江苏省扬州市数学小学奥数系列3-1-4多人相遇和追及问题(一)

合集下载

小学奥数系列3-1-2相遇与追及问题(一)D卷

小学奥数系列3-1-2相遇与追及问题(一)D卷

小学奥数系列3-1-2相遇与追及问题(一)D卷姓名:________ 班级:________ 成绩:________亲爱的小朋友,经过一段时间的学习,你们掌握了多少知识呢?今天就让我们来检测一下吧!一定要仔细哦!一、小学奥数系列3-1-2相遇与追及问题(一) (共32题;共156分)1. (5分) (2020四上·新城期末) 甲、乙两车分别从A、B两地同时出发,甲车每小时行50千米,乙车每小时行65千米,5小时后两车相遇.(1)在线段上标出大致相遇点.(2) A、B两地相距多少千米?2. (5分) (2018五上·通州月考) 两辆汽车同时从两地开出,一辆车的速度是86千米/时,另一辆车的速度是74千米/时,出发后4.2小时相遇.两地之间公路长多少千米?3. (5分)客货两车从两地相对开出,客车每小时行60千米,客车速度的相当于货车的速度,两车开出后小时相遇,求两地相距多少千米?4. (5分)甲车和乙车同时分别从A、B两地相对开出,8小时后相遇,甲车每小时行80千米,乙车的速度是甲车的1.02倍,A、B两地相距多少千米?5. (5分)两车从两地同时开出相向而行,4.5小时后两车在距中点9千米处相遇,快车每小时行42千米,甲乙两地相距多少千米?6. (5分)(2018·贺州模拟) 甲、乙两车分别从A、B两地同时相对开出,速度保持不变,行驶3小时后两车相距320千米,如果再行驶2小时,则两车相遇。

A、B两地相距多少千米?7. (5分)(2020·西充) 一辆客车和货车分别从甲、乙两地同时出发,相向而行。

相遇时客车与货车所行路程比是5:4。

已知客车从甲地行到乙地需要8小时,货车每小时行驶60千米。

甲、乙两地相距多少千米?8. (5分)(2018·浙江模拟) 小红和妈妈同时分别从学校和家出发,骑行速度如图所示。

已知学校与家之间的路程是6千米,那么经过多少时间母女俩相遇?9. (5分) (2019六下·沾益期中) 在比例尺是1:5000000的地图上,量得A、B两地的距离是16厘米,甲乙两列火车同时从A、B两地同时出发,相向而行。

小学奥数系列3-1-2相遇与追及问题(一)及参考答案

小学奥数系列3-1-2相遇与追及问题(一)及参考答案

小学奥数系列3-1-2相遇与追及问题(一)一、小学奥数系列3-1-2相遇与追及问题(一)1. 一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?2. 两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

甲、乙两车相遇时,各行了多少千米?3. 大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?4. 聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?5. 、两地相距米,包子从地到地需要秒,菠萝从地到地需要秒,现在包子和菠萝从、两地同时相对而行,相遇时包子与地的距离是多少米?6. 甲、乙两车分别从相距千米的、两城同时出发,相对而行,已知甲车到达城需小时,乙车到达城需小时,问:两车出发后多长时间相遇?7. 甲、乙两辆汽车分别从、两地出发相对而行,甲车先行小时,甲车每小时行千米,乙车每小时行千米,小时相遇,求、两地间的距离.8. 甲、乙两列火车从相距千米的两地相向而行,甲车每小时行千米,乙车每小时行千米,乙车先出发小时后,甲车才出发.甲车行几小时后与乙车相遇?9. 甲、乙两列火车从相距千米的两地相向而行,甲车每小时行千米,乙车每小时行千米,乙车先出发小时后,甲车才出发.甲车行几小时后与乙车相遇?10. 妈妈从家出发到学校去接小红,妈妈每分钟走米.妈妈走了分钟后,小红从学校出发,小红每分钟走米.再经过分钟妈妈和小红相遇.从小红家到学校有多少米?11. 甲乙两座城市相距千米,货车和客车从两城同时出发,相向而行.货车每小时行千米,客车每小时行千米.客车在行驶中因故耽误小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?12. 甲、乙两列火车从相距千米的两个城市对面开来,甲列火车每小时行千米,乙列火车每小时行千米,甲列火车先开出小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?13. 甲、乙两辆汽车分别从、两地出发相向而行,甲车先行3小时后乙车从地出发,乙车出发小时后两车还相距千米.甲车每小时行千米,乙车每小时行千米.求、两地间相距多少千米?14. 甲、乙两辆汽车从A、B两地同时相向开出,出发后小时,两车相距千米;出发后小时,两车相遇.A、B两地相距多少千米?15. 两列城铁从两城同时相对开出,一列城铁每小时走千米,另一列城铁每小时走千米,在途中每列车先后各停车次,每次停车分钟,经过小时两车相遇,求两城的距离?16. 两列城铁从两城同时相对开出,一列城铁每小时走千米,另一列城铁每小时走千米,在途中每列车先后各停车次,每次停车分钟,经过小时两车相遇,求两城的距离?17. 甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行千米,乙机每小时行千米,飞行小时后它们相隔多少千米?这时候甲机提高速度用小时追上乙机,甲机每小时要飞行多少千米?18. 南辕与北辙两位先生对于自己的目的地s城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?.19. 南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发3小时他们相距多少千米?20. 两列火车从相距千米的两城背向而行,甲列车每小时行千米,乙列车每小时行千米,小时后,甲、乙两车相距多少千米?21. 两列火车从相距40千米的两城背向而行,甲列车每小时行35千米,乙列车每小时行40千米, 5小时后,甲、乙两车相距多少千米?22. 两地相距米,甲、乙二人同时、同地向同一方向行走,甲每分钟走米,乙每分钟走米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?23. 八戒和悟空两家相距千米,两人同时骑车,从家出发相对而行,悟空每小时行千米,八戒每小时行千米.两人相遇时,悟空和八戒各行了多少千米?24. 两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?25. 两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?为什么?26. 孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?27. 两列货车从相距450千米的两个城市相向开出,甲货车每小时行38千米,乙货车每小时行40千米,同时行驶4小时后,还相差多少千米没有相遇?28. 甲乙两人分别以每小时6千米,每小时4千米的速度从相距30千米的两地向对方的出发地前进.当两人之间的距离是l 0千米时,他们走了________小时.29. 一辆公共汽车和一辆小轿车同时从相距千米的两地相向而行,公共汽车每小时行千米,小轿车每小时行千米,问几小时后两车相距千米?30. 两列火车从相距千米的两城相向而行,甲列车每小时行千米,乙列车每小时行千米,小时后,甲、乙两车还相距多少千米?31. 甲、乙二人分别从东、西两镇同时出发相向而行.出发小时后,两人相距千米;出发小时后,两人还相距千米.问出发多少小时后两人相遇?32. 甲、乙两地相距 240 千米,一列慢车从甲地出发,每小时行 60千米.同时一列快车从乙地出发,每小时行 90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.。

4年级-20-多人多次相遇与追及

4年级-20-多人多次相遇与追及

第20讲 行程-多人多次相遇追及本讲在以前学习相遇追及的基础上进行综合拓展,难度较大,教师要把握好节奏。

多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【小试牛刀】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?典型例题知识梳理【例2】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【小试牛刀】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例4】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【小试牛刀】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【例5】在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【小试牛刀】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【例6】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【小试牛刀】甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?【例7】小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?课后作业1.甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?2.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?3.A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?4.A、B两地相距480千米,甲、乙两车同时从两站相对出发,甲车每小时行35千米,乙车每小时行45千米,一只燕子以每小时行50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车返飞去,遇到甲车又返飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?。

(小学奥数)多人相遇和追及问题

(小学奥数)多人相遇和追及问题

1. 能夠將學過的簡單相遇和追及問題進行綜合運用2. 根據題意能夠畫出多人相遇和追及的示意圖3. 能將複雜的多人相遇問題轉化多個簡單相遇和追及環節進行解題。

二是多人相遇追及問題,即在同一直線上,3個或3個以上的對象之間的相遇追及問題。

所有行程問題都是圍繞“=⨯路程速度时间”這一條基本關係式展開的,比如我們遇到的兩大典型行程題相遇問題和追及問題的本質也是這三個量之間的關係轉化.由此還可以得到如下兩條關係式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间; 多人相遇與追及問題雖然較複雜,但只要抓住這兩條公式,逐步表徵題目中所涉及的數量,問題即可迎刃而解.板塊一、多人從兩端出發——相遇、追及【例 1】 有甲、乙、丙3人,甲每分鐘走100米,乙每分鐘走80米,丙每分鐘走75米.現在甲從東村,乙、丙兩人從西村同時出發相向而行,在途中甲與乙相遇6分鐘後,甲又與丙相遇. 那麼,東、西兩村之間的距離是多少米?【考點】行程問題 【難度】2星 【題型】解答【解析】 甲、丙6分鐘相遇的路程:()1007561050+⨯=(米);甲、乙相遇的時間為:()10508075210÷-=(分鐘);東、西兩村之間的距離為:()1008021037800+⨯=(米).【答案】37800米【巩固】 一條環形跑道長400米,甲騎自行車每分鐘騎450米,乙跑步每分例題精講 知識精講 教學目標多人相遇和追及問題鐘250米,兩人同時從同地同向出發,經過多少分鐘兩人相遇?【考點】行程問題【難度】2星【題型】解答【解析】4004502502()(分鐘).÷-=【答案】2分鐘【例 2】在公路上,汽車A、B、C分別以80km/h,70km/h,50km/h的速度勻速行駛,若汽車A從甲站開往乙站的同時,汽車B、C從乙站開往甲站,並且在途中,汽車A在與汽車B相遇後的兩小時又與汽車C相遇,求甲、乙兩站相距多少千米?【考點】行程問題【難度】3星【題型】解答【關鍵字】四中,入學測試【解析】汽車A在與汽車B相遇時,汽車A與汽車C的距離為:(8050)2260+⨯=千米,此時汽車B與汽車C的距離也是260千米,說明這三輛車已經出發了÷-=小時,那麼甲、乙兩站的距離為:(8070)131950+⨯=千米.260(7050)13【答案】1950千米【巩固】甲、乙、丙三人每分分別行60米、50米和40米,甲從B地、乙和丙從A地同時出發相向而行,途中甲遇到乙後15分又遇到丙.求A,B兩地的距離.【考點】行程問題【難度】3星【題型】解答【解析】甲遇到乙後15分鐘,甲遇到了丙,所以遇到乙的時候,甲和丙之間的距離為:(60+40)×15=1500(米),而乙丙之間拉開這麼大的距離一共要1500÷(50-40)=150(分),即從出發到甲與乙相遇一共經過了150分鐘,所以A、B之間的距離為:(60+50)×150=16500(米).【答案】16500米【巩固】小轎車、麵包車和大客車的速度分別為60千米/時、48千米/時和42千米/時,小轎車和大客車從甲地、麵包車從乙地同時相向出發,麵包車遇到小轎車後30分又遇到大客車。

小学数学小学奥数系列3-1-2相遇与追及问题(二)

小学数学小学奥数系列3-1-2相遇与追及问题(二)

小学数学小学奥数系列3-1-2相遇与追及问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共41题;共193分)1. (5分) (2019六下·竞赛) 在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人跑一圈各需要几分钟?2. (5分)小狗在路边发现一只小兔,立刻去追,同时小兔也发现了小狗,转身逃跑。

小狗每分钟跑400米,小兔每分钟跑320米,5分钟后,小狗追上了小兔。

小狗发现小兔时,它们相距多远?3. (5分) (2019四上·上城期中) 上午7时30分,强强从家出发去上学,每分钟走80米,10分钟后,妈妈发现强强没有带铅笔盒,赶紧骑车去追强强,5分钟后追上了强强。

妈妈骑车的速度是多少?4. (5分) (2019六下·竞赛) 小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?5. (5分)甲、乙两地相距 240 千米,一列慢车从甲地出发,每小时行 60千米.同时一列快车从乙地出发,每小时行 90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)6. (5分)小明和小军同时在一个长400米的环形跑道上从同一点,同时反向而行,小明每分行45米,小军每分行35米,多少分后两人第一次相遇?若同时同向而行,多少分两人第一次相遇?7. (5分)(2020·鹤岗) 在400米的环形跑道上,A、B两点相距100米.甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米.那么,甲追上乙需要的时间是多少秒?8. (5分) (2019六下·竞赛) 在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?9. (5分) (2019六下·竞赛) 猎狗发现前方150米处有一只兔子正在逃跑,拔腿就追。

(小学奥数)相遇与追及问题

(小学奥数)相遇与追及问题

1、 根據學習的“路程和=速度和× 時間”繼續學習簡單的直線上的相遇與追及問題2、 研究行程中複雜的相遇與追及問題3、 通過畫圖使較複雜的問題具體化、形象化,融合多種方法達到正確理解題目的目的4、培養學生的解決問題的能力一、相遇 甲從A 地到B 地,乙從B 地到A 地,然後兩人在途中相遇,實質上是甲和乙一起走了A ,B 之間這段路程,如果兩人同時出發,那麼相遇路程=甲走的路程+乙走的路程=甲的速度×相遇時間+乙的速度×相遇時間=(甲的速度+乙的速度)×相遇時間=速度和×相遇時間.一般地,相遇問題的關係式為:速度和×相遇時間=路程和,即=t S V 和和二、追及有兩個人同時行走,一個走得快,一個走得慢,當走得慢的在前,走得快的過了一些時間就能追上他.這就產生了“追及問題”.實質上,要算走得快的人在某一段時間內,比走得慢的人多走的路程,也就是要計算兩人走的路程之差(追及路程).如果設甲走得快,乙走得慢,在相同的時間(追及時間)內:追及路程=甲走的路程-乙走的路程=甲的速度×追及時間-乙的速度×追及時間=(甲的速度-乙的速度)×追及時間=速度差×追及時間.知識精講教學目標相遇與追及問題一般地,追擊問題有這樣的數量關係:追及路程=速度差×追及時間,即=t S V 差差例如:假設甲乙兩人站在100米的跑道上,甲位於起點(0米)處,乙位於中間5米處,經過時間t 後甲乙同時到達終點,甲乙的速度分別為v 甲和v 乙,那麼我們可以看到經過時間t 後,甲比乙多跑了5米,或者可以說,在時間t 內甲的路程比乙的路程多5米,甲用了時間t 追了乙5米三、在研究追及和相遇問題時,一般都隱含以下兩種條件:(1)在整個被研究的運動過程中,2個物體所運行的時間相同(2)在整個運行過程中,2個物體所走的是同一路徑。

⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及 模組一、直線上的相遇問題【例 1】 一輛客車與一輛貨車同時從甲、乙兩個城市相對開出,客車每小時行46千米,貨車每小時行48千米。

江苏省无锡市小学数学小学奥数系列3-1-4多人相遇和追及问题(二)

江苏省无锡市小学数学小学奥数系列3-1-4多人相遇和追及问题(二)

江苏省无锡市小学数学小学奥数系列3-1-4多人相遇和追及问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共19题;共88分)1. (5分) (2019六下·竞赛) 小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?2. (5分) (2019六下·竞赛) 下图中有两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米。

两只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿两个圆爬行。

问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远?3. (5分) (2019六下·竞赛) 甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地点与第2001次相遇地点之间的距离。

4. (5分) (2019六下·竞赛) 有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?5. (1分)(2020·海安模拟) 甲、乙两人同时从相距30千米的两地出发,相向而行。

甲每小时走3.5千米,乙每小时走2.5千米。

与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑……这只狗就这样往返于甲、乙之间直到两人相遇而止,则相遇时这只狗共跑了________千米。

6. (1分)(2016·深圳) 甲、乙分别从一个周长为196米的长方形围墙的对角顶点按顺时针方向同时出发绕围墙跑(如图),甲每秒跑7 米,乙每秒跑5米,经过________秒钟后,甲第一次看到乙.7. (5分) (2019六下·竞赛) 甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?8. (5分)(2018·夏津) 小明家住在电影院的正西方向650m处,小东家住在电影院的正东方向700m处。

小学数学题库目录及简介

小学数学题库目录及简介

小学数学题库第一章:计算问题1-1-1-1整数加减法速算与巧算1-1-1-2整数乘除法速算巧算1-1-1-3整数四则混合运算综合1-1-2-1小数加减法速算与巧算1-1-2-2小数乘除法速算巧算1-1-2-3小数四则混合运算综合1-1-3-1分数加减法速算与巧算1-2-1-1等差数列的认识与公式运用1-2-1-2等差数列计算题1-2-1-3等差数列应用题1-2-2-1分数裂项1-2-2-2整数裂项1-2-2-3通项归纳1-3-1定义新运算1-3-2多位数计算1-3-3循环小数1-3-4比较与估算1-3-5换元法1-3-6公式运用第二章:方程与方程组2-1-1_等量代换2-2-1_一元一次方程解法综合2-2-2_方程组解法综合2-2-3_不定方程与不定方程组2-3-1_列方程解应用题2-3-2_列方程组解应用题2-3-3_列不定方程解应用题第三章:行程问题3-1-1_行程问题基础3-1-2_相遇与追及问题3-1-3_多次相遇和追及问题3-1-4_多人相遇和追及问题3-2-1_火车问题3-2-2_流水行船3-2-3_猎狗追兔问题3-2-4_环形跑道问题3-2-5_走停问题3-2-6_变速问题3-2-7_扶梯问题3-2-8_发车间隔3-2-9_接送问题3-2-10_时钟问题3-3-1_比例解行程问题第四章:图形问题4-1-1_几何图形的认知4-1-2_图形找规律4-1-3_巧求周长4-1-4_奇妙的一笔画4-1-5_图形的分割与拼接4-2-1_格点型面积4-2-2_三角形等高模型与鸟头模型4-2-3_任意四边形、梯形与相似模型4-2-4_燕尾定理4-3-1_不规则图形的面积4-3-2_平移、旋转、割补4-3-3_圆与扇形4-4-1_长方体与正方体4-4-2_圆柱与圆锥第五章:数论问题5-1-1_奇数与偶数5-2-1_数的整除5-3-1_约数与倍数5-4-1_完全平方数5-5-1_质数合数分解质因数5-6-1_余数问题5-7-1_位值原理与数的进制5-8-1_数字迷与算式迷综合第六章:应用题6-1-1_归一归总问题6-1-2_还原问题6-1-3_植树问题6-1-4_和差问题6-1-5_和倍问题6-1-6_差倍问题6-1-7_盈亏问题6-1-8_年龄问题6-1-9_鸡兔同笼问题6-1-10_牛吃草问题6-2-1_分数应用题综合6-2-2_经济问题6-2-3_溶液浓度问题6-2-4_比例应用题6-3-1_工程问题第七章:计数问题:7-1_加法原理7-2_乘法原理7-3_加乘原理综合应用7-4_排列7-5_组合7-6_计数方法与技巧综合7-7_容斥原理7-8_几何计数7-9_概率第八章:杂题8-1-1_智巧趣题8-2-1_抽屉原理8-3-1_逻辑推理8-4-1_统筹规划8-5-1_操作与策略8-6-1_构造与论证8-7-1_统计与概率8-8-1_最短路线。

小学奥数系列3-1-2相遇与追及问题(三)及参考答案

小学奥数系列3-1-2相遇与追及问题(三)及参考答案

小学奥数系列3-1-2相遇与追及问题(三)一、1. 夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?2. 甲乙两人同时从两地相向而行.甲每小时行5千米,乙每小时行4千米.两人相遇时乙比甲少行3千米.两地相距多少千米?3. 夏夏和冬冬同时从两地相向而行,两地相距1100米,夏夏每分钟行50米,冬冬每分钟行60米,问两人在距两地中点多远处相遇?4. 王老师从甲地到乙地,每小时步行5千米,张老师从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.5. 甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.6. 李明和王亮同时分别从两地骑车相向而行,李明每小时行千米,王亮每小时行千米,两人相遇时距全程中点千米.问全程长多少千米?7. 树叶和月亮同时分别从两地骑车相向而行,树叶每小时行千米,月亮每小时行千米,两人相遇时距全程中点千米.问全程长多少千米?8. 蜡笔小新从家出发去超市找妈妈,小新妈妈从超市回家,他们同时出发,小新每分钟走米,小新妈妈每分钟走米,他们在离中点米的地方相遇了,求小新家到超市的距离是多少米?9. 甲、乙两人同时从两地相向而行.甲每小时行千米,乙每小时行千米.两人相遇时乙比甲少行千米.两地相距多少千米?10. 小新和正南二人同时从学校和家出发,相向而行,小新骑车他的三轮车每分钟行100米,5分钟后小新已超过中点5 0米,这时二人还相距30米,正南每分钟行多少米?11. 甲、乙两列火车同时从东西两镇之间的地出发向东西两镇反向而行,它们分别到达东西两镇后,再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?12. 甲、乙二人从,两地同时出发相向而行,甲每分钟行80米,乙每分钟行70米,出发一段时间后,二人在距中点60米处相遇.如果甲晚出发一会儿,那么二人在距中点220米处相遇.甲晚出发了多少分钟?13. 甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400米.甲到少年宫后立即返回学校,在距离少年宫300米处遇到乙,此时他们离开学校已经30分钟.问:甲、乙每分钟各走多少米?14. 一辆汽车和一辆摩托车同时从甲乙两地相对开出,摩托车每小时行千米.汽车每小时行千米.两车相遇后又以原来的速度继续前进,摩托车到乙地立即返回.汽车到甲地立即返回.两车在距离中点千米的地方再次相遇,那么甲乙两地的路程是多少千米?15. 甲、乙两车分别同时从、两地相对开出,第一次在离地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地25千米处相遇.求、两地间的距离.16. 甲、乙两车分别同时从、两地相对开出,第一次在离地90千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地30千米处相遇.求、两地间的距离?17. 如图,、是一条道路的两端点,亮亮在点,明明在点,两人同时出发,相向而行.他们在离点米的点第一次相遇.亮亮到达点后返回点,明明到达点后返回点,两人在离点米的点第二次相遇.整个过程中,两人各自的速度都保持不变.求、间的距离.要求写出关键的推理过程.18. 甲、乙两车分别同时从、两地相对开出,第一次在离地千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地千米处相遇.求、两地间的距离?19. 甲、乙二人同时分别从、两地出发,相向匀速而行.甲到达地后立即往回走,乙到达地后也立即往回走.已知他们第一次相遇在离,中点2千米处靠一侧,第二次相遇在离地4千米处.、两地相距多少千米?20. 甲、乙两辆汽车同时分别从、两地相对开出,甲车每小时行千米,乙车每小时行千米.甲、乙两车第一次相遇后继续前进,甲、乙两车各自到达、两地后,立即按原路原速返回.两车从开始到第二次相遇共用小时.求、两地的距离?21. 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?22. 自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队,然后通信员立即返回出发点;随后又返回去追自行车队,再追上时恰好离出发点18千米,求自行车队和摩托车的速度.23. 、两地间有条公路,甲从地出发,步行到地,乙骑摩托车从地出发,不停地往返于、两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达地时,乙追上甲几次?24. 甲、乙两地之间有一条公路.李明从甲地出发步行去乙地,同时张平从乙地出发骑摩托车去甲地,80分钟后两人在途中相遇.张平到达甲地后马上折回往乙地,在第一次相遇后又经过20分钟在途中追上李明.张平到达乙地后又马上折回往甲地,这样一直下去.问:当李明到达乙地时,张平共追上李明多少次?25. 甲和乙分别从东西两地同时出发,相对而行,两地相距里,甲每小时走里,乙每小时走里.如果甲带一只狗,和甲同时出发,狗以每小时里的速度向乙奔去,遇到乙后即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲乙两人相遇时狗才停住.这只狗共跑了多少里路?26. A、B两地相距480千米,甲、乙两车同时从两站相对出发,甲车每小时行35千米,乙车每小时行45千米,一只燕子以每小时行50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车返飞去,遇到甲车又返飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?27. 小新和阿呆各骑一辆自行车从相距32千米的两个地方沿直线相向而行,在他们同时出发的那一瞬间,一辆自行车把上的一只小鸟开始向另一辆自行车径直飞去,它一到达另一辆自行车的车把,就立即转向往回飞行,这只小鸟如此在两辆自行车的车把之间来回飞行,直到小新和阿呆相遇为止.如果小新每小时行驶17千米,阿呆每小时行驶15千米,小鸟每小时飞行24千米,那么小鸟总共飞行了多少千米?28. 在一次宴会上,一位客人给著名的数学大师、“计算机之父”冯·诺伊曼先生出了一个蜜蜂问题:两列火车相距英里,在同一轨道上相向行驶,速度都是每小时英里.火车的前端有一只蜜蜂以每小时英里的速度飞向火车,遇到火车以后.立即回头以同样的速度飞向火车,遇到火车后,又回头飞向火车,速度始终保持不变,如此下去,直到两列火车相遇时才停止.假设蜜蜂回头转身的时间忽略不计,那么,这只蜜蜂一共飞了多少英里的路?29. 阿呆和阿瓜同时从距离千米的两地相向而行,阿呆每小时走千米,阿瓜每小时走千米.阿瓜带着一只小狗,狗每小时走千米.这只狗同阿瓜一道出发碰到阿呆的时候,它就掉头朝阿瓜这边走,碰到阿瓜时又朝阿呆那边走,直到两人相遇,问这只小狗一共走了多少千米?30. 甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过________小时________分的时候两人相遇.31. 一个圆的圆周长为米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒钟分别爬行厘米和厘米,在运动过程中它们不断地调头.如果把出发算作第零次调头,那么相邻两次调头的时间间隔顺次是1秒、3秒、5秒、……,即是一个由连续奇数组成的数列.问它们相遇时,已爬行的时间是多少秒?32. 老师教同学们做游戏:在一个周长为114米的圆形跑道上,两个同学从一条直径的两端同时出发沿圆周开始跑,1秒钟后他们都调头跑,再过3秒他们又调头跑,依次照1、3、5……分别都调头而跑,每秒两人分别跑米和米,那么经过几秒,他们初次相遇?33. 某条道路上,每隔900米有一个红绿灯.所有的红绿灯都按绿灯30秒、黄灯5秒、红灯25秒的时间周期同时重复变换.一辆汽车通过第一个红绿灯后,以每小时多少千米的速度行驶,可以在所有的红绿灯路口都遇到绿灯?参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.。

小学奥数行程问题专题全解

小学奥数行程问题专题全解

小学奥数行程问题专题全解(一例一练)行程问题变化很多,但是都是围绕速度义时间二路程这一基本公式展开的,做题的时候一定要学会画线段图,然后根据所求的问题去题目中寻找已知条件。

一、相遇问题(速度和义相遇时间=总路程)例1、甲、乙两人同时分别从两地骑车相向而行,甲每小时行18千米,乙每小时行16千米,两人相遇时,距全程中点3千米,全程长多少千米?练习1、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4 千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离是多少千米?例2、甲、乙二人同时从学校出发到少年宫去,已知学校到少年宫的距离是2400 米,甲到少年宫后立即返回学校,在距离少年宫300 米处遇到乙,此时他们离开学校已30分钟.甲乙二人的速度各是多少?练习2、甲乙二人从A两地同时出发前往B地,甲的速度是50m/s,乙的速度是40m/s,甲到达B以后立即返回,在距A地120m的地方和乙相遇,求AB 两地之间的距离。

例3、有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75 米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?练习3、甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A 地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?例4、甲、乙两名同学在周长为米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑米,乙每秒钟跑米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?练习4、甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?例5、甲乙二人同时从相距200KM的AB两地出发,经过4小时相遇,已知甲的速度是乙的1.5倍,求甲乙二人的速度分别是多少?练习5、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8 千米,已知甲车速度是乙车的1.2倍,求A、B两地的距离是多少千米?例6、甲乙两队学生从相距18千米的两地同时出发,相向而行。

小学奥数3-1-4 多次相遇和追及问题.专项练习及答案解析

小学奥数3-1-4 多次相遇和追及问题.专项练习及答案解析

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】1星 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题 【难度】1星 【题型】解答【解析】 17【答案】17知识精讲教学目标3-1-4多次相遇和追及问题【巩固】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【考点】行程问题【难度】2星【题型】解答【解析】176【答案】176【例2】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?【考点】行程问题【难度】3星【题型】解答【解析】甲、乙两人的速度和第一次为60÷6=10(千米/时),第二次为12(千米/时),故第二次出发后5时相遇。

小学奥数 多人相遇和追及问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  多人相遇和追及问题 精选练习例题 含答案解析(附知识点拨及考点)

1. 能够将学过的简单相遇和追及问题进行综合运用2. 根据题意能够画出多人相遇和追及的示意图3. 能将复杂的多人相遇问题转化多个简单相遇和追及环节进行解题。

二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.板块一、多人从两端出发——相遇、追及【例 1】 有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题 【难度】2星 【题型】解答【解析】 甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).【答案】37800米【巩固】 一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【考点】行程问题 【难度】2星 【题型】解答【解析】 4004502502÷-=()(分钟).【答案】2分钟【例 2】 在公路上,汽车A 、B 、C 分别以80km /h ,70km /h ,50km /h 的速度匀速行驶,若汽车A 从甲站开往乙站的同时,汽车B 、C 从乙站开往甲站,并且在途中,汽车A 在与汽车B 相遇后的两小时又与汽车C 相遇,求甲、乙两站相距多少千米?【考点】行程问题 【难度】3星 【题型】解答例题精讲 知识精讲 教学目标多人相遇和追及问题【关键词】四中,入学测试【解析】汽车A在与汽车B相遇时,汽车A与汽车C的距离为:(8050)2260+⨯=千米,此时汽车B与汽车C的距离也是260千米,说明这三辆车已经出发了260(7050)13÷-=小时,那么甲、乙两站的距离为:(8070)131950+⨯=千米.【答案】1950千米【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【考点】行程问题【难度】3星【题型】解答【解析】甲遇到乙后15分钟,甲遇到了丙,所以遇到乙的时候,甲和丙之间的距离为:(60+40)×15=1500(米),而乙丙之间拉开这么大的距离一共要1500÷(50-40)=150(分),即从出发到甲与乙相遇一共经过了150分钟,所以A、B之间的距离为:(60+50)×150=16500(米).【答案】16500米【巩固】小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分又遇到大客车。

小学奥数的七大模块

小学奥数的七大模块

奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。

安徽省亳州市数学小学奥数系列3-1-4多人相遇和追及问题(一)

安徽省亳州市数学小学奥数系列3-1-4多人相遇和追及问题(一)

安徽省亳州市数学小学奥数系列3-1-4多人相遇和追及问题(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共20题;共96分)1. (5分) (2019六下·竞赛) 如图,、是一条道路的两端点,亮亮在点,明明在点,两人同时出发,相向而行.他们在离点米的点第一次相遇.亮亮到达点后返回点,明明到达点后返回点,两人在离点米的点第二次相遇.整个过程中,两人各自的速度都保持不变.求、间的距离.要求写出关键的推理过程.2. (5分) (2019六下·竞赛) 自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队,然后通信员立即返回出发点;随后又返回去追自行车队,再追上时恰好离出发点18千米,求自行车队和摩托车的速度.3. (5分) (2019六下·竞赛) 如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.4. (5分) (2019六下·竞赛) 、两地相距,甲、乙两人同时从地出发,往返、两地跑步分钟.甲跑步的速度是每分钟;乙跑步的速度是每分钟.在这段时间内他们面对面相遇了数次,请问在第几次相遇时他们离点的距离最近?5. (5分) (2019六下·竞赛) 甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B多远。

6. (5分) (2019六下·竞赛) 甲、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?7. (5分) (2019六下·竞赛) 从花城到太阳城的公路长12公里.在该路的 2千米处有个铁道路口,是每关闭 3分钟又开放 3分钟的.还有在第 4千米及第 6 千米有交通灯,每亮 2分钟红灯后就亮 3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?8. (5分) (2019六下·竞赛) 池塘周围有一条道路.、、三人从同一地点同时出发.和往逆时针方向走,往顺时针方向走.以每分钟80米、以每分钟65米的速度行走.在出发后的20分钟遇到,再过2分钟,遇到.请问,池塘的周长是几米?9. (5分) (2019六下·竞赛) 甲、乙两名同学在周长为米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑米,乙每秒钟跑米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?10. (5分) (2019六下·竞赛) 幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?11. (5分) (2019六下·竞赛) 甲从A地出发前往B地,1小时后,乙也从A地出发前往B地,又过1小时,丙从B地出发前往A地,结果甲和丙相遇在C地,乙和丙相遇在D地.已知乙和丙的速度相同,丙的速度是甲的2倍,C、D两地之间的距离是50千米.求乙出发1小时后距B地多少千米。

河北省邢台市数学小学奥数系列3-1-4多人相遇和追及问题(二)

河北省邢台市数学小学奥数系列3-1-4多人相遇和追及问题(二)

河北省邢台市数学小学奥数系列3-1-4多人相遇和追及问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共19题;共88分)1. (5分) (2019六下·竞赛) 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?2. (5分) (2019六下·竞赛) 如图,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?3. (5分) (2019六下·竞赛) 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?4. (5分) (2019六下·竞赛) 甲、乙两车分别同时从、两地相对开出,第一次在离地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地25千米处相遇.求、两地间的距离.5. (1分) (2019六下·竞赛) 如图所示,甲、乙两人从长为米的圆形跑道的点背向出发跑步。

跑道右半部分(粗线部分)道路比较泥泞,所以两人的速度都将减慢,在正常的跑道上甲、乙速度均为每秒米,而在泥泞道路上两人的速度均为每秒米。

两人一直跑下去,问:他们第99次迎面相遇的地方距点还有________米。

6. (1分)(2011·广州模拟) 一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔________分发一辆公共汽车.7. (5分) (2019六下·竞赛) 甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地5千米处第二次相遇,求两次相遇地点之间的距离。

高斯小学奥数四年级下册含答案第03讲_多人多次相遇与追及

高斯小学奥数四年级下册含答案第03讲_多人多次相遇与追及

第三讲多人多次相遇与追及在之前的课程中,我们已经学过了如何处理两个对象之间的相遇追及问题.本讲我们进一步学习过程更为复杂的三个对象之间的行程问题.本讲中画线段图非常重要,你还记得画行程图要注意什么吗?例题1有甲、乙、丙三个人,甲每分钟走40米,乙每分钟走60米,丙每分钟走50米.A 、B 两地相距2700米.甲从A 地,乙、丙从B 地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?「分析」全程已知,三个人的速度也都已知,那么甲乙的相遇时间、甲丙的相遇时间都是可以计算出来的. 练习1有冰冰、雪雪、霜霜三个人,冰冰每秒钟走4米,雪雪每秒钟走5米,霜霜每秒钟走6米.A 、B 两地相距990米.雪雪从A 地,霜霜、冰冰从B 地同时出发相向而行.请问,雪雪与霜霜相遇之后多少秒又与冰冰相遇?例题2叮叮、咚咚两人开车从A 地,铛铛则从B 地同时出发,相向而行.叮叮的速度为每小时70千米,铛铛的速度为每小时50千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的车速是多少?「分析」请在图中把过程补全,并标出相应的数据,例如速度、时间、路程等.然后注意分析,看看哪个过程是可以计算的? 练习2小春、小秋两人从A 地,小夏则从B 地同时出发,相向而行.小春的速度为每小时60千米,小夏的速度为每小时40千米.出发3小时后,小春与小夏相遇.又过了1小时,小秋也与小夏相遇.请问:小秋的速度是多少?A 地B 地叮叮咚咚铛铛例题3甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A 地出发到B 地去,出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?「分析」本题的运动过程和上题类似吗?请先把图补充完整,仍然是标出数据进行分析,看看哪个过程是可以计算的? 练习3甲、乙两辆汽车的速度分别为每小时60千米和每小时45千米,两车同时从A 地出发到B 地去,出发7小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?通过前面几道例题,同学们会发现解决多人多次的相遇与追及等更为复杂的行程问题,画线段图是相当重要的.然而我们不但要学会画图,还要学会看图.“横看成岭侧成峰”,同一个对象从不同的角度去观察往往会有不同的认识.就像例题4中红色的那条线段,既可以看成甲、乙两车的路程差,也可以看成乙车与卡车的路程和.当运动过程趋于复杂时,尤其需要这种从不同角度看待问题的思维习惯,这样才能充分利用好题目中的条件.A 地B 地甲车卡车乙车例题4甲、乙、丙三人走路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.如果甲从A 地,乙和丙从B 地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A 、B 两地间的距离为多少米?「分析」请自己画出详细的线段图,好好分析一下,还能像前面两个例题那样一段一段计算吗?如果不能,该怎么办呢? 练习4刘备、关羽、张飞三人,刘备每分钟走40米,关羽每分钟走60米,张飞每分钟走50米.如果刘备从A 地,关羽和张飞从B 地同时出发相向而行,刘备和关羽相遇后,过了10分钟又与张飞相遇,求A 、B 两地间的距离为多少米?上面几道例题的运动过程是一样的,在这样的运动过程里面,会有两次相遇运动和一次追及运动.在这个运动过程中有一段路程既是路程和又是路程差,需要同学们格外注意.接下来我们来看一下和速度倍数相关的行程问题.大家想象一下,如果甲、乙两人同时出发同向前进,甲的速度是乙的3倍,那么5分钟后,甲的路程是乙的几倍?30分钟后,甲的路程又是乙的几倍?2个小时后,甲的路程又是乙的几倍?其实上述问题的答案都是3倍.不管时间过了多久,只要甲、乙两人的时间相同,他们路程的倍数关系就等于速度的倍数关系. 例题5A 、B 两城相距48千米,甲、乙、丙三人分别以每小时4千米、2千米、2千米的速度行走.甲、乙两人从A 城,丙从B 城同时出发,相向而行.请问:出发多长时间后,甲正好在乙和丙的中点?「分析」速度分别是4、2、2,那么我们可以把三人的路程分别设为几份呢?请试着画出线段图,标份数进行分析.A B甲乙 丙例题6A 、B 两城相距50千米,甲、乙、丙三人分别以每小时4千米、2千米、2千米的速度前进.甲、乙两人从A 城,丙从B 城同时出发,相向而行.请问:出发多长时间后,丙正好在甲和乙的中点?「分析」同上题,还是需要把路程设份数,画出线段图进行分析.但要注意,丙在甲、乙的中点,应该是在甲、丙相遇错开后发生的.形象的来说,本讲行程问题最大的特点就是“繁”——人多、车多、过程多.怎么解决这样复杂的问题呢?首先,必须有勇气,只要有勇气,你就敢面对这样的问题,积极开动脑筋去想. 其次,必须有耐心,只要有耐心,你就能动手去画图,细致的分析每一组数量关系,再花上些时间,题目自然能够搞定.或许有人会说,这根本不是什么解题技巧,画线段图、分析倍数关系才是解题.其实,这些只是技巧中的皮毛,真正的技巧是一种智慧,而勇气和耐心就是这种智慧的内涵. 课堂内外换个角度看问题有这样一个故事:有个年轻人为贫所困,便向一位老者请教.老者问:“你为什么失意呢?”年轻人说:“我总是这样穷.”“你怎么能说自己穷呢?你还这么年轻.”“年轻又不能当饭吃.”年轻人说.老者一笑:“那么,给你一万元,让你瘫痪在床,你干吗?”“不干.”“把全世界的财富都给你,但你必须现在死去,你愿意吗?”“我都死了,要全世界的财富干什么?”老者说:“这就对了,你现在这么年轻,生命力旺盛,就等于拥有全世界最宝贵的财富,又怎能说自己穷呢?”年轻人一听,又找回了对生活的信心.美国心理学家艾里斯曾提出一个叫“情绪困扰”的理论.他认为,引起人们情绪结果的因素不是事件本身,而是个人的信念.所以,许多在现实中遭遇挫折的人,往往认为“自己倒霉”,“想不通”,这些其实都是本人的片面认识和解释,正是这种认识才产生了情绪的困扰.实际情况是,人们的烦恼和不快,常常与自己的情绪有关,同自己看问题的角度有关.能否战胜挫折,关键在于自己要有主心骨,任何情况下都不被一时的失意和不快左右,永远怀AB甲乙丙着希望和信心,就能从逆境和灾难中解脱出来.再拿前面提到的那个自认为很穷的年轻人来说吧,其实,穷与富只是相对而言,并没有一个客观标准.一个人即使没有多少物质财富,但他有青春和生命,有奋发进取的精神状态,就不能说他穷.如果一个人热爱生命,就会感到充实和富有.概而言之,任何事情都不是绝对的,就看你怎么去对待它.作业1.小竹、小松两人从A地,小梅则从B地同时出发,相向而行.小竹的速度为每小时55千米,小梅的速度为每小时45千米.出发4小时后,小竹与小梅相遇.又过了1小时,小松也与小梅相遇.A、B两地相距多少千米?小松每小时走多少千米?2.甲、乙两辆汽车的速度分别为每小时80千米和每小时65千米,两车同时从A地出发到B地去,出发8小时后,甲车遇到一辆迎面开来的卡车,这时乙车与卡车相距多少千米?又过了1小时,乙车也遇到这辆卡车.这辆卡车每小时行多少千米?3.哈利、罗恩、赫敏三人,哈利每分钟走60米,罗恩每分钟走50米,赫敏每分钟走45米.如果哈利从A地,罗恩和赫敏从B地同时出发,相向而行.哈利和罗恩相遇2分钟后,又与赫敏相遇.当哈利和罗恩相遇时,赫敏和罗恩相距多少米?A、B两地间的距离为多少米?4.东、西两城相距60千米.小明从东向西跑,每小时跑8千米;小光从西向东走,每小时走4千米;小亮骑自行车从东向西,每小时骑行11千米.3人同时动身,途中小亮遇见小光即折回向东骑,遇见了小明又折回向西骑,再遇见小光又折回向东骑,如此不断往返,直到三人在途中相遇为止.则小亮共行了多少千米?5.老贺、老郭和老刘同时出发,分别以每小时1千米、3千米、1千米的速度前进.其中老贺从A出发往B走,另外两人则从B出发往A走.已知A、B两地相距36千米,在出发后多少小时,老郭正好在老贺与老刘的中点?第三讲 多人多次相遇与追及1. 例题1答案:3分钟详解:甲和乙相遇时的路程和是2700千米,速度和是100米/分,所以相遇时间是270010027÷=分钟.甲和丙相遇时的路程和也是2700千米,速度和是90千米/时,所以相遇时间是27009030÷=分钟,又过了3分钟甲和丙才相遇.2. 例题2答案:40千米/时详解:首先画出线段图(如下图),有两次相遇,其中还隐藏了一次追及问题. AB 全程:()70503360+⨯=千米咚咚和铛铛相遇时间是4小时,他们速度和是:360490÷=千米/时, 那么咚咚的速度是905040-=千米/时.3. 例题3答案:32千米/时详解:首先画出线段图,包括两次相遇和一次追及.在这类型的题目中,有一段非常重要的路程(即红色部分标出的).这段是甲车、乙车6个小时行驶的路程差,也是乙车和卡车1个小时的路程和.如果能够求出这段路程是多少,就可以将两个运动过程联系起来.甲车和乙车的速度差是12千米/时,6个小时行驶的路程差是72千米.所以乙车和卡车1个小时行驶的路程和是72千米.乙车和卡车的速度和是72172÷=千米/时.所以卡车的速度是724032-=千米/时.4. 例题4答案:16500米详解:画出线段图如下,从出发到①时刻,有甲和乙的相遇、乙和丙的同向行驶,由甲、乙相遇求AB 距离、即路程和,速度和已知,需要求时间.乙、丙同向行驶,A 地B 地咚 铛50km/h70km /h 叮A 地 B 地甲车乙车52千米40千米速度差已知,如果知道路程差就可以求时间.①→②时间内,是甲、丙的相遇过程,时间为15分钟,知道速度和,可得①→②甲、丙路程和为()4060151500+⨯=米.接下来的关键和例4是一样的,路程和同时也是路程差,即乙、丙路程差为1500米,追及时间为()150********÷-=分钟,即从出发到①时刻共150分钟,全程为()506015016500+⨯=米.5. 例题5答案:6小时详解:先将行程图补充完整(见下图).设甲走了“4”,乙和丙都走了“2”.此时甲在乙、丙中点,所以图中红色线段表示的路程是相等的,都是“2”.所以全程是“8”,即48千米,所以“1”是6千米,甲走了“4”是24千米,速度是4千米/时,所以行走时间是6小时.另外一个方法是,乙、丙的速度是一样的,其实,乙、丙中点始终就是全程的中点.所以甲行驶到乙、丙中点时,甲一定也在全程的中点,所以甲走了24千米,速度是4千米/时,行走时间仍然是6小时.6. 例题6答案:10小时详解:先将行程图补充完整(见下图).设甲走了“4”,乙和丙都走了“2”.此时丙在甲、乙中点,所以图中红色线段表示的路程是相等的,都是“1”.所以全程是“5”,即50千米,所以“1”是10千米.甲走了“4”是40千米,速度是4千米/时,所以行走时间是10小时.B乙 丙 50米/40米/60米/分千米/时 A B 甲乙 4千米/2千米/A B2千米/4千米/7. 练习1答案:20分钟详解:雪雪和霜霜相遇时的路程和是990千米,速度和是11米/分,所以相遇时间是9901190÷=分钟.雪雪和冰冰相遇时的路程和也是990千米,速度和是9千米/时,所以相遇时间是9909110÷=分钟,又过了20分钟雪雪和冰冰才相遇.8. 练习2答案:35千米/时详解:有两次相遇,其中还隐藏了一次追及问题. AB 全程:()60403300+⨯=千米小秋和小夏相遇时间是4小时,他们速度和是:300475÷=千米/时, 那么小秋的速度是754035-=千米/时.9. 练习3答案:60千米/时简答:首先画出线段图,包括两次相遇和一次追及.在这类型的题目中,有一段非常重要的路程(即红色部分标出的).这段是甲车、乙车7个小时行驶的路程差,也是乙车和卡车1个小时的路程和.如果能够求出这段路程是多少,就可以将两个运动过程联系起来.甲车和乙车的速度差是15千米/时,7个小时行驶的路程差是105千米.所以乙车和卡车1个小时行驶的路程和是105千米.乙车和卡车的速度和是1051105÷=千米/时.所以卡车的速度是1054560-=千米/时.10. 练习4答案:9000米简答:画出线段图如下,从出发到①时刻,有刘和关的相遇、关和张的同向行驶,由刘、关相遇求AB 距离、即路程和,速度和已知,需要求时间.关、张同向行驶,速度差已知,如果知道路程差就可以求时间.①→②时间内,是刘、关的相遇过程,时间为10分钟,知道速度和,可得①→②;刘、张路程和为()405010900+⨯=米.接下来的关键和例4是一样的,路程和同时也是路程差,即关、张路程差为900米,追及时间为()900605090÷-=分钟,即从出发到①时刻共90分钟,全程为A 地B 地 甲车乙车 60千米45千米()4060909000+⨯=米.11. 作业1答案:400;35简答:全程长:()55454400+⨯=千米,小松与小梅用了5小时相遇,所以小松的速度为:40054535÷-=千米∕时.12. 作业2答案:120;55简答:8小时内甲、乙两车的路程差为()80658120-⨯=千米.甲、乙两辆车的路程差就是后面1小时内乙车与卡车的路程和,所以卡车的速度为:12016555÷-=千米∕时.13. 作业3答案:210;4620简答:哈利和赫敏2分钟内的路程和也是罗恩和赫敏的路程差,根据这个关系可知当哈利和罗恩相遇时,赫敏和罗恩相距()26045210⨯+=米.可求出哈利与罗恩相遇所用的时间是()210504542÷-=分,全程为()4260504620⨯+=米.14. 作业4答案:55简答:小亮行驶的总时间就是小明、小光的相遇时间:()60845÷+=小时,所以路程为55千米.15. 作业5答案:6简答:当老郭在老贺与老刘的中点时,老郭的路程是“3”份,老贺和老刘的路程都是“1”份.这时老郭和老刘相距“2”份,老郭和老贺也相距“2”份,全程36千米相当于是“6”份,“1”份是6米,也即老贺走了616÷=小时,老郭正好在老贺与老刘的中点.B关 张 60米/50米/40米/分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省扬州市数学小学奥数系列3-1-4多人相遇和追及问题(一)
姓名:________ 班级:________ 成绩:________
亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!
一、 (共20题;共96分)
1. (5分)小明和小贝两人同时从相距2千米的两地相向而行,小明每分钟行45米,小贝每分钟行55米,如果一只狗与小明同时同向而行,每分钟行120米,狗遇到小贝后立即返回向小明跑去,遇到小明再返回向小贝跑去。

这样不断往返,直到小明和小贝相遇为止,问这只狗一共跑了多少米?
2. (5分)李军和王亮沿着田岗水库四周的道路跑步,他们从同一地点同时出发,反向而行,李军的速度是235米/分,王亮的速度是265米/分,经过16分钟两人还相距70米.水库四周的道路长多少米?
3. (5分)(2018·广东模拟) 一辆汽车和一辆摩托车同时从甲、乙两地相向开出,相遇后两车继续行驶,当摩托车到达甲城。

汽车到达乙城后,立即返回,第二次相遇时汽车距甲城160千米,汽车与摩托车的速度比是2:3,则甲、乙两城相距多少千米?
4. (5分)甲、乙两人在长为50米的水池里沿直线来回游泳,甲的速度是40米/分,乙的速度是35米/分,他们同时从水池的两端出发,如果不计转向的时间,他们出发多少分钟后第二次相遇?
5. (5分) (2019六下·竞赛) 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
6. (5分) (2019六下·竞赛) 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?
7. (5分) (2019六下·竞赛) 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?
8. (5分) (2019六下·竞赛) 甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间
的路程有多少米?
9. (5分) (2019六下·竞赛) 甲、乙、丙三人行路,甲每分钟走80米,乙每分钟走90米,丙每分钟走100米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过5分钟与甲相遇,求东西两镇间的路程有多少米?
10. (5分) (2019六下·竞赛) 小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?
11. (5分) (2019六下·竞赛) 甲、乙、丙三人,他们的步行速度分别为每分钟480、540、720米,甲、乙、丙3人同时动身,甲、乙二人从A地出发,向B地行时,丙从B地出发向A地行进,丙首先在途中与乙相遇,3分钟后又与甲相遇,求甲、乙、丙3人行完全程各用多长时间?
12. (5分) (2019六下·竞赛) 甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?
13. (5分) (2019六下·竞赛) 甲、乙两车的速度分别为 52 千米/时和 40 千米/时,它们同时从 A 地出发到 B 地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

14. (5分) (2019六下·竞赛) 甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.
15. (5分) (2019六下·竞赛) 甲、乙、丙三辆车同时从 A 地出发到 B 地去,甲、乙两车的速度分别为 60 千米/时和 48千米/时。

有一辆迎面开来的卡车分别在他们出发后5时、6时、8 时先后与甲、乙、丙三辆车相遇。

求丙车的速度。

16. (5分) (2019六下·竞赛) 李华步行以每小时4千米的速度从学校出发到20.4千米处的冬令营报到。

半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。

又过了1.5小时,张明从学校骑车去营地报到。

结果三人同时在途中某地相遇。

问骑车人每小时行驶多少千米?
17. (5分) (2018六下·乌鲁木齐模拟) 两列火车从甲乙两地同时相对开出,4小时后在距中点48千米处相遇。

已知慢车的速度是快车速度的,计算快车和慢车的速度各是多少?甲乙两地相距多少千米?(用算式或方程解)
18. (5分)东、西两村相距4.2千米,甲从东村、乙和丙从西村同时出发,甲与乙、丙相向而行,甲与乙相遇1分钟后,又与丙相遇,甲每分钟走110米,乙每分钟走100米,丙每分钟走多少米?
19. (5分) (2019六下·蓝山期中) 父子俩在长400米的环形跑道上散步,他俩同时从同一地点出发,如果相背而行,4分钟相遇:如果同向而行,8分钟父亲可以追上儿子.在跑道上走一圈,父亲和儿子各需要多少分钟?
20. (1分)(2018·浙江模拟) 已知甲、乙两人在一个200米的环形跑道上练习跑步,现在把跑道分为相等的4段,即两条直跑道和两条弯道的长度相等。

甲平均每秒跑4米,乙平均每秒跑6米。

若甲、乙两人分别从A、C 处同时出发(如右图),则他们第100次相遇时,在跑道________上。

(填“AB”或“BC”或“DA”或“CD”)。

参考答案一、 (共20题;共96分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、9-1、10-1、11-1、12-1、13-1、14-1、
15-1、16-1、17-1、18-1、
19-1、
20-1、。

相关文档
最新文档