+t)2=(3t-x)2+(2t)2∴x=32t.即DF=32t.。

人教版八年级下数学正方形(提高)巩固练习

人教版八年级下数学正方形(提高)巩固练习

【巩固练习】一.选择题1. 在正方形ABCD 的边AB 、BC 、CD 、DA 上分别任意取点E 、F 、G 、H .这样得到的四边形EFGH中,是正方形的有( )A .1个B .2个C .4个D .无穷多个2. 如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则PQ 的长为( )A.12B.13C.14D.153. 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S =2B .S =2.4C .S =4D .S 与BE 长度有关4. 如图,点(0,0)O ,(0,1)B 是正方形1OBB C 的两个顶点,以它的对角线1OB 为一边作正方形121OB B C ,以正方形121OB B C 的对角线2OB 为一边作正方形232OB B C ,再以正方形232OB B C 的对角线3OB 为一边作正方形343OB B C ,…,依次进行下去,则点6B 的坐标是( )A .(8,0)-B .(0,8)-C .(-D .(-5. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为1S ,2S ,则12S S +的值为( )A.16B.17C.18D.196. 如图,四边形ABCD 中,AD =DC ,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD 面积为16,则DE 的长为( )A .3B .2C .4D .8二.填空题7.延长正方形ABCD 的BC 边至点E ,使CE =AC ,连结AE ,交CD 于F ,那么∠AFC 的度数为______,若BC =4cm ,则△ACE 的面积等于______.8. 在正方形ABCD 中,E 为BC 上一点,EF ⊥AC ,EG ⊥BD ,垂足分别为F 、G ,如果cm 25 AB ,那么EF +EG 的长为______.9.已知:如图,△ABC 中,∠ACB =90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D ,E ,F 分别是垂足,且BC =8cm ,CA =6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于______cm .10.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B 、D 作DE⊥a 于点E 、BF⊥a于点F ,若DE =4,BF =3,则EF 的长为_____.11.点P 是正方形ABCD 边AB 上一点(不与A 、B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE ,连接BE ,则∠CBE =_____°12. 如图,平面内4条直线1234l l l l ,,,是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD 的4个顶点A 、B 、C 、D 都在这些平行线上,其中点A、C分别在直线1l 和4l 上,该正方形的面积是 平方单位.三.解答题13.如图,在正方形ABCD 中,P 为对角线BD 上一点,PE ⊥BC ,垂足为E ,PF ⊥CD ,垂足为F ,求证:EF =AP14.如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连结EB 、EA ,延长BE 交边AD于点F .(1)求证:△ADE ≌△BCE ;(2)求∠AFB 的度数.15.如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连结DP 交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ;(2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的61; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,△ADQ 恰为等腰三角形.【答案与解析】一.选择题1.【答案】D ;【解析】在正方形四边上任意取点E 、F 、G 、H ,AH =DG =CF =BE ,能证明四边形EFGH 为正方形,则说明可以得到无穷个正方形.2.【答案】B ;【解析】过P 作PF ⊥BC 于F ,可证△PFQ ≌△ADE ,则PQ 13=.3. 【答案】A ;【解析】设正方形EFGB 的边长是a ,则S =ABC CFG AFGB S S S +-△△梯形=×(a +2)×a + ×2×2-×(a +2)×a =2. 4.【答案】A ;【解析】2(2,0)B ,4(0,4)B -,6(8,0)B -.5.【答案】B ;【解析】设正方形2S 的边长为x ,根据等腰直角三角形的性质知,AC ,x =,∴AC=2CD ,CD =623=.EC =28S =,∵1S 的边长为3,1S 的面积为3×3=9,∴12S S +=8+9=17.6.【答案】C ;【解析】如图,过点D 作BC 的垂线,交BC 的延长线于F ,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°,AD =DC ,利用AAS 可以判断△ADE≌△CDF,∴DE=DF ,ABCD S 四边形=S 正方形DEBF =16,DE =4.二.填空题7.【答案】112.5°,822cm ;【解析】∠AEC =∠CEA =18013522.52-=°,∠AFC =90°+22.5°=112.5°,面积等于2142⨯=. 8.【答案】5cm ;【解析】AC =BD =10=,EF +EG =12BD =5. 9.【答案】2;【解析】OD =OE =OF ,可知四边形ODCE 是正方形,设CD =CE =x ,BD =BF =y ,AE =AF=z ,所以8x y +=,10y z +=,6x z +=,解得2x =,即O 点到三边的距离.10.【答案】7;【解析】因为ABCD 是正方形,所以AB =AD ,∠B=∠A=90°,则有∠ABF=∠DAE,又因为DE⊥a 、BF⊥a ,根据AAS 易证△AFB≌△AED,所以AF =DE =4,BF =AE=3,则EF 的长=7.11.【答案】45; 【解析】过E 点作EF ⊥AB 的延长线于F ,易证△ADP ≌△FPE ;BF =EF ,所以∠CBE =∠EBF =45°.12.【答案】5;【解析】过D 点作直线EF 与平行线垂直,与1l 交于点E ,与4l 交于点F .易证△ADE ≌△DFC ,得CF =1,DF =2.根据勾股定理可求25CD =得正方形的面积.三.解答题13.【解析】证明:连结PC∵正方形ABCD∴AB =BC ,∠ABD =∠DBC =45° ∠BCD =90°∵BP =BP∴△ABP ≌△CBP∴AP = CP∵PE ⊥BC ,PF ⊥DC∴四边形PECF 为矩形∴EF =PC∴EF =AP14.【解析】解:(1)∵四边形ABCD 是正方形,∴∠ADC =∠BCD =90°,AD =BC .∵△CDE 是等边三角形,∴∠CDE =∠DCE =60°,DE =CE .∴∠ADE =∠BCE =30°.∵AD =BC ,∠ADE =∠BCE ,DE =CE ,∴△ADE ≌△BCE .(2)∵△ADE ≌△BCE , ∴AE =BE ,∴∠BAE =∠ABE .∵∠BAE +∠DAE =90°,∠ABE +∠AFB =90°,∠BAE =∠ABE ,∴∠DAE =∠AFB .∵AD =CD =DE , ∴∠DAE =∠DEA .∵∠ADE =30°,∴∠DAE =75°,∴∠AFB =75°.15.【解析】(1)证明:∵四边形ABCD 是正方形,∴AD =AB ,∠DAC =∠BAC =45°,AQ =AQ∴△ADQ ≌△ABQ (SAS );(2)以A 为原点建立如图所示的直角坐标系,过点Q 作QE ⊥y 轴于点E ,QF ⊥x 轴于点F .21AD ×QE =61ABCD S 正方形=38 ∴QE =34 ∵点Q 在正方形对角线AC 上 ∴Q 点的坐标为)34,34( ∴过点D(0,4),)34,34(Q 两点的函数关系式为:24y x =-+,当y =0时,x =2,即P 运动到AB 中点时,△ADQ 的面积是正方形ABCD 面积的61; (3)若△ADQ 是等腰三角形,则有QD =QA 或DA =DQ 或AQ =AD①当点P 运动到与点B 重合时,由四边形ABCD 是正方形知QD =QA 此时△ADQ 是等腰三角形;②当点P与点C重合时,点Q与点C也重合,此时DA=DQ,△ADQ是等腰三角形;③如图,设点P在BC边上运动到CP=x时,有AD=AQ∵AD∥BC ∴∠ADQ=∠CPQ.又∵∠AQD=∠CQP,∠ADQ=∠AQD,∴∠CQP=∠CPQ.∴CQ=CP=x.4,AQ=AD=4.∵AC=24-4.∴x=CQ=AC-AQ=24-4时,△ADQ是等腰三角形.即当CP=2。

初二数学知识巩固练04菱形、正方形(原卷版)

初二数学知识巩固练04菱形、正方形(原卷版)

有一组临边
矩形(菱形)判定:
且 具有平行四边形的一切性质; ①邻边
的矩形是正方
有一个角是 具有矩形的一切性质;
形。
的平 具有菱形的一切性质。
②对角线
的矩形是正
行四边形是
方形。
矩形。
③有一个角是
的菱形
是正方形。
④对角线
的菱形是
正方形、
中点四边形:连接四边形四条边的
得到的新的四边形。
①任意四边形的中点四边形是
则点 O 到边 AB 的距离为

第 15 题
第 16 题
16.如图,正方形 ABCD 中,AB=1,点 P 是对角线 AC 上的一点,分别以 AP、PC 为对角线作正方形,则
两个小正方形的周长的和是

17.已知,如图,在平行四边形 ABCD 中,BF 平分∠ABC 交 AD 于点 F,AE⊥BF 于点 O,交 BC 于点 E, 连接 EF. (1)求证:四边形 ABEF 是菱形;
(2)若 AE=12,BF=16,CE=5,求四边形 ABCD 的面积.
18.边长为 4 的正方形 ABCD 中,E,F,G,H 分别是边 AB,BC,CD,DA 上的四等分点,连结 EF,FG, GH,HE. (1)求 EH 的长; (2)求证:∠EHG=90°; (3)正方形 EFGH 的面积.
A.AC=BD,AB∥CD,AB=CD
B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD
D.AO=CO,BO=DO,AB=BC
6.如图,以正方形 ABCD 的中心为原点建立平面直角坐标系,点 A 的坐标为(2,2),则点 D 的坐标为
()
A.(2,2)
B.(﹣2,2)

八下9.4正方形的性质与判定巩固训练(有答案)

八下9.4正方形的性质与判定巩固训练(有答案)

八八9.4八八八八八八八八八八八八八姓名:___________班级:___________考号:___________一、选择题1.下列有关正方形的说法错误的是()A. 四个角是直角B. 邻边相等的矩形是正方形C. 两条对角线的乘积等于正方形的面积D. 有一个角是直角、四边相等的四边形是正方形2.如图,在四边形ABCD中,AD//BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为( )A. 6B. 8C. 10D. 无法确定3.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A. 1B. 2C. 3D. 44.下列说法:①对角线互相垂直且相等的四边形是矩形;②对角线互相垂直平分的四边形是菱形;③对角线互相垂直的矩形是正方形;④对角线相等的菱形是正方形;⑤对角线互相垂直且相等的平行四边形是正方形;⑥平行四边形既是轴对称图形又是中心对称图形.其中错误的有()A. 1个B. 2个C. 3个D. 4个5.将矩形纸片如图所示折叠,使A点落在BC边上的点F处,折痕为BE,若沿EF将右侧的矩形剪下来,把所折叠部分展开是一个正方形,其数学依据是()A. 对角线相等的菱形是正方形B. 成轴对称图形的四边形是正方形C. 邻边相等的矩形是正方形D. 被对角线分成两个全等的三角形的四边形是正方形6.如图,正方形ABCD的边长为8,在各边上依次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A. 30B. 34C. 36D. 407.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A. 小青B. 小荷C. 小夏D. 小雨二、填空题8.如图,在正方形ABCD中,AB=2,P是对角线AC上的一点,过点P分别作EF//BC,MN//AB,点E,F分别在AB,DC上,点M,N分别在AD,BC上,则EF+MN的长是________.9.如图,在矩形ABCD中,AB=2,BC=4,点E,F分别在BC,CD上,若AE=√5,∠EAF=45∘,则AF的长为.10.如图,在四边形ABCD中,AB=BC,AB//CD,AD//BC,∠ABC=90°.点E、F分别在边AB、AD上,CE与BF相交于点G,BE=AF.线段BG的垂直平分线交BE于点H,且∠EHG=54°.若∠EGH=m o,则m=______.11.如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为___________.12.如图所示,E,F,G,H分别是正方形ABCD各边的中点,要使中间阴影部分小正方形面积是5,那么大正方形的边长是_____.13.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90∘,AE=CF=5,BE=DF=12,则EF=.三、解答题14.如图,E是正方形ABCD的对角线AC上的一点,EF⊥AB,EG⊥BC,垂足分别为F,G,正方形ABCD的周长是40。

湘教版数学八年级下册_《正方形》提高训练

湘教版数学八年级下册_《正方形》提高训练

《正方形》提高训练一、选择题1.正方形ABCD在直角坐标系中的位置如图表示,将正方形ABCD绕点A顺时针方向旋转180°后,B点的坐标是()A.(2,0)B.C.(2,﹣1)D.(2,1)2.下列说法中正确的是()A.对角线相等且有一个角是直角的平行四边形是正方形B.对角线互相垂直且一组邻边相等的平行四边形是正方形C.四个角都相等的菱形是正方形D.对角线互相垂直平分且有一组邻边相等的四边形是正方形3.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°4.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE=67.5°,EF ⊥AB,垂足为F,则EF的长为()A.1B.C.4D.35.如图,正方形ABCD的边长为6,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH的面积是()A.14B.16C.18D.20二、填空题6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠DEF=度.7.如图,在平行四边形ABCD中,AE⊥BG于点E,CF⊥AD于点F,∠B=60°,当边AD:AB=时,四边形AECF是正方形.8.如图,在正方形ABCD中,边长为4,对角线AC、BD交于点O,点E是BC 边上任意一点,分别向BD、AC作垂线,垂足分别为F、G,则四边形OFEG 的周长是.9.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为72cm2,则菱形的边长为.(结果中如有根号保留根号)10.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为.三、解答题11.如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE,求证:AF=AD+CF.12.如图,四边形ABCD和四边形CEFG都是正方形,且BC=CD,CE=CG,∠BCD=∠GCE=90°.(1)求证:△BCG≌△DCE;(2)求证:BG⊥DE.13.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),求证:AM2+MF2=AF2.14.已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当矩形ABCD的长和宽满足什么条件时,四边形MENF是正方形?为什么?15.如图1,P为正方形ABCD内一点,且PA:PB:PC=1:2:3,求∠APB的度数.小明同学的想法是:不妨设PA=x,PB=2x,PC=3x,设法把PA、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答图2中∠APB=度.请你参考小明同学的方法,解答下列问题.如图3,P是等边△ABC内一点,PA:PB:PC=3:4:5,那么∠APB=度.请写出推理过程.《正方形》提高训练参考答案与试题解析一、选择题1.正方形ABCD在直角坐标系中的位置如图表示,将正方形ABCD绕点A顺时针方向旋转180°后,B点的坐标是()A.(2,0)B.C.(2,﹣1)D.(2,1)【分析】依据题意画出图形,然后依据旋转的性质确定出点B′的坐标即可.【解答】解:如图所示:过点B′作B′E⊥x轴,垂足为E.由旋转的性质可知:OA=AE=1,OB=BE′=1,∴点B′的租表为(2,﹣1).∴旋转后B点的坐标是(2,﹣1).故选:C.【点评】本题主要考查的是旋转的性质,熟练掌握旋转的性质是解题的关键.2.下列说法中正确的是()A.对角线相等且有一个角是直角的平行四边形是正方形B.对角线互相垂直且一组邻边相等的平行四边形是正方形C.四个角都相等的菱形是正方形D.对角线互相垂直平分且有一组邻边相等的四边形是正方形【分析】根据正方形的判定方法即可判断;【解答】解:A、对角线相等且有一个角是直角的平行四边形是正方形,这个四边形是矩形,不一定是正方形;本选项不符合题意;B、对角线互相垂直且一组邻边相等的平行四边形是正方形,这个四边形是菱形,不一定是正方形;本选项不符合题意;C、四个角都相等的菱形是正方形,正确,本选项符合题意;D、对角线互相垂直平分且有一组邻边相等的四边形是正方形,这个四边形是菱形,不一定是正方形;本选项不符合题意;故选:C.【点评】本题考查正方形的判定、平行四边形的性质、菱形的判定、矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故选:B.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.4.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE=67.5°,EF ⊥AB,垂足为F,则EF的长为()A.1B.C.4D.3【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠DAE=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.5.如图,正方形ABCD的边长为6,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH的面积是()A.14B.16C.18D.20【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出四边形EFGH是正方形,由边长为6,AE=BF=CG=DH=4,可得AH=2,由勾股定理得EH,得正方形EFGH的面积.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=6,AE=BF=CG=DH=4,∴AH=BE=DG=CF=2,∴EH=FE=GF=GH==2,∴四边形EFGH的面积是:2×2=20,故选:D.【点评】本题主要考查了正方形的性质和判定定理全等三角形的判断和性质以及勾股定理的运用,证得四边形EFGH是正方形是解答此题的关键.二、填空题6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠DEF=50度.【分析】直接利用正方形的性质结合全等三角形的判定与性质得出∠CBE=∠CDE=20°,进而得出答案.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCE=∠DCE=45°,在△BCE和△DCE中,,∴△BCE≌△DCE(SAS),∴∠CBE=∠CDE=20°,∴∠BFC=70°,∴∠DEF的度数是:70°﹣20°=50°.故答案为50.【点评】此题主要考查了正方形的性质以及全等三角形的判定与性质,正确得出△BCE≌△DCE(SAS)是解题关键.7.如图,在平行四边形ABCD中,AE⊥BG于点E,CF⊥AD于点F,∠B=60°,当边AD:AB=2:(+1)时,四边形AECF是正方形.【分析】根据平行四边形的性质和正方形的判定解答即可.【解答】解:当AD:AB=2:(+1)时,∵平行四边形ABCD,∴AD∥BC,∵AE⊥BG于点E,CF⊥AD于点F,∴AE∥CF,∴四边形AECF是平行四边形,∵∠B=60°,AE⊥BG,∴AB=2BE,AE=BE,∵AD:AB=2:(+1),∴BC:AB=2:(+1),∴EC=BC﹣BE=BE,∴AE=EC,∴平行四边形AECF是正方形.故答案为:2:(+1)【点评】此题主要考查了平行四边形的性质和判定,正方形的判定与性质的作用:平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法.8.如图,在正方形ABCD中,边长为4,对角线AC、BD交于点O,点E是BC 边上任意一点,分别向BD、AC作垂线,垂足分别为F、G,则四边形OFEG 的周长是4.【分析】只要证明四边形OFEG的周长=OB+OC即可解决问题;【解答】解:∵四边形ABCD是正方形,AB=4,∴AC⊥BD,OB=OC=2,∠OBC=∠OCB=45°,∵EF⊥OB,EG⊥OC,∴∠EFO=∠FOG=∠EGO=90°,∴四边形OFEG是矩形,∴OF=EG,EF=OG,∵△EFB,△EGC都是等腰直角三角形,∴EF=FB,GE=GC,∴四边形OFEG的周长=OF+FE+OG+GE=OF+FB+OG+GC=OB+OC=4,故答案为4.【点评】本题考查正方形的性质,矩形的判定和性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为72cm2,则菱形的边长为2.(结果中如有根号保留根号)【分析】连接AC、BD,由正方形的面积,可计算出正方形的边长和对角线AC 的长,再根据菱形的面积,计算出菱形的对角线BD的长,在直角△AOB中,求出菱形的边长.【解答】解:连接AC、BD,AC、BD相交于点O.∵正方形AECF的面积为72cm2,∴AE==6,AC=6×=12.∵菱形ABCD的面积为120cm2,即AC×BD=120∵AC=12,∴BD=20∵四边形ABCD是菱形,∴AO=AC=6,BO=BD=10,∴AB===2故答案为:2【点评】本题考查了菱形的性质、面积,正方形的面积及勾股定理.解决本题的关键是根据面积,求出菱形对角线的长.10.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为∠ACB=90°.【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【解答】解:∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为:∠ACB=90°.【点评】本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.三、解答题11.如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE,求证:AF=AD+CF.【分析】过E点作EG⊥AF,垂足为G,根据题干条件首先证明Rt△AEG≌Rt△AED,即可得AG=AD,同理证明出CF=GF,于是结论可以证明AF=AD+CF.【解答】解:过E点作EG⊥AF,垂足为G,∵∠DAE=∠EAF,∠B=∠AGE=90°,即AE为角平分线,ED⊥AD,EG⊥AG,∴DE=EG,在Rt△AEG和Rt△AED中,,∴Rt△AEG≌Rt△AED(HL),∴AG=AD,∵E是CD的中点∴DE=EC=EG同理可知CF=GF,∴AF=AG+FG=AD+CF.【点评】本题主要考查正方形的性质和全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握正方形的性质,此题难度不大.12.如图,四边形ABCD和四边形CEFG都是正方形,且BC=CD,CE=CG,∠BCD=∠GCE=90°.(1)求证:△BCG≌△DCE;(2)求证:BG⊥DE.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)利用全等三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵∠BCD=∠GCE=90°,∴∠BCG=∠DCE,在△BCG与△DCE中,∴△BCG≌△DCE(SAS);(2)∵△BCG≌△DCE,∴∠HBC=∠ODH,∵∠BHC=∠DHO,∵∠HBC+∠BHC=90°,∴∠ODH+∠DHO=90°,∴∠DOH=90°,∴BG⊥DE.【点评】本题考查三角形全等的判定和性质和正方形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.13.如图(1),在Rt△ABC,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连结AD、CF,AD与CF交于点M.(1)求证:△ABD≌△FBC;(2)如图(2),求证:AM2+MF2=AF2.【分析】(1)根据四边形ABFG、BCED是正方形得到两对边相等,一对直角相等,根据图形利用等式的性质得到一对角相等,利用SAS即可得到三角形全等;(2)根据全等三角形的性质和勾股定理即可得到结论.【解答】解:(1)∵四边形ABFG、BCED是正方形,∴AB=FB,CB=DB,∠ABF=∠CBD=90°,∴∠ABF+∠ABC=∠CBD+∠ABC,即∠ABD=∠CBF,在△ABD和△FBC中,,∴△ABD≌△FBC(SAS);(2)∵△ABD≌△FBC,∴∠BAD=∠BFC,∴∠AMF=180°﹣∠BAD﹣∠CNA=180°﹣(∠BFC+∠BNF)=180°﹣90°=90°,∴AM2+MF2=AF2.【点评】此题考查了全等三角形的判定与性质,正方形的性质,勾股定理,熟练掌握全等三角形的判定定理是解题的关键.14.已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当矩形ABCD的长和宽满足什么条件时,四边形MENF是正方形?为什么?【分析】(1)根据题意可以证明△AMB≌△DMC,从而可以证明结论成立;(2)根据题意和菱形的判定方法可以解答本题;(3)根据题意和(2)中的结论可以解答本题.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵M为AD中点,∴AM=DM,在△ABM和△DCM中,∴△ABM≌△DCM(SAS),∴BM=CM;(2)四边形MENF是菱形.证明:∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,∵MF=CM,∴NE=FM,∵NE∥FM,∴四边形MENF是平行四边形,由(1)知△ABM≌△DCM,∴BM=CM,∵E、F分别是BM、CM的中点,∴ME=MF,∴平行四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM,∵AD:AB=2:1,∴AM=AB,∵∠A=90∴∠ABM=∠AMB=45°,同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°,∵四边形MENF是菱形,∴菱形MENF是正方形,即当AD:AB=2:1时,四边形MENF是正方形.【点评】本题考查矩形的性质、正方形的性质、全等三角形的判定与性质、三角形中位线的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.如图1,P为正方形ABCD内一点,且PA:PB:PC=1:2:3,求∠APB的度数.小明同学的想法是:不妨设PA=x,PB=2x,PC=3x,设法把PA、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答图2中∠APB=135度.请你参考小明同学的方法,解答下列问题.如图3,P是等边△ABC内一点,PA:PB:PC=3:4:5,那么∠APB=150度.请写出推理过程.【分析】图2中,根据旋转的性质知△BCP≌△BAE.由全等三角形的对应边相等、等腰三角形的判定推知△BPE是等腰三角形,则∠BPE=∠BEP=45°;然后由全等三角形的对应边相等、勾股定理证得∠APE=90°;最后根据图中角与角间的数量关系求得∠APB=135°;如图3,将△BCP绕点B顺时针旋转60°得到△ABM,然后连接PM,根据旋转的性质知∠PBM=60°,△BCP≌△BMA.推出△PBM是等边三角形,得到∠BPM ═∠PBM=60°,根据勾股定理的逆定理得到∠APM=90°,于是得到结论.【解答】解:如图2.∵根据旋转的性质知∠PBE=90°,△BCP≌△BAE,∴BP=BE,PC=AE,∴∠BPE=∠BEP=45°,PE=PB,又PA:PB:PC=1:2:3,设PA=x,PB=2x,PC=3x,∴AE=PC=3x,AP=x,PE=2x,∴AE2=AP2+PE2,∴∠APE=90°,∴∠APB=∠APE+∠BPE=90°+45°=135°,即图2中∠APB的度数为135°.故答案是:135;如图3,将△BCP绕点B顺时针旋转60°得到△ABM,然后连接PM,∵根据旋转的性质知∠PBM=60°,△BCP≌△BMA.∴PB=BM,∴△PBM是等边三角形,∴∠BPM═∠PBM=60°,∵PA:PB:PC=3:4:5,∴PA=3x,PB=4x,PC=5x,∴AM=PC=5x,BM=PB=PM=4x,PA=3x,∴AM2=PA2+PM2,∴∠APM=90°,∴∠APB=90°+60°=150°∴PA:PB:PC=3:4:5,那么∠APB=150度,故答案是:150.【点评】本题综合考查了旋转的性质,等边三角形和正方形的性质以及全等三角形的判定与性质等知识点.旋转变化前后,对应角、对应线段分别相等,图形的大小、形状都不变.。

辅导培训--正方形能力提高题练习八年级数学

辅导培训--正方形能力提高题练习八年级数学

正方形能力训练点对点·课时内考点巩固6分钟1. (2019遵义)我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.已知四边形ABCD的中点四边形是正方形,对角线AC与BD的关系,下列说法正确的是()A. AC,BD相等且互相平分B. AC,BD垂直且互相平分C. AC,BD相等且互相垂直D. AC,BD垂直且平分对角2. (2019毕节)如图,点E在正方形ABCD边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A. 3B. 3C. 5D. 53.(2019扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.第2题图第3题图点对线·板块内考点衔接15分钟1. (人教八下P67第1(3)题改编)如图,在正方形ABCD的外侧作等边△ADE,AC、BE相交于点F,则∠BFC为()A. 45°B. 55°C. 60°D. 75°2.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. 16 B.13 C.15 D.14第1题图第2题图123. (2019陕师大附中模拟)如图,在边长为2的正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,连接AF 交BC 于点G ,则BG 的长为( )A. 22-2B. 22-1C. 2D. 14. (2019菏泽)如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是________.第3题图第4题图5. (2019黄冈)如图,ABCD 是正方形,E 是CD 边上任意一点,连接AE ,作BF ⊥AE ,DG ⊥AE ,垂足分别为F ,G .求证:BF -DG =FG .第5题图6. (2019凉山州)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .求证:OE =OF .第6题图。

精品_八年级数学下册_正方形练习题

精品_八年级数学下册_正方形练习题

八年级数学下册正方形能力提高题1.判别题:(1)四边相等的四边形是正方形。

() (2)四个内角相等的四边形是正方形。

()(3)邻边相等的平行四边形是正方形。

() (4)有一个角为直角的平行四边形是正方形。

() (5)对角线相等的平行四边形是正方形。

() (6)正方形既是菱形又是矩形。

()2.正方形一边上任一点到这个正方形两条对角线的距离之和等于对角线的()A.31B.21C.41D.2倍3.边长为a的正方形的面积与对角线为b的正方形的面积相等,则a、b的大小关系是()A.a>bB.a=bC.a<bD.a≥b4.如图,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个第4题图第5题图第6题图5.在平面直角坐标系中,称横、纵坐标均为整数的点为整点,如下图所示的正方形内(包括边界)整点的个数是()A.13B.21C.17D.256.如图,正方形ABCD的对角线AC与BD相交于O点,在BD上截取BE=BC,连接CE,点P是CE上任意一点,PM⊥BD于M,PN⊥BC于N,若正方形ABCD的边长为1,则PM+PN=()A.1B.2C.22D.217.如图,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF,垂足为G,且AG=AB,则∠EAF= 度.CA DPEF第7题图第8题图第9题图第10题图8.如图,在正方形ABCD中,AB=8,AE=2,EF=25点E在AB上,点F在AD上,则CF=9.如图,ABCD是正方形,是BC中点,将正方形折起,使点A与点M重合,设折痕为EF,若正方形面积为64,那么△AEM的面积是_________10.如图,在正方形ABCD中,P是AD上任一点,PE⊥AC,PF⊥BD,点E、F分别是垂足,BD+AC=212,则PE+PF=______11.如图,以正方形ABCD的对角线BD为边作正三角形BDE,过E作EF⊥AD,交DA的延长线于F,则∠AEF= ;若正三角形BDE的周长是122,正方形面积为_______第11题图第12题图第13题图12.如图,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D分别是正方形对角线的交点、如果有2015个这样大小的正方形这样摆放,则阴影面积的总和是cm2.13.如图,边长为2a的正方形ABCD和边长为2b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为,线段O1O2的长为.14.如图,在正方形ABCD中,E是DB延长线上的一点,且∠ECB=150.求证:EC=BD.15.如图,在正方形ABCD中,M为BC上任一点,N是CD的中点,且AM=DC+CM.求证:AN平分∠DAM.16.如图,在正方形ABCD中,对角线AC与BD相交于点O,AF平分∠BAC,交BD于点F.求证:AB-OF=OA.17.如图,在正方形ABCD中,E是BC边上一点,过点E作AE的垂线分别交CD、AB的延长线于点F、G.求证:BE=BG+CF.18.如图,在正方形ABCD中,△PAQ是正三角形,设AB=10,求PB的长.。

初二上册数学正方形练习题

初二上册数学正方形练习题

初二上册数学正方形练习题正方形是一种特殊的四边形,它具有许多有趣的性质和特点。

通过解决正方形练习题,我们可以进一步理解和巩固对正方形的认识。

以下是一些初二上册数学正方形练习题,帮助我们加深对正方形的理解。

练习题一:求正方形的周长和面积问题:一个正方形的边长为8cm,求它的周长和面积。

解答:设正方形的边长为a,则周长C和面积S的计算公式如下:周长:C = 4a面积:S = a²根据题目给出的信息,我们可以得出:a = 8cm代入公式,计算周长和面积:周长:C = 4 × 8 = 32cm面积:S = 8² = 64cm²因此,这个正方形的周长是32cm,面积是64cm²。

练习题二:判断正方形的性质问题:判断下列四边形是否为正方形,并给出理由。

四边形A:ABCD,AB = BC = CD = DA,∠ABC = 90°四边形B:EFGH,EF = FG = GH = HE,∠EFG ≠ 90°解答:四边形A:ABCD,AB = BC = CD = DA,∠ABC = 90°根据定义,正方形的四条边相等且四个内角均为90°,因此,四边形A满足正方形的定义,是一个正方形。

四边形B:EFGH,EF = FG = GH = HE,∠EFG ≠ 90°虽然四边形B的四条边相等,但是其中一个内角不等于90°,因此,四边形B不满足正方形的定义,不是一个正方形。

练习题三:求解正方形的对角线长度问题:一个正方形的边长为10cm,求它的对角线长度。

解答:设正方形的边长为a,对角线的长度为d。

根据正方形的性质,可以使用勾股定理求解对角线的长度。

根据勾股定理:d² = a² + a²d² = 2a²d = √(2a²)代入题目给出的信息,我们可以得出:a = 10cm计算对角线的长度:d = √(2 × 10²) = √(200) ≈ 14.14cm因此,这个正方形的对角线长度约为14.14cm。

初二数学下册正方形练习题

初二数学下册正方形练习题

初二数学下册正方形练习题正方形是我们学习数学时经常会遇到的一个基本图形,通过练习正方形的题目,不仅能够加深对正方形的理解,还能够巩固数学知识。

下面是一些初二数学下册正方形练习题,希望对你的学习有所帮助。

1. 填空题
(1)一个正方形的边长是6厘米,那么它的周长是__________厘米。

(2)一个正方形的周长是24厘米,那么它的边长是__________厘米。

(3)一个正方形的对角线长8厘米,那么它的边长是__________厘米。

(4)一个正方形的面积是25平方厘米,那么它的边长是
__________厘米。

2. 选择题
(1)一个正方形的边长是x,那么它的周长表示为:
A. 2x
B. x/2
C. 4x
D. 4/x
(2)下列哪个图形不是正方形?
A. 边长相等的四边形
B. 对角线相等的四边形
C. 角度相等的四边形
D. 边平行的四边形
3. 解答题
(1)已知一个正方形的面积是36平方厘米,求它的周长。

(2)一个正方形的边长是x厘米,求它的面积,并写出面积的单位。

4. 应用题
小明用蓝色线段画了一个正方形,它的边长是8厘米。

然后他用红色线段画了一个正方形,它的边长是蓝色正方形边长的两倍。

请计算红色正方形的面积是多少平方厘米。

5. 综合题
一个正方形的周长是32厘米,另一个正方形的边长是第一个正方形边长的两倍减8。

求第二个正方形的面积。

以上是一些初二数学下册关于正方形的练习题,通过做这些题目,可以让我们对正方形的性质和运算有更深入的了解。

希望这些练习题对你的数学学习有所帮助。

初二数学下册正方形练习题

初二数学下册正方形练习题

初二数学下册正方形练习题正方形是初中数学课程中的重要内容之一,它具有独特的性质和特点。

通过解答一些关于正方形的练习题,可以帮助学生加深对正方形的理解。

以下是一些关于正方形的练习题,希望对初二学生提供帮助。

问题一:已知正方形ABCD的边长为7cm,求正方形的周长和面积。

解答一:正方形的周长等于4倍的边长,因此正方形ABCD的周长为4 × 7cm = 28cm。

正方形的面积等于边长的平方,所以正方形ABCD 的面积为7cm × 7cm = 49cm²。

问题二:已知正方形EFGH的面积为64cm²,求正方形的边长和周长。

解答二:正方形的面积等于边长的平方,所以正方形EFGH的边长可以通过求根号来计算。

即√64cm² = 8cm。

正方形的周长等于4倍的边长,所以正方形EFGH的周长为4 × 8cm = 32cm。

问题三:已知正方形JKLM的周长为36cm,求正方形的边长和面积。

解答三:正方形的周长等于4倍的边长,所以正方形JKLM的边长为36cm ÷ 4 = 9cm。

正方形的面积等于边长的平方,所以正方形JKLM的面积为9cm × 9cm = 81cm²。

问题四:正方形NOPQ的对角线长度为10cm,求正方形的边长和面积。

解答四:正方形的对角线将正方形分割为两个等边三角形,且正方形的对角线正好是等边三角形的斜边。

根据勾股定理,我们可以计算出等边三角形的边长,即√(10cm ÷ 2)² + (10cm ÷ 2)² = √(25cm + 25cm) = √50cm ≈ 7.07cm。

因此正方形NOPQ的边长约为7.07cm。

正方形的面积等于边长的平方,所以正方形NOPQ的面积约为(7.07cm)² ≈ 50cm²。

通过以上练习题的解答,我们可以看到正方形的周长和面积的计算方法,以及对角线与边长之间的关系。

初二上册数学正方形练习题

初二上册数学正方形练习题

初二上册数学正方形练习题正方形是我们数学学习中非常重要的一个几何图形,它具有四条边长度相等且与相邻边垂直的特点。

在初二上册数学课本中,有一些关于正方形的练习题让我们巩固和运用所学的知识。

本文将针对这些练习题展开讨论,并给出解答。

1. 题目一:已知正方形的周长为12cm,求正方形的边长和面积。

解答:设正方形的边长为x,则周长为12cm,根据正方形的性质可知4x=12,解得x=3cm。

因此正方形的边长为3cm,面积为3cm × 3cm = 9cm²。

2. 题目二:已知正方形的面积为25cm²,求正方形的周长和对角线长。

解答:设正方形的边长为x,则面积为25cm²,根据正方形面积的计算公式可得x²=25,解得x=5cm。

因此正方形的边长为5cm,周长为4 × 5cm = 20cm。

正方形的对角线长可通过勾股定理计算,即对角线长的平方等于边长的平方和边长的平方,即d²=5²+5²=50,解得d=√50,约等于7.07cm。

3. 题目三:一个正方形的边长是另一个正方形边长的3倍,求较大正方形边长的平方与较小正方形边长的平方的比值。

解答:设较小正方形的边长为x,则较大正方形的边长为3x。

要求的比值即为(3x)²/x²,化简得9x²/x²=9。

因此,较大正方形边长的平方与较小正方形边长的平方的比值为9。

4. 题目四:已知正方形ABC D中,E、F、G分别为AB、BC、CD的中点,连线AE、BF和CG,求连接线段所形成的三角形的面积与正方形面积的比值。

解答:画出图形后可发现,连接线段所形成的三角形为等边三角形,因为AE=BF=CG。

设正方形边长为x,则三角形的边长为x,根据正三角形面积的计算公式可得三角形的面积为√3/4 × x²。

正方形的面积为x²,要求的比值即为(√3/4 × x²)/x²=√3/4。

初二正方形练习题

初二正方形练习题

初二正方形练习题正方形是基本的几何图形之一,也是初中数学中的重要内容之一。

通过解决正方形练习题,我们可以加深对正方形的理解和运用。

下面是一些初二正方形练习题,帮助你巩固对正方形的知识和技能。

题目一:已知正方形的边长为a,求其面积和周长。

解答一:正方形的面积可以通过边长的平方来计算,所以面积等于a的平方。

正方形的周长可以通过将四条边的长度相加来计算,所以周长等于4a。

题目二:已知正方形的面积为16平方厘米,求其边长和周长。

解答二:正方形的面积是边长的平方,即a的平方等于16。

所以a等于4。

正方形的周长可以通过将四条边的长度相加来计算,所以周长等于4a,即4乘以4,等于16。

题目三:一块田地是正方形的,它的周长是36米,求该田地的面积。

解答三:正方形的周长是四条边的长度之和,等于36米。

所以每条边的长度等于36除以4,等于9米。

因为正方形的四条边相等,所以边长为9米。

正方形的面积是边长的平方,即9的平方等于81平方米。

所以该田地的面积是81平方米。

题目四:一个正方形和一个长方形的周长相等,已知正方形的边长是6米,长方形的长是8米,求长方形的宽和面积。

解答四:正方形的周长是四条边的长度之和,等于6的四倍,即24米。

长方形的周长也是两条长边和两条短边的长度之和,已知周长等于24米,长等于8米,所以短边等于(24-8*2)/2,等于4米。

长方形的面积是长乘以宽,即8乘以4,等于32平方米。

所以长方形的宽是4米,面积是32平方米。

通过以上的练习题,我们可以对初二阶段的正方形知识有更深入的了解。

掌握了正方形的特性和计算方法,能够在解决实际问题和数学题目时更加得心应手。

希望通过不断的练习和巩固,正方形的知识能够成为我们数学学习的强大工具。

初二数学正方形练习题

初二数学正方形练习题

初二数学正方形练习题正文:本文为初二数学正方形练习题,将提供一系列的正方形相关练习题,旨在帮助初二学生巩固和提高正方形的认识与运用能力。

请同学们认真阅读问题,并给出自己的答案。

以下是具体练习题:1. 单选题:下列选项中,不是正方形特点的是()A. 四条边长度相等B. 两对相邻边平行C. 两条对角线相等D. 所有内角均为直角2. 客观题:若一个正方形的边长为5cm,则该正方形的面积是()cm²。

3. 主观题:请说明正方形与矩形的区别。

4. 计算题:一个正方形的周长为36cm,求其边长和面积。

5. 应用题:小明用一个线段测量了一个正方形的边长,结果为2.5cm。

请回答下列问题:a) 这个正方形的周长是多少?b) 这个正方形的面积是多少?6. 解答题:请证明正方形的对角线相等。

请同学们根据题目要求,在纸上作答,并互相讨论解题思路与答案。

完成后,可以对照下方的答案解析进行自我评估。

答案解析:1. 答案:B。

正方形的四条边长度相等,两对相邻边平行,两条对角线相等,所有内角均为直角。

选项B是矩形的特点,不是正方形的特点。

2. 答案:25。

正方形的面积公式为边长 ×边长,代入边长5cm即可得到。

3. 正方形与矩形的区别在于,正方形的四条边长度相等,两条对角线相等,并且所有内角均为直角;而矩形只要求相对的两条边长度相等,对角线不一定相等。

4. 解答:设正方形的边长为x,则周长为4x。

根据题意,4x=36cm,解方程可得 x=9cm。

正方形的面积为边长的平方,即9cm × 9cm =81cm²。

5. a) 这个正方形的周长为 4 × 2.5cm = 10cm。

b) 这个正方形的面积为 2.5cm × 2.5cm = 6.25cm²。

6. 证明:设正方形的边长为a,对角线长度为d。

根据勾股定理,正方形的对角线等于边长的√2倍。

即d = a × √2。

人教版初二数学提高练习题

人教版初二数学提高练习题

人教版初二数学提高练习题在初中阶段,数学是学生们的一门重要学科之一。

为了帮助学生巩固和提高他们的数学技能,人教版初二数学教材提供了一系列的提高练习题。

这些练习题旨在激发学生们的思维能力和解决问题的能力,帮助他们更深入地理解和应用数学知识。

1. 简单运算的提高练习题这部分练习题主要涵盖了加法、减法、乘法和除法等基本运算。

学生们可以通过这些题目熟练掌握四则运算,并提高计算速度和准确性。

例如:1) 计算:55 + 36 - 12 × 4 ÷ 2 = ?2) 计算:2/5 + 3/7 - 1/3 = ?2. 等式与方程的提高练习题这部分练习题旨在让学生们进一步理解等式和方程的概念,并培养他们解决方程的能力。

学生们需要运用代数运算的规则,解答这些涉及未知数的问题。

例如:1) 解方程:2x + 5 = 15,求x的值。

2) 已知方程3(x - 4) = 5x,求解方程的解。

3. 几何图形的提高练习题这部分练习题主要涉及到几何图形的性质和计算。

学生们需要熟悉不同几何图形的定义、特点以及计算周长、面积等。

例如:1) 计算正方形的周长,已知边长为5cm。

2) 计算三角形的面积,已知底为8cm,高为6cm。

4. 数据统计的提高练习题这部分练习题旨在培养学生们分析和解读数据的能力。

学生们需要理解平均数、中位数、范围等统计概念,并进行数据的整理和计算。

例如:1) 计算一组数据的平均数和中位数。

2) 研究一个班级学生的身高数据,制作柱状图并分析。

以上仅为人教版初二数学提高练习题的一部分示例。

通过完成这些练习题,学生们可以提高他们的数学能力和解题技巧,为进一步学习数学打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方形(提高)【巩固练习】一.选择题1. 在正方形ABCD 的边AB 、BC 、CD 、DA 上分别任意取点E 、F 、G 、H .这样得到的四边形EFGH中,是正方形的有( )A .1个B .2个C .4个D .无穷多个2. 如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则PQ 的长为( )A.12B.13C.14D.153. 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S =2B .S =2.4C .S =4D .S 与BE 长度有关4. 如图,点(0,0)O ,(0,1)B 是正方形1OBB C 的两个顶点,以它的对角线1OB 为一边作正方形121OB B C ,以正方形121OB B C 的对角线2OB 为一边作正方形232OB B C ,再以正方形232OB B C 的对角线3OB 为一边作正方形343OB B C ,…,依次进行下去,则点6B 的坐标是( )A .(8,0)-B .(0,8)-C .(42,0)-D .(82,0)-5. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为1S ,2S ,则12S S +的值为( )A.16B.17C.18D.196. 如图,四边形ABCD 中,AD =DC ,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD 面积为16,则DE 的长为( )A .3B .2C .4D .8二.填空题7.延长正方形ABCD 的BC 边至点E ,使CE =AC ,连结AE ,交CD 于F ,那么∠AFC 的度数为______,若BC =4cm ,则△ACE 的面积等于______.8. 在正方形ABCD 中,E 为BC 上一点,EF ⊥AC ,EG ⊥BD ,垂足分别为F 、G ,如果cm 25=AB ,那么EF +EG 的长为______.9.已知:如图,△ABC 中,∠ACB =90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D ,E ,F 分别是垂足,且BC =8cm ,CA =6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于______cm .10.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B 、D 作DE⊥a 于点E 、BF⊥a于点F ,若DE =4,BF =3,则EF 的长为_____.11.点P 是正方形ABCD 边AB 上一点(不与A 、B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE ,连接BE ,则∠CBE =_____°12. 如图,平面内4条直线1234l l l l ,,,是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD 的4个顶点A 、B 、C 、D 都在这些平行线上,其中点A、C分别在直线1l 和4l 上,该正方形的面积是 平方单位.三.解答题13.如图,在正方形ABCD 中,P 为对角线BD 上一点,PE ⊥BC ,垂足为E ,PF ⊥CD ,垂足为F ,求证:EF =AP14.如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连结EB 、EA ,延长BE 交边AD于点F .(1)求证:△ADE ≌△BCE ;(2)求∠AFB 的度数.15.如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连结DP 交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ;(2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的61; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,△ADQ 恰为等腰三角形.【答案与解析】一.选择题1.【答案】D ;【解析】在正方形四边上任意取点E 、F 、G 、H ,AH =DG =CF =BE ,能证明四边形EFGH 为正方形,则说明可以得到无穷个正方形.2.【答案】B ;【解析】过P 作PF ⊥BC 于F ,可证△PFQ ≌△ADE ,则PQ =2212513+=.3. 【答案】A ;【解析】设正方形EFGB 的边长是a ,则S =ABC CFG AFGB S S S +-△△梯形=×(a +2)×a + ×2×2-×(a +2)×a =2. 4.【答案】A ;【解析】2(2,0)B ,4(0,4)B -,6(8,0)B -.5.【答案】B ;【解析】设正方形2S 的边长为x ,根据等腰直角三角形的性质知,AC 2x ,2x CD =,∴AC=2CD ,CD =623=.EC =22,28S =,∵1S 的边长为3,1S 的面积为3×3=9,∴12S S +=8+9=17.6.【答案】C ;【解析】如图,过点D 作BC 的垂线,交BC 的延长线于F ,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°,AD =DC ,利用AAS 可以判断△ADE≌△CDF,∴DE=DF ,ABCD S 四边形=S 正方形DEBF =16,DE =4.二.填空题 7.【答案】112.5°,822cm ;【解析】∠AEC =∠CEA =18013522.52-=°,∠AFC =90°+22.5°=112.5°,面积等于21424822cm ⨯⨯=. 8.【答案】5cm ;【解析】AC =BD =52210⨯=,EF +EG =12BD =5. 9.【答案】2;【解析】OD =OE =OF ,可知四边形ODCE 是正方形,设CD =CE =x ,BD =BF =y ,AE =AF=z ,所以8x y +=,10y z +=,6x z +=,解得2x =,即O 点到三边的距离.10.【答案】7;【解析】因为ABCD 是正方形,所以AB =AD ,∠B=∠A=90°,则有∠ABF=∠DAE,又因为DE⊥a 、BF⊥a ,根据AAS 易证△AFB≌△AED,所以AF =DE =4,BF =AE=3,则EF 的长=7.11.【答案】45;【解析】过E 点作EF ⊥AB 的延长线于F ,易证△ADP ≌△FPE ;BF =EF ,所以∠CBE =∠EBF =45°.12.【答案】5;【解析】过D 点作直线EF 与平行线垂直,与1l 交于点E ,与4l 交于点F .易证△ADE ≌△DFC ,得CF =1,DF =2.根据勾股定理可求25CD =得正方形的面积.三.解答题13.【解析】证明:连结PC∵正方形ABCD∴AB =BC ,∠ABD =∠DBC =45° ∠BCD =90°∵BP =BP∴△ABP ≌△CBP∴AP = CP∵PE ⊥BC ,PF ⊥DC∴四边形PECF 为矩形∴EF =PC∴EF =AP14.【解析】解:(1)∵四边形ABCD 是正方形,∴∠ADC =∠BCD =90°,AD =BC .∵△CDE 是等边三角形,∴∠CDE =∠DCE =60°,DE =CE .∴∠ADE =∠BCE =30°.∵AD =BC ,∠ADE =∠BCE ,DE =CE ,∴△ADE ≌△BCE .(2)∵△ADE ≌△BCE , ∴AE =BE ,∴∠BAE =∠ABE .∵∠BAE +∠DAE =90°,∠ABE +∠AFB =90°,∠BAE =∠ABE ,∴∠DAE =∠AFB .∵AD =CD =DE , ∴∠DAE =∠DEA .∵∠ADE =30°,∴∠DAE =75°,∴∠AFB =75°.15.【解析】(1)证明:∵四边形ABCD 是正方形,∴AD =AB ,∠DAC =∠BAC =45°,AQ =AQ∴△ADQ ≌△ABQ (SAS );(2)以A 为原点建立如图所示的直角坐标系,过点Q 作QE ⊥y 轴于点E ,QF ⊥x 轴于点F .21AD ×QE =61ABCD S 正方形=38 ∴QE =34 ∵点Q 在正方形对角线AC 上 ∴Q 点的坐标为)34,34( ∴过点D(0,4),)34,34(Q 两点的函数关系式为:24y x =-+,当y =0时,x =2,即P 运动到AB 中点时,△ADQ 的面积是正方形ABCD 面积的61; (3)若△ADQ 是等腰三角形,则有QD =QA 或DA =DQ 或AQ =AD①当点P 运动到与点B 重合时,由四边形ABCD 是正方形知QD =QA 此时△ADQ 是等腰三角形;②当点P与点C重合时,点Q与点C也重合,此时DA=DQ,△ADQ是等腰三角形;③如图,设点P在BC边上运动到CP=x时,有AD=AQ∵AD∥BC ∴∠ADQ=∠CPQ.又∵∠AQD=∠CQP,∠ADQ=∠AQD,∴∠CQP=∠CPQ.∴CQ=CP=x.4,AQ=AD=4.∵AC=24-4.∴x=CQ=AC-AQ=24-4时,△ADQ是等腰三角形.即当CP=2。

相关文档
最新文档