电磁场与电磁波实验报告-反射实验和极化波的产生与检测
电磁场与电磁波实验报告
电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。
电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。
而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。
本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。
实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。
首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。
然后,我们将电磁场强度计移动到其他位置,重复测量过程。
通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。
实验结果显示,电磁场强度随着距离的增加而逐渐减弱。
这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。
这一实验结果验证了电磁场的存在和变化对周围环境的影响。
实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。
首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。
然后,我们观察频率计和波长计的测量结果,并记录下来。
通过这些数据,我们可以得出电磁波的频率和波长的数值。
实验结果显示,不同频率的电磁波具有不同的波长。
频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。
这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。
这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。
实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。
首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。
然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。
这些条纹是由电磁波的干涉和衍射效应引起的。
实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。
干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。
电磁波反射实验报告
一、实验目的1. 了解电磁波反射的基本原理和规律;2. 熟悉电磁波在介质界面上的反射特性;3. 通过实验验证电磁波反射的反射定律;4. 掌握使用电磁波测试仪进行实验操作的方法。
二、实验原理电磁波在传播过程中,当遇到不同介质的界面时,会发生反射、折射等现象。
根据电磁波反射定律,入射角等于反射角。
本实验主要研究电磁波在理想介质界面上的反射现象。
三、实验仪器与设备1. 电磁波测试仪(含发射器、接收器、显示器等);2. 介质板(如玻璃板、金属板等);3. 调制器;4. 连接线;5. 电磁波反射定律图示板。
四、实验步骤1. 将发射器、接收器和显示器按照实验要求连接好;2. 将介质板放置在发射器和接收器之间,确保介质板与发射器、接收器保持平行;3. 调节发射器的频率,使其处于电磁波反射实验所需的频率范围内;4. 观察显示器上的信号强度,记录入射波信号强度;5. 慢慢改变介质板的角度,使入射角逐渐增大;6. 观察显示器上的信号强度变化,记录反射波信号强度;7. 比较入射波信号强度与反射波信号强度,验证电磁波反射定律;8. 分析实验数据,得出结论。
五、实验数据记录与处理1. 记录不同入射角下的入射波信号强度和反射波信号强度;2. 将实验数据整理成表格;3. 根据实验数据,绘制入射角与反射波信号强度的关系图;4. 分析实验数据,验证电磁波反射定律。
六、实验结果与分析1. 实验结果表明,随着入射角的增大,反射波信号强度逐渐减小,当入射角等于反射角时,反射波信号强度达到最小;2. 实验结果验证了电磁波反射定律,即入射角等于反射角;3. 实验过程中,观察到电磁波在介质界面上的反射现象,进一步加深了对电磁波传播特性的理解。
七、实验结论1. 电磁波在传播过程中,遇到不同介质的界面时,会发生反射现象;2. 电磁波反射定律成立,即入射角等于反射角;3. 通过实验,加深了对电磁波传播特性的理解,为后续电磁波相关实验奠定了基础。
八、实验心得1. 在实验过程中,需要注意电磁波测试仪的连接和使用,确保实验数据的准确性;2. 通过实验,提高了对电磁波反射现象的认识,为今后学习电磁场与电磁波相关知识打下了基础;3. 实验过程中,学会了如何分析实验数据,验证实验结论,提高了自己的实验能力。
电磁场与电磁波实验报告2
电磁场与电磁波实验报告实验一电磁场参量的测量实验目的1、在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。
2、熟悉并利用相干波原理,测定自由空间内电磁波波长,并确定电磁波的相位常数和波速实验原理两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。
本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长的值,再由2,f得到电磁波的主要参量:和等。
本实验采取了如下的实验装置设入射波为E i E)e j,当入射波以入射角!向介质板斜投射时,则在分界面上产生反射波E r和折射波E t。
设介质板的反射系数为R,由空气进入介质板的折射系数为T o,由介质板进入空气的折射系数为T c,另外,可动板P r2和固定板P r1都是金属板,其电场反射系数都为-1。
在一次近似的条件下,接收喇叭处的相干波分别为E M RT o T c E oi e j 1,RT°T c E oi e j 2这里 1 2L ri L r3 L ri ;2 2L「2 L“2L M 2 L L r3 L2;其中L L2 L i|。
又因为为定值,L2则随可动板位移而变化。
当P r2移动L值,使P r3有零指示输出时,必有E M与E r2反相。
故可采用改变P r2的位置,使尺3输出最大或零指示重复出现。
从而测出电磁波的波长和相位常数。
下面用数学式来表达测定波长的关系式。
在P r3处的相干波合成为E r E M E「2 e j 1 e j2j 1 2 /或写成E r2RT0T c E0i cos 2 e 2(1-2)式中 1 2 2 L为了测量准确,一般采用P3零指示法,即cos 20或(2n 1),n=0,1,2……这里n表示相干波合成驻波场的波节点(E r 0 )数。
同时,除n=0以外的n值,又表示相干波合成驻波的半波长数。
极化波实验报告
内蒙古工业大学信息工程学院实验报告课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实验室班级:电子10-1班学号:201010203008 姓名:苏宝组别:同组人:成绩:实验日期: 2013年5月21 电磁场与电磁波实验实验一:反射实验实验目的熟悉dh926ad型数据采集仪、dh926b型微波分光仪的使用方法掌握分光仪验证电磁波反射定律的方法实验设备与仪器dh926ad型数据采集仪 dh926b型微波分光仪dh1121b型三厘米固态信号源金属板实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
如图所示,平行极化的均匀平面波以角度? 入射到良介质表面时,入射波、反射波和折射波可用下列式子表示为平行极化波的斜入射示意图实验内容与步骤系统构建时,如图1,开启dh1121b型三厘米固态信号源。
dh926b型微波分光仪的两喇叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180刻度处。
将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。
反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。
将dh926ad型数据采集仪提供的usb电缆线的两端根据具体尺寸分别连接图1 反射实验到数据采集仪的usb口和计算机的usb口,此时,dh926ad型数据采集仪的usb指示灯亮(蓝色),表示已连接好。
然后打开dh926ad型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到dh926b型微波分光仪分度转台底部的光栅通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。
电磁场与电磁波实验报告(一)2024
电磁场与电磁波实验报告(一)引言概述:电磁场与电磁波是近代物理学中的重要概念,对于理解电磁现象和应用电磁技术具有重要意义。
本实验报告旨在通过实验来探究电磁场和电磁波的基本特性,并深入了解其在不同情境下的行为和应用。
一、电磁场的产生与性质1. 静电场与磁场的产生机制2. 静电场与磁场的区别与联系3. 电磁场的力线分布与场强的概念4. 高斯定律与安培定律的应用5. 电磁场的矢量表示及其运算规则二、电磁辐射和电磁波的特性1. 辐射的概念与特点2. 电磁波的定义和分类3. 电磁波的传播速度和能量传播方式4. 电磁波的频率和波长关系5. 电磁波与物质的作用及与光的关系三、电磁波的实验测量1. 等幅比波法测量电磁波的速度2. 利用扩散法测量电磁波的波长3. 利用光栅光谱仪测量电磁波的频率和波长4. 利用双缝干涉测量电磁波的波长5. 利用驻波法测量电磁波的频率四、电磁波在通信中的应用1. 电磁波在无线通信中的传输原理2. 电磁波的调制与解调技术3. 电磁波的天线和传输介质选择4. 电磁波在卫星通信中的应用5. 电磁波在无线电和电视广播中的应用五、电磁波对人体健康的影响1. 电磁波对人体的生物效应与健康风险2. 电磁辐射的安全标准与防护措施3. 电磁波辐射源的评估与监测4. 电磁波辐射对儿童和孕妇的影响5. 电磁波辐射与癌症的关系研究总结:通过本实验的开展,我们深入了解了电磁场和电磁波的产生机制和特性,探讨了其在实验测量、通信技术和健康影响等方面的应用。
电磁场与电磁波作为现代科技中的基础理论和技术手段,对于推动科学技术发展和提高人们的生活水平具有重要意义。
在未来的研究中,我们将继续深入探索电磁场和电磁波的更多应用和相关问题,为推动科学进步和提高人类福祉做出贡献。
最新电磁场与电磁波实验报告
最新电磁场与电磁波实验报告
在本次实验中,我们深入研究了电磁场与电磁波的基本特性,并进行了一系列的实验来验证理论和观测实际现象。
以下是实验的主要部分和观察结果的概述。
实验一:静电场的建立与测量
我们首先建立了一个简单的静电场,通过使用高压电源对两个相对的金属板进行充电。
通过改变电源的电压,我们观察到金属板上的电荷积累情况,并使用电位差计测量了电场强度。
实验数据显示,电场强度与电压成正比,这与库仑定律的预测一致。
实验二:电磁波的产生与传播
接下来,我们通过振荡电路产生了电磁波。
在一个封闭的微波腔中,我们使用电磁波发生器产生不同频率的电磁波,并通过特殊的探测器来测量波的传播特性。
实验结果表明,电磁波的传播速度在不同的介质中有所变化,这与介质的电磁特性有关。
实验三:电磁波的极化与干涉
在这部分实验中,我们研究了电磁波的极化现象。
通过使用不同极化的波前,我们观察到了波的干涉效应。
特别是在双缝干涉实验中,我们观察到了明显的干涉条纹,这证明了电磁波的波动性质。
实验四:电磁波的吸收与反射
最后,我们探讨了电磁波与物质相互作用的过程。
通过将电磁波照射在不同材料的样品上,我们测量了波的吸收和反射率。
实验发现,吸收和反射率与材料的电磁性质密切相关,并且可以通过改变波的频率来调整这些性质。
通过这些实验,我们不仅验证了电磁场与电磁波的基本理论,而且加深了对这些现象在实际应用中的理解。
这些实验结果对于无线通信、雷达技术以及其他相关领域的研究和开发具有重要的指导意义。
电磁场与电磁波实验报告
实验一 静电场仿真1.实验目的建立静电场中电场及电位空间分布的直观概念。
2.实验仪器计算机一台3.基本原理当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。
点电荷q 在无限大真空中产生的电场强度E 的数学表达式为204qE r r πε= (r 是单位向量) (1-1)真空中点电荷产生的电位为04qr ϕπε= (1-2)其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为1221014ni n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014ni n i i q r ϕϕϕϕπε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。
4.实验内容及步骤(1) 点电荷静电场仿真题目:真空中有一个点电荷-q ,求其电场分布图。
程序1:负点电荷电场示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r;m1=4*pi*E0*r.^2;E=(-q./m1).*r;surfc(x,y,E);负点电荷电势示意图clear[x,y]=meshgrid(-10:1.2:10);E0=8.85e-12;q=1.6*10^(-19);r=[];r=sqrt(x.^2+y.^2+1.0*10^(-10))m=4*pi*E0*r;m1=4*pi*E0*r.^2;z=-q./m1surfc(x,y,z);xlabel('x','fontsize',16)ylabel('y','fontsize',16)title('负点电荷电势示意图','fontsize',10)clearq=2e-6;k=9e9;a=1.0;b=0;x=-4:0.16:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));Z=q*k*(1./R2-1./R1);[ex,ey]=gradient(-Z);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(Z)),max(max(Z)),40); contour(X,Y,Z,cv,'k-');hold onquiver(X,Y,ex,ey,0.7);q=2e-6;k=9e9;a=1.0;b=0;x=-4:0.15:4;y=x; [X,Y]=meshgrid(x,y);R1=sqrt((X+1).^2+Y.^2+1.0*10^(-10));R2=sqrt((X-1).^2+Y.^2+1.0*10^(-10));U=q*k*(1./R2-1./R1);[ex,ey]=gradient(-U);ae=sqrt(ex.^2+ey.^2);ex=ex./ae;ey=ey./ae; cv=linspace(min(min(U)),max(max(U)),40); surfc(x,y,U);实验二恒定电场的仿真1.实验目的建立恒定电场中电场及电位空间分布的直观概念。
哈工大电磁场与电磁波实验报告
哈⼯⼤电磁场与电磁波实验报告电磁场与电磁波实验报告班级:学号:姓名:同组⼈:实验⼀电磁波的反射实验1.实验⽬的:任何波动现象(⽆论是机械波、光波、⽆线电波),在波前进的过程中如遇到障碍物,波就要发⽣反射。
本实验就是要研究微波在⾦属平板上发⽣反射时所遵守的波的反射定律。
2.实验原理:电磁波从某⼀⼊射⾓i射到两种不同介质的分界⾯上时,其反射波总是按照反射⾓等于⼊射⾓的规律反射回来。
如图(1-2)所⽰,微波由发射喇叭发出,以⼊射⾓i设到⾦属板MM',在反射⽅向的位置上,置⼀接收喇叭B,只有当B处在反射⾓i'约等于⼊射⾓i时,接收到的微波功率最⼤,这就证明了反射定律的正确性。
3.实验仪器:本实验仪器包括三厘⽶固态信号发⽣器,微波分度计,反射⾦属铝制平板,微安表头。
4.实验步骤:1)将发射喇叭的衰减器沿顺时针⽅向旋转,使它处于最⼤衰减位置;2)打开信号源的开关,⼯作状态置于“等幅”旋转衰减器看微安表是否有显⽰,若有显⽰,则有微波发射;3)将⾦属反射板置于分度计的⽔平台上,开始它的平⾯是与两喇叭的平⾯平⾏。
4)旋转分度计上的⼩平台,使⾦属反射板的法线⽅向与发射喇叭成任意⾓度i,然后将接收喇叭转到反射⾓等于⼊射⾓的位置,缓慢的调节衰减器,使微µ)。
安表显⽰有⾜够⼤的⽰数(50A5)熟悉⼊射⾓与反射⾓的读取⽅法,然后分别以⼊射⾓等于30、40、50、60、70度,测得相应的反射⾓的⼤⼩。
6)在反射板的另⼀侧,测出相应的反射⾓。
5.数据的记录预处理记下相应的反射⾓,并取平均值,平均值为最后的结果。
5.实验结论:?的平均值与⼊射⾓0?⼤致相等,⼊射⾓等于反射⾓,验证了波的反射定律的成⽴。
6.问题讨论:1.为什么要在反射板的左右两侧进⾏测量然后⽤其相应的反射⾓来求平均值?答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。
电磁波极化实验报告
电磁波极化实验报告电磁波极化实验报告引言:电磁波极化是电磁波振动方向的特性,对于电磁波的传播和应用具有重要意义。
本实验旨在通过实验方法探究电磁波的极化现象,并分析其在不同介质中的传播规律。
实验一:线偏振光的产生与检测实验目的:通过实验验证线偏振光的产生与检测原理。
实验步骤:1. 将一束自然光通过一块偏振片,调整偏振片的方向,观察透过偏振片后的光强变化。
2. 用另一块偏振片作为分析器,将其与第一块偏振片的透射轴垂直,观察透过分析器后的光强变化。
实验结果与分析:通过调整偏振片的方向,我们观察到透过偏振片后的光强发生了变化。
当两块偏振片的透射轴垂直时,透过分析器的光强最弱,几乎完全消失。
这说明通过偏振片后的光已经被线偏振。
实验二:电磁波的振动方向与介质的关系实验目的:通过实验探究电磁波的振动方向与介质的关系。
实验步骤:1. 将一束自然光通过一块偏振片,调整偏振片的方向,观察透过偏振片后的光强变化。
2. 将透过偏振片的光照射到不同介质(如玻璃、水等)中,再次观察光强的变化。
实验结果与分析:通过调整偏振片的方向,我们观察到透过偏振片后的光强发生了变化。
当光照射到不同介质中时,光强的变化情况也不同。
这说明电磁波的振动方向与介质的性质有关。
实验三:电磁波的反射与折射实验目的:通过实验研究电磁波在反射和折射过程中的极化现象。
实验步骤:1. 将一束线偏振光照射到一块玻璃板上,调整入射角度,观察反射光的强度和方向。
2. 将线偏振光从空气中射入玻璃板,观察折射光的强度和方向。
实验结果与分析:通过实验观察,我们发现反射光和折射光的振动方向与入射光的振动方向有关。
当入射角度变化时,反射光和折射光的振动方向也发生了变化。
这说明电磁波在反射和折射过程中会发生极化现象。
实验四:电磁波的旋光现象实验目的:通过实验研究电磁波的旋光现象。
实验步骤:1. 将一束线偏振光通过一块旋光片,观察透过旋光片后的光强变化。
2. 改变旋光片的转动方向和角度,再次观察光强的变化。
电磁场与电磁波实验报告
电磁场与电磁波实验报告实验题目:电磁场与电磁波实验实验目的:1.了解电磁场的产生原理和特性。
2.理解电磁波的概念和基本特性。
3.掌握测量和分析不同电磁波的实验方法。
实验器材:1.U形磁铁2.电磁铁3.直流电源4.交流电源5.电磁感应器6.示波器7.微波源8.微波接收器9.光栅片10.各种电磁波滤波器实验原理:1.电磁场的产生:电流通过电线时,会在周围产生磁场。
在一对平行导线中,当电流方向相同时,导线之间的磁场是叠加的;当电流方向相反时,导线之间的磁场互相抵消。
2.电磁场的特性:电磁场具有两种性质,即不能长距离传播和具有作用力。
通过电磁感应现象,可以观察到电磁场的作用力。
3.电磁波的产生与传播:当电场和磁场变化时,会激发并产生电磁波。
电磁波可根据频率不同被分为不同波段,如:无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
实验步骤:实验1:观察电磁场的产生和作用1.将磁铁插入U形磁铁中,并将直流电源连接到U形磁铁的两端;2.在U形磁铁下方放置一根金属杆,并用电磁感应器在金属杆上方测量磁感应强度;3.开启直流电源,记录不同电流强度下的磁感应强度,并绘制电流与磁感应强度的图线;4.在磁铁两端放置一磁性物体,观察其受力情况。
实验2:测量电磁波的特性1.将微波源和微波接收器分别连接至交流电源和示波器;2.将微波源调至一定频率,并记录该频率;3.调整示波器至合适的量程和垂直偏置,观察示波器上的微波信号;4.更换不同频率和波长的电磁波,重复步骤3;5.将光栅片放置在微波源与接收器之间,观察光栅片的衍射效应。
实验结果与分析:实验1:观察电磁场的产生和作用根据实验数据,绘制出电流与磁感应强度的图线,可以观察到磁感应强度与电流之间呈现线性关系,并且磁性物体受到磁力的作用。
实验2:测量电磁波的特性根据实验数据,可以观察到不同频率和波长的电磁波在示波器上表现出不同的振动形态,频率越高,波长越短。
通过光栅片的衍射效应,可以观察到电磁波的波长。
电磁波极化实验报告
竭诚为您提供优质文档/双击可除电磁波极化实验报告篇一:电磁场与微波实验报告(极化波)实验报告课程名称:电磁场与微波技术实验指导老师:谢银芳、王子立成绩:实验名称:极化波实验类型:验证型实验同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。
2、了解线极化波,圆极化波和椭圆极化波特性参数的测量方法。
3、通过对三种线性极化波的研究,加深对电磁场极化特性的认识与理解。
二、实验内容和原理原理:平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量e随时间变化的规律。
若e的末端轨迹在一条直线上时,称为线极化波;若e末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。
若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。
而椭圆极化波末端为椭圆形。
线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。
设同频率的两个正交线极化波为:ex?exme?j(kz??x)ey?eyme?j(kz??y)当?x??y??,exm??eym时,是线极化波当?x??y???2,exm??eym时,是圆极化波当?x??y介于线极化波与圆极化波时,是椭圆极化波内容:1.圆极化波的调整与测量2.线极化波的调整与测量3.椭圆极化波的调整与测量三、主要仪器设备如下图所示,其中辐射喇叭由固态信号源、衰减器及矩形喇叭组成。
其中固态信号源工作频率为f=9375mhz。
接收喇叭由矩形喇叭,检波器,,微安表等组成。
其它装置基本上与实验一相同。
四、实验步骤和结果记录1、圆极化波根据圆极化波的要求,两相同频率的正交场相干波必须幅度相等,相位差?o?2。
因此,先使发射喇叭的转角为45左右,分别将接收喇叭垂直与水平放置,收到em1和em2,然后转动接收喇叭到任意一个角度,则将会出现大于或者小于em1值的情况。
电磁场与电磁波实验报告
第一章反射实验●实验原理当微波遇到金属板时将会发生全反射,本实Array验就是以一块金属板作为障碍物,来研究当微波以某一入射角投射到金属板时,所遵守的反射定律。
●实验报告●在误差允许范围内入射角等于反射角。
第二章 衍射实验●实验原理:如图所示,当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。
在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为ϕ=sin-1(λ/a),其中λ是波长,a 是狭缝宽度。
两者取同一长度单位。
然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:ϕ=sin-1(3λ/2a)。
Ф—I 曲线图(标注极大值点)-20204060801001202468101214161820222426283032343638404244464850● 实验分析随着角度的增加,电流强度出现两个峰值,证明这是两个加强点。
第三章 干涉实验●实验原理如图所示,当一平面波垂直入射到一金属板的两条狭缝上,则每一条狭缝就是次级波波源。
由两缝发出的次级波是相干波,因此在金属板的背面空间中,将产生干涉现象。
当然,通过每个缝也有衍射现象。
因此实验将是衍射和干涉两者结合的结果。
为了只观察双缝的两束中央衍射波相互干涉的现象,令双缝的缝宽a 接近λ,λ=32mm ,a=40mm 。
这时单缝的一级极小接近53︒。
因此取较大的b ,则干涉强度受狭缝衍射的影响小,当b 较小时,干涉强度受狭缝衍射影响大。
干涉加强的角度为:ϕ=sin -1(K ⋅λ/(a+b)),式中K=1、2、…。
干涉减弱的角度为:ϕ=sin -1((2K+1)⋅λ/2(a+b)),式中K=1、2、…。
实验报告 ()Ф—I 曲线图(标注极大值点)-2020406080100012345678910111213141516171819202122232425● 实验分析由于光的干涉,随着角度的增加,出现了光的加强的区和减弱区。
电磁波极化实验报告
竭诚为您提供优质文档/双击可除电磁波极化实验报告篇一:电磁场与微波实验报告(极化波)实验报告课程名称:电磁场与微波技术实验指导老师:谢银芳、王子立成绩:实验名称:极化波实验类型:验证型实验同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。
2、了解线极化波,圆极化波和椭圆极化波特性参数的测量方法。
3、通过对三种线性极化波的研究,加深对电磁场极化特性的认识与理解。
二、实验内容和原理原理:平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量e随时间变化的规律。
若e的末端轨迹在一条直线上时,称为线极化波;若e末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。
若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。
而椭圆极化波末端为椭圆形。
线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。
设同频率的两个正交线极化波为:ex?exme?j(kz??x)ey?eyme?j(kz??y)当?x??y??,exm??eym时,是线极化波当?x??y???2,exm??eym时,是圆极化波当?x??y介于线极化波与圆极化波时,是椭圆极化波内容:1.圆极化波的调整与测量2.线极化波的调整与测量3.椭圆极化波的调整与测量三、主要仪器设备如下图所示,其中辐射喇叭由固态信号源、衰减器及矩形喇叭组成。
其中固态信号源工作频率为f=9375mhz。
接收喇叭由矩形喇叭,检波器,,微安表等组成。
其它装置基本上与实验一相同。
四、实验步骤和结果记录1、圆极化波根据圆极化波的要求,两相同频率的正交场相干波必须幅度相等,相位差?o?2。
因此,先使发射喇叭的转角为45左右,分别将接收喇叭垂直与水平放置,收到em1和em2,然后转动接收喇叭到任意一个角度,则将会出现大于或者小于em1值的情况。
电磁场与电磁波实验报告.
电磁场与电磁波实验报告.中南⼤学信息科学与⼯程学院课题名称:电磁场与电磁波实验报告信息科学与⼯程学院通信⼯程1201 学班学姓院:级:号:名:0909120927 苏⽂强指导⽼师:陈宁实验⼀电磁波反射实验⼀实验⽬的1. 掌握微波分光仪的基本使⽤⽅法;2. 了解3cm 信号源的产⽣、传输及基本特性;3. 验证电磁波反射定律。
⼆预习内容电磁波的反射定律三实验原理微波与其它波段的⽆线电波相⽐具有:波长极短,频率很⾼,振荡周期极短的特点。
微波传输具有似光特性,其传播为直线传播。
电磁波在传播过程中如遇到障碍物,必定要发⽣反射。
本实验以⼀块⼤的⾦属板作为障碍物来研究当电磁波以某⼀⼊射⾓投射到此⾦属板上所遵循的反射定律,即:反射电磁波位于⼊射电磁波和通过⼊射点的法线所决定的平⾯上反射电磁波和⼊射电磁波分别位于法线两侧;反射⾓θr 等于⼊射⾓θi。
原理如图1.1所⽰。
图1.1四实验内容与步骤1. 调整微波分光仪的两喇叭⼝⾯使其互相正对,它们各⾃的轴线应在⼀条直线上,指⽰两喇叭位置的指针分别指于⼯作平台的0-180 刻度处。
将⽀座放在⼯作平台上,并利⽤平台上的定位销和刻线对正⽀座,拉起平台上四个压紧螺钉旋转⼀个⾓度后放下,即可压紧⽀座。
2. 将反射全属板放到⽀座上,应使⾦属板平⾯与⽀座下⾯的⼩圆盘上的90-90 这对刻线⼀致,这时⼩平台上的0 刻度就与⾦属板的法线⽅向⼀致。
将⾦属板与发射、接收喇叭锁定,以保证实验稳定可靠。
3. 打开信号源开关,将三厘⽶固态信号源设置在:“电压”和“等幅”档。
4. 调节可变衰减器,使得活动臂上微安表的读数为满量程的80%左右。
5. 转动微波分光仪的⼩平台,使固定臂指针指在刻度为30 度处,这个⾓度数就是⼊射⾓度数,然后转动活动臂,使得表头指⽰最⼤,此时活动臂上指针所指的刻度就是反射⾓度数,记下该⾓度读数。
如果此时表头指⽰太⼤或太⼩,应调整微波分光仪中的可变衰减器或晶体检波器,使表头指⽰接近满量程的80%做此项实验。
电磁场与电磁波实验报告
电磁场与电磁波实验陈述之宇文皓月创作班级:学号:姓名:实验一:验证电磁波的反射和折射定律(1学时)1、实验目的验证电磁波在媒质中传播遵循反射定理及折射定律。
(1)研究电磁波在良好导体概况上的全反射。
(2)研究电磁波在良好介质概况上的反射和折射。
(3)研究电磁波全反射和全折射的条件。
2、实验原理电磁波在传播过程中如遇到障碍物,肯定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
3、实验结果:图1.1 电磁波在介质板上的折射图1.2 电磁波在良导体板上的反射实验二:电磁波的单缝衍射实验、双缝干涉实验。
1、实验目的(1)研究当一平面波入射到一宽度和波长可比较的狭缝时,就要发生衍射的现象。
在缝后面出现的衍射波强度不是均匀的,中央最强;(2)研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源。
由两缝发出的次级波是相干波,因此在金属板的面前面空间中,将发生干涉现象。
2、实验原理单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比较的狭缝时,就要发生衍射的现象。
在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为,其中λ是波长,λ是狭缝宽度。
两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至一级极大值,角度为:图 5 单缝衍射实验原理图如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的面前面空间中,将发生干涉现象。
当然电磁波通过每个缝也有狭缝现象。
因此实验将是衍射和干涉两者结合的结果。
为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如:,这时单缝的一级极小接近53°。
电磁场与电磁波实验报告-反射实验和极化波的产生与检测
内蒙古工业大学信息工程学院实验报告课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实验室班级:电子10-1班学号:8姓名:苏宝组别:同组人:成绩:实验日期: 2013年5月21电磁场与电磁波实验实验一:反射实验实验目的熟悉DH926AD型数据采集仪、DH926B型微波分光仪的使用方法掌握分光仪验证电磁波反射定律的方法实验设备与仪器DH926AD型数据采集仪DH926B型微波分光仪DH1121B型三厘米固态信号源金属板实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
如图所示,平行极化的均匀平面波以角度θ入射到良介质表面时,入射波、反射波和折射波可用下列式子表示为平行极化波的斜入射示意图实验内容与步骤系统构建时,如图1,开启DH1121B型三厘米固态信号源。
DH926B型微波分光仪的两喇叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180刻度处。
将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。
反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。
将DH926AD型数据采集仪提供的USB电缆线的两端根据具体尺寸分别连接图1 反射实验到数据采集仪的USB口和计算机的USB口,此时,DH926AD型数据采集仪的USB指示灯亮(蓝色),表示已连接好。
然后打开DH926AD型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到DH926B型微波分光仪分度转台底部的光栅通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。
中南大学电磁场与电磁波实验报告
。
三、实验步骤
1、连接仪器 按下图连接仪器。
2、校正仪器 使两喇叭口面互成 90 度。
3、固定半透射板 半透射板与两喇叭轴线互成 45 度。
4、固定反射板 将读数机构通过它本身上带有的两个螺钉旋入底座上,使其固定在底座上, 再插上反射扳,使固定反射板的法线与接受喇叭的轴线一致,可移反射板的 法钱与发射喇叭轴线一致。
二 实验原理
待测介质板
A(固定反射板)
发射喇叭
半透射板
接收喇叭
B(可移反射板)
图 4.1 介质参数测量原理图 在上一个实验的基础上,在固定反射板前放一块待测介质板,其相对介电
常数为 r ,厚度为 d,这样固定反射板的电磁波的波程差将会增加,为了得到新
的极小点位置,必需将可移动反射板向右移 l ,待测介质板的相对介电常数 r 与
(2)引起误差的主要原因,除了客观因素(实验器材本身)和人为 因素(读数不准确)外,还包括 1.实验开始时喇叭口校准不到位 2.实验过程中不小心造成的已校准过的喇叭口的偏移 3.来自其他实验组的干扰
(3)实验过程中测量所得的角度是反射光最强的处对应的角度,角 度的偏差是由(3)中所述的误差原因造成的。
(4)实验过程中测量所得的电流表读数是在反射光一侧的电流最大 值,代表反射光的强度。反射光在传播过程中会有损耗,所以 反射光强度不严格等于入射光的情况是合理存在的。若反射光 强度大于入射光强度,极可能是其他实验组产生干扰而造成的。
实验二 单缝衍射实验
一、实验目的
1.了解微波分光仪的结构,学会调整它并能用它进行实验; 2.进一步认识电磁波的波动性,测量并验证单缝衍射现象的规律。
5、调节衰减器 按信号源操作规程接通电源,调节衰减器使信号电平读数指示合适值。
电磁场与电磁波实验报告
电磁场与电磁波实验报告
实验目的:通过实验探究电磁场和电磁波的相关性质,加深对电磁
学原理的理解,掌握相关实验操作技巧。
一、实验仪器与材料
本次实验所用仪器设备包括:
1. 电磁场产生装置;
2. 电场仪表;
3. 磁场仪表;
4. 信号发生器;
5. 示波器等。
二、实验步骤
1. 观察并记录电磁场产生装置的工作原理,了解电磁场的形成过程;
2. 利用电场仪表和磁场仪表分别测量电磁场的电场分量和磁场分量,并记录实验数据;
3. 通过调节信号发生器的频率和幅度,产生不同频率的电磁波,并
利用示波器观察并记录波形;
4. 将电磁场和电磁波的实验数据整理,形成图表和曲线。
三、实验结果与分析
根据实验数据,我们可以观察到电磁场和电磁波在不同频率下的表现。
电磁场的电场分量和磁场分量呈现出明显的变化规律,频率越高,波动频率越密集;而电磁波的波形随着频率的增加呈现出不同的特征,频率在一定范围内变化会引起频率响应的变化。
四、结论与思考
通过本次实验,我们深入了解了电磁场和电磁波的相关特性,了解
到电磁场和电磁波在不同频率下的表现差异。
同时,我们也发现了实
验过程中需要注意的细节问题,如仪器的校准和操作注意事项等。
通
过实验,我们不仅加深了对电磁学理论知识的理解,也提高了实验操
作的技巧和分析能力。
综上所述,电磁场与电磁波实验为我们提供了一个直观、具体的实
践平台,促进了电磁学知识的学习与应用,为我们日后的研究与工作
打下了坚实的基础。
电磁场与电磁波实验报告
显然只有������1 = ������2 时才有折射,即������1 = ������2 ,这是无意义的。当������2 具有一定厚度������ 。且 ������2 两侧同为空气,即������1 = ������2 。这时要实现全反射的传播,对������2 就有特殊要求。我们可利用传 输线输入阻抗的概念和公式,得到������1 、������2 分界面上的输入阻抗: ������3 + ������������2 tan(������2 ������) ������������������ = ������2 ������2 + ������������3 tan(������2 ������) 式中������1 = ������3,������2 =
上式表明,媒质分界面上反射角等于入射角,即反射定律。 由此得: ������������������������2 = ������1 ������0 ������1 ������2 ������1 ������������������������1 = √ ������������������������1 = ������������������������1 = √ ������������������������1 ������2 ������0 ������2 ������1 ������2
实验一:验证电磁波的反射和折射定律 ������2 = ������02 (������������������������������2 + ������������������������������2 )������ −������������2 (−������������������������������2 +������������������������������2 ) ������02 −������������ (−������������������������������ +������������������������������ ) 2 2 ������2 = ������������ ������ 2 ������2 以上各式中������1 、������2 分别表示波在两种媒质中的波阻抗。由边界条件可知,在分界面上 ������ = 0处,有������1������ = ������2������ ,������1������ = ������2������ 。同时,三种波在分界面处必须以同一速度向������方向传播, 即它们的波因子必须相等,则有:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古工业大学信息工程学院实验报告课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实验室班级:电子10-1班学号:201010203008 姓名:苏宝组别:同组人:成绩:实验日期: 2013年5月21电磁场与电磁波实验实验一:反射实验实验目的熟悉DH926AD型数据采集仪、DH926B型微波分光仪的使用方法掌握分光仪验证电磁波反射定律的方法实验设备与仪器DH926AD型数据采集仪DH926B型微波分光仪DH1121B型三厘米固态信号源金属板实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
如图所示,平行极化的均匀平面波以角度θ入射到良介质表面时,入射波、反射波和折射波可用下列式子表示为平行极化波的斜入射示意图实验内容与步骤系统构建时,如图1,开启DH1121B型三厘米固态信号源。
DH926B型微波分光仪的两喇叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180刻度处。
将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。
反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。
将DH926AD型数据采集仪提供的USB电缆线的两端根据具体尺寸分别连接图1 反射实验到数据采集仪的USB口和计算机的USB口,此时,DH926AD型数据采集仪的USB指示灯亮(蓝色),表示已连接好。
然后打开DH926AD型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到DH926B型微波分光仪分度转台底部的光栅通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。
最后,察看DH1121B型三厘米固态信号源的“等幅”和“方波”档的设置,将DH926AD型数据采集仪的“等幅/方波”设置按钮等同于DH1121B型三厘米固态信号源的设置。
转动微波分光仪的小平台,使固定臂指针指在某一刻度处,这刻度数就是入射角度数,然后转动活动臂在DH926AD型数据采集仪的表头上找到一最大指示,此时微波分光仪的活动臂上的指针所指的刻度就是反射角度数。
如果此时表头指示太大或太小,应调整微波分光仪微波系统中的可变衰减器或晶体检波器,使表头指示接近满量程做此项实验。
入射角最好取30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。
做这项实验时应注意系统的调整和周围环境的影响。
采集过程中,DH926AD型数据采集仪的USB指示灯连续闪动(蓝色),表示采集过程正在继续。
应用软件屏幕上的信号灯颜色也随着实验的继续进行红色、绿色切换。
您需要顺时针匀速转动DH926B型微波分光仪的活动臂,随着活动臂的移动,采集点数依次增加,当您停止移动活动臂,绘图框会保持原来的状态直到您再次开始移动活动臂。
这个过程中,您便可在绘图框中实时观察到信号变化(如图10)。
当采集过程中的已采集的脉冲变化等于您在进入采集过程界面之前设定的采集点数时,屏幕上会出现“此次采集完毕”的采集结束实验结果及分析记录实验测得数据,验证电磁波的反射定律入射角50,反射角50,参数129。
129可能是参考相位不同入射角60,反射角60,参数61.匀速转动DH926BD的转盘入射角50,匀速转动晶体检波器臂,反射角50,参数60快速转动转动DH926BD的转盘,入射角40,反射角40,参数41快速转晶体臂(1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。
(2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角不会完全等于反射角,由差值一栏可以看出在55度左右的误差最小。
越向两边误差越大,说明测量仪器在55度的入射角能产生最好的特性。
(3)、转动晶体臂和转动DH926BD的转盘产生的图形,形状基本相同,但转动晶体臂的图像不好。
转动DH926BD的转盘的图型较为圆滑标准.(4)、曲线的幅值一转动速度有关,转动越快越陡峭,而且也越形象,美观。
(5)、转动的快慢还影响图形的周期.越快周期越小.误差分析:1.仪器误差:发射天线和接收天线不能调到绝对的水平和垂直,因此也得不到绝对的水平极化波和垂直极化波;反射金属板不是绝对的平面,也影响入射角和反射角的大小。
2.人为操作误差:操作仪器时,读数时都会存在一定误差3.周围仪器发射电磁波影响误差:影响电流表示数,也就影响电流极大是的反射角大小。
4.由于误差较小,在允许范围内。
5.数据测的较少,应该多次几组。
实验心得体会做了本次实验,验证了的电磁波是符合反射定律的.同时熟悉DH926AD型数据采集仪、DH926B型微波分光仪的使用方法.起初做的实验,并不满足反射定律, 入射角50,反射角50,参数129。
129可能是参考相位不同.之后的实验室满足的.在实验中还发现, 曲线的幅值一转动速度有关,转动越快越陡峭,而且也越形象,美观.转动的快慢还影响图形的周期.越快周期越小.实验中注意方式方法的同时,更要注意细节,因为往往一场战争就输在你的不小心扔了一枚钉子,注意细节固然重要,但一定要养成一个良好的习惯,使我们在今后的学习中减少不必要的错误.通过做这样的实验,激发了我的学习兴趣,尤其是研究一些未知的东西。
所以在今后的学习中,善于钻研,不怕困难,敢于尝试一些新鲜又富有挑战的任务,不断学习,不断总结,培养自己的创新能力和综合水平,积累经验,丰富学习生活。
电磁场与电磁波实验实验二:极化波的产生/检测实验目的熟悉DH926AD型数据采集仪、DH926B型微波分光仪的使用方法了解极化波的产生与检测方法实验设备与仪器DH926AD型数据采集仪DH926B型微波分光仪DH1121B型三厘米固态信号源半透板实验原理DH30003型栅网组件是由两个栅条方向相差90°的栅网组成。
栅网(见图16)是在一金属框架上绕有一排互相平行的金属丝,以反射平行金属丝的电场,DH30003型栅网组件与本厂的DH926B型微波分光仪组合使用可获得圆极化波。
波的极化是用以描述电场强度空间矢量在某点位置上随时间变化的规律。
无论是线极化波、圆极化波或椭圆极化波都可由同频率正交场的两个线极化组成。
若他们同相(或反相)、等幅(或幅度不等)其合成场的波认为线极化波;若它们相位相位差为90°,即△φ=±90°,幅度相等,合成场波为右旋或左旋圆极化波;若它们相位差为0〈△φ〈±90°,幅度相等(或幅度不等),合成场波为右旋或左旋椭圆极化波。
图17是用栅网组件实现波极化的原理图。
图16DH30003型栅网组件图17 栅网实现波极化的原理图Pr1为垂直栅网,Pr2为水平栅网,当辐射喇叭Pr0转角45°后,辐射波的场分为E ∥与E ⊥两个分量,Pr1则反射E ⊥分量,而 E ∥分量透过垂直栅网被吸收;Pr2则反射E ∥分量,而 E ⊥分量透过水平栅网被吸收。
这是转动接收喇叭Pr3,当Pr3喇叭E 面与垂直栅网平行时收到E ⊥波。
经几次调整辐射喇叭Pr0的转角使Pr3接收到的|E ∥|=|E ⊥|,实现了圆极化的幅度相等要求。
然后接收喇叭Pr3在E ⊥与E ∥之间转动,将出现任意转角下的|E α|≤|E ∥|(或|E ⊥|)。
这时改变Pr2水平栅网位置,使Pr3接收的波具有|E α|=|E ∥|=|E ⊥|,从而实现了E ∥与E ⊥两个波的相位差为±90°,得到圆极化波。
由于测试条件所限,|E α|与|E ∥|、|E ⊥|不可能完全相等,Pr3转角0°~360°时,总会出现检波电压的波动,这时虽有Emin/Emax ∝max min/V V ≥0.93,即椭圆度为0.93。
可以认为基本上实现了圆极化波的要求。
实验内容与步骤如图45,使DH926B 型微波分光仪两喇叭口面互成90°,半透射板与两喇叭轴线互成45°,将读数机构通过它本身上带有的两个螺钉旋入底座上相应的旋孔,使其固定在底座上。
将DH926AD 型数据采集仪提供的USB 电缆线的两端根据具体尺寸分别连接到数据采集仪的USB 口和计算机的USB 口,此时,DH926AD 型数据采集仪的USB 指示灯亮(蓝色),图18 栅网实验表示已连接好。
然后打开DH926AD型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到DH926B型微波分光仪接收喇叭的光栅通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道3)。
首先,将垂直(或水平)栅网Pr1插在平台上,另一个与之垂直的栅网——水平(或垂直)栅网Pr2插在读数机构上,用我们提供的钢板尺测量一下半透射板到两个栅网的距离,调整读数机构直至半透射板到两个栅网的距离相等。
然后,将辐射喇叭Pr0旋转45°后,先用我们提供的全吸收板挂在水平(或垂直)栅网前,将其遮挡,开启DH1121B型三厘米固态信号源。
如果遮挡的是水平栅网,将接收喇叭Pr3口面平行地面放置;如果遮挡的是垂直栅网,将接收喇叭Pr3口面垂直地面放置。
适当左右调整未被遮挡的栅网观察DH926AD型数据采集仪表头指示,使表头指示取得原指示附近的最大值,此时,将栅网下支柱的拨棍螺钉旋紧,并记录下DH926AD型数据采集仪表头指示。
此后,将全吸收板从水平(或垂直)栅网前取下,将其挂在另一个栅网——垂直(或水平)栅网前,将其遮挡,接收喇叭Pr3口面放置同上。
适当左右调整未被遮挡的栅网观察DH926AD型数据采集仪表头指示,使表头指示取得原指示附近的最大值,对比此时的最大值和您之前记录的DH926AD型数据采集仪表头指示值,若不相同,适当改变辐射喇叭Pr0的角度。
然后,重复以上字体加粗的步骤。
最终的结果是要使得此时的最大值和您之前记录的DH926AD型数据采集仪表头指示值相同,调整好后,旋紧栅网下支柱的拨棍螺钉。
接着,取下全吸收板,旋转接收喇叭Pr3口面,使其分别处于与地面水平、垂直状态,观察数据采集仪表头指示,应使两个指示值基本相同,才能满足圆极化波|E∥|=|E⊥|的要求。
若两次表头指示不同,适当调整辐射喇叭Pr0的角度,务必使两个指示值基本相同,方能实现圆极化的幅度相等要求。
最后,改变Pr2水平(或垂直)栅网位置,使接收喇叭Pr3接收的波具有|Eα|=|E∥|=|E⊥|,此时,旋转接收喇叭Pr3到任意角度,DH926AD型数据采集仪表头指示值基本相同,从而实现了E∥与E⊥两个波的相位差为±90°,得到圆极化波。