四川省成都市2017-2018学年度上期八年级期末数学试题(北师大版)

合集下载

北师大版2017-2018学年度八年级上学期数学期末试题及答案

北师大版2017-2018学年度八年级上学期数学期末试题及答案

2017-2018学年第一学期八年级期末测试数 学 试 题本试题共4页,满分为120分,考试时间为90分钟。

答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试题规定的位置。

考试结束后,仅交回答题卡......。

一、选择题(共15题,每题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1.下列实数中是无理数的是(下列实数中是无理数的是()) A.0.38 B.π C.4 D. 722-2.2.以下列各组数为三角形的边长,能构成直角三角形的是以下列各组数为三角形的边长,能构成直角三角形的是( ) ( ) A.8,12, 17 B.1,2,3 C.6,8,10 D.5,12,93.3.在平面直角坐标系中,点在平面直角坐标系中,点P(-2P(-2,,3)3)关于关于x 轴的对称点在轴的对称点在( ) ( ) A.A.第四象限第四象限 B.B.第三象限第三象限C. C.第二象限第二象限D. D.第一象限第一象限 4.4.等腰三角形一边长等于等腰三角形一边长等于5,一边长等于9,则它的周长是,则它的周长是( ) ( ) A.14B.23C.19D.19或235.5.每年的每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读数情况,随机调查了50名 学生的册数,统计数据如表所示:学生的册数,统计数据如表所示:册数册数 0 1 2 3 4 人数人数31316171则这则这50名学生读书册数的众数、中位数是名学生读书册数的众数、中位数是 A.3A.3,,3 B.33 B.3,,2 C.22 C.2,,3 D.23 D.2,,26.6.一次函数一次函数y=kx+b y=kx+b,,y 随x 增大而增大,且b>0b>0,则该函数的大致图象为,则该函数的大致图象为( )( )7.7.三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( ) ( ) A.A.三边垂直平分线的交点三边垂直平分线的交点 B.B.三条中线的交点三条中线的交点C.C.三条高的交点三条高的交点D.D.三条角平分线的交点三条角平分线的交点8.8.关于函数关于函数y=y=--2x 2x++1,下列结论正确的是,下列结论正确的是 ( ))A.A.图象必经过(-图象必经过(-22,1)B.y 随x 的增大而增大的增大而增大C.C.图象经过第一、二、三象限图象经过第一、二、三象限D. D.当当x >12时,时,y<0 y<0 9.9.下列图形中,已知∠下列图形中,已知∠1=1=∠∠2,2,则可得到则可得到AB AB∥∥CD 的是的是 ( ) ( )10.10.某班为筹备元旦某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决 定最终买哪种水果,下面的调查数据中,他最关注的是(定最终买哪种水果,下面的调查数据中,他最关注的是( ) A.A.中位数中位数 B.B.平均数平均数C. C.加权平均数加权平均数D. D.众数众数 11.11.如图,以两条直线如图,以两条直线1l 、2l 的交点坐标为解的方程组是的交点坐标为解的方程组是A .11x y x y -=ìí2-=î,B B..121x y x y -=-ìí-=-î,C .121x y x y -=-ìí-=î,D D..121x y x y -=ìí-=-î,12.12.若点若点A (a+1a+1,,b ﹣2)在第二象限,则点B (﹣(﹣a a ,b+1b+1)在()在( ) A.A.第一象限第一象限 B.B.第二象限第二象限C. C.第三象限第三象限D. D.第四象限第四象限 13.13.下列命题是真命题的是下列命题是真命题的是 (( ))A.A.如果如果a 2=b 2,则a=b B.a=b B.两边一角对应相等的两个三角形全等两边一角对应相等的两个三角形全等 C.81的算术平方根是9 D.2=x ,1=y 是方程32=-y x 的解的解 14.14.如图,在△如图,在△ABC ABC 中,中,AB=AC AB=AC,,BD 平分∠平分∠ABC ABC 交AC 于点D ,AE AE∥∥BD 交 CB 的延长线于点E .若∠.若∠E=35E=35°,°, 则∠则∠BAC BAC 的度数为(的度数为( ) A.40A.40°° B.45 B.45℃℃ C.60 C.60°° D.70 D.70°°15.15.如图所示,正方形如图所示,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路为正方形边上一动点,运动路线是线是A →D →C →B →A ,设P 点经过的路程为x ,以点A ,P ,D 为顶点为顶点的三角形的面积为的三角形的面积为y ,则下列图象能大致反映y 与x 的函数关系的是(的函数关系的是( ))O1-1 2 3 3 2 1 x y 11题图题图1l 2l -114题图题图A B C D二、填空题(共6题,每题3分,共18分.把答案填在题中的横线上.) 16.8×2的= .17.17.已知已知a ,b 满足方程组îíì=+=-5222b a b a ,则3a+b 的值为的值为 .. 18.18.直线直线1+=kx y 与12-=x y 平行,则1+=kx y 的图象不经过的图象不经过 象限.象限. 19.19.直线经过直线经过A(0,2)A(0,2)和和B(3,0)B(3,0)两点两点,,那么这个一次函数关系式是那么这个一次函数关系式是 .. 20.20.如图如图,,在Rt △ABC 中,∠B=90B=90°°,AB=3,BC=4,将△将△ABC ABC 折叠折叠,,使点B 恰好落在边AC 上,与 点B ′重合′重合,AE ,AE 为折痕为折痕,,,则EB= .21.21.等腰三角形一腰上的高与另一腰的夹角为等腰三角形一腰上的高与另一腰的夹角为3030°,腰长为°,腰长为6,则其底边长是,则其底边长是 . . 三、解答题(本大题共7题,共57分,解答应写出文字说明或演算步骤)。

《试卷3份集锦》成都市2017-2018年八年级上学期数学期末调研试题

《试卷3份集锦》成都市2017-2018年八年级上学期数学期末调研试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若8,5BC OB ==,则OM 的长为( )A .3B .4C .5D .6【答案】A 【分析】首先由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后由勾股定理求得AB 的长,即CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,继而求得答案.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =BD =2OB =10,∴CD =AB 221086-=,∵M 是AD 的中点,∴OM =12CD =1. 故选:A .【点睛】此题考查了矩形的性质、勾股定理以及三角形中位线的性质,利用勾股定理求得AB 的长是解题关键. 2.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+【答案】D【解析】设一次函数关系式为y=kx+b ,y 随x 增大而减小,则k <1;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】设一次函数关系式为y=kx+b ,∵图象经过点(1,2),∴k+b=2;∵y 随x 增大而减小,∴k <1.即k 取负数,满足k+b=2的k 、b 的取值都可以.故选D .【点睛】本题考查了待定系数法求一次函数解析式及一次函数的性质,为开放性试题.3.对于任意的正数m ,n 定义运算※为:m ※n=))m n m n ≥<计算(3※2)×(8※12)的结果为( )A .2-B .2C .D .20 【答案】B【解析】试题分析:∵3>2,∴3※∵8<22,∴8※,∴(3※2)×(8※22)=×=2.故选B .考点:2.二次根式的混合运算;2.新定义.4.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:1x -,-a b ,3,21x +,a ,1x +分别对应下列六个字:益,爱,我,数,学,广,现将223(1)3(1)a x b x ---因式分解,结果呈现的密码信息可能是( )A .我爱学B .爱广益C .我爱广益D .广益数学【答案】C【分析】先运用提公因式法,再运用公式法进行因式分解即可.【详解】因为223(1)3(1)a x b x ---=23(1)()x a b --=3(1)(1)()x x a b +--所以结果呈现的密码信息可能是:我爱广益.故选:C【点睛】考核知识点:因式分解.掌握提公因式法和套用平方差公式是关键.5.4的算术平方根是( )A .4B .2 CD .2± 【答案】B【分析】直接利用算术平方根的定义得出答案.【详解】解:4的算术平方根是:1.故选:B.【点睛】此题主要考查了实数的相关性质,正确把握相关定义是解题关键.6.下列长度的三条线段能组成三角形的是A .2,3,5B .7,4,2C .3,4,8D .3,3,4 【答案】D【解析】试题解析:A .∵3+2=5,∴2,3,5不能组成三角形,故A 错误;B .∵4+2<7,∴7,4,2不能组成三角形,故B 错误;C .∵4+3<8,∴3,4,8不能组成三角形,故C 错误;D .∵3+3>4,∴3,3,4能组成三角形,故D 正确;故选D .7.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)【答案】D【解析】因为∠DAM 和∠CBM 是直线AD 和BC 被直线AB 的同位角,因为∠DAM =∠CBM 根据同位角相等,两直线平行可得AD ∥BC ,所以D 选项错误,故选D.8.点P (﹣3,﹣4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】根据第三象限内点的横坐标小于零,纵坐标小于零,可得:点P (﹣3,﹣4)位于第三象限. 故选C.9.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( ) A .()113802x x -= B .x (x ﹣1)=380C .2x (x ﹣1)=380D .x (x+1)=380 【答案】B【分析】设该班级共有同学x 名,每个人要发(x-1)条短信,根据题意可得等量关系:人数×每个人所发的短信数量=总短信数量.【详解】设全班有x 名同学,由题意得:x (x-1)=380,故选:B .【点睛】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系,列出方程. 10.点M (3,-4)关于y 轴的对称点的坐标是( )A .(3,4)B .(-3,4)C .(-3,-4)D .(-4,3)【答案】C 【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P (x ,y )关于y 轴的对称点P ′的坐标是(−x ,y ).【详解】∵点M (3,−4),∴关于y 轴的对称点的坐标是(−3,−4).故选:C .【点睛】此题主要考查了关于x 轴、y 轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.二、填空题11.如图,在四边形ABCD 中,AD BC =且//AD BC ,8AB =,5AD =,AE 平分DAB ∠交BC 的延长线于F 点,则CF =_________.【答案】3 ;【分析】由//AD BC ,AE 平分DAB ∠,得到∠EAB=∠F ,则AB=BF=8,然后即可求出CF 的长度.【详解】解:∵//AD BC ,∴∠DAE=∠F ,∵AE 平分DAB ∠,∴∠DAE=∠EAB ,∴∠EAB=∠F ,∴AB=BF=8,∵5AD BC ==,∴853CF CF BC =-=-=;故答案为:3.【点睛】本题考查了平行线的性质,角平分线的定义,以及等角对等边,解题的关键是熟练掌握所学的性质,得到AB=BF.12.如图,在△ABC 中,∠ACB=90°,AC=15,BC=9,点P 是线段AC 上的一个动点,连接BP ,将线段BP 绕点P 逆时针旋转90°得到线段PD ,连接AD ,则线段AD 的最小值是______.【答案】32【分析】如图,过点D作DE⊥AC于E,有旋转的性质可得DP=BP,∠DPB=90°,由“AAS”可证△DEP≌△PCB,可得DE=CP,EP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.【详解】如图,过点D作DE⊥AC于E,∵将线段BP绕点P逆时针旋转90°得到线段PD,∴DP=BP,∠DPB=90°,∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,∴△DEP≌△PCB(AAS)∴DE=CP,EP=BC=9,∵AE+PC=AC-EP=6∴AE+DE=6,∵AD2=AE2+DE2,∴AD2=AE2+(6-AE)2,∴AD2=2(AE-3)2+18,当AE=3时,AD有最小值为2,故答案为2.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,利用二次函数的性质求最小值是本题的关键.13.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q 在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q运动路线的长为_____.【答案】3或1【分析】如图,连接CP,BQ,由“SAS”可证△ACP≌△ABQ,可得BQ=CP,可得点Q运动轨迹是A→H→B,分两种情况讨论,即可求解.【详解】解:如图,连接CP,BQ,∵△ABC,△APQ是等边三角形,∴AP=AQ=PQ,AC=AB,∠CAP=∠BAQ=60°,∴△ACP≌△ABQ(SAS)∴BQ=CP,∴当点P运动到点B时,点Q运动到点H,且BH=BC=6,∴当点P在AB上运动时,点Q在AH上运动,∵△BPQ是等腰三角形,∴PQ=PB,∴AP=PB=3=AQ,∴点Q运动路线的长为3,当点P在BC上运动时,点Q在BH上运用,∵△BPQ是等腰三角形,∴PQ=PB,∴BP=BQ=3,∴点Q运动路线的长为3+6=1,故答案为:3或1.【点睛】本题考查了点的运动轨迹,全等三角形的判定和性质,等边三角形的性质,确定点Q的运动轨迹是本题的关键.14.比较大小:(填“>”、“<”、“=”)【答案】>【分析】首先将3放到根号下,然后比较被开方数的大小即可. 【详解】39,98=>,3∴>故答案为:>.【点睛】本题主要考查实数的大小比较,掌握实数大小比较的方法是解题的关键. 15.若关于x 的分式方程3111m x x +=--无解,则m 的值是_____. 【答案】2【详解】解:去分母,得m ﹣2=x ﹣1,x=m ﹣1.∵关于x 的分式方程无解,∴最简公分母x ﹣1=0,∴x=1,当x=1时,得m=2,即m 的值为2.故答案为2.16.因式分解:3a a -=_________.【答案】()()11a a a +-【分析】3a a -提取公因式a 得()21a a -,利用平方差公式分解因式得()()11a a a +-. 【详解】解:3a a -=()21a a -=()()11a a a +-, 故答案为:()()11a a a +-.【点睛】本题考查了因式分解,掌握提公因式法和平方差公式是解题的关键.17.已知直线y kx 3=-与直线y x 2=-+相交于x 轴上一点,则k =______.【答案】1.5【解析】首先求出一次函数y x 2=-+与x 轴交点,再把此点的坐标代入y kx 3=-,即可得到k 的值.【详解】直线y x 2=-+与x 轴相交,x 20∴-+=,x 2∴=,∴与x 轴的交点坐标为()2,0,把()2,0代入y kx 3=-中:2k 30-=,k 1.5∴=,故答案为:1.5.【点睛】本题考查了两条直线的交点问题,两条直线与x 轴的交点坐标,就是由这两条直线相对应的一次函数表达的y=1.三、解答题18.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,当△PCD 的周长最小时,在图中画出点P 的位置,并求点P 的坐标.【答案】图见详解;P (197,127) 【分析】过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ,DP CP DP EP ED +=+=的值最小,即可得到P 点;通过A 和B 点的坐标,运用待定系数法求出直线AB 的函数表达式,再通过D 和E 点的坐标,运用待定系数法求出直线DE 的函数表达式,联合两个表达式解方程组求出交点坐标即可.【详解】解:如图所示,过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ;∵△PCD 的周长=CD DP CP ++∴DP CP DP EP ED +=+=时,可取最小值,图中P 点即为所求;又∵BD=3,DC=1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4)设直线AB 的解析式为AB AB AB y k x b =+,代入点A 和B 得:540AB AB k b k b +=⎧⎨+=⎩解得:11AB ABk b =⎧⎨=-⎩ ∴1AB y x =-设直线DE 的解析式为DE DE DE y k x b =+,代入点D 和E 得:404DE DE DE DE k b k b +=⎧⎨+=⎩解得:43163DE DE k b ⎧=-⎪⎪⎨⎪=⎪⎩∴416+33DE y x =- ∴联合两个一次函数可得: ∴1416+33y x y x =-⎧⎪⎨=-⎪⎩解得197127x y ⎧=⎪⎪⎨⎪=⎪⎩∴P (197,127) 【点睛】本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.19.计算与化简求值:(1)()()2202002020213.14232π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()()22x y x y x y +---(3)化简21111a a a a a -⎛⎫÷--⎪++⎝⎭,并选一个合适的数作为a 的值代入求值. 【答案】(1)94;(2)233xy y -;(3)12a - ,当a=1时,原式=-1. 【分析】(1)根据负指数幂1n n a a-=(n 为正整数),任何一个数的零指数幂是1(0除外)以及积的乘方()222ab a b =即可求解.(2)利用多项式乘以多项式和完全平方公式把原式展开,再合并同类项即可求解.(3)先将括号里的化成同分母,再把除法转化为乘法,在取a 的值时需要注意,a 不能使分母为0.【详解】解:(1)原式=()202091591214244⎡⎤-+⨯-=+=⎢⎥⎣⎦(2)原式()2222222x xy xy y x xy y =-+---+ 222222233x xy y x xy y xy y =+--+-=- (3)原式=2121111a a a a a a ⎛⎫--÷- ⎪+++⎝⎭()2121=1111212a a a a a a a a a a a --+÷+++=⨯+-=- 当a=1时,112a =--. 【点睛】本题主要考查的是实数的综合运算,多项式乘多项式以及分式的化简求值,掌握这几个知识点是解题的关键.20.如图,AB AC =,ME AB ⊥,MF AC ⊥,垂足分别为E F 、,ME MF =.求证:MB MC =.【答案】详见解析【分析】根据等腰三角形性质得B C ∠=∠,根据垂直定义得BEM CFM ∠=∠,证△BEM ≌△CFM(AAS)可得.【详解】证明:∵AB AC =∴B C ∠=∠∵ME AB ⊥,MF AC ⊥∴BEM CFM ∠=∠=90°在△BEM 和△CFM 中B C BEM CFM ME MF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEM ≌△CFM(AAS)∴MB MC =【点睛】考核知识点:全等三角形的判定和性质.寻找条件,证三角形全等是关键.21.如图,在△ABC 中,∠BAC=50°,∠C=60°,AD ⊥BC ,(1)用尺规作图作∠ABC 的平分线BE ,且交AC 于点E ,交AD 于点F (不写作法,保留作图痕迹); (2)求∠BFD 的度数.【答案】(1)见解析;(2)55°【分析】(1)根据角平分线的尺规作图可得;(2)由三角形内角和定理得出∠ABC =70°,根据BE 平分∠ABC 知∠DBC =12∠ABC =35°,从而由AD ⊥BC 可得∠BFD =90°−∠DBC =55°.【详解】解:(1)如图所示,BE 即为所求;(2)∵∠BAC =50°,∠C =60°,∴∠ABC =180°−∠BAC−∠C =70°,由(1)知BE 平分∠ABC ,∴∠DBC =12∠ABC =35°, 又∵AD ⊥BC ,∴∠ADB =90°,则∠BFD =90°−∠DBC =55°.【点睛】本题主要考查作图−基本作图,解题的关键是熟练掌握角平分线的尺规作图及三角形内角和定理与直角三角形性质的应用.22.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =. (1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.【答案】(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.23.(1)解方程:242111x x x ++=---(2)计算:)21-【答案】(1)13x =;(2)﹣. 【分析】(1)方程两边同乘21x -,化为整式方程求解,然后检验即可;(2)先根据完全平方公式和平方差公式计算,然后算加减即可.【详解】(1) 242111x x x++=---, 方程两边同乘21x -,得24(2)(1)(1)x x x -++=--,解得 13x =, 检验:当13x =时,210x -≠, 所以13x =是原分式方程的解;(2) 解:原式=3﹣﹣(6﹣2)=4﹣ 4=﹣【点睛】本题考查了分式方程的解法,以及实数的混合运算,熟练掌握分式方程的求解步骤、乘法公式是解答本题的关键.24.计算:(1(2)-1)0﹣|1【答案】(1)0;(2)5【分析】(1)先求算术平方根与立方根,再进行减法运算,即可;(2)先求零次幂,绝对值和算术平方根,再进行加减法运算,即可求解.【详解】(1)原式=2﹣2=0;(2)原式=1+(1+3=5【点睛】本题主要考查实数的混合运算,掌握求算术平方根,立方根,零次幂是解题的关键.25.对于二次三项式222x ax a ++,可以直接用公式法分解为()2x a +的形式,但对于二次三项式2223x ax a +-,就不能直接用公式法了,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使2223x ax a +-中的前两项与2a 构成完全平方式,再减去2a 这项,使整个式子的值不变,最后再用平方差公式进步分解.于是()()()()22222222232323x ax a x ax a a a x a a x a x a +-=++--=+-=+-.像上面这样把二次三项式分解因式的方法叫做配方法.请用配方法将下列各式分解因式:(1)2412x x +-;(2)224125x xy y -+.【答案】(1)()()62x x +-;(2)()()225x y x y --【分析】(1)先将24x x +进行配方,将其配成完全平方,再利用平方差公式进行因式分解即可;(2)先将2412x xy -进行配方,配成完全平方,在利用平方差公式进行因式分解.【详解】解:(1)2412x x +- 244412x x =++--()2216x =+- ()()2424x x =+++-()()62x x =+-(2)224125x xy y -+2222412995x xy y y y =-+-+()22234x y y =-- ()()232232x y y x y y =-+--()()225x y x y =--【点睛】本题主要考查的是因式分解,正确的理解清楚题目意思,掌握题目给的方法是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为()A.45 B.48 C.63 D.64【答案】C【分析】由中央小正方形的边长为1厘米,设这7个正方形中最大的一个边长为x厘米,其余几个边长分别是x-1、x-2、x-3,根据长方形中几个正方形的排列情况,列方程求出最大正方形的边长,从而求得长方形长和宽,进而求出长方形的面积.【详解】因为小正方形边长为1厘米,设这7个正方形中最大的一个边长为x厘米,因为图中最小正方形边长是1厘米,所以其余的正方形边长分别为x−1,x−2,x−3,3(x-3)-1=x解得:x=5;所以长方形的长为x+x−1=5+5-1=9,宽为x-1+x−2=5-1+5-2=7长方形的面积为9×7=63(平方厘米);故选:C【点睛】本题考查了对拼组图形面积的计算能力,利用了正方向的性质和长方形面积的计算公式.2.如果把分式232x x y -中的x ,y 都扩大3倍,那么分式的值( ) A .扩大3倍B .不变C .缩小3倍D .扩大9倍【答案】B 【分析】根据分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变,可得答案.【详解】()23322332333232x x x x y x y x y⨯⋅==⨯-⨯--. 故选:B .【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变. 3.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠3=∠4【答案】D 【解析】试题分析:A .∵∠1=∠3,∴a ∥b ,故A 正确;B .∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a ∥b ,故B 正确;C . ∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a ∥b ,故C 正确;D .∠3和∠4是对顶角,不能判断a 与b 是否平行,故D 错误.故选D .考点:平行线的判定.4.正比例函数y kx =(0k ≠)的函数值y 随着x 增大而减小,则一次函数2y x k =-的图象大致是( ) A . B .C .D .【答案】B【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质可得一次函数2y x k =-的图像经过一、三象限,且与y 轴的正半轴相交.【详解】解: 正比例函数y kx =(0k ≠)的函数值y 随着x 增大而减小.∴ k<0.一次函数2y x k =-的一次项系数大于0,常数项大于0.∴一次函数2y x k =-的图像经过一、三象限,且与y 轴的正半轴相交.故选:B .【点睛】本题考查了一次函数的图象和性质,灵活掌握一次函数图象和性质是解题的关键.5.如图,函数y=ax+b 和y=kx 的图像交于点P ,关于x ,y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是( )A .23x y =-⎧⎨=-⎩B .32x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .32x y =-⎧⎨=-⎩【答案】D【分析】根据两图象的交点坐标满足方程组,方程组的解就是交点坐标.【详解】由图可知,交点坐标为(﹣3,﹣2),所以方程组的解是32x y =-⎧⎨=-⎩. 故选D .【点睛】本题考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( )A .AB .BC .CD .D【答案】B 【分析】观察解题过程,找出错误的步骤及原因,写出正确的解题过程即可.【详解】上述计算过程中,从B 步开始错误,分子去括号时,1没有乘以1.正确解法为: 23311x x x -+-- ()()33111x x x x -=-+--()()()()()3131111x x x x x x +-=-+-+- ()()33(1)11x x x x --+=+-()()33311x x x x ---=+-()()2611x x x --=+-. 故选:B .【点睛】本题考查了分式的加减法,熟练掌握运算法则是解答本题的关键.7.下列多项式① x²+xy -y² ② -x²+2xy-y² ③ xy+x²+y² ④1-x+14x 其中能用完全平方公式分解因式的是( )A .①②B .①③C .①④D .②④ 【答案】D【解析】①③均不能用完全平方公式分解;②-x 2+2xy -y 2=-(x 2-2xy +y 2)=-(x -y)2,能用完全平方公式分解,正确;④1-x +24x =14(x 2-4x +4)=14(x -2)2,能用完全平方公式分解. 故选D.8 )A .5B .﹣5CD .【答案】C【解析】解:∵,而5 ∴故选C .9.比较2的大小,正确的是( )A .2<<B .2<<C 2<<D 2<<【答案】C 【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∵26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∴6662<<2<<故选C .【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.10.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角.③三角形的一个内角大于任何一个外角.④如果0x > ,那么20x > .A .1 个B .2 个C .3 个D .4 个【答案】A 【分析】正确的命题是真命题,根据定义解答即可.【详解】①两条直线被第三条直线所截,内错角相等,是假命题;②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角,是假命题;③三角形的一个内角大于任何一个外角,是假命题;④如果0x > ,那么20x > ,是真命题,故选:A.【点睛】此题考查真命题,熟记真命题的定义,并熟练掌握平行线的性质,对顶角的性质,三角形外角性质,不等式的性质是解题的关键.二、填空题11.若26x x k -+是完全平方式,则k 的值为______.【答案】9【分析】利用完全平方公式的结构特征判断即可.【详解】∵26x x k -+是完全平方式,∴2226=233x x k x x -+-⨯⨯+,∴k=9,故答案为9.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的运算.12.a 2b b 2a a b b a a b++----=_________; 【答案】-1【分析】因为b-a=-(a-b ),所以可以看成是同分母的分式相加减. 【详解】a 2b b 2a a b b a a b ++----=221a b b a b a a b a b a b a b+---==----- 【点睛】本题考查了分式的加减法,解题的关键是构建出相同的分母进行计算.13.成人每天的维生素D 的摄入量约为0.0000046克,数据0.0000046用科学记数法可表示为_________________【答案】4.6×106-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.0000046用科学记数法表示为4.6×106-故答案为4.6×106-【点睛】此题考查科学记数法,解题关键在于使用负指数幂进行表达14.计算:6x 2÷2x= .【答案】3x .【解析】试题解析:6x 2÷2x=3x .考点:单项式除以单项式.15.如图,在ABC ∆中,分别以点A 和点C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ;作直线MN 分别交BC 、AC 于点D 、点E ,若3AE m =,ABD ∆的周长为13cm ,则ABC ∆的周长为________.【答案】19cm【分析】根据尺规作图得到MN 是线段AC 的垂直平分线,根据线段垂直平分线的性质得到DA DC =,26AC AE ==,根据三角形的周长公式计算即可.【详解】解:由尺规作图可知,MN 是线段AC 的垂直平分线,DA DC ∴=,26AC AE ==,ABD ∆的周长为13,13AB AD BD AB DC BD AB BC ∴++=++=+=,则ABC ∆的周长13619()AB BC AC cm =++=+=,故答案为:19cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.将0.0021用科学记数法表示为___________.【答案】-32.110⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,其中110a ≤<,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】-30.0021=2.110⨯,故答案为:-32.110⨯.【点睛】科学记数法表示数时,要注意形式10n a -⨯中,a 的取值范围,要求110a ≤<,而且n 的值和原数左边起第一个不为零的数字前面的0的个数一样.17. “角平分线上的点到角两边的距离相等”的逆命题是_____________.【答案】到角的两边的距离相等的点在角平分线上【分析】把一个命题的题设和结论互换即可得到其逆命题.【详解】“角平分线上的点到角两边的距离相等”的逆命题是“到角的两边的距离相等的点在角平分线上”. 故答案为:到角的两边的距离相等的点在角平分线上.【点睛】此题考查命题与定理,解题关键在于掌握如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题18.计算:(﹣13)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)0 【答案】-2【分析】根据零指数幂的意义以及负整数指数幂的意义,先进行计算,再进行有理数加减的混合运算,即可得到答案.【详解】解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2【点睛】本题考查的是实数的运算,解题的关键是熟记幂的相关知识以及实数的运算法则.19.如图,已知,在Rt △ABC 中,∠C =Rt ∠,BC =6,AC =8,用直尺与圆规作线段AB 的中垂线交AC 于点D ,连结DB .并求△BCD 的周长和面积.【答案】作图见解析;△BCD 的周长为14;△BCD 的面积为214. 【分析】根据中垂线的作法作图,设AD =x ,则DC =8−x ,根据勾股定理求出x 的值,继而依据周长和面积公式计算可得.【详解】解:如图所示:由中垂线的性质可得AD=BD,∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC=6+8=14,设AD=BD=x,则DC=8−x,由勾股定理得:62+(8−x)2=x2,解得:x=254,即AD=254,∴CD=74,∴△BCD的面积=12×6×74=214.【点睛】此题考查了尺规作图、中垂线的性质以及勾股定理,熟练掌握尺规作图的方法是解题的关键.20.如图,△ABC中,∠B=90°,AB=3,BC=4,AC=5;实践与操作:过点A作一条直线,使这条直线将△ABC分成面积相等的两部分,直线与BC交于点D.(尺规作图,不写作法,保留作图痕迹,标清字母)推理与计算:求点D到AC的距离.【答案】作图见解析,点D到AC的距离为:6 5【分析】根据三角形的面积公式,只需过点A和BC的中点D画直线即可;作DH⊥AC,证得△CHD∽△CBA,利用对应边成比例求得答案.【详解】作线段BC的垂直平分线EF交BC于D,过A、D画直线,则直线AD为所求作DH ⊥AC 于H .∵∠C =∠C ,∠CHD =∠B =90°,∴△CHD ∽△CBA , ∴DH CD AB AC=, ∵BD =DC =2,AB =3,AC =5, ∴235DH =, ∴65DH = ∴点D 到AC 的距离为:65 【点睛】本题考查了作图—复杂作图以及相似三角形的判定和性质.熟练掌握相似三角形的判定是解题的关键. 21.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批 花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元. (1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?【答案】(1)2元;(2)第二批花的售价至少为3.5元;【解析】(1)设第一批花每束的进价是x 元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m 元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m 的一元一次不等式,解之即可得出结论.【详解】(1)设第一批花每束的进价是x 元,则第二批花每束的进价是()0.5x +元, 根据题意得:1000250020.5x x ⨯=+,解得:2x =,经检验:2x =是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由()1可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元, 根据题意得:()()1000250032 2.515002 2.5m ⨯-+⨯-≥, 解得: 3.5m ≥.答:第二批花的售价至少为3.5元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.如图已知ABC 的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -.(1)将ABC 向上平移4个单位长度得到111A B C △,请画出111A B C △;(2)请画出与ABC 关于y 轴对称的222A B C △;(3)请写出1A 的坐标,并用恰当的方式表示线段1AA 上任意一点的坐标.【答案】(1)图见解析;(2)图见解析;(3)1A 的坐标为1(2,3)A ;线段1AA 上任意一点的坐标为(2,)a ,其中13a -≤≤.【分析】(1)先利用平移的性质求出111,,A B C 的坐标,再顺次连接即可得;(2)先利用轴对称的性质求出222,,A B C 的坐标,再顺次连接即可得;(3)由(1)中即可知1A 的坐标,再根据线段1AA 所在直线的函数表达式即可得.【详解】(1)(2,1),(1,2),(3,3)A B C ---向上平移4个单位长度的对应点坐标分别为111(2,14),(1,24),(3,34)A B C -+-+-+,即111(2,3),(1,2),(3,1)A B C ,顺次连接111,,A B C 可得到111A B C ∆,画图结果如图所示;(2)(2,1),(1,2),(3,3)A B C ---关于y 轴对称的对应点坐标分别为222(2,1),(1,2),(3,3)A B C ------,顺次连接222,,A B C 可得到222A B C ∆,画图结果如图所示;(3)由(1)可知,1A 的坐标为1(2,3)A线段1AA 所在直线的函数表达式为2x =则线段1AA 上任意一点的坐标为(2,)a ,其中13a -≤≤.【点睛】本题考查了画平移图形、画轴对称图形、点坐标的性质等知识点,依据题意求出各点经过平移、轴对称后的对应点的坐标是解题关键.23.为庆祝2015年元且的到来,学校决定举行“庆元旦迎新年”文艺演出,根据演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少?【答案】乙种花束的单价是2.5元,甲、乙两种花束分别购买100个、160个【分析】设乙种花束的单价是x 元,则甲种花束的单价为(1+20%)x 元,根据用700元购进甲、乙两种花束共260朵,列方程求解.【详解】解:设乙种花束的单价是x 元,则甲种花束的单价为()120%x +元,又根据甲种花束比乙种花束少用100元可知,甲种花束花了300元,乙种花束花了400元, 由题意得,300400260(120%)x x+=+,。

北师大版2017—2018学年度上册八年级数学期末考试试题

北师大版2017—2018学年度上册八年级数学期末考试试题

北师大版2017—2018学年度上册期末考试八年级数学试题(总分:150分 考试时间:120分钟)一、选择题(每小题4分,共40分) 1. 分式2xx -有意义则x 的范围是( ) A .x ≠ 2B .x ≠ – 2C .x ≠ 0且x ≠ – 2D .2x ≠±2. 以下五家银行行标中,既是中心对称图形又是轴对称图形的有 ( )A .1个B .2个C .3个D .4个3. 内角和与外角和相等的多边形是( )A .三角形B .四边形C .五边形D .六边形4. 下列命题中的真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一组对边和一组对角分别相等的四边形是平行四边形C .两组对角分别相等的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形5. 若点M (a ,b )在第四象限,则点N (– a ,–b + 2)在( )A .第一象限B .第二象限C .第三象限D .第四象限.6. 如图,已知E 、F 、G 分别是△ABC 各边的中点,△EBF 的面积为2,则△AB C 的面积为( ) A .2B .4C .6D .8G EC B A(6题图) (7题图)7. 如图,在矩形ABCD 中,O 是BC 的中点,∠AOD = 90°,若矩形ABCD 的周长为30cm ,则AB的长为()A.5 cm B.10 cm C.15 cm D.7.5 cm8.函数myx=与(0)y mx m m=-≠在同一平面直角坐标系中的图像可能是()9.如图,E为矩形ABCD的边CD上的一点, AB=AE=4,BC=2,则∠BEC是()A.15° B.30° C.60° D.75°(9题图)(10题图)10.如图所示,等腰直角三角形ABC位于第一象限,AB = AC = 2,直角顶点A在直线y = x上,其中A点的横坐标为1,且两条直角边AB,AC分别平行于x轴,y轴,•若双曲线(0)ky kx=≠与△ABC有交点,则k的取值范围是()A.1 < k < 2 B.1 ≤k≤ 3 C.1 ≤k≤ 4 D.1 ≤k < 4二、填空题(每小题3分,共30分)11.P(3,– 4)关于原点对称的点的坐标是___________.12.菱形的周长是8 cm,则菱形的一边长是___________.13.用任意两个全等的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形其中一定能够拼成的图形是___________(只填序号).14.如图,正方形A的面积是___________.15.已知直线6y x=+与x轴、y轴围成一个三角形,则这个三角形面积为___________.(14题图)E16. 如图,梯形ABCD 中,DC //AB ,∠D = 90︒,AD = 4 cm ,AC = 5 cm ,218cm ABCD S =梯形,那么AB = ___________.D CBA(16题图) (17题图) (18题图)17. 如图,已知函数y = x + b 和y = ax + 3的图像交点为P ,•则不等式x + b > ax+ 3的解集为___________.18. 如图,将边长为1的正方形ABCD 绕A 点按逆时针方向旋转30°,至正方形AB ′C ′D ′,则旋转前后正方形重叠部分的面积是___________.19. 如图,梯形ABCD 中,△ABP 的面积为20平方厘米,△CDQ 的面积为35平方厘米,则阴影四边形的面积等于___________平方厘米.20. 下图表示甲、乙两名选手在一次自行车越野赛中,路程y (千 米)随时间x (分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇. ②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇. 正确的结论为 .三、解答题(21~24每题5分,25题10分,共30分)(19题图)x 分(20题图)21.22x y yy x x⎛⎫⎛⎫-⋅-÷⎪ ⎪⎝⎭⎝⎭22.222244(4)2x xy yx yx y-+÷--23.21221x-=-24.11322xx x-+=--25.已知直线y kx b=+与直线23y x=-交于y轴上同一点,且过直线3y x=-上的点(m,6),求其解析式.四、解答题(每题10分,共50分)26.如图,平行四边形ABCD中,EF垂直平分AC,与边AD、BC分别相交于点E、F.试说明四边形AECF是菱形.27.如图,已知一次函数y = kx + b的图像与反比例函数8yx=-的图像交于A,B两点,且点A的横坐标和点B的纵坐标都是– 2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.28.正方形ABCD中,E为AB上一点,F为CB延长线上一点,且∠EFB = 45︒.(1)求证:AF = CE;(2)你认为AF与CE有怎样的位置..关系?说明理由.FEDC BA29.如图,已知AB∥DC,AE⊥DC,AE = 12,BD = 15,AC = 20,求梯形ABCD的面积.30.我市某乡A,B两村盛产柑橘,A•村有柑橘200 t,B村有柑橘300 t.现将这些柑橘运到C,D两个冷藏仓库,•已知C仓库可储存240 t,D仓库可储存260 t;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元,设从A村运往C仓库的柑橘重量为x t,A,B•两村运往两仓库的柑橘运输费用分别为y A元和y B元.(1)求出y B,y A与x之间的函数关系式;y A= ________________________,y B = ________________________.(2)试讨论A,B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑橘运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.。

新北师大版2017---2018学年度八年级上册数 学期末考试试 卷

新北师大版2017---2018学年度八年级上册数 学期末考试试 卷

ODCAB 北师大版2017---2018学年度八年级上册数学期末考试试卷满分:150分;考试时间:120分钟)一、选择题:(每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填写在下面方框里)1.下列各式中,运算正确的是( ) A .B .C .D .2.点关于y 轴对称的点的坐标为( ) A .B .C .D .3.若x y >,则下列式子错误的是( ) A .33xy ->- B .33x y->-C .32x y +>+D .33x y> 4.一个多边形的内角和是720︒,则这个多边形的边数为()A .4B .5C .6D .75.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形B .矩形C .正三角形D .平行四边形6. 如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的边长BC 的长是( ) A .2B .4C .D . (6题图)7.如果点P (m ,1+2m )在第二象限,那么m 的取值范围是 ( )(图1)A .210<<m B .021<<-m C .0<m D .21>m8.如图,下列条件不能使四边形ABCD 一定是平行四边形的是( )A .//AB CD AB =CD B .//AD BC //AB CD C .//AD BC B D ∠=∠ D.//AD BC AB =CD9.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处10.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE=AD ,DF=BD ,连接BF 分别交CD ,CE 于H ,G ,下列结论: ①EC=2DG ; ②GDH GHD ∠=∠; ③CDG DHGE S S = 四边形; ④图中只有8个等腰三角形。

2017-2018学年度北师大版八年级上册数学期末考试试卷

2017-2018学年度北师大版八年级上册数学期末考试试卷

机密★启用前2017-2018学年度第一学期教学质量检测试卷八年级 数学(考试时间:120分钟,满分:100分)A .8,15,7B .8,10,6C .5,8,10D .8,3,405、点(2,3),(1,0),(0,-2),(0,0),(-3,2)中,不属于任何象限的有( ) A .1个 B .2个 C .3个 D .4个6、将△ABC 的三个顶点坐标的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是( )A .关于x 轴轴称B .关于y 轴对称C .关于原点对称D .将原图向x 轴的负方向平移了1个单位7、已知⎩⎪⎨⎪⎧x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是( )A .1B .2C .3D .48、一次函数y 1=x +4的图象如图所示,则一次函数y 2=-x +b 的图象与y 1=x +4的图象的交点不可能在( )A .第四象限B .第三象限C .第二象限D .第一象限9、毕威高速公路正式通车后,从毕节到威宁全长约为126 km.一辆小汽车、一辆货车同时从毕节、威宁两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6 km ,设小汽车和货车的速度分别为x km/h ,y km/h ,则下列方程组正确的是( )A.⎩⎪⎨⎪⎧45(x +y )=12645(x -y )=6 B.⎩⎪⎨⎪⎧34(x +y )=126x -y =6C.⎩⎪⎨⎪⎧34(x +y )=12645(x -y )=6D.⎩⎪⎨⎪⎧34(x +y )=12634(x -y )=610、在△ABC 中,∠C =90°,c 2=2b 2,则两直角边a ,b 的关系是( )A .a <bB .a >bC .a =bD .以上三种情况都有可能11、如图,一圆柱高8 cm ,底面半径2 cm ,一只蚂蚁从点A 爬到点 B A .20 cm B .10 cm C .14 cm D .无法确定12、下列计算正确的是( A.(-3)(-4)=-3= 3 D.62= 3 13、已知M (1,-2),N (-3( )A .相交,相交BC .平行,垂直相交D .垂直相交,平行14、对于一次函数y =-2x +4,下列结论错误的是( ) A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(0,4)C .函数的图象向下平移4个单位长度得y =-2x 的图象D .函数值随自变量的增大而减小15、如图,AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD ,则图中与 ∠AGE 相等的角有( )A .5个B .4个C .3个D .2个二、填空题(本题包括5小题,每小题3分,共15分)16、计算:。

北师大八年级上期期末复习数学试题

北师大八年级上期期末复习数学试题

1北师大八年级上期期末复习数学试题姓名1、下列命题中正确的是( ) (A )平行四边形是轴对称图形 (B )等腰三角形是中心对称图形 (C )菱形的对角线相等(D )对角线相等的平行四边形是矩形。

2、已知⎩⎨⎧-==ky k x 32是二元一次方程142=-y x 的解,则k 的值是 3、如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角, 且∠1=∠2=∠3=∠4=75°,则∠AED 的度数是4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间(t 小时)之间的函数关系的图象是( )5.如图,等腰梯形ABCD 中,AD ∥BC ,AD =5㎝,BC=11,高DE=4㎝,则梯形的周长是 ㎝。

6.当2=x 和1-=x 时,代数式n mx x ++2的值都为0,则m = ,n = 。

7.如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),如果要使△ABD 与△ABC 全等,且点D 坐标在第四象限,那么点D 的坐标是 。

8.解方程组⎩⎨⎧=+=-82573y x y x 的解为9.化简:()01831312+++⨯-π=10.列方程组解应用题:据统计,某市第一季度期间,地面公交日常客运量与轨道交通日常客运量总和为1690万人次,地面公交日常客运量比轨道交通日常客运量的4倍少60万人次,在此期间,地面公交和轨道交通日常客运量各为多少万人次?11.如图,四边形ABCD 为矩形纸片,把纸片ABCD 折叠,使点B 恰好落在CD 的中点E 处,折痕为AF ,若CD=8,则∠EAF= ,AF= 。

1 2 345ABCD E Q(升) t(小时) O 8 40 (A) Q(升) t(小时)O8 40 (B)Q(升) t(小时)O8 40(C)Q(升)t(小时)O 8 40(D)A B CDEA BCOxyABC DEF12.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,CE⊥AE于点E。

2017-2018学年成都市成华区八年级(上)期末数学试卷(含解析)

2017-2018学年成都市成华区八年级(上)期末数学试卷(含解析)

2017-2018学年成都市成华区八年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.实数4的算术平方根是()A.﹣2 B.2 C.±2 D.±42.的倒数是()A.B.C.D.3.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)4.下列命题中,为假命题的是()A.同角(等角)的补角相等B.两点之间线段最短C.两直线平行,同旁内角相等D.内错角相等,两直线平行5.小明的爸爸是个“健步走”运动爱好者,他用手机软件录了某个月(30天)每天健步走的步数,并将记录结果绘制成了下表在每天所走的步数这组数据中,众数和中位数分别是()步数(万步) 1.1 1.2 1.3 1.4 1.5天数 3 7 5 12 3A.1.2,1.35 B.1.4,1.3 C.1.4,1.4 D.1.4,1.356.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣17.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<08.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.9.一把直尺和一块直角三角板ABC(其中∠C=90°,∠B=30°)摆放位置如图,直尺一边与三角板的两直角边分别交于点D,E,另一边经过点A,与BC边交于点F,若∠CDE=50°,那么∠BAF的大小为()A.20°B.40°C.45°D.50°10.如图是由5个正方形和4个等腰直角三角形组成的图形.若正方形C的面积是1,那么正方形A的面积是()A.4 B.8 C.16 D.32二、填空题(每小题4分,共16分)11.函数y=中,自变量x的取值范围是.12.如图,若∠1+∠2=180°,∠3=110°,则∠4=.13.如图,已知函数y=ax+b和y=kx的图象交于点P(﹣3,﹣2),则关于x,y的二元一次方程组的解是.14.已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.三、解答题(共54分)15.(10分)计算:(1)+(﹣2)(2)6×﹣(π﹣3)0﹣|1﹣|+×16.(10分)解下列方程组:(1)(2)17.(8分)在正方形网格中,每个小方格都是边长为1的正方形,建立如图所示的平面直角坐标系,△ABC 的三个顶点都落在小正方形方格的顶点上.(1)点A的坐标是;点B的坐标是,点C的坐标是;(2)在图中画出△ABC关于y轴对称的△A'B′C′;(3)直接写出△ABC的面积.18.(8分)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?19.(8分)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.20.(10分)已知直线l1:y=k1x+b(k1≠0)和直线l2:y=k2x(k2≠0)相交于点A(4,2),直线l1过点B(0,6).(1)求直线l1和直线l2的表达式;(2)点C是线段OA上任意一点(不与点O,A重合),过点C作y轴的平行线交直线l1于点D,若点C的横坐标为m.①求点D的坐标;(用含m的代数式表示)②过点C作y轴的垂线,垂足是E,连接DE,问是否存在点C,使△CDE为等腰直角三角形?如果存在,求出点C的坐标;如果不存在,说明理由.B卷(50分)一、填空题(每小题4分,共20分)21.若二元一次方程组的解为,则a﹣b=.22.已知y=+3,则﹣值为.23.如图,直线y=x+1与x轴交于点A,与y轴交于点B,以点A为圆心,线段AB的长为半径画弧,交x轴的正半轴于一点C,则点C的坐标是.24.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/千米0.3元/分钟0.8元/千米注:车费由里程费、时长費、远途费三部分构成,其中里程赀按行车的里程计算;时长费按行车的时长计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千米收0.8元.小正与小张各自乘坐滴滴快车,行车里程分别为6千米与10千米,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差分钟?25.如图,在长方形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE所在直线折叠,使点B落在矩形内点B′处,连接CB′,则CB′的长为.二、解答题(共30分)26.(8分)某服装店用2600元购进A,B两种新型服装,按标价出售后可获得利润1600元,这两种服装的进价、标价如下表所示:A型B型进价(元/件)60 100标价(元/件)100 160(1)问:A,B两种服装各购进多少件?(2)如果A型服装按标价的7折出售,B型服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27.(10分)在平面直角坐标系中,直线y=x+交x轴于点A,交y轴于点B.(1)求点A和点B的坐标,并求∠BAO的度数;(2)将△AOB绕点O顺时针旋转得△A′OB′,设△AOB′的面积为S1,△BA′O的面积为S2.①当点A'恰好落在AB边上时(如图1),求S1的值;②当点A′不落在AB边上时(如图2),S1与S2有何关系?请说明理由.28.(12分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.参考答案与试题解析一、选择题1.【解答】解:∵22=4,∴4的算术平方根是2,即=2.故选:B.2.【解答】解:﹣的倒数是﹣.故选:B.3.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.4.【解答】解:A、同角(等角)的补角相等,正确,是真命题;B、两点之间线段最短,正确,是真命题;C、两直线平行,同旁内角互补,故错误,是假命题;D、内错角相等,两直线平行,正确,是真命题,故选:C.5.【解答】解:这组数据的众数为1.4万步,中位数为=1.35(万步),故选:D.6.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选:A.7.【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选:B.8.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.9.【解答】解:由图可得,∠CDE=50°,∠C=90°,∴∠CED=40°,又∵DE∥AF,∴∠CAF=40°,∵∠BAC=60°,∴∠BAF=60°﹣40°=20°.故选:A.10.【解答】解:∵正方形C的面积是1,∴正方形C的边长是1,由勾股定理得,正方形D的边长是,∴正方形D的面积是2,同理可得,正方形B的面积是4,正方形E的面积是8,则正方形A的面积是16,故选:C.二、填空题11.【解答】解:根据题意得:,解得:x≥1且x≠2.故答案为:x≥1且x≠2.12.【解答】解:如图,∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为:110°.13.【解答】解:因为函数图象交点坐标为两函数解析式组成的方程组的解.因此方程组的解是;故答案为:.14.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.三、解答题15.【解答】解:(1)原式=2+2﹣2=2;(2)原式=2﹣1+1﹣+2=3.16.【解答】解:(1)原方程组化为,∴①×3﹣②得:x=4,将x=4代入①得:4+y=5,∴y=1,∴方程组的解为;(2)原方程组化为,∴①×2﹣②×3得:y=﹣102∴将y=﹣102代入3x+4y=60,∴x=156,∴方程组的解为17.【解答】解:(1)点A的坐标是:(1,3);点B的坐标是:(2,0),C的坐标是:(4,2);故答案为:(1,3),(2,0),(4,2);(2)如图所示:△A'B′C′即为所求;(3)△ABC的面积为:3×3﹣×1×3﹣×1×3﹣×2×2=4.18.【解答】解:设鸡有x只,兔有y只,根据题意得有,解之,得,即有鸡23只,兔12只.19.【解答】解:(1)△BDE是等腰三角形.由折叠可知,∠CBD=∠EBD,∵AD∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE,即△BDE是等腰三角形;(2)设DE=x,则BE=x,AE=8﹣x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8﹣x)2=x2,解得:x=5,所以S△BDE=DE×AB=×5×4=10.20.【解答】解:(1)直线l1过点B(0,6),则函数表达式为:y=k1x+6,将点A的坐标代入上式得:2=4k1+6,解得:k1=﹣1,故直线l1的表达式为:y=﹣x+6;同理可得直线l2的表达式为:y=x;(2)①点C的横坐标为m,则点D的坐标为m,点D在直线l1上,故点D的坐标为(m,6﹣m);②存在,理由:点D(m,6﹣m)、点C(m,m),∵△CDE为等腰直角三角形,则CD=EC,即:m=6﹣m﹣m,解得:m=,故点C(,).一、填空题21.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.22.【解答】解:由题意得:得x=2,所以y=3,所以﹣=﹣==4﹣2﹣4﹣2=﹣4,故答案为:﹣4.23.【解答】解:当y=0时,x+1=0,解得x=﹣2,则A(﹣2,0);当x=0时,y=x+1=1,则B(0,1),所以AB=,因为以点A为圆心,AB为半径画弧,交x轴于点C,所以AC=AB=,所以OC=AC﹣AO=﹣2,所以的C的坐标为(﹣2,0),故答案为(﹣2,0).24.【解答】解:设这两辆滴滴快车的行车时间相差x分钟,则由行车里程分别为6千米与10千米,如果下车时两人所付车费相同,可知小正比小张多用x分钟,由题意得:1.8×6+0.3x=1.8×10+0.8×(10﹣7)∴0.3x=7.2+2.4∴0.3x=9.6∴x=32故答案为:32.25.【解答】解:连接BB′交AE于H,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE===5,∴BH=,则BB′=2BH=,∵B′E=BE=EC,∴∠BB′C=90°,根据勾股定理得,CB′===.故答案为:.二、解答题26.【解答】解:(1)设A型服装购进x件,B型服装购进y件,依题意,得:,解得:.答:A型服装购进10件,B型服装购进20件.(2)100×10+160×20﹣(100×0.7×10+160×0.8×20)=940(元).答:服装店比按标价出售少收入940元.27.【解答】解:(1)y=x+,令x=0,则y=,令y=0,则x=﹣1,即:OA=1,OB=,tan∠BAO===,故∠BAO的度数为60°;(2)①∵OA=OA,∠BAO的度数为60°,∴△A′AO为等边三角形,则∠AOA′=60°,∵∠A′OB′=90°,∴∠B′OB=30°,过点B′作B′H⊥x轴于H,则HB′=sin30°=,S1=×AO×B′H==;②分别过点A′、B′作y轴的垂线,交于点H、G,∵∠GA′O+∠A′OG=90°,∠A′OG+∠B′OH=90°,∴∠B′OH=∠GA′O=α,GA′=OA′cosα=cosα,HB′=OB′cosα=cosα,S1=AO×B′H=1×cosα=cosα,S2=×BO×A′G=×cosα═cosα,故:S1=S2.28.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b,b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可设A(t,t),∴t+×t=t,×t=t,∴B(t,t),设直线OB的函数表达式为y=kx,则tk=t,解得k=,∴直线OB的函数表达式为y=x;②方法1、设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+t,∴D(0,t),且A(t,t),B(t,t),∴AB==|t|,AD==|t|,∴===.方法2、由(1)知,A(t,t),B(t,t),∴==,∵△AOB、△AOD和△BOD的边AB、AD和BD上的高相同,∴=。

北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)

北师大版2017-2018学年度上学期期末考试八年级数学试卷(含答案)

FDB C AE第9题图北师大版2017—2018学年度上学期期末考试八年级数学试一、选择题(每小题3分,共30分) 1.下列图形中轴对称图形是( )A B C D2,.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB ≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和 10cm ,则此三角形的周长是( )A.15cmB. 20cmC. 25cmD.20cm 或25cm6.如图,已知∠CAB =∠DAB ,则添加下列一个条件不能使△ABC ≌△ABD 的是( ) A.AC =AD B.BC =BD C.∠C =∠D D.∠ABC =∠ABD7.如图,已知在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A.10B.7C.5D.48.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分) 11.计算:()()312360.1250.2522⨯-⨯⨯- =12,在实数范围内分解因式:3234a ab - =13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为 17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则 △PMN 周长的最小值为__________18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。

2017-2018学年成都市金牛区八年级(上)期末数学试卷(含解析)

2017-2018学年成都市金牛区八年级(上)期末数学试卷(含解析)

2017-2018学年成都市金牛区八年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.在实数﹣1,0,,中,最大的数是()A.B.0 C.D.﹣12.函数y=的自变量x的取值范围是()A.x≠4 B.x>4 C.x≥4 D.x≤43.点P(2,﹣3)关于x轴对称的点是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)4.直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()A.80°B.65°C.60°D.55°5.下列四个命题中,真命题有()①内错角一定相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③三角形的一个外角大于任何一个与它不相邻的内角;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个6.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cmC.170cm,165cm D.170cm,170cm7.一次函数y=kx+b的图象如图,则y>0时,x的取值范围是()A.x≥0 B.x≤2 C.x>2 D.x<28.如图矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的点是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,点E表示的实数是()A.B.C.D.1﹣9.某公司去年的利润(总产值﹣总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为980万元,如果去年的总产值x万元,总支出y万元,则下列方程组正确的是()A.B.C.D.10.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为()A.B.C.D.二、填空题(每小题4分,共16分)11.比较大小:.(填“>、<、或=”)12.若+(y+1)2=0,则(x+y)2018=.13.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是.14.长方形ABCD中,AB=6,AD=8,点E是边BC上一点,将△ABE沿AE翻折,点B恰好落在对角线AC上的点F处,则AE的长为.二、解答题(共54分)15.(8分)计算(1)(2)(π﹣2018)0+616.(12分)解下列方程(不等式)组.(1)解方程组:(2)解不等式组:,并求其非负整数解.17.(8分)如图,已知AB∥CD,若∠C=35°,AB是∠FAD的平分线.(1)求∠FAD的度数;(2)若∠ADB=110°,求∠BDE的度数.18.(8分)在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请画出△ABC向右平移4个单位长度后的△A1B1C1,并写出点C1的坐标;(2)请计算△ABC的面积;19.(8分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词、根据调查结果,该小组绘制了两幅不完整的统计图如图所示,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m=,n=.(3)若该校有3000名同学,请估计出选择C、D的一共有多少名同学?20.(10分)如图,直线l1的解析式为y=x+4,与x轴,y轴分别交于A,B;直线l2与x轴交于点C(2,0)与y轴交于点D(0,),两直线交于点P.(1)求点A,B的坐标及直线l2的解析式;(2)求证:△AOB≌△APC;(3)若将直线l2向右平移m个单位,与x轴,y轴分别交于点C'、D',使得以点A、B、C'、D'为顶点的图形是轴对称图形,求m的值?B卷(50分)一、填空题(每小题4分,共20分)21.若实数,则代数式a2﹣4a+4的值为.22.若点P(﹣3,a),Q(2,b)在一次函数y=﹣3x+c的图象上,则a与b的大小关系是23.如果有一种新的运算定义为:“T(a,b)=,其中a、b为实数,且a+b≠0”,比如:T(4,3)=,解关于m的不等式组,则m的取值范围是.24.已知,如图,正方形ABCD在平面直角坐标系中,其中点A、C两点的坐标为A(6,6),C(﹣1,﹣7),点B在第二象限,则点B的坐标为.25.如图,已知直线AB的解析式为y=x﹣1,且与x轴交于点A于y轴交于点B,过点A作作直线AB 的垂线交y轴于点B1,过点B1作x轴的平行线交AB于点A1,再过点A1作直线AB的垂线交y轴于点B2…,按此作法继续下去,则点B1的坐标为,A1009的坐标.二、解答题(共30分)26.(8分)某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,且超出5件的部分可按原价的六折进行优惠;设需要租用x件服装,选择甲店则需要y1元,选择乙店则需要y2元,请分别求出y1,y关于x的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?27.(10分)如图,在△ABC中,∠B=45°,AB=2,BC=2+2,等腰直角△DAE中,∠DAE=90°,且点D是边BC上一点.(1)求AC的长;(2)如图1,当点E恰在AC上时,求点E到BC的距离;(3)如图2,当点D从点B向点C运动时,求点E到BC的距离的最大值.28.(12分)如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足(a+2)2=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标;(3)已知平行于y轴且位于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q 为y轴上一动点,且△MNQ为等腰直角三角形,请直接写出满足条件的点Q的坐标.参考答案与试题解析一、选择题1.【解答】解:在实数﹣1,0,,中,最大的数是,故选:C.2.【解答】解:根据题意得:x﹣4≥0,解得x≥4.故选:C.3.【解答】解:P(2,﹣3)关于x轴对称的点是(2,3),故选:B.4.【解答】解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴直线a∥直线b,∴∠4=∠5,∵∠3=125°,∴∠4=∠5=180°﹣∠3=55°,故选:D.5.【解答】解:两直线平行,内错角相等,①是假命题;如果∠1和∠2是对顶角,那么∠1=∠2,②是真命题;三角形的一个外角大于任何一个与它不相邻的内角,③是真命题;若a2=b2,则a=±b,④是假命题;故选:B.6.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选:B.7.【解答】解:由函数的图象可知,当x<2时,y>0;故选:D.8.【解答】解:如图所示:连接AC,由题意可得:AC=,则点E表示的实数是:﹣1.故选:B.9.【解答】解:设去年的总产值x万元,总支出y万元,根据题意可列方程组:,故选:A.10.【解答】解:由题意可得,小正方形的面积为:1×1=1,大正方形的面积为:2×2=4,∴刚开始小正方形从左向右运动,到小正方形正好完全进入大正方形的过程中,S随t的增大而减小,面积由4减小到3;当小正方形刚好完全进入大正方形到一边刚好要出大正方形的过程中,S随t的增大不变,一直是S=3,从小正方形刚好出大正方形到完全出大正方形的过程中,S随t的增大而增大,S由3增加到4,故选项A、B、C不符合题意,选项D符合题意,故选:D.二、填空题11.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.12.【解答】解:∵+(y+1)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴(x+y)2018=(2﹣1)2018=1,故答案为:1.13.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.14.【解答】解:∵四边形ABCD为矩形,∴BC=AD=8,∠ABC=90°,在Rt△ABC中,AC===10,∵△ABE沿AE翻折,点B恰好落在对角线AC上的点F处,∴∠AFE=∠ABE=90°,AF=AB=6,BE=FE,∴CF=10﹣6=4,设BE=x,则EF=x,CE=8﹣x,在Rt△CEF中,x2+42=(8﹣x)2,解得x=3,在Rt△ABE中,AE==3.故答案为3.二、解答题15.【解答】解:(1)原式=﹣(1﹣2+3)=2﹣4+2=4﹣4;(2)原式=1+2+5﹣3﹣4=2﹣.16.【解答】解:(1),由①×3+②,得:7x=7,x=1,把x=1代入①得:2﹣y=3,y=﹣1,所以方程组的解为;(2)解不等式2x﹣3(x﹣2)≥4,得:x≤2,解不等式<,得:x>﹣7,所以,不等式组的解集为:﹣7<x≤2,则非负整数解为:0,1,2.17.【解答】解:(1)∵∠FAB=∠C=35°,∵AB是∠FAD的平分线,∴∠FAD=2∠FAB=2×35°=70°.(2)∵∠ADB=110°,∠FAD=70°,∴∠ADB+∠FAD=110°+70°=180°,∴CF∥BD,∴∠BDE=∠C=35°.18.【解答】解:(1)△A1B1C1,即为所求,C1(3,3);(2)△ABC的面积为:3×4﹣×2×3﹣×2×4﹣×1×2=4.19.【解答】解:(1)根据题意得:105÷35%=300(人),答:一共调查了300名同学,(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)根据题意得:3000×=1350(名),答:选择C、D的一共有1350名同学.20.【解答】(1)解:当x=0时,y=x+4=4,∴点B的坐标为(0,4);当y=0时,有x+4=0,解得:x=﹣3,∴点A的坐标为(﹣3,0).设直线l2的解析式为y=kx+b(k≠0),将C(2,0)、D(0,)代入y=kx+b,得:,解得:,∴直线l2的解析式为y=﹣x+.(2)证明:连接两直线解析式成方程组,得:,解得:,∴点P的坐标为(﹣,).∵A(﹣3,0),C(2,0),B(0,4),∴AO=3,AC=5,AB==5,AP==3,∴AO=AP,AB=AC.在△AOB和△APC中,,∴△AOB≌△APC(SAS).(3)解:①当点B在点D′下方时,连接BC′,如图1所示.∵平移后直线C′D′的解析式为y=﹣(x﹣m)+=﹣x+m+,∴点C′的坐标为(m+2,0),点D′的坐标为(0,m+).∵以点A、B、C'、D'为顶点的图形是轴对称图形,∴△ABC′≌△D′BC′,∴AB=D′B,AC′=D′C′.∵A(﹣3,0),B(0,4),∴D′B=m﹣,AC′=m+5,D′C′==(m+2),∴,解得:m=10;②当点B在点D′上方时,连接BC′,AD,如图2所示.若△AC′D′≌△BC′D′,则AC′=BC′,由①可得:AC′=m+5,BC′=,∴m+5=,解得:m=﹣(不合题意,舍去);若△ABD′≌△C′BD′,则AB=C′B,∴OA=OC′,即3=m+2,解得:m=1.综上所述:当以点A、B、C'、D'为顶点的图形是轴对称图形时,m的值为10或1.一、填空题21.【解答】解:∵a====2+,∴原式=(a﹣2)2=(2+﹣2)2=3,故答案为:3.22.【解答】解:∵点P(﹣3,a)、Q(2,b)在一次函数y=﹣3x+c的图象上,∴a=9+c,b=﹣6+c.∵9+c>﹣6+c,∴a>b.故答案为:a>b.23.【解答】解:∵,∴∵解不等式①得:m≥2.1,解不等式②得:m<6,∴不等式组的解集为2.1≤m<6,∵m+6﹣m≠0,2m+3﹣2m≠0,∴2.1≤m<6,故答案为:2.1≤m<6.24.【解答】解:过A作AN⊥x轴于N,过B作BH⊥AN于H,过C作CM⊥BH于M,交x轴于G,∴∠AHB=∠CMB=90°,∴∠CBM+∠BCM=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠ABH+∠CBM=90°,∴∠ABH=∠BCM,在△ABH和△BCM中,∵,∴△ABH≌△BCM(AAS),∴AH=BM,BH=CM,∵A(6,6),C(﹣1,﹣7),∴ON=AN=6,OG=1,CG=7,设AH=a,MG=b,则BH=CM=a+1+6=7+b,∵AN=6=a+b,∴a=b=3,∴B(﹣4,3),故答案为:(﹣4,3).25.【解答】解:∵直线AB的解析式为y=x﹣1,∴直线AB与x轴的夹角为30°,∴∠ABO=60°,OA=,OB=1,∵过点A作作直线AB的垂线交y轴于点B1,∴∠OAB1=60°,∴B1O=OA•tan60°=×=3,∴B1(0,3),∵过点B1作x轴的平行线交AB于点A1,∴把y=3代入y=x﹣1得,3=x﹣1,解得x=4,∴A1(4,3),∵∠B1A1B2=60°,∴B1B2=A1B1•tan60°=4×=12∴OB2=15,把y=5×3代入y=x﹣1得,5×3=x﹣1,解得x=16,∴A2(24,15),…∴A1009坐标为(22018,22018﹣1).故答案为(0,3),(22018,22018﹣1).二、解答题26.【解答】解:(1)设甲店每件租金x元,乙店每件租金y元,由题可得:,解得,答:两个服装店提供的单价分别是50元.60元;(2)根据题意可得:y1=40x,y2=(3)由40x=36x+120得x=30答:当x=30时,两店相同.27.【解答】解:(1)作AF⊥BC于F,∵∠B=45°,∴AF=BF=AB=2,∴FC=BC﹣BF=2,由勾股定理得,AC==4;(2)作EH⊥BC于H,在Rt△AFC中,AF=2,AC=4,∴∠C=30°,∴∠ADF=60°,∴AD==,∴AE=AD=,∴EC=AC﹣AE=4﹣,∴EH=EC=2﹣;(3)由题意得,当点D运动到点C的位置时,点E到BC的距离的最大,如图2,作AF⊥BC于F,EH⊥BC于H,延长EA交BC于G,由(2)得,AG=,AE=AC=4,∴EG=AG+AE=4+,在Rt△EGH中,EH=EG×sin∠EGH=(4+)×=2+2.28.【解答】解:(1)∵a、b满足(a+2)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴点A的坐标为(﹣2,2),点B的坐标为(0,3).设直线l2的解析式为y=kx+c(k≠0),将A(﹣2,2)、B(0,3)代入y=kx+c,得:,解得:,∴直线l2的解析式为y=x+3.(2)∵S△AOP=S△AOB,∴点P到AO的距离与点B到AO的距离相等,且点P位于l1两侧(如图1).①当点P在l1的右侧时,设点P为P1,则P1B∥l1,∴直线P1B的解析式为:y=﹣x+3,当y=5时,有﹣x+3=5,解得:x=﹣2,∴点P1的坐标为(﹣2,5);②当点P在l1的左侧时,设点P为P2,设直线y=5与直线l1交于点E,则点E的坐标为(﹣5,5),∵点E为P1P2中点,∴点P2的坐标为(﹣8,5).综上所述:点P的坐标为(﹣2,5)或(﹣8,5).(3)设动直线为x=t,由题可得﹣2<t<0,则点M的坐标为(t,﹣t),点N的坐标为(t,t+3),∴MN=t+3(如图2).①当∠NMQ=90°时,有MN=MQ,即t+3=﹣t,解得:t=﹣,∴点M的坐标为(﹣,).∵MQ∥x轴,∴点Q的坐标为(0,);②当∠MNQ=90°时,有MN=NQ,即t+3=﹣t,解得:t=﹣,∴点N的坐标为(﹣,).∵NQ∥x轴,∴点Q的坐标为(0,);③当∠MQN=90°时,点Q到MN的距离=MN,即﹣t=×(t+3),解得:t=﹣,∴点M的坐标为(﹣,),点N的坐标为(﹣,).∵△MNQ为等腰直角三角形,∴点Q的坐标为(0,).综上所述:点Q的坐标为(0,)或(0,)或(0,).。

2017-2018学年最新北师大版八年级数学上册全册单元试卷(含答案)

2017-2018学年最新北师大版八年级数学上册全册单元试卷(含答案)

第一章 勾股定理 单元检测题(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.等腰三角形的底边长为6,底边上的中线为4,它的腰长为( )A .7B .6C .5D .42.一直角三角形的两条边长分别为3和4,则第三边的长的平方为( )A .25B .7C .5D .25或73.在△ABC 中,AB =15,BC =12,AC =9,则△ABC 的面积为( )A .180B .90C .54D .1084.如图所示,AB ⊥CD 于点B ,△ABD 和△BCE 都是等腰三角形,如果CD =17,BE =5,那么AC 的长为( )A .12B .7C .5D .13,第4题图 ,第8题图),第10题图)5.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为( )A .365B .1225C .94D .3346.如果一个三角形的三边长a ,b ,c 满足a 2+b 2+c 2+338=10a +24b +26c ,则这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.一架2.5米长的梯子,斜立在一竖直的墙上,这时梯子的底端离墙0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子底部在水平方向上滑动( )A .0.9米B .0.8米C .0.5米D .0.4米 8.如图所示,圆柱高8 cm ,底面圆的半径为6π cm ,一只蚂蚁从点A 爬到点B 处吃蜂蜜,则要爬行的最短路程是( )A .20 cmB .10 cmC .14 cmD .无法确定9.在△ABC 中,若AC =15,BC =13,AB 边上的高CD =12,那么△ABC 的周长为( )A .32B .42C .32或42D .以上都不对10.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处,若AB =3,AD =4,则ED 的长为( )A .32B .3C .1D .43二、填空题(每小题3分,共24分)11.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为___.,第11题图),第15题图),第16题图),第17题图)12.△ABC的两边分别为5,12,另一边c为奇数,a+b+c是3的倍数,则c应为___,此三角形为____三角形.13.小红从家里出发向正北方向走80米,接着向正东方向走150米,现在她离家的距离是____米.14.小雨用竹竿扎了一个长80 cm,宽60 cm的长方形框架,由于四边形容易变形,需要用一根竹竿作斜拉竿将四边形定形,则斜拉竿的长是____ cm.15.如图,由四个全等的直角三角形拼成的“赵爽弦图”,在Rt△ABF中,∠AFB=90°,AF=3,AB=5,则四边形EFGH的面积是____.16.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是____. 17.如图有一个棱长为9 cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C 点在一条棱上,距离顶点B 3 cm处),需爬行的最短路程是___cm.18.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则C′D的长为___.三、解答题(共66分)19.(9分)如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识解答下列问题:(1)求△ABC的面积;(2)判断△ABC是什么形状,并说明理由.20.(9分)如图,AF⊥DE于F,且DF=15 cm,EF=6 cm,AE=10 cm.求正方形ABCD 的面积.21.(9分)一写字楼发生火灾,消防车立即赶到距大楼9米的A点处,升起云梯到发火的窗口点C.已知云梯BC长15米,云梯底部B距地面A为2.2米,问发生火灾的窗口距地面有多少米?22.(9分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D 点作DE⊥DF,交AB于点E,交BC于点F,若AE=4,FC=3,求EF的长.23.(10分)如图,∠AOB=90°,OA=45 cm,OB=15 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.(10分) 如图,已知∠MBN=60°,在BM,BN上分别截取BA=BC,P是∠MBN内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA∶PB∶PC=3∶4∶5,连接PQ,求证∠PQC=90°.25.(10分)如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN的距离为80 m,现有一拖拉机在公路MN上以18 km/h的速度沿PN方向行驶,拖拉机行驶时周围100 m以内都会受到噪音的影响,试问该校受影响的时间为多长?答案:一、选择题(每小题3分,共30分)1—5 CDCDA 6—10 BBBCA 二、填空题(每小题3分,共24分)11.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为__5__.,第11题图) ,第15题图) ,第16题图) ,第17题图)12.△ABC 的两边分别为5,12,另一边c 为奇数,a +b +c 是3的倍数,则c 应为__13__,此三角形为__直角__三角形.13.小红从家里出发向正北方向走80米,接着向正东方向走150米,现在她离家的距离是__170__米.14.小雨用竹竿扎了一个长80 cm ,宽60 cm 的长方形框架,由于四边形容易变形,需要用一根竹竿作斜拉竿将四边形定形,则斜拉竿的长是__100__ cm . 15.如图,由四个全等的直角三角形拼成的“赵爽弦图”,在Rt △ABF 中,∠AFB =90°,AF =3,AB =5,则四边形EFGH 的面积是__1__.16.在△ABC 中,AB =AC =5,BC =6,若点P 在边AC 上移动,则BP 的最小值是__245__.17.如图有一个棱长为9 cm 的正方体,一只蜜蜂要沿正方体的表面从顶点A 爬到C 点(C 点在一条棱上,距离顶点B 3 cm 处),需爬行的最短路程是__15__cm .18.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,按图中方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则C ′D 的长为__3__.三、解答题(共66分)19.(9分)如图,正方形网格中有△ABC ,若小方格边长为1,请你根据所学的知识解答下列问题:(1)求△ABC 的面积;(2)判断△ABC 是什么形状,并说明理由. 解:(1)用正方形的面积减去三个小三角形的面积即可求出△ABC 的面积.S △ABC =4×4-1×2×12-4×3×12-2×4×12=16-1-6-4=5,∴△ABC 的面积为5(2)△ABC 是直角三角形.理由如下:∵AB 2=12+22=5,AC 2=22+42=20,BC 2=32+42=25,∴AC2+AB2=BC2,∴△ABC是直角三角形20.(9分)如图,AF⊥DE于F,且DF=15 cm,EF=6 cm,AE=10 cm.求正方形ABCD 的面积.解:在Rt△AEF中,AF2=AE2-EF2=64,在Rt△AFD中,AD2=AF2+DF2=289,所以正方形ABCD的面积是28921.(9分)一写字楼发生火灾,消防车立即赶到距大楼9米的A点处,升起云梯到发火的窗口点C.已知云梯BC长15米,云梯底部B距地面A为2.2米,问发生火灾的窗口距地面有多少米?解:在Rt△BCD中,CD2=BC2-BD2=152-92=144,所以CD=12米,即火灾的窗口距地面有12+2.2=14.2米22.(9分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D 点作DE⊥DF,交AB于点E,交BC于点F,若AE=4,FC=3,求EF的长.解:连接BD,证△BDE≌△CDF,得BE=FC,∴AB=7,BF=4,在Rt△BEF中,EF2=BE2+BF2=25,即EF=523.(10分)如图,∠AOB=90°,OA=45 cm,OB=15 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?解:小球滚动的速度与机器人行走的速度相同,时间相同.即BC=CA,设AC=x,则OC=45-x,在Rt△BOC中,OB2+OC2=BC2,即152+(45-x)2=x2,解得:x=25.所以机器人行走的路程BC是25 cm24.(10分) 如图,已知∠MBN=60°,在BM,BN上分别截取BA=BC,P是∠MBN内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA∶PB∶PC=3∶4∶5,连接PQ,求证∠PQC=90°.解:(1)AP=CQ.∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC,又∵AB=BC,BP=BQ,∴△ABP≌△CBQ,AP=CQ(2)设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中,∵PB=BQ=4a,且∠PBQ =60°,∴△PBQ为等边三角形,∴PQ=4a,在△PQC中,∵PQ2+QC2=16a2+9a2=25a2=PC2,∴△PQC为直角三角形,即∠PQC=90°25.(10分)如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80 m ,现有一拖拉机在公路MN 上以18 km /h 的速度沿PN 方向行驶,拖拉机行驶时周围100 m 以内都会受到噪音的影响,试问该校受影响的时间为多长?解:设拖拉机开到C 处刚好开始受到影响,行驶到D 处时,结束了噪声的影响,则有CA =DA =100 m ,在Rt △ABC 中,CB 2=1002-802=602,∴CB =60 (m ),∴CD =2CB =120 m .∵18 km/h =5 m/s ,∴该校受影响的时间为120÷5=24 (s ).即该校受影响的时间为24 s第二章 实数 单元检测题(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.下面四个实数,你认为是无理数的是( )A .13B . 3C .3D .0.3 2.下列四个数中,是负数的是( )A .|-2|B .(-2)2C .- 2D .(-2)23.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是( )A .①④B .②③C .①②④D .①③④4.实数a ,b 在数轴上的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( )A .2a +bB .-2a +bC .bD .2a -b5.k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k<m =nB .m =n<kC .m<n<kD .m<k<n 6.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③(-4)2的平方根是-4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有( )A .1个B .2个C .3个D .4个 7.下列计算正确的是( )A .(-3)(-4)=-3×-4B .42-32=42-32C .62= 3 D .62= 3 8.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 9.下列各式中,正确的是( )A .22+32=2+3B .32+53=(3+5)2+3C .152-122=15+12·15-12D .412=21210.规定用符号[m]表示一个实数m 的整数部分,例如[23]=0, [3.14]=3,按此规定[10+1]的值为( )A .3B .4C .5D .6二、填空题(每小题3分,共24分)11.-5的相反数是___.12.16的算术平方根是____.13.写出一个比-3大的无理数___. 14.计算:8-18=____.15.比较大小:22____π.(填“>”、“<”或“=”)16.已知一个正数的平方根是3x -2和5x +6,则这个数是____. 17.若x ,y 为实数,且|x +2|+y -3=0,则(x +y)2014的值为____. 18.已知m =20132014-1,则m 2-2m -2013=____.三、解答题(共66分)19.(10分)(1) (2012-π)0-(13)-1+|3-2|+3;(2) 1+(-12)-1-(3-2)2÷(13-3)020.(10分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3;(2) (2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3.21.(10分)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .2-2C .2+3D .32 E .0问题的答案是(只需填字母):____;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么.(用代数式表示)22.(12分)计算:(1)32+50+1345-18; (2)22÷52×1234;(3)(6-412+38)÷2 2.23.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.24.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.25.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=.②参照(三)式化简25+3=.(2)化简:13+1+15+3+17+5+…+199+97.答案:一、选择题(每小题3分,共30分)1—5 BCCCD 6---10 CDCCB 二、填空题(每小题3分,共24分)11.-5的相反数是. 12.16的算术平方根是__4__.13.写出一个比-3大的无理数__-2__.14.计算:8-18=.15.比较大小:22__<__π.(填“>”、“<”或“=”)16.已知一个正数的平方根是3x -2和5x +6,则这个数是__494__.17.若x ,y 为实数,且|x +2|+y -3=0,则(x +y)2014的值为__1__. 18.已知m =20132014-1,则m 2-2m -2013=__0__.三、解答题(共66分)19.(10分)(1) (2012-π)0-(13)-1+|3-2|+3;解:原式=0(2) 1+(-12)-1-(3-2)2÷(13-3)0.解:原式=-3+320.(10分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3; 解:原式=a 2-5b 2=-13(2) (2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3. 解:原式=x 2-5=-221.(10分)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .2-2C .2+3D .32 E .0问题的答案是(只需填字母):__A ,D ,E __;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么.(用代数式表示) 解:(2)设a 为有理数,这个数为x ,则x ·2=a ,∴x =a 2=22a22.(12分)计算:(1)32+50+1345-18; (2)22÷52×1234; 解:原式=62+ 5 解:原式=35(3)(6-412+38)÷2 2. 解:原式=123+223.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.解:(1)在Rt △OAB 中,由勾股定理得OB 2=OA 2+AB 2,所以OC =OB =OA 2+AB 2=22+32=13, 即点C 表示数13(2)画图略.在△ODE 中,∠EDO =90°,OD =5,DE =2,则OF =OE =29,即F 点为-2924.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.解:(1)AB=4,AC=32+32=32,BC=12+32=10,所以AB的长度是有理数,AC和BC的长度是无理数(2)图略25.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=.②参照(三)式化简25+3=.(2)化简:13+1+15+3+17+5+…+199+97.解:(1)①2×(5-3)(5+3)(5-3)=2(5-3)(5)2-(3)2=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(2)原式=3-12+5-32+7-52+……+99-972=99-12=311-12第二章 实数 单元检测题(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.下面四个实数,你认为是无理数的是( )A .13B . 3C .3D .0.3 2.下列四个数中,是负数的是( )A .|-2|B .(-2)2C .- 2D .(-2)23.设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是( )A .①④B .②③C .①②④D .①③④4.实数a ,b 在数轴上的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( )A .2a +bB .-2a +bC .bD .2a -b5.k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k<m =nB .m =n<kC .m<n<kD .m<k<n 6.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③(-4)2的平方根是-4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有( )A .1个B .2个C .3个D .4个 7.下列计算正确的是( )A .(-3)(-4)=-3×-4B .42-32=42-32C .62= 3D .62= 3 8.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 9.下列各式中,正确的是( )A .22+32=2+3B .32+53=(3+5)2+3C .152-122=15+12·15-12D .412=21210.规定用符号[m]表示一个实数m 的整数部分,例如[23]=0, [3.14]=3,按此规定[10+1]的值为( )A .3B .4C .5D .6二、填空题(每小题3分,共24分)11.-5的相反数是___.12.16的算术平方根是____.13.写出一个比-3大的无理数___. 14.计算:8-18=____.15.比较大小:22____π.(填“>”、“<”或“=”)16.已知一个正数的平方根是3x -2和5x +6,则这个数是____. 17.若x ,y 为实数,且|x +2|+y -3=0,则(x +y)2014的值为____. 18.已知m =20132014-1,则m 2-2m -2013=____.三、解答题(共66分)19.(10分)(1) (2012-π)0-(13)-1+|3-2|+3;(2) 1+(-12)-1-(3-2)2÷(13-3)020.(10分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3;(2) (2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3.21.(10分)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .2-2C .2+3D .32E .0问题的答案是(只需填字母):____;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么.(用代数式表示)22.(12分)计算:(1)32+50+1345-18; (2)22÷52×1234;(3)(6-412+38)÷2 2.23.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.24.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC 中,请判断AB ,BC ,AC 三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.25.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=.②参照(三)式化简25+3=.(2)化简:13+1+15+3+17+5+…+199+97.答案:一、选择题(每小题3分,共30分)1—5 BCCCD 6---10 CDCCB 二、填空题(每小题3分,共24分)11.-5的相反数是.12.16的算术平方根是__4__.13.写出一个比-3大的无理数__-2__.14.计算:8-18=.15.比较大小:22__<__π.(填“>”、“<”或“=”)16.已知一个正数的平方根是3x -2和5x +6,则这个数是__494__.17.若x ,y 为实数,且|x +2|+y -3=0,则(x +y)2014的值为__1__. 18.已知m =20132014-1,则m 2-2m -2013=__0__.三、解答题(共66分)19.(10分)(1) (2012-π)0-(13)-1+|3-2|+3;解:原式=0(2) 1+(-12)-1-(3-2)2÷(13-3)0.解:原式=-3+320.(10分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3; 解:原式=a 2-5b 2=-13(2) (2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3. 解:原式=x 2-5=-221.(10分)(1)有这样一个问题:2与下列哪些数相乘,结果是有理数?A .32B .2-2C .2+3D .32E .0 问题的答案是(只需填字母):__A ,D ,E __;(2)如果一个数与2相乘的结果是有理数,则这个数的一般形式是什么.(用代数式表示) 解:(2)设a 为有理数,这个数为x ,则x ·2=a ,∴x =a 2=22a22.(12分)计算:(1)32+50+1345-18; (2)22÷52×1234; 解:原式=62+ 5 解:原式=35(3)(6-412+38)÷2 2. 解:原式=123+223.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.解:(1)在Rt △OAB 中,由勾股定理得OB 2=OA 2+AB 2,所以OC =OB =OA 2+AB 2=22+32=13, 即点C 表示数13(2)画图略.在△ODE 中,∠EDO =90°,OD =5,DE =2,则OF =OE =29,即F 点为-2924.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.解:(1)AB=4,AC=32+32=32,BC=12+32=10,所以AB的长度是有理数,AC和BC的长度是无理数(2)图略25.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=.②参照(三)式化简25+3=.(2)化简:13+1+15+3+17+5+…+199+97.解:(1)①2×(5-3)(5+3)(5-3)=2(5-3)(5)2-(3)2=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(2)原式=3-12+5-32+7-52+……+99-972=99-12=311-12第三章 位置与坐标 单元检测题(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.在平面直角坐标系中,已知点P(2,-3),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2.在平面直角坐标系中,将点M(1,2)向左平移2个单位长度后得到点N ,则点N 的坐标是( )A .(-1,2)B .(3,2)C .(1,4)D .(1,0)3.如果M(m +3,2m +4)在y 轴上,那么点M 的坐标是( )A .(-2,0)B .(0,-2)C .(1,0)D .(0,1)4.如果P 点的坐标为(a ,b),它关于y 轴的对称点为P 1,P 1关于x 轴的对称点为P 2,已知P 2的坐标为(-2,3),则点P 的坐标为( )A .(-2,-3)B .(2,-3)C .(-2,3)D .(2,3)5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =1,第5题图) ,第7题图),第10题图)6.一个矩形,长为6、宽为4,若以该矩形的两条对称轴为坐标轴建立平面直角坐标系,下面哪个点不在矩形上( )A .(3,-2)B .(-3,3)C .(-3,2)D .(0,-2)7.如图,点A 的坐标为(-1,0),点B 在第一、三象限的角平分线上运动,当线段AB 最短时,点B 的坐标为( )A .(0,0)B .(22,-22) C .(-12,-12) D .(-22,-22) 8.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限9.)已知点M 到x 轴的距离为1,到y 轴的距离为2,则M 点的坐标为( )A.(1,2) B.(-1,-2)C.(1,-2) D.(2,1),(2,-1),(-2,1),(-2,-1)10.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是( )A.(4,0) B.(1,0) C.(-22,0) D.(2,0)二、填空题(每小题3分,共24分)11.点P(1,2)关于x轴的对称点P1的坐标是____,点P(1,2)关于y轴的对称点P2的坐标是___.12.线段AB=3,且AB∥x轴,若A点的坐标为(-1,2),则点B的坐标是__.13.(2016 ·玉林模拟)在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,在向上跳2个单位长度到点A′处,则点A′的坐标为__.14.如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在的位置坐标为___15.(4分)(2015 ·甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为__.16.已知点A,B的坐标分别为(2,0),(2,4),以A,B,P为顶点有三角形与△ABO 全等,写出一个符合条件的点P的坐标为__17.如图所示,在直角坐标系中,△OBC的顶点O(0,0),B(-6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称点C′的坐标是__ .,第14题图),第15题图),第17题图),第18题图) 18.(2016·恩施模拟)如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a,b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形,那么所有满足条件的点P的坐标是__.三、解答题(共66分)19.(6分)(2015·曹县)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C的位置.20.(8分)图中标明了小强家附近的一些地方.(1)写出公园、游艺场和学校的坐标;(2)早晨,小强从家里出发,沿(-3,-1),(-1,-2),(0,-1),(2,-2),(1,0),(1,3),(-1,2)路线转了一下,又回到家里,写出他路上经过的地方.21.(10分)(2015·山师二附中)如图,OA=8,OB=6,∠xOB=120°,求A,B两点的坐标.22.(10分) 如图,三角形BCO是三角形BAO经过某种变换得到的.(1)写出A,C的坐标;(2)图中A与C的坐标之间的关系是什么?(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?23.(10分)小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;(2)小金鱼身上的点的纵坐标都乘以-1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?(3)小金鱼身上的点的横坐标都乘-1,所得图形与原图形相比有哪些变化?24.(10分)如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?25.(12分)如图,在平面直角坐标系中,已知A(1,0),B(2,0),四边形ABCD是正方形.(1)写出C,D两点坐标;(2)将正方形ABCD绕O点逆时针旋转90°后所得四边形的四个顶点的坐标分别是多少?(3)若将(2)所得的四边形再绕O点逆时针旋转90°后,所得四边形的四个顶点坐标又分别是多少?答案:一 1-5 DABBB 6—10 BCADB二、填空题(每小题3分,共24分)11.点P(1,2)关于x轴的对称点P1的坐标是__(1,-2)__,点P(1,2)关于y轴的对称点P2的坐标是__(-1,2)__.12.线段AB=3,且AB∥x轴,若A点的坐标为(-1,2),则点B的坐标是__(2,2)或(-4,2)__.13.(2016 ·玉林模拟)在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,在向上跳2个单位长度到点A′处,则点A′的坐标为__(1,2)__.14.如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在的位置坐标为__(-3,3)__.15.(4分)(2015 ·甘孜州)如图,正方形A 1A 2A 3A 4,A 5A 6A 7A 8,A 9A 10A 11A 12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A 1,A 2,A 3,A 4;A 5,A 6,A 7,A 8;A 9,A 10,A 11,A 12;…)的中心均在坐标原点O ,各边均与x 轴或y 轴平行,若它们的边长依次是2,4,6…,则顶点A 20的坐标为__(5,-5)__.16.已知点A ,B 的坐标分别为(2,0),(2,4),以A ,B ,P 为顶点有三角形与△ABO 全等,写出一个符合条件的点P 的坐标为__答案不唯一,如P (4,0)或P (0,4),或P (4,4)等__17.如图所示,在直角坐标系中,△OBC 的顶点O(0,0),B(-6,0),且∠OCB =90°,OC =BC ,则点C 关于y 轴对称点C ′的坐标是__(3,3)__.,第14题图) ,第15题图),第17题图) ,第18题图)18.(2016·恩施模拟)如图,在平面直角坐标系xOy 中,分别平行x ,y 轴的两直线a ,b 相交于点A(3,4).连接OA ,若在直线a 上存在点P ,使△AOP 是等腰三角形,那么所有满足条件的点P 的坐标是__(8,4)或(-2,4)或(-3,4)或(-76,4)__.三、解答题(共66分)19.(6分)(2015·曹县)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C 的位置.解:如图:20.(8分)图中标明了小强家附近的一些地方.(1)写出公园、游艺场和学校的坐标;(2)早晨,小强从家里出发,沿(-3,-1),(-1,-2),(0,-1),(2,-2),(1,0),(1,3),(-1,2)路线转了一下,又回到家里,写出他路上经过的地方.解:(1)公园(3,-1),游艺场(3,2),学校(1,3)(2)邮局——移动通讯——幼儿园——消防队——火车站——学校——糖果店21.(10分)(2015·山师二附中)如图,OA =8,OB =6,∠xOB =120°,求A ,B 两点的坐标.解:过A 作AC ⊥x 轴,作BD ⊥x 轴,在Rt △AOC 中,AC 2+OC 2=OA 2,即2OC 2=64,解得OC =42,即A (42,42).在Rt △BOD 中,∠BOD =60°,所以∠DBO =30°,所以OD =12OB =3,因为BD 2+OD 2=OB 2,所以BD 2=62-32=27,解得BD =33,即B (-3,33)22.(10分) 如图,三角形BCO 是三角形BAO 经过某种变换得到的. (1)写出A ,C 的坐标;(2)图中A 与C 的坐标之间的关系是什么?(3)如果三角形AOB 中任意一点M 的坐标为(x ,y),那么它的对应点N 的坐标是什么?解:(1)A(5,3),C(5,-3)(2)关于x轴对称(3)N(x,-y)23.(10分)小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;(2)小金鱼身上的点的纵坐标都乘以-1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?(3)小金鱼身上的点的横坐标都乘-1,所得图形与原图形相比有哪些变化?解:(1)A(0,-4),B(4,-1),C(4,-7),D(10,-3),E(10,-5),F(8,-4)(2)与原图案关于x轴对称(3)与原图案关于y轴对称24.(10分)如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?解:(1)→(2)纵坐标不变,横坐标都加1(2)→(3)横坐标不变,纵坐标都加1(3)→(4)横、纵坐标都乘以-1(4)→(5)横坐标不变,纵坐标都乘以-125.(12分)如图,在平面直角坐标系中,已知A(1,0),B(2,0),四边形ABCD是正方形.(1)写出C,D两点坐标;(2)将正方形ABCD绕O点逆时针旋转90°后所得四边形的四个顶点的坐标分别是多少?(3)若将(2)所得的四边形再绕O点逆时针旋转90°后,所得四边形的四个顶点坐标又分别是多少?解:(1)C(2,1),D(1,1)(2)A(0,1),B(0,2),C(-1,2),D(-1,1)(3)A(-1,0),B(-2,0),C(-2,-1),D(-1,-1)北师大版八年级上册 第四章 一次函数 章节检测题(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长恰好为24米,要围的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y =-2x +24(0<x<12)B .y =-12x +12(0<x<24)C .y =2x -24(0<x<12)D .y =12x -12(0<x<24)3.一次函数y =mx +|m -1|的图象过点(0,2),且y 随x 的增大而增大,则m 等于( )A .-1B .3C .1D .-1或34.下列四组点中可以在同一个正比例函数图象上的一组点是( )A .(2,-3),(-4,6)B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2,3),(-4,6)5.对于函数y =-12x +3,下列说法错误的是( )A .图象经过点(2,2)B .y 随着x 的增大而减小C .图象与y 轴的交点是(6,0)D .图象与坐标轴围成的三角形面积是9 6.关于x 的一次函数y =kx +k 2+1的图象可能正确的是( )7.P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-2x +5图象上的两点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1>y 2>08.已知一次函数y =32x +m 和y =-12x +n 的图象都经过点A(-2,0),且与y 轴分别交于B ,C 两点,那么△ABC 的面积是( )A .2B .3C .4D .69.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .16D .8 210.如图,已知直线l ∶y =33x ,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 2 013的坐标为( )A .(0,22 013)B .(0,22 014)C .(0,24 026)D .(0,24 024)二、填空题(每小题3分,共24分)11.将直线y =2x 向上平移1个单位长度后得到的直线是____.12.函数y =x +3x -4中,自变量x 的取值范围是____. 13.一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是___.14.直线y =3x -m -4经过点A(m ,0),则关于x 的方程3x -m -4=0的解是____. 15.已知某一次函数的图象经过点A(0,2),B(1,3),C(a ,1)三点,则a 的值是___.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的天数是____.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式为____.18.直线l 与y =-2x +1平行,与直线y =-x +2交点的纵坐标为1,则直线l 的解析式为____.三、解答题(共66分)19.(8分)已知:一次函数y =kx +b 的图象经过M(0,2),N(1,3)两点. (1)求k ,b 的值;(2)若一次函数y =kx +b 的图象与x 轴的交点为A(a ,0),求a 的值.。

2017-2018学年度上期北师大版八年级期末数学试题

2017-2018学年度上期北师大版八年级期末数学试题

2018级八年级上期末考试A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分) 1.下列计算错误的是( )A. 39±= B . a a a 32=+ C . 2363=⨯ D . 413a a a =÷-2.如果点)21,(m m P +在第二象限,那么m 的取值范围是( )A. 210<<m B . 021<<-m C . 0<m D . 21>m 3.若式子aba 1+-有意义,则点),(b a 在( ) A.第一象限 B .第二象限 C .第三象限 D .第四象限 4.若))(3(152n x x mx x ++=-+,则m 的值是( )A. -5 B . 5 C . -2 D . 25.小刚参加设计比赛,成绩统计下表所示,则他本次射击成绩的众数和中位数分别是( )成绩(环) 6 7 8 9 10 次数12232A . 9,8B . 8,8C . 8,9D . 9,8.5 6.函数b ax y +=与a bx y +=的图象在同一坐标系内的大致位置正确的是( )A. B. C. D.7.函数)34()1(--+=m x m y 的图象经过第一、二象限,那么m 的取值范围是( ) A. 43<m B .431<<-m C . 1-<m D .1->m 8.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时,逆流用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,在下列方程组中正确的是( ) A.⎩⎨⎧=-+360)(24360)(18y x y x B .⎩⎨⎧=+=+360)(24360)(18y x y x C .⎩⎨⎧=-=-360)(24360)(18y x y x D .⎩⎨⎧=+=-360)(24360)(18y x y x9.已知211-=a ,则化简221a a +-后的值是( )A . 2B .2C .22+D .22-10.如图,方格纸中小正方形的边长为1,ABC ∆的三个顶点都在小正方形的格点上,小明在观察探究时发现:①ABC ∆的形状是等腰三角形;②ABC ∆的周长是2102+;③点C 到AB 边的距离是1054。

四川省成都市2017-2018学年八年级数学上学期期末试题

四川省成都市2017-2018学年八年级数学上学期期末试题

四川省成都市2017-2018学年八年级数学上学期期末试题A 卷(满分100分) 第Ⅰ卷 选择题(30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在实数-1,0,12中,最大的数是(C )A .1-B .0C .21 2.对于函数,自变量x 的取值范围是(A )A. x 4B. x -4C.D.3.点P ( 2,-3 )关于x 轴的对称点是( B )A .(-2, 3 )B .(2,3)C .(-2,-3 )D .(2,-3 )4.直线a 、b 、c 、d 的位置如图,如果1100∠=°,2100∠=°,3125∠=°,那么4∠等于(D )A.80°B.65°C.60°D.55° 5.下列四个命题中,真命题有(B )①内错角一定相等;②如果1∠和2∠是对顶角,那么12∠=∠;③三角形的一个外角大于任何一个与它不相邻的内角;④若22a b =,则a b =. A.1个 B.2个 C.3个 D.4个 6.某班10名学生的校服尺寸与对应人数如表所示:则这10 A.165cm ,170cm B.165cm ,165cm C.170cm ,165cm D.170cm ,170cm 7.一次函数y=kx+b 的图像如图,则y>0时,x 的取值范围是(D ) A. x 0 B.xC. x 2D. x<28.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是(B )A 1B 1C .1-9.某公司去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为980万元,如果去年的总产值x 万元,总支出y 万元,则下列方程组正确的是(A )A.()()300120%110%980x y x y -=⎧⎪⎨+--=⎪⎩B.()()300120%110%980x y x y -=⎧⎪⎨--+=⎪⎩C.30020%10%980x y x y -=⎧⎨-=⎩D.()()300120%110%980x y x y -=⎧⎪⎨---=⎪⎩10. 如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s 与t 的大致图象应为( D )第Ⅱ卷非选择题(70分)二、填空题(本大题共4个小题,每小题4分,共16分) 11.比较大小:__<__;122(1)0y +=,则=__1___.13. 如图,已知函数1y x =+和3y ax =+图象交于点P ,点P 的横坐标为1,则关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是12x y =⎧⎨=⎩.14. 长方形ABCD 中,AB=6,AD=8,点E 是边BC 上一点,将ABE 沿AE 翻折,点B 恰好落在对角线AC 上的点F 处,则AE 的长为3.三、解答题(共六个大题,54分) 15、计算(每小题4分,共8分) (12(1-(2)021(2018)|5()2π--+--解:原式(13)=-解:原式15)4=+-4=+154=++-=-42=16.(每小题6分,共12分)解下列方程(不等式)组. (1)解方程组:2332x y x y -=⎧⎨+=-⎩解:由①×3+②,得:77x =,1x = 把1x =代入①得:23y -=,1y =-所以,原方程组的解为11x y =⎧⎨=-⎩(2) 解不等式组:23(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并求其非负整数解.解:解不等式①,得:2x ≤ 解不等式②,得:7x >-所以,不等式组的解集为:72x -<≤ 非负整数解为:0,1, 217.(8分)如图,已知AB∥CD, 若∠C=35∘,AB是∠FAD的平分线.(1)求∠FAD的度数;(2)若∠ADB=110∘,求∠BDE的度数.答案:(1)700(4分)(2)350(4分)18.(8分)在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请画出△ABC向右平移4个单位长度后的△A1B1C1,并写出点C1的坐标;(2)请计算△ABC的面积;答案:(1)C1(3,3)(2分);图(2分)(2)(4分)19. (本小题满分8分)2017年《政府工作报告》中提出了十二大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“蓝天保卫战”,B:“数字家庭”,C:“人工智能+第五代移动通信”,D:“全域旅游”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词、根据调查结果,该小组绘制了两幅不完整的统计图如图所示,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学? (2)条形统计图中,m = ▲ ,n = ▲ .(3)若该校有3000名同学,请估计出选择C 、D 的一共有多少名同学?解:(1)调查的学生人数为:10530035%=名; (2)60m =,90n =(3)选择C 、D 的共有:904530001350300+⨯=名.20.(本小题满分10分)如图,直线1l 的解析式为;直线2l 与轴交于,两直线交于点P.(1)(4分)求点A ,B 的坐标及直线2l 的解析式; (2)(3分)求证:APC ;(3)(3分)若将直线2l 向右平移m 个单位,与轴,y 轴分别交于点C '、D ',使得以点A 、B 、C '、D '为顶点的图形是轴对称图形,求m 的值?答案:(1)A (-3,0)(1分);B (0,4)(1分) L 2:(2)(4分)方法1:连接AD,,又由OC=2,OD=得CD=BD ,在,(SSS) ,在,(ASA)方法2:可由K 1K 2=-1得0再由,AC=AB,证得(3)m=10(3分)B 卷(共50分)一、填空题(每小题4分,共20分) 21.若实数a =244a a -+的值为3.22、若点P(-3,),Q(2,)在一次函数3y x c =-+的图像上,则a 与b 的大小关系是a>b 23、如果有一种新的运算定义为:“32(,)a bT a b a b-=+,其中a 、b 为实数,且0a b +≠”,比如:34236(4,3)437T ⨯-⨯==+,解关于m 的不等式组(2,32)5(,6)3T m m T m m -≥⎧⎨-<⎩,则m 的取值范围是2.16m ≤<.24、已知,如图,正方形ABCD 在平面直角坐标系中,其中点A 、C 两点的坐标为A (6,6),C (-1,-7),则点B 的坐标为(-4,3).(第23题图) (第25题图)25、如图,已知直线的解析式为1y x =-,且与轴交于点于轴交于点B ,过点作作直线AB 的垂线交y 轴于点1B ,过点1B 作x 轴的平行线交AB 于点1A ,再过点1A 作直线AB 的垂线交y 轴于点2B …,按此作法继续下去,则点的坐标为(0,3),(,).二、解答题(共30分)26.(8分)某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元。

2017-2018新北师大版数学八年级期末试卷附答案

2017-2018新北师大版数学八年级期末试卷附答案

2017-2018新北师大版数学八年级期末试卷附答案一、选择题1.下列汉字或字母中既是中心对称图形又是轴对称图形的是( )2.计算5x +3+2x +3的结果是( ) A .-3x +3 B .-7x +3 C.3x +3 D.7x +33.若a ,b 都是实数,且a <b ,则下列不等式的变形正确的是( )A .a +x >b +xB .-a +1<-b +1C .3a <3b D.a 2>b24.已知△ABC 在平面直角坐标系的位置如图所示,将△ABC 向右平移6个单位,则平移后A 点的坐标是( )A .(-2,1)B .(2,1)C .(2,-1)D .(-2,-1)第4题图 第5题图5.如图,▱ABCD 中,已知∠ADB =90°,AC =10cm ,AD =4cm ,则BD 的长为( ) A .4cm B .5cm C .6cm D .8cm 6.不等式组⎩⎨⎧2x +2>x ,3x <x +2的解集是( )A .x >-2B .x <1C .-1<x <2D .-2<x <17.下列说法中正确的是( )A .斜边相等的两个直角三角形全等B .腰相等的两个等腰三角形全等C .有一边相等的两个等边三角形全等D .两条边相等的两个直角三角形全等 8.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中如图所示,则关于x 的不等式k 2x <k 1x +b 的解集为( )A .x <-1B .x >-1C .x >2D .x <2第8题图 第9题图9.如图,DC ⊥AC 于C ,DE ⊥AB 于E ,并且DE =DC ,则下列结论中正确的是( ) A .DE =DF B .BD =FD C .∠1=∠2 D .AB =AC 10.若(x +y )3-xy (x +y )=(x +y )·M (x +y ≠0),则M 是( ) A .x 2+y 2 B .x 2-xy +y 2 C .x 2-3xy +y 2 D .x 2+xy +y 211.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同.设现在平均每天植树x 棵,则列出的方程为( )A.400x =300x -30B.400x -30=300xC.400x +30=300xD.400x =300x +3012.如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10第12题图 第13题图13.如图,在平行四边形ABCD 中,∠B =60°,将△ABC 沿对角线AC 折叠,点B 的对应点落在点E 处,且点B ,A ,E 在一条直线上,CE 交AD 于点F ,则图中等边三角形共有( )A .4个B .3个C .2个D .1个14.若m +n -p =0,则m ⎝ ⎛⎭⎪⎫1n -1p +n ⎝ ⎛⎭⎪⎫1m -1p -p ⎝ ⎛⎭⎪⎫1m +1n 的值是( )A .-3B .-1C .1D .315.如图,在等腰直角△ABC 中,∠C =90°,点O 是AB 的中点,且AB =6,将一块直角三角板的直角顶点放在点O 处,始终保持该直角三角板的两直角边分别与AC 、BC 相交,交点分别为D 、E ,则CD +CE =( )A. 2B. 3 C .2 D. 6二、填空题(本大题共5小题,每小题5分,共25分) 16.因式分解:2x 2-18=__________.17.如图,将△APB 绕点B 按逆时针方向旋转90°后得到△A 1P 1B ,连接PP 1.若BP =2,则线段PP 1的长为________.第17题图 第18题图18.如图,在▱ABCD 中,点E 在BC 边上,且AE ⊥BC 于点E ,DE 平分∠CDA .若BE ∶EC =1∶2,则∠BCD 的度数为________.19.若关于x 的方程1x -3+kx +3=3+k x 2-9有增根,则k 的值为________. 三、解答题(本大题共7小题,各题分值见题号后,共80分) 21.(8分)因式分解:(1) m 2n -2mn +n ; (2) x 2+3x (x -3)-9.22.(8分)(1)解方程:1x -3=3x ;参考答案与解析1.C 2.D 3.C 4.B 5.C 6.D 7.C 8.B9.C 10.D 11.A 12.B 13.B14.A 解析:原式=m n -m p +n m -n p -p m -p n =m -p n +n -p m -m +np .∵m +n -p =0,∴m -p =-n ,n -p =-m ,m +n =p ,∴原式=-1-1-1=-3.15.B 解析:连接CO ,由题意可知AC =BC ,∠C =90°,且O 为AB 的中点,∴CO ⊥AB ,∠DCO =∠BCO =45°=∠EBO ,∴CO =BO .∵∠DOE =∠COB =90°,∴∠COD +∠COE =∠COE +∠BOE =90°,∴∠COD =∠BOE .在△COD 和△BOE中,⎩⎨⎧∠COD =∠BOE ,CO =BO ,∠DCO =∠EBO ,∴△COD ≌△BOE (ASA),∴CD =BE ,∴CE +CD =CE +BE =BC .在Rt △ABC 中,AB =6,∴BC =AC =AB 22=3,∴CD +CE =3,故选B.16.2(x +3)(x -3) 17.22 18.120° 19.-37或320.72≤x <92 解析:依题意有⎩⎪⎨⎪⎧x -1≥52,x -1<72,解得72≤x <92.21.解:(1)原式=n (m 2-2m +1)=n (m -1)2.(4分)(2)原式=x 2-9+3x (x -3)=(x +3)(x -3)+3x (x -3)=(x -3)(x +3+3x )=(x -3)(4x +3).(8分)22.解:(1)方程两边都乘x (x -3),得x =3(x -3),解得x =92.(3分)经检验,当x =92时,x (x -3)≠0,故x =92是原分式方程的根.(4分)(2)去括号,得2x -12+4≤3x -5,移项、合并同类项,得-x ≤3,系数化1,得x ≥-3.其解集在数轴上表示如图.(8分)23.解:化简得原式=2x -3.(5分)∵x 为满足-3<x <2的整数,∴x =-2,-1,0,1.(7分)∵x 要使原分式有意义,∴x ≠-2,0,1,∴x =-1.当x =-1时,原式=2×(-1)-3=-5.(10分)24.解:(1)∵AD 垂直平分BE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠C =∠CAE .(3分)∵∠BAE =30°,∴∠AEB =75°,∴∠C =12∠AEB =37.5°.(7分)(2)∵△ABC 的周长为13cm ,AC =6cm ,∴AB +BE +EC =7cm.∵AB =CE ,BD =DE ,∴2DE +2EC =7cm ,(10分)∴DE +EC =72cm ,即DC =72cm.(12分)25.解:(1)2 y 轴 120(6分)(2)由旋转得OA =OD ,∠AOD =120°.(7分)∵△AOC 是等边三角形,∴∠AOC =60°,∴∠COD =∠AOD -∠AOC =60°,∴∠COD =∠AOC .(9分)又∵OA =OD ,∴OC ⊥AD ,即∠AEO =90°.(12分)26.解:(1)设每行驶1千米纯用电的费用为x 元,由题意得76x +0.5=26x ,解得x =0.26.(5分)经检验,x =0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元.(7分)(2)设从A 地到B 地油电混合行驶,需用电行驶y 千米,由题意得0.26y +⎝ ⎛⎭⎪⎫260.26-y ×(0.26+0.5)≤39,解得y ≥74.(12分)所以至少需用电行驶74千米.(14分)27.解:(1)过点A 作AF ⊥BC 于点F ,则∠AFB =90°.∵∠ABC =60°,∴∠BAF =30°.∵AB=8,∴BF =12AB =4,∴AF =AB 2-BF 2=4 3.(2分)∵经过t 秒后BQ =16-2t ,∴S =12·BQ ·AF=12×(16-2t )×43=-43t +323(t ≤6).(4分) (2)103(8分) 解析:由图可知S 四边形PQCD =S 四边形ABCD -S △BPQ -S △ABP .∵AP =t ,∴S △ABP =12AP ·AF =23t .又∵S 四边形ABCD =12AF (AD +BC )=12×43×(6+16)=443,∴S 四边形PQCD =443-(-43t +323)-23t =23t +12 3.∵S =S 四边形PQCD,∴23t +123=-43t +323,解得t =103. (3)由题意可知四边形PEQD 或四边形PQED 为平行四边形,∴PD =EQ .(10分)∵PD =6-t ,EQ =8-2t 或2t -8,∴6-t =8-2t 或6-t =2t -8,解得t =2或t =143.(14分)故当t=2或143时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.(16分)。

2017-2018学年四川省成都外国语学校八年级(上)期末数学试卷(北师大新版)

2017-2018学年四川省成都外国语学校八年级(上)期末数学试卷(北师大新版)

2017-2018学年四川省成都外国语学校八年级(上)期末数学试、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选 项,其中只有一项符合题目要求,答案涂在答题卡上) 1.(3分)在实数-1,0, 一,-中,最大的数是( )A.一B . 0C. 一D . 22.(3分)函数y= 的自变量x 的取值范围是( )A.X M 4B . x >4C. x >4D . x <43. (3分)点P (2,- 3)关于X 轴对称的点是( )4. (3 分)直线 a 、b 、c 、d 的位置如图,如果/ 1=100° / 2=100° / 3=125°5. (3分)下列四个命题中,真命题有( ) ①内错角一定相等;②如果/ 1和/ 2是对顶角,那么/仁/ 2;③三角形的一个 夕卜角大于任何一个与它不相邻的内角;④若 a 2=b 2,则a=b. A . 1个B . 2个 C. 3个 D . 4个6. (3分)某班10名学生的校服尺寸与对应人数如表所示: 尺寸(cm )160165170175180A . (- 2,3)B . (2, 3)C. (- 2,- ) D . (2,- 3)C. 60 D . 55A . 165cm , 165cm B. 165cm ,170cm )B . 65则这10名学生校服尺寸的众数和中位数分别为()C. 170cm, 165cmD. 170cm, 170cm7. (3分)一次函数y=kx+b (〜0)的图象如图所示,当y>0时,x的取值范围是()LA. x v0B. x>0C. x v2D. x>28. (3分)如图矩形ABCD的边AD长为2, AB长为1,点A在数轴上对应的点是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,点E表示的实数是()A. B. C. D. 1 -9. (3分)某公司去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为980万元,如果去年的总产值x万元,总支出y万元,则下列方程组正确的是()A.B.C.D.10. (3分)如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为():Qi、填空题(本大题共4个小题,每小题4分,共16 分) 11. (4分)比较大小: _________ .(填\、v 、或二”) 12. (4 分)若 + (y+1) 2=0,贝U ( x+y ) 2018= ________ .13. (4分)如图,已知函数y=x+1和y=ax+3图象交于点P ,点P 的横坐标为1,则关于x , y 的方程组的解是 ______ .14. (4分)长方形 ABCD 中,AB=6, AD=8,点E 是边BC 上一点,将△ ABE 沿 AE 翻折,点B 恰好落在对角线AC 上的点F 处,则AE 的长为 ________ .三、解答题(共六个大题,54分) 15. (8分)计算 (1) -i*B .0 t(2) ( n- 2018) 0+6 -16. (12分)解下列方程(不等式)组.。

2017-2018学年成都市金牛区八年级(上)期末数学试卷(含解析)

2017-2018学年成都市金牛区八年级(上)期末数学试卷(含解析)

2017-2018学年成都市金牛区八年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.在实数﹣1,0,,中,最大的数是()A.B.0 C.D.﹣12.函数y=的自变量x的取值范围是()A.x≠4 B.x>4 C.x≥4 D.x≤43.点P(2,﹣3)关于x轴对称的点是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)4.直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于()A.80°B.65°C.60°D.55°5.下列四个命题中,真命题有()①内错角一定相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③三角形的一个外角大于任何一个与它不相邻的内角;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个6.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cmC.170cm,165cm D.170cm,170cm7.一次函数y=kx+b的图象如图,则y>0时,x的取值范围是()A.x≥0 B.x≤2 C.x>2 D.x<28.如图矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的点是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,点E表示的实数是()A.B.C.D.1﹣9.某公司去年的利润(总产值﹣总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为980万元,如果去年的总产值x万元,总支出y万元,则下列方程组正确的是()A.B.C.D.10.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为()A.B.C.D.二、填空题(每小题4分,共16分)11.比较大小:.(填“>、<、或=”)12.若+(y+1)2=0,则(x+y)2018=.13.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是.14.长方形ABCD中,AB=6,AD=8,点E是边BC上一点,将△ABE沿AE翻折,点B恰好落在对角线AC上的点F处,则AE的长为.二、解答题(共54分)15.(8分)计算(1)(2)(π﹣2018)0+616.(12分)解下列方程(不等式)组.(1)解方程组:(2)解不等式组:,并求其非负整数解.17.(8分)如图,已知AB∥CD,若∠C=35°,AB是∠FAD的平分线.(1)求∠FAD的度数;(2)若∠ADB=110°,求∠BDE的度数.18.(8分)在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请画出△ABC向右平移4个单位长度后的△A1B1C1,并写出点C1的坐标;(2)请计算△ABC的面积;19.(8分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词、根据调查结果,该小组绘制了两幅不完整的统计图如图所示,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m=,n=.(3)若该校有3000名同学,请估计出选择C、D的一共有多少名同学?20.(10分)如图,直线l1的解析式为y=x+4,与x轴,y轴分别交于A,B;直线l2与x轴交于点C(2,0)与y轴交于点D(0,),两直线交于点P.(1)求点A,B的坐标及直线l2的解析式;(2)求证:△AOB≌△APC;(3)若将直线l2向右平移m个单位,与x轴,y轴分别交于点C'、D',使得以点A、B、C'、D'为顶点的图形是轴对称图形,求m的值?B卷(50分)一、填空题(每小题4分,共20分)21.若实数,则代数式a2﹣4a+4的值为.22.若点P(﹣3,a),Q(2,b)在一次函数y=﹣3x+c的图象上,则a与b的大小关系是23.如果有一种新的运算定义为:“T(a,b)=,其中a、b为实数,且a+b≠0”,比如:T(4,3)=,解关于m的不等式组,则m的取值范围是.24.已知,如图,正方形ABCD在平面直角坐标系中,其中点A、C两点的坐标为A(6,6),C(﹣1,﹣7),点B在第二象限,则点B的坐标为.25.如图,已知直线AB的解析式为y=x﹣1,且与x轴交于点A于y轴交于点B,过点A作作直线AB 的垂线交y轴于点B1,过点B1作x轴的平行线交AB于点A1,再过点A1作直线AB的垂线交y轴于点B2…,按此作法继续下去,则点B1的坐标为,A1009的坐标.二、解答题(共30分)26.(8分)某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,甲服装店租用2件和在乙服装店租用3件共需280元,在甲服装店租用4件和在乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,且超出5件的部分可按原价的六折进行优惠;设需要租用x件服装,选择甲店则需要y1元,选择乙店则需要y2元,请分别求出y1,y关于x的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?27.(10分)如图,在△ABC中,∠B=45°,AB=2,BC=2+2,等腰直角△DAE中,∠DAE=90°,且点D是边BC上一点.(1)求AC的长;(2)如图1,当点E恰在AC上时,求点E到BC的距离;(3)如图2,当点D从点B向点C运动时,求点E到BC的距离的最大值.28.(12分)如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足(a+2)2=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标;(3)已知平行于y轴且位于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q 为y轴上一动点,且△MNQ为等腰直角三角形,请直接写出满足条件的点Q的坐标.参考答案与试题解析一、选择题1.【解答】解:在实数﹣1,0,,中,最大的数是,故选:C.2.【解答】解:根据题意得:x﹣4≥0,解得x≥4.故选:C.3.【解答】解:P(2,﹣3)关于x轴对称的点是(2,3),故选:B.4.【解答】解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴直线a∥直线b,∴∠4=∠5,∵∠3=125°,∴∠4=∠5=180°﹣∠3=55°,故选:D.5.【解答】解:两直线平行,内错角相等,①是假命题;如果∠1和∠2是对顶角,那么∠1=∠2,②是真命题;三角形的一个外角大于任何一个与它不相邻的内角,③是真命题;若a2=b2,则a=±b,④是假命题;故选:B.6.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选:B.7.【解答】解:由函数的图象可知,当x<2时,y>0;故选:D.8.【解答】解:如图所示:连接AC,由题意可得:AC=,则点E表示的实数是:﹣1.故选:B.9.【解答】解:设去年的总产值x万元,总支出y万元,根据题意可列方程组:,故选:A.10.【解答】解:由题意可得,小正方形的面积为:1×1=1,大正方形的面积为:2×2=4,∴刚开始小正方形从左向右运动,到小正方形正好完全进入大正方形的过程中,S随t的增大而减小,面积由4减小到3;当小正方形刚好完全进入大正方形到一边刚好要出大正方形的过程中,S随t的增大不变,一直是S=3,从小正方形刚好出大正方形到完全出大正方形的过程中,S随t的增大而增大,S由3增加到4,故选项A、B、C不符合题意,选项D符合题意,故选:D.二、填空题11.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.12.【解答】解:∵+(y+1)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴(x+y)2018=(2﹣1)2018=1,故答案为:1.13.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.14.【解答】解:∵四边形ABCD为矩形,∴BC=AD=8,∠ABC=90°,在Rt△ABC中,AC===10,∵△ABE沿AE翻折,点B恰好落在对角线AC上的点F处,∴∠AFE=∠ABE=90°,AF=AB=6,BE=FE,∴CF=10﹣6=4,设BE=x,则EF=x,CE=8﹣x,在Rt△CEF中,x2+42=(8﹣x)2,解得x=3,在Rt△ABE中,AE==3.故答案为3.二、解答题15.【解答】解:(1)原式=﹣(1﹣2+3)=2﹣4+2=4﹣4;(2)原式=1+2+5﹣3﹣4=2﹣.16.【解答】解:(1),由①×3+②,得:7x=7,x=1,把x=1代入①得:2﹣y=3,y=﹣1,所以方程组的解为;(2)解不等式2x﹣3(x﹣2)≥4,得:x≤2,解不等式<,得:x>﹣7,所以,不等式组的解集为:﹣7<x≤2,则非负整数解为:0,1,2.17.【解答】解:(1)∵∠FAB=∠C=35°,∵AB是∠FAD的平分线,∴∠FAD=2∠FAB=2×35°=70°.(2)∵∠ADB=110°,∠FAD=70°,∴∠ADB+∠FAD=110°+70°=180°,∴CF∥BD,∴∠BDE=∠C=35°.18.【解答】解:(1)△A1B1C1,即为所求,C1(3,3);(2)△ABC的面积为:3×4﹣×2×3﹣×2×4﹣×1×2=4.19.【解答】解:(1)根据题意得:105÷35%=300(人),答:一共调查了300名同学,(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)根据题意得:3000×=1350(名),答:选择C、D的一共有1350名同学.20.【解答】(1)解:当x=0时,y=x+4=4,∴点B的坐标为(0,4);当y=0时,有x+4=0,解得:x=﹣3,∴点A的坐标为(﹣3,0).设直线l2的解析式为y=kx+b(k≠0),将C(2,0)、D(0,)代入y=kx+b,得:,解得:,∴直线l2的解析式为y=﹣x+.(2)证明:连接两直线解析式成方程组,得:,解得:,∴点P的坐标为(﹣,).∵A(﹣3,0),C(2,0),B(0,4),∴AO=3,AC=5,AB==5,AP==3,∴AO=AP,AB=AC.在△AOB和△APC中,,∴△AOB≌△APC(SAS).(3)解:①当点B在点D′下方时,连接BC′,如图1所示.∵平移后直线C′D′的解析式为y=﹣(x﹣m)+=﹣x+m+,∴点C′的坐标为(m+2,0),点D′的坐标为(0,m+).∵以点A、B、C'、D'为顶点的图形是轴对称图形,∴△ABC′≌△D′BC′,∴AB=D′B,AC′=D′C′.∵A(﹣3,0),B(0,4),∴D′B=m﹣,AC′=m+5,D′C′==(m+2),∴,解得:m=10;②当点B在点D′上方时,连接BC′,AD,如图2所示.若△AC′D′≌△BC′D′,则AC′=BC′,由①可得:AC′=m+5,BC′=,∴m+5=,解得:m=﹣(不合题意,舍去);若△ABD′≌△C′BD′,则AB=C′B,∴OA=OC′,即3=m+2,解得:m=1.综上所述:当以点A、B、C'、D'为顶点的图形是轴对称图形时,m的值为10或1.一、填空题21.【解答】解:∵a====2+,∴原式=(a﹣2)2=(2+﹣2)2=3,故答案为:3.22.【解答】解:∵点P(﹣3,a)、Q(2,b)在一次函数y=﹣3x+c的图象上,∴a=9+c,b=﹣6+c.∵9+c>﹣6+c,∴a>b.故答案为:a>b.23.【解答】解:∵,∴∵解不等式①得:m≥2.1,解不等式②得:m<6,∴不等式组的解集为2.1≤m<6,∵m+6﹣m≠0,2m+3﹣2m≠0,∴2.1≤m<6,故答案为:2.1≤m<6.24.【解答】解:过A作AN⊥x轴于N,过B作BH⊥AN于H,过C作CM⊥BH于M,交x轴于G,∴∠AHB=∠CMB=90°,∴∠CBM+∠BCM=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠ABH+∠CBM=90°,∴∠ABH=∠BCM,在△ABH和△BCM中,∵,∴△ABH≌△BCM(AAS),∴AH=BM,BH=CM,∵A(6,6),C(﹣1,﹣7),∴ON=AN=6,OG=1,CG=7,设AH=a,MG=b,则BH=CM=a+1+6=7+b,∵AN=6=a+b,∴a=b=3,∴B(﹣4,3),故答案为:(﹣4,3).25.【解答】解:∵直线AB的解析式为y=x﹣1,∴直线AB与x轴的夹角为30°,∴∠ABO=60°,OA=,OB=1,∵过点A作作直线AB的垂线交y轴于点B1,∴∠OAB1=60°,∴B1O=OA•tan60°=×=3,∴B1(0,3),∵过点B1作x轴的平行线交AB于点A1,∴把y=3代入y=x﹣1得,3=x﹣1,解得x=4,∴A1(4,3),∵∠B1A1B2=60°,∴B1B2=A1B1•tan60°=4×=12∴OB2=15,把y=5×3代入y=x﹣1得,5×3=x﹣1,解得x=16,∴A2(24,15),…∴A1009坐标为(22018,22018﹣1).故答案为(0,3),(22018,22018﹣1).二、解答题26.【解答】解:(1)设甲店每件租金x元,乙店每件租金y元,由题可得:,解得,答:两个服装店提供的单价分别是50元.60元;(2)根据题意可得:y1=40x,y2=(3)由40x=36x+120得x=30答:当x=30时,两店相同.27.【解答】解:(1)作AF⊥BC于F,∵∠B=45°,∴AF=BF=AB=2,∴FC=BC﹣BF=2,由勾股定理得,AC==4;(2)作EH⊥BC于H,在Rt△AFC中,AF=2,AC=4,∴∠C=30°,∴∠ADF=60°,∴AD==,∴AE=AD=,∴EC=AC﹣AE=4﹣,∴EH=EC=2﹣;(3)由题意得,当点D运动到点C的位置时,点E到BC的距离的最大,如图2,作AF⊥BC于F,EH⊥BC于H,延长EA交BC于G,由(2)得,AG=,AE=AC=4,∴EG=AG+AE=4+,在Rt△EGH中,EH=EG×sin∠EGH=(4+)×=2+2.28.【解答】解:(1)∵a、b满足(a+2)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴点A的坐标为(﹣2,2),点B的坐标为(0,3).设直线l2的解析式为y=kx+c(k≠0),将A(﹣2,2)、B(0,3)代入y=kx+c,得:,解得:,∴直线l2的解析式为y=x+3.(2)∵S△AOP=S△AOB,∴点P到AO的距离与点B到AO的距离相等,且点P位于l1两侧(如图1).①当点P在l1的右侧时,设点P为P1,则P1B∥l1,∴直线P1B的解析式为:y=﹣x+3,当y=5时,有﹣x+3=5,解得:x=﹣2,∴点P1的坐标为(﹣2,5);②当点P在l1的左侧时,设点P为P2,设直线y=5与直线l1交于点E,则点E的坐标为(﹣5,5),∵点E为P1P2中点,∴点P2的坐标为(﹣8,5).综上所述:点P的坐标为(﹣2,5)或(﹣8,5).(3)设动直线为x=t,由题可得﹣2<t<0,则点M的坐标为(t,﹣t),点N的坐标为(t,t+3),∴MN=t+3(如图2).①当∠NMQ=90°时,有MN=MQ,即t+3=﹣t,解得:t=﹣,∴点M的坐标为(﹣,).∵MQ∥x轴,∴点Q的坐标为(0,);②当∠MNQ=90°时,有MN=NQ,即t+3=﹣t,解得:t=﹣,∴点N的坐标为(﹣,).∵NQ∥x轴,∴点Q的坐标为(0,);③当∠MQN=90°时,点Q到MN的距离=MN,即﹣t=×(t+3),解得:t=﹣,∴点M的坐标为(﹣,),点N的坐标为(﹣,).∵△MNQ为等腰直角三角形,∴点Q的坐标为(0,).综上所述:点Q的坐标为(0,)或(0,)或(0,).。

2017-2018学年度上学期北师大版八年级数学期末考试试卷

2017-2018学年度上学期北师大版八年级数学期末考试试卷

2017-2018学年度上学期八年级数学期末考试试卷本卷满分120分,考试时间120分钟的选项填在下面表格中。

)A. B.- C. D.-2、点A(-1,2)关于y轴对称的点在()第一象限 B.第二象限 C.第三象限 D.第四象限3、如图,已知AB∥CD,∠A=400,∠E=300,则∠C的度数为()A.600B.650C.700D.7504、下列运算,错误的是()2228=+ B.228=- C.428=⨯ D.228=÷5、在一次“爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为:6,3,6,5,5,6,7.这组数据的众数和中位数分别是()A.5,6B.6,5C.5,5D.6,66、一次函数2kkxy+=(k<0)的图像大致是()7、已知一次函数y=ax+b 中x 和y 的部分对应值如表所示,X=0 B.x=1 C.x=2 D.x=38、已知三角形相邻两边长分别为10cm 和17cm ,第三边上的高为8cm ,则第三边长为( ) A.21cm B.9cm 或15cm C.15cm 或21cm D.9cm 或21cm 二.填空题(本大题共8小题,每小题3分,共24分) 9、1的平方根是_______________。

10.如图,校园内有一块长方形草地,极少数人为了避开拐角走“捷径”,在草地内走出了一条“路”,他们仅仅少走了_________________m ,却践踏了一片草地。

11.请写一个正比例函数,使它的图像经过二、四象限,这个正比例函数可以是_________________。

12.化简的结果是___________________。

13.已知⎩⎨⎧==1y 2x 是方程组⎩⎨⎧=+=+24ay bx by ax 的解,则代数式(a+b )(a-b )的值为___________________。

14.某校八年级(1)班共有男生30名,女生20名,若测得全班平均身高为1.66米,其中男生平均身高为1.7米,则女生平均身高为________________米。

四川省成都市20172018学年八年级数学上学期期末试题新人教版

四川省成都市20172018学年八年级数学上学期期末试题新人教版

四川省成都市2017-2018 学年八年级数学上学期期末试题A 卷(满分100 分)第Ⅰ卷选择题(30分)一、选择题(本大题共10 个小题,每题 3 分,共 30 分,每题均有四个选项,其中只有一项吻合题目要求,答案涂在答题卡上)1. 在实数 -1,0 , 3 ,1中,最大的数是(C)2A.1B. 0C.3D.122.关于函数, 自变量 x 的取值范围是( A)A. x 4B. x-4C.D.3.点P(2,-3)关于 x 轴的对称点是(B)A.(-2, 3) B.(2,3) C .(-2,-3) D.(2,-3)4. 直线a、 b 、c、 d 的地址如图,若是1100°, 2100°, 3 125°,那么4等于( D)A. 80°B.65°C.60°°5. 以下四个命题中,真命题有(B)①内错角必然相等;②若是1和 2 是对顶角,那么 1 2 ;③三角形的一个外角大于任何一个与它不相邻的内角;④若a2b2,则 a b .A. 1个B. 2 个C. 3 个D. 4 个6.某班 10 名学生的校服尺寸与对应人数如表所示:尺寸( cm )160 165 170 175180学生人数(人)13222则这 10 名学生校服尺寸的众数和中位数分别为(A)A. 165cm , 170cmB. 165cm , 165cmC. 170cm , 165cmD. 170cm , 170cm7.一次函数 y=kx+b 的图像如图,则 y>0 时, x 的取值范围是( D)A. x 0 C. x2 D. x<28.如图,长方形ABCD的边 AD长为2,AB长为1,点 A 在数轴上对应的数是-1,以A点为圆心,对角线 AC长为半径画弧,交数轴于点E,则点 E 表示的实数是(B)A.51B.51C. 5D.159. 某公司昨年的利润(总产值- 总支出)为300 万元,今年总产值比昨年增加了20% ,总支出比昨年减少了 10% ,今年的利润为980 万元,若是昨年的总产值x 万元,总支出y万元,则以下方程组正确的是( A)A.x y300B.x y 300120% x 1 10% y980120% x110%y980C.x y300D.x y 30020% x10% y980120% x110%y98010.以下列图 , 边长分别为 1 和 2的两个正方形靠在一起,其中一边在同一水平线上 . 大正方形保持不动,小正方形沿该水平线自左向右匀速运动, 设运动时间为t, 大正方形内去掉小正方形重叠部分后的面积为 s, 那么 s 与 t 的大体图象应为( D )第Ⅱ卷非选择题(70 分)二、填空题(本大题共4 个小题,每题 4 分,共 16 分)11.比较大小: __<__;12.若x 2 ( y 1)20 ,则 =__1___.13. 如图,已知函数 y x 1 和 y ax 3 图象交于点 P ,点 P 的横坐标为 1,则关于 x , y 的方程组x y1 x 1ax y的解是y.3214. 长方形 ABCD 中, AB=6,AD=8, 点 E 是边 BC 上一点,将 ABE 沿 AE 翻折,点 B 恰好落在对角线 AC上的点 F 处,则 AE 的长为 3 .三、解答题(共六个大题, 54 分)15、计算(每题4分,共 8分)(1) 182 (1 3)2(2) ( 2018)61|5 27 |(1) 2332解:原式18 2(123 3)解:原式1 23(335)432 3 4 2 3 1 2 3 3 3 5 4=-42 316. (每题 6 分,共 12 分)解以下方程(不等式)组 .2x y3(1)解方程组:x 3y2解:由①× 3+②,得:7x7 , x1把 x 1 代入①得: 2 y3, y1x1所以,原方程组的解为y12x 3(x 2)4(2) 解不等式组:2x1x1,并求其非负整数解.5 2解:解不等式①,得: x 2解不等式②,得: x 7所以,不等式组的解集为:7 x 2非负整数解为:0, 1, 217.( 8 分)如图 , 已知 AB∥ CD, 若∠ C=35°, AB是∠ FAD的均分线 .(1)求∠ FAD的度数;(2)若∠ ADB=110°,求∠ BDE的度数 .答案:( 1) 700( 4 分)( 2) 350( 4 分)18.( 8 分)在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(极点是网格线的交点的三角形)ABC以下列图.(1)请画出△ ABC向右平移 4 个单位长度后的△A1B1C1,并写出点C1的坐标;(2)请计算△ ABC的面积;答案:( 1) C1( 3, 3)( 2 分);图(2分)(2)(4分)19.(本小题满分 8 分) 2017 年《政府工作报告》中提出了十二大新词汇,为认识同学们对新词汇的关注度,某数学兴趣小组采用其中的 A :“蓝天保卫战”, B :“数字家庭”, C :“人工智能 +第五代搬动通信”, D :“全域旅游”四个热词在全校学生中进行了抽样检查,要求被检查的每位同学只能从中选择一个我最关注的热词、依照检查结果,该小组绘制了两幅不完满的统计图以下列图,请你依照统计图供应的信息,解答以下问题:(1)本次检查中,一共检查了多少名同学?(2)条形统计图中,m▲, n▲.(3)若该校有3000 名同学,请估计出选择 C 、D 的一共有多少名同学?105解:( 1)检查的学生人数为:300 名;35%(2)m60 , n 909045(3)选择 C、 D 的共有:30001350 名.30020. (本小题满分10 分)如图,直线l1的剖析式为;直线l2与轴交于,两直线交于点P.(1)( 4分)求点 A, B 的坐标及直线l2的剖析式;(2)( 3分)求证:APC;(3)(3 分 ) 若将直线2m y轴分别交于点C、D,使得以点A B C、Dl向右平移个单位,与轴,、、为极点的图形是轴对称图形,求m的值?答案:( 1)A(-3 ,0)(1 分); B(0,4 )( 1 分)L2:(2)( 4 分)方法 1: 连接 AD,,又由 OC=2,OD= 得 CD=BD,在,(SSS),在,(ASA)方法 2: 可由 K1K2=-1 得再由,AC=AB,证得(3) m=10( 3 分)B 卷(共 50 分)一、填空(每小 4 分,共 20 分)21. 若数a124a 4 的 3. 2,代数式a322、若点 P(-3, ) , Q(2, ) 在一次函数y3x c 的像上, a 与 b 的大小关系是a>b23、若是有一种新的运算定:“T (a,b)3a 2b,其中 a 、 b 数,且 a b0 ”,比方:a bT (4,3)3 4 2 364 37T (2m,32m)5,解关于 m的不等式m), m的取范是 2.1 m 6 .T (m,6324、已知,如,正方形ABCD在平面直角坐系中,其中点A、C两点的坐A(6,6 ),C( -1,-7 ),点 B 的坐( -4,3 ) .(第 23 题图)(第25题图)25、如 , 已知直的剖析式y3,且与交于点于交于点 B,点作作直 AB x 13的垂交 y 于点B1,点B1作 x 的平行交 AB 于点A1 , 再点A1作直AB的垂交y于点B2⋯,按此作法下去,点的坐( 0,3),(,) .二、解答(共 30 分)26. ( 8 分)某学校初二年在元旦演中需要出门租用同一种衣饰若干件,已知在没有任何惠的情况下,甲衣饰店租用 2 件和在乙衣饰店租用 3 件共需 280 元,在甲衣饰店租用 4 件和在乙衣饰店租用一件共需260 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.
B.
C.
D.
7.函数 y (m 1)x (4m 3) 的图象经过第一、二象限,那么 m 的取值范围是( )
A. m 3 4
B. 1 m 3 4
C. m 1
D. m 1
8.甲、乙两地相距 360 千米,一轮船往返于甲、乙两地之间,顺流用 18 小时,逆流用 24 小时,若
14.如图,数轴上与 1, 2 对应的点分别为 A ,B ,点 B 关于点 A 的对称点为 C ,设点 C 表示的数
为 x ,则 x 2 2 x
第 12 题图
第 13 题图
第 14 题图
三、解答题(本大题共 6 个小题,共 54 分) 15.(每小题 5 分,本题满分 10 分)
(1)解方程组
2018 级八年级上期末考试
A 卷(共 100 分)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)
1.下列计算错误的是( )
A. 9 3
B. 2a a 3a
C. 3 6 3 2
2.如果点 P(m,1 2m) 在第二象限,那么 m 的取值范围是(
A. 0 m 1 2
(1)求 m 的值,并补全頻数分布直方图。
(2)被调查同学劳动时间的中位数是
小时。
(3)求被调查同学的平均劳动时间。
某校七年级部分同学的劳动时间頻数分布表
18.(本小题
7
分)如图,直线
l1
:
y

x

4
分别与
x
轴,y
轴交于点
D
,点
A
,直线
l2
:
y

1 2
x
1
与 x 轴交于点 C ,两直线 l1, l2 相交于点 B ,连 AC。
(1)求点 B 的坐标和直线 AC 的解析式; (2)求 ABC 的面积。
19.(本题满分 9 分)著名的恩施大峡谷( A )和世界级自然保护区星斗山( B )位于笔直的泸渝高 速公路 x 同侧, AB 50km , A , B 到直线 x 的距离分别为10km 和 40km,要在泸渝高速公路旁 修建一服务区 P ,向 A 、B 两景区运送游客,小明设计了两种方案:图(1)是方案一的示意图(PA 与直线 x 垂直,垂足为 P ),P 到 A 、B 的距离之和 S1 PA PB ;图(2)是方案二的示意图(点 A 关于直线 X 的对称点是 A ,连接 BA 交直线 x 于点 P ),P 到 A 、B 的距离之和 S2 PA PB . (1)求 S1 、 S2 ,并比较它们的大小; (2)请说明 S 2 为最小; (3)拟建的恩施到张家界高速公路 y 于泸渝高速公路垂直,建立如图(2)所示的直角坐标系,B 到 直线 y 的距离为 30km ,请你在 x 旁和 y 旁各修建一服务区 P 、 Q ,使 P 、 A 、 B 、 Q 组成的四
B. 1 m 0 2
C. m 0
D. a3 a1 a4

D. m 1 2
3.若式子 a 1 有意义,则点 (a,b) 在( ) ab
A.第一象限
B.第二象限
C.第三象限
4.若 x2 mx 15 (x 3)(x n) ,则 m 的值是( )
D.第四象限
边形的周长最小,并求出这个最小值。
图(1)
图(2)
图(3)
20.(本小题 10 分)某公司装修需用 A 型板材 480块、B 型板材360块,A 型板材规格是 60cm30cm ,
B 型板材规格是 40cm30cm ,现只能购得规格是150cm30cm 的标准
板材.一张标准板材尽可能多地裁出 A 型、 B 型板材,共有下列三种裁法:
A. -5
B. 5
C. -2
D. 2
5.小刚参加设计比赛,成绩统计下表所示,则他本次射击成绩的众数和中位数分别是( )
成绩(环)
6
7
8
9
10
次数
1
2
2
3
2
A. 9,8
B.5
6.函数 y ax b 与 y bx a 的图象在同一坐标系内的大致位置正确的是( )
设船在静水中的速度为 x 千米/时,水流速度为 y 千米/时,在下列方程组中正确的是( )
18(x y)360
18(x y) 360 18(x y) 360 18(x y) 360
A. 24(x y) 360 B. 24(x y) 360 C. 24(x y) 360 D. 24(x y) 360

2x 1 3

5x 2
1

1
5x 1 3(x 1)

把它的解集在数轴上表示出来。

17.(本题 6 分)在某市开展的“美丽蓉城,创卫我同行”活动中,某校倡议七年级学生利用双休日
在各自社区参加义务活动。为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得
到的数据绘制成如下不完整的统计图表:
4x 3x

3y 2y

15 7
(2)计算: ( 1)2 (1 3)2 20 15 3 1
2
5
16.(每小题 6 分,本题满分 12 分)
(1)若方程组
4x x 4
y y

k 3

1
的解满足条件
0

x

y

1
,求
k
的取值范围是多少?
(2)解不等式组
5
为小明观察的结论正确的序号有( )
A.①②③④
B. ①②

C. ①③④
D. ①④
二、填空题(本大题共 4 个小题,每小题 4 分,共 16 分)
11.因式分解: m 4m3 12.如 图 , 直 线 y kx b 经 过 点 A(1, m) 和 点 B(2,0) , 直 线 y 2x 经 过 点 A , 则 不 等 式 2x kx b 0 的解集为 13.如图,在 33 的正方形网格中标出了 1 和 2 ,则 1 2
9.已知 a 1 ,则化简 1 2a a2 后的值是( ) 1 2
A. 2
B. 2
C. 2 2
D. 2 2
10.如图,方格纸中小正方形的边长为 1, ABC 的三个顶点都在小正方 形的格点上,小明在观察探究时发现:① ABC 的形状是等腰三角形; ② ABC 的周长是 2 10 2 ;③点 C 到 AB 边的距离是 4 10 。你认
相关文档
最新文档