2019-2020年中考数学第二轮专题复习几何综合题.docx

合集下载

【通用版】2019年春中考数学总复习 第二轮 中考题型专题 专题复习(六)几何综合题试题

【通用版】2019年春中考数学总复习 第二轮 中考题型专题 专题复习(六)几何综合题试题

专题复习(六) 几何综合题1.(2016·德州)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图1、四边形ABCD 中、点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2、点P 是四边形ABCD 内一点、且满足PA =PB 、PC =PD 、∠APB =∠CPD.点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.猜想中点四边形EFGH 的形状、并证明你的猜想;(3)若改变(2)中的条件、使∠APB=∠CPD=90°、其他条件不变、直接写出中点四边形EFGH 的形状.(不必证明)图1 图2解:(1)证明:连接BD.∵E 、H 分别是AB 、AD 的中点、 ∴EH =12BD 、EH ∥BD.∵F 、G 分别是BC 、CD 的中点、 ∴FG =12BD 、FG ∥BD.∴EH =FG 、EH ∥FG.∴中点四边形EFGH 是平行四边形. (2)中点四边形EFGH 是菱形. 证明:连接AC 、BD.∵∠APB =∠CPD、∴∠APB +∠AP D =∠CPD+∠APD、即∠BPD=∠APC. 又∵PA=PB 、PC =PD 、∴△APC ≌△BPD(SAS ).∴AC=BD.∵点E 、F 、G 分别为边AB 、BC 、CD 的中点、 ∴EF =12AC 、FG =12BD.∴EF=FG.又∵四边形EFGH 是平行四边形、∴中点四边形EFGH 是菱形.图3(3)当∠APB=∠CPD=90°时、如图3、AC 与BD 交于点O 、BD 与EF 、AP 分别交于点M 、Q 、中点四边形EFGH 是正方形.理由如下:由(2)知:△APC≌△BPD、∴∠PAC =∠PBD. 又∵∠AQO=∠BQP、∴∠AOQ =∠APB =90°. 又∵EF∥AC、∴∠OMF =∠AOQ=90°. 又∵EH∥BD、∴∠HEF =∠OMF=90°. 又∵四边形EFGH 是菱形、∴中点四边形EFGH 是正方形.2.(2016·菏泽)如图、△ACB 和△DCE 均为等腰三角形、点A 、D 、E 在同一直线上、连接BE. (1)如图1、若∠CAB=∠CBA=∠CDE=∠CED=50°. ①求证:AD =BE ; ②求∠AEB 的度数;(2)如图2、若∠ACB=∠DCE=120°、CM 为△DCE 中DE 边上的高、BN 为△ABE 中AE 边上的高、试证明:AE =23CM +233BN.图1 图2解:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED、∴AC =BC 、CD =CE. ∵∠CAB =∠CBA=∠CDE=∠CED、 ∴∠ACB =∠DCE.∴∠ACD=∠BCE. ∴△ACD ≌△BCE(SAS ).∴AD=BE. ②由①得△ACD≌△BCE、∴∠ADC =∠BEC=180°-∠CDE=130°.∴∠AEB =∠BEC-∠CED=130°-50°=80°.(2)证明:在等腰△DCE 中、∵CD =CE 、∠DCE =120°、CM ⊥DE 、 ∴∠DCM =12∠DCE=60°、DM =EM.在Rt △CDM 中、DM =CM·tan ∠DCM =CM·tan 60°=3CM 、∴DE =23CM. 由(1)、得∠ADC =∠BEC=150°、AD =BE 、 ∴∠AEB =∠BEC-∠CED=120°. ∴∠BEN =60°. 在Rt △BEN 中、BE =BN sin 60°=233BN.∴AD =BE =233BN.又∵AE=DE +AD 、∴AE =23CM +233BN.3.(2016·东营)如图1、△ABC 是等腰直角三角形、∠BAC =90°、AB =AC 、四边形ADEF 是正方形、点B 、C 分别在边AD 、AF 上、此时BD =CF 、BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时、如图2、BD =CF 成立吗?若成立、请证明;若不成立、请说明理由.(2)当△ABC 绕点A 逆时针旋转45°时、如图3、延长DB 交CF 于点H 、交AF 于点N. ①求证:BD⊥CF;②当AB =2、AD =32时、求线段DH 的长.图1 图2 图3解:(1)BD =CF 成立.证明:∵AB=AC 、∠BAD =∠CAF=θ、AD =AF 、 ∴△ABD ≌△ACF(SAS ).∴BD =CF.(2)①证明:由(1)得、△ABD ≌△ACF 、 ∴∠HFN =∠ADN. 又∵∠HNF=∠AND、 ∴∠NHF =∠NAD=90°. ∴HD ⊥HF 、即BD⊥CF.②连接DF 、延长AB 交DF 于点M.在△MAD 中、∵∠MAD =∠MDA=45°、 ∴∠BMD =90°.∵AD =32、四边形ADEF 是正方形、 ∴MA =MD =322=3、FD =6.∴MB =3-2=1、DB =12+32=10. 在Rt △BMD 和Rt △FHD 中、 ∵∠MDB =∠HDF、 ∴△BMD ∽△FHD. ∴MD HD =BD FD 、即3HD =106.∴DH=9105.4.(2016·宁夏)在矩形ABCD 中、AB =3、AD =4、动点Q 从点A 出发、以每秒1个单位的速度、沿AB 向点B 移动;同时点P 从点B 出发、仍以每秒1个单位的速度、沿BC 向点C 移动、连接QP 、QD 、PD.若两个点同时运动的时间为x 秒(0<x≤3)、解答下列问题:(1)设△QPD 的面积为S 、用含x 的函数关系式表示S ;当x 为何值时、S 有最大值?并求出最小值; (2)是否存在x 的值、使得QP⊥DP?试说明理由.解:(1)∵四边形ABCD 为矩形、∴BC =AD =4、CD =AB =3. 当运动x 秒时、则AQ =x 、BP =x 、∴BQ =AB -AQ =3-x 、CP =BC -BP =4-x. ∴S △ADQ =12AD ·AQ=12×4x=2x 、S △BPQ =12BQ·BP=12(3-x)x =32x -12x 2、S △PCD =12PC·CD=12·(4-x)×3=6-32x.又S 矩形ABCD =AB·BC=3×4=12、∴S =S 矩形ABCD -S △ADQ -S △BPQ -S △PCD =12-2x -(32x -12x 2)-(6-32x)=12x 2-2x +6=12(x -2)2+4、即S =12(x -2)2+4.∴S 为开口向上的二次函数、且对称轴为直线x =2.∴当0<x≤2时、S 随x 的增大而减小; 当2<x≤3时、S 随x 的增大而增大、 又当x =0时、S =6、当S =3时、S =92.但x 的范围内取不到x =0、∴S 不存在最大值. 当x =2时、S 有最小值、最小值为4.(2)存在、理由:由(1)可知BQ =3-x 、BP =x 、CP =4-x. 当QP⊥DP 时、则∠BPQ+∠DPC=∠DPC+∠PDC、 ∴∠BPQ =∠PDC.又∵∠B=∠C、 ∴△BPQ ∽△CDP. ∴BQ PC =BP CD 、即3-x 4-x =x 3、解得x =7+132(舍去)或x =7-132. ∴当x =7-132时、QP ⊥DP.5.(2016·泰安)(1)已知:△ABC 是等腰三角形、其底边是BC 、点D 在线段AB 上、E 是直线BC 上一点、且∠DEC =∠DCE、若∠A=60°(如图1)、求证:EB =AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”、其他条件不变(如图2)、(1)的结论是否成立、并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”、其他条件不变、则EBAD 的值是多少?(直接写出结论、不要求写解答过程)图1 图2解:(1)证明:过D 点作BC 的平行线交AC 于点F. ∵△ABC 是等腰三角形、∠A =60°、 ∴△ABC 是等边三角形.∴∠ABC=60°. ∵DF ∥BC 、∴∠ADF =∠ABC=60°. ∴△ADF 是等边三角形. ∴AD =DF 、∠AFD =60°.∴∠DFC =180°-60°=120°.∵∠DBE =180°-60°=120°、∴∠DFC =∠DBE. 又∵∠FDC=∠DCE、∠DCE =∠DEC、 ∴∠FDC =∠DEC、ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD.(2)EB =AD 成立.理由如下:过D 点作BC 的平行线交AC 的延长线于点F. 同(1)可证△ADF 是等边三角形、 ∴AD =DF 、∠AFD =60°.∵∠DBE =∠ABC=60°、∴∠DBE =∠AFD. ∵∠FDC =∠D CE 、∠DCE =∠DEC、 ∴∠FDC =∠DEC、ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (3)EBAD= 2.理由如下: 如图3、过D 点作BC 的平行线交AC 于点G.图3∵△ABC 是等腰三角形、∠A =90°、 ∴∠ABC =∠ACB=45°、∴∠DBE =180°-45°=135°. ∵DG ∥BC 、∴∠GDC =∠DCE、∠DGC =180°-45°=135°. ∴∠DBE =∠DGC. ∵∠DCE =∠DEC、∴ED =CD 、∠DEC =∠GDC.∴△DBE ≌△CGD(AAS ).∴BE=GD. ∵∠ADG =∠ABC=45°、∠A =90°、 ∴△ADG 是等腰直角三角形. ∴DG =2AD.∴BE=2AD.∴EBAD = 2.6.(2016·烟台)【探究证明】(1)在矩形ABCD 中、EF ⊥GH 、EF 分别交AB 、CD 于点E 、F 、GH 分别交AD 、BC 于点G 、H.求证:EF GH =ADAB ;【结论应用】(2)如图2、在满足(1)的条件下、又AM⊥BN、点M 、N 分别在边BC 、CD 上.若EF GH =1115、则BNAM 的值为________;【联系拓展】(3)如图3、四边形ABCD 中、∠ABC =90°、AB =AD =10、BC =CD =5、AM ⊥DN 、点M 、N 分别在边BC 、AB 上、求DNAM 的值.图1 图2 图3解:(1)证明:过点A 作AP∥EF、交CD 于点P 、过点B 作BQ∥GH、交AD 于点Q. ∵四边形ABCD 是矩形、∴AB ∥DC 、AD ∥BC.∴四边形AEFP 、四边形BHGQ 都是平行四边形.∴AP=EF 、GH =BQ. 又∵GH⊥EF、∴AP ⊥BQ.∴∠QAP +∠AQB=90°.∵四边形ABCD 是矩形、∴∠DAB =∠D=90°. ∴∠DAP +∠DPA=90°.∴∠AQB =∠DPA. ∴△PDA ∽△QAB.∴AP BQ =AD AB .∴EF GH =ADAB .(2)∵EF⊥GH、AM ⊥BN 、∴由(1)中的结论可得EF GH =AD AB 、BN AM =ADAB、∴BN AM =EF GH =1115.故答案为1115. (3)连接AC 、过点D 作AB 的平行线交BC 的延长线于点E 、作AF⊥AB 交直线DE 于点F. ∵∠BAF =∠B=∠E=90°、 ∴四边形ABEF 是矩形.易证△ADC≌△ABC、∴∠ADC =∠ABC=90°. ∴∠FDA +∠EDC=90°.又∵∠EDC+∠ECD=90°、∴∠FDA =∠ECD. 又∵∠E=∠F、 ∴△ADF ∽△DCE. ∴DE AF =DC AD =510=12. 设DE =x 、则AF =2x 、DF =10-x.在Rt △ADF 中、AF 2+DF 2=AD 2、即(2x)2+(10-x)2=100、解得x 1=4、x 2=0(舍去). ∴AF =2x =8.∴DN AM =AF AB =810=45.7.(2016·武汉)在△ABC 中、P 为边AB 上一点.(1)如图1、若∠ACP=∠B、求证:AC 2=AP·AB; (2)若M 为CP 的中点、AC =2.①如图2、若∠PBM=∠ACP、AB =3、求BP 的长;②如图3、若∠ABC=45°、∠A =∠BMP=60°、直接写出BP 的长.图1 图2 图3解:(1)证明:∵∠ACP=∠B、∠CAP =∠BAC、 ∴△ACP ∽△ABC. ∴AC AB =AP AC、即AC 2=AP·AB. (2)①作CQ∥BM 交AB 的延长线于点Q 、则∠PBM=∠Q. ∵∠PBM =∠ACP、∴∠ACP =∠Q. 又∠PAC=∠CAQ、∴△APC ∽△ACQ. ∴AC AQ =AP AC、即AC 2=AP·AQ. 又∵M 为PC 的中点、BM ∥CQ 、∴设BP =x 、则BQ =x.∴AP=3-x 、AQ =3+x. ∴22=(3-x)(3+x)、解得x 1=5、x 2=-5(不合题意、舍去). ∴BP = 5. ②BP =7-1.作CQ⊥AB 于点Q 、作CP 0=CP 交AB 于点P 0. ∵AC =2、∴AQ =1、CQ =BQ = 3.设AP 0=x 、则P 0Q =PQ =1-x 、BP =3-1+x 、 ∵∠BPM =∠CP 0A 、∠BMP =∠CAP 0、 ∴△AP 0C ∽△MPB 、∴AP 0MP =P 0CBP.解得x =7-3或x =-7-3(舍去).∴BP =3-1+7-3=7-1.8.(2016·岳阳)数学活动——旋转变换(1)如图1、在△ABC 中、∠ABC =130°、将△ABC 绕点C 逆时针旋转50°得到△A′B′C、连接B B′.求∠A′B′B 的大小; (2)如图2、在△ABC 中、∠ABC =150°、AB =3、BC =5、将△ABC 绕点C 逆时针旋转60°得到△A ′B ′C 、连接BB′.以A′为圆心、A ′B ′长为半径作圆.①猜想:直线BB′与⊙A′的位置关系、并证明你的结论; ②连接A′B、求线段A′B 的长度;(3)如图3、在△ABC 中、∠ABC =α(90°<α<180°)、AB =m 、BC =n 、将△ABC 绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C、连接A′B 和BB′.以A′为圆心、A ′B ′长为半径作圆.问:角α与角β满足什么条件时、直线BB′与⊙A′相切、请说明理由.并求此条件下线段A′B 的长度.(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示)图1 图2 图3解:(1)由旋转得:∠A′B′C=∠ABC=130°、CB =CB′、∠BCB ′=50°、 ∴∠BB ′C =12(180°-∠BCB′)=65°.∴∠A ′B ′B =∠A′B′C-∠BB′C=130°-65°=65°. (2)①猜想:直线BB′与⊙A′相切.证明:由旋转得:∠A′B′C=∠ABC=150°、CB =CB′、∠BCB ′=60°、 ∴∠BB ′C =12(180°-∠BCB′)=60°.∴∠A ′B ′B =∠A′B′C-∠BB′C=150°-60°=90°、即B′B⊥A′B′. 又A′B′为半径、∴直线BB′与⊙A′相切.②由旋转得:A′B′=AB =3、B ′C =BC =5、∠BCB ′=60°、 ∴△BCB ′为等边三角形.∴BB′=BC =5.在Rt △A ′B ′B 中、A ′B =(A′B′)2+(BB′)2=32+52=34. (3)满足的条件:α+β=180°.理由:在△BB′C 中、∠BB ′C =180°-2β2=90°-β、∴∠A ′B ′B =α-∠BB′C=α-(90°-β)=α+β-90°.∵α+β=180°、∴∠A ′B ′B =α+β-90°=180°-90°=90°、即B′B⊥A′B′. ∴直线BB′与⊙A′相切. 过点C 作CD⊥BB′于点D. ∴∠B ′CD =12∠BCB′=β.在Rt △B ′CD 中、B ′D =B′C·s in β=BC·sin β=n sin β、∴BB ′=2B′D=2n sin β. 由α+β=180°得到△A′B′B 为直角三角形、9.(2016·宜昌)在△ABC 中、AB =6、AC =8、BC =10.D 是△ABC 内部或BC 边上的一个动点(与B 、C 不重合).以D 为顶点作△DEF、使△DEF∽△ABC(相似比k>1)、EF ∥BC. (1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①连接GH 、AD 、当GH⊥AD 时、请判断四边形AGDH 的形状、并证明;②当四边形AGDH 的面积最大时、过A 作AP⊥EF 于P 、且AP =AD 、求k 的值.解:(1)∵AB 2+AC 2=62+82=102=BC 2、 ∴∠BAC =90°.又∵△DEF∽△ABC、∴∠D =∠BAC =90°. (2)①四边形AGDH 是正方形.证明:延长ED 、FD 分别交BC 于点M 、N. ∵△DEF ∽△ABC 、∴∠E =∠B. 又∵EF∥BC、∴∠E =∠EMC.∴∠B=∠EMC.∴ED∥BA. 同理FD∥AC.∴四边形AGDH 是平行四边形.又∵∠FDE=90°、∴四边形AGDH 是矩形. 又∵AD⊥GH、∴四边形AGDH 是正方形.②当D 点在△ABC 内部时、四边形AGDH 的面积不可能最大.其理由是:如图1、点D 在内部时、延长GD 到D′、过D′作MD′⊥AC 于点M 、则四边形GD′MA 的面积大于矩形AGDH 的面积、∴当点D 在△ABC 内部时、四边形AGDH 的面积不可能最大. 按上述理由、只有当D 点在BC 边上时、面积才有可能最大.图1 图2如图2、D 在BC 上时、易证明DG∥AC、 ∴△GDB ∽△ACB. ∴BG BA =GD AC 、即BA -AG BA =AH AC . ∴6-AG 6=AH 8、即AH =8-43AG. ∴S 矩形AGDH =AG·AH=AG×(8-43AG)=-43AG 2+8AG =-43(AG -3)2+12.当AG =3时、S 矩形AGDH 最大、此时DG =AH =4.即当AG =3、AH =4、S 矩形AG DH 最大.在Rt △BGD 中、BD =BG 2+DG 2=5、则DC =BC -BD =5. 即D 为B C 上的中点时、S 矩形AGDH 最大.∴在Rt △ABC 中、AD =BC2=5、∴PA =AD =5.延长PA 交BC 于点Q 、∵EF ∥BC 、QP ⊥EF 、 ∴QP ⊥BC.∴QP 是EF 、BC 之间的距离. ∴D 到EF 的距离为PQ 的长. 在Rt △ABC 中、12AB·AC=12BC·AQ、∴AQ =4.8.又∵△DEF∽△ABC、∴k =PQ AQ =PA +AQ AQ =5+4.84.8=4924.10.(2016·河南)(1)发现如图1、点A 为线段BC 外一动点、且BC =a 、AB =b.填空:当点A 位于CB 延长线上时、线段AC 的长取得最大值、且最大值为a +b .(用含a 、b 的式子表示)图1(2)应用点A 为线段BC 外一动点、且BC =3、AB =1.如图2所示、分别以AB 、AC 为边、作等边三角形ABD 和等边三角形ACE 、连接CD 、BE.①请找出图中与BE 相等的线段、并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图3、在平面直角坐标系中、点A 的坐标为(2、0)、点B 的坐标为(5、0)、点P 为线段AB 外一动点、且PA =2、PM =PB 、∠BPM =90°.请直接写出线段AM 长的最大值及此时点P 的坐标.图2 图3 备用图解:(2)①DC=BE.理由如下: ∵△ABD 和△ACE 为等边三角形、∴AD =AB 、AC =AE 、∠BAD =∠CA E =60°.∴∠BAD +∠BAC=∠CAE+∠BAC、即∠CAD=∠EAB. ∴△CAD ≌△EAB.∴DC =BE. ②BE 长的最大值是4.(3)AM 的最大值为3+22、点P 的坐标为(2-2、2).提示:如图3、构造△BNP≌△MAP、则NB =AM 、易得△APN 是等腰直角三角形、AP =2、∴AN =2 2.由(1)知、当点N 在BA 的延长线上时、NB 有最大值(如备用图).∴AM=NB =AB +AN =3+2 2. 过点P 作PE⊥x 轴于点E 、PE =AE = 2. 又∵A(2、0)、∴P(2-2、2).。

2019年中考数学二轮复习几何探究题(压轴题) 综合练习 (含答案)

2019年中考数学二轮复习几何探究题(压轴题)  综合练习 (含答案)

2019年中考数学二轮复习几何探究题(压轴题)综合练习1. (1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.2.如图①,②,③分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图①中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图①中∠BOC=120°,请你探索在图②中∠BOC的度数,并说明理由或写出证明过程.(4)由此推广到一般情形(如图④),分别以△ABC 的AB 和AC 为边向△ABC 外作正n 边形,BE 和CD 仍相交于点O ,猜想∠BOC 的度数为____________________(用含n 的式子表示).图① 图② 图③ 图④3.已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M 在AB 上,且满足△PBC ∽△PAM ,延长BP 交AD 于点N ,连接CM.(1)如图①,若点M 在线段AB 上,求证:AP ⊥BN ;AM =AN.(2)①如图②,在点P 运动过程中,满足△PBC ∽△PAM 的点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 是否成立(不需说明理由)?②是否存在满足条件的点P ,使得PC =12?请说明理由.4. 如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.图①图②图③5. 已知矩形ABCD中AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图①,已知折痕与边BC交于点O,连接AP、OP、OA,若△OCP与△PDA的面积比为1∶ 4,求边CD的长;(2)如图②,在(1)的条件下擦去AO、OP,连接BP,动点M在线段AP上(点M不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明变化规律,若不变,求出线段EF的长度.图①图②6. 如图①,矩形ABCD 中,AB =2,BC =5,BP =1,∠MPN =90°,将∠MPN 绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB(或AD)于点E ,PN 交边AD(或CD)于点F ,当PN 旋转至PC 处时,∠MPN 的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D , 此时,△ABP________△PCD(填“≌”或“∽”);(2)类比探究:如图③,在旋转过程中,PEPF 的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE =t ,△EPF 的面积为S ,试确定S 关于t 的函数关系式;当S =4.2时,求所对应的t 值.7. 阅读理解:我们知道,四边形具有不稳定性,容易变形.如图①,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sinα的值叫做这个平行四边形的变形度.(1)若矩形发生形变后的平行四边形有一个内角是120°,则这个平行四边形的变形度是________;猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,1sinα之间的数量关系,并说明理由;拓展探究:(3)如图②,在矩形ABCD中,E是AD边上的一点,且AB2=AE·AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4m(m>0),平行四边形A1B1C1D1的面积为2m(m>0),试求∠A1E1B1+∠A1D1B1的度数.8. 如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.9. 已知:如图,在矩形ABCD中,AB=6 cm,BC=8 cm.对角线AC,BD交于点O,点P从点A出发,沿AD方向匀速运动,速度为1 cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD 于点F.设运动时间为t(s)(0<t<6),解答下列问题:(2)设五边形OECQF 的面积为S(cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形OECQF ∶S △ACD =9∶16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 值;若不存在,请说明理由.10. 如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF.(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA. ①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.11. 已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE =90°. (1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF. ①求证:△CAE ∽△CBF ;②若BE =1,AE =2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB BC =EFFC =k 时,若BE =1,AE =2,CE =3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB =∠GEF =45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系(直接写出结果,不必写出解答过程).12. 如图①,菱形ABCD 中,已知∠BAD =120°,∠EGF =60°,∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于点E 、F.图①(1)如图②,当顶点G 运动到与点A 重合时,求证:EC +CF =BC ; (2)知识探究:①如图③,当顶点G 运动到AC 中点时,探究线段EC 、CF 与BC 的数量关系;②在顶点G 的运动过程中,若ACCG =t ,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);(3)问题解决:如图④,已知菱形边长为8,BG =7,CF =65,当t >2时,求EC 的长度.13.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF.(1)观察猜想如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:____________. ②BC ,CD ,CF 之间的数量关系为:____________(将结论直接写在横线上).(2)数学思考如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸如图③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =14BC ,请求出GE 的长.14. 在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接..写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接..写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.备用图15.问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图①,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图②所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是________;(2)创新小组将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图③所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形.请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图③中BC=13 cm,AC=10 cm,然后提出一个问题:将△AC′D沿着射线DB方向平移a cm,得到△A′C″D′,连接BD′,CC″,使四边形BCC″D′恰好为正方形,求a的值.请你解答此问题;(4)请你参照以上操作,将图①中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图④中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.CB 上,且CD ∶DB =2∶1,OB 交AD 于点E ,平行于x 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿y 轴向上平移,到C 点时停止;l 与线段OB ,AD 分别相交于M ,N 两点,以MN 为边作等边△MNP(点P 在线段MN 的下方),设直线l 的运动时间为t(秒),△MNP 与△OAB 重叠部分的面积为S(平方单位). (1)直接写出点E 的坐标; (2)求S 与t 的函数关系式;(3)是否存在某一时刻t ,使得S =12S △ABD 成立?若存在,请求出此时t 的值;若不存在,请说明理由.备用图17. 已知点O 是△ABC 内任意一点,连接OA 并延长到E ,使得AE =OA ,以OB ,OC 为邻边作▱OBFC ,连接OF ,与BC 交于点H ,再连接EF.(1)如图①,若△ABC 为等边三角形,求证:①EF ⊥BC ;②EF =3BC ;(2)如图②,若△ABC 为等腰直角三角形(BC 为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;18. 如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.参考答案1. (1)解:如图①中,∵AB=10,AC=6,AD是BC边上中线,由旋转性质知,BE=AC=6,AD=DE.∴在△ABE中,10-6<AE<10+6,即4<2AD<16,∴2<AD<8;(2)证明:延长FD至M,使FD =MD ,连接ME ,MB.如图①所示. ∵ED ⊥FM ,FD =DM , ∴ME =EF.∵CD =BD ,∠CDF =∠BDM , ∴△CDF ≌△BDM(SAS ), ∴CF =BM.∵BM +BE>ME ,∴BE +CF>EF;(3)解:BE +DF =EF. 理由:延长EB 至点N ,使BN =DF ,图②连接CN ,如图②所示.∵∠EBC +∠D =180°,∠EBC +∠CBN =180° ∴∠D =∠CBN ,∴在△CDF 和△CBN 中, ⎩⎪⎨⎪⎧DF =BN ∠D =∠CBN DC =BC, ∴△CDF ≌△CBN(SAS ),∴CF =CN.∵∠BCD =140°,∠ECF =70°, ∴∠DCF +∠BCE =70°,∴∠BCN +∠BCE =70°,即∠NCE =70°, ∴在△ECF 和△ECN 中, ⎩⎪⎨⎪⎧CF =CN ∠ECF =∠ECN CE =CE, ∴△ECF ≌△ECN(SAS ), ∴EF =EN.∵EB +BN =EN ,∴BE +DF =EF.2. (1)证明:∵△ABD 、△ACE 是等边三角形, ∴AB =AD ,AC =AE ,∠CAE =∠DAB =60°,∴∠CAE +∠BAC =∠DAB +∠BAC ,即∠BAE =∠DAC , 在△ABE 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ∠BAE =∠DAC AE =AC,(2)解:∠BOC =90°.理由如下: 由(1)得△ABE ≌△ADC ,∴∠EBA =∠CDA.∵∠FBA +∠FDA =180°,∴∠FBA -∠EBA +∠FDA +∠CDA =180°, 即∠FBO +∠FDO =180°.在四边形FBOD 中,∠F =90°,∴∠DOB =360°-∠F -(∠FBO +∠FDO)=90°, ∴∠BOC =90°. (3)解:72°.【解法提示】∠BOC =180°-108°=72°. (4)解:180°-180°·(n -2)n. 【解法提示】由(3)可知,∠BOC 度数应为180°减去正多边形内角度数. 3. (1)证明:∵△PBC ∽△PAM , ∴∠PBC =∠PAM.∵四边形ABCD 是正方形,∴∠PBC +∠PBA =∠CBA =90°, ∴∠PAM +∠PBA =90°, ∴∠APN =90°,即AP ⊥BN , ∴∠BPA =∠BAN =90°. ∵∠ABP =∠NBA ,∴△ABP ∽△NBA ,PB AB =PAAN , ∴AN AB =PA PB .又∵△PAM ∽△PBC , ∴PA PB =AM BC , 故AN AB =AM BC . 又∵AB =BC ,∴AM =AN ;(2)解:①点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 仍然成立;②不存在,理由如下:选择图②,如图,以AB 为直径,作半圆O ,连接OC ,OP ,∵BC =1,OB =12, ∴OC =52.∵由①知,AP ⊥BN ,∴点P 一定在以点O 为圆心、半径长为12的半圆上(A ,B 两点除外). 如果存在点P ,那么OP +PC ≥OC ,则PC ≥5-12.∵5-12>12,故不存在满足条件的点P ,使得PC =12.4. (1)解:BD =CF 成立.理由如下:∵AC =AB ,∠CAF =∠BAD =θ,AF =AD , ∴△ACF ≌△ABD ,∴CF =BD.(2)①证明:由(1)得,△ACF ≌△ABD , ∴∠HFN =∠ADN , 在△HFN 与△ADN 中,∵∠HFN =∠ADN ,∠HNF =∠AND , ∴∠NHF =∠NAD =90°, ∴HD ⊥HF ,即BD ⊥CF.②解:如图,连接DF ,延长AB ,与DF 交于点M , 在△MAD 中,∵∠MAD =∠MDA =45°, ∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中, ∵∠MDB =∠HDF , ∴△BMD ∽△FHD.∵AB =2,AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,∴MB =MA -AB =3-2=1,BD =MB 2+MD 2=12+32=10, 又∵MD HD =BD FD ,即3HD =106, ∴DH =9105.5. 解:(1)由矩形性质与折叠可知,∠APO =∠B =∠C =∠D =90°, ∴∠CPO +∠DPA =∠DPA +∠DAP =90°, ∴∠DAP =∠CPO , ∴△OCP ∽△PDA , ∴S △OCP S △PDA=(CP DA )2,即14=(CP8)2, ∴CP =4,∵AP 2-DP 2=AD 2, ∴x 2-(x -4)2=82, 解得x =10, 故CD =10.(2)线段EF 的长度始终不发生变化,为2 5.证明:如图,过点N 作NG ⊥PB ,与PB 的延长线相交于点G , ∵AB =AP ,∴∠APB =∠ABP =∠GBN , 在△PME 和△BNG 中, ⎩⎪⎨⎪⎧∠MEP =∠NGB =90°∠MPE =∠NBG MP =NB, ∴△PME ≌△BNG(AAS ), ∴ME =NG ,PE =BG , 在△FME 和△FNG 中, ⎩⎪⎨⎪⎧∠MEF =∠NGF ∠MFE =∠NFG ME =NG, ∴△FME ≌△FNG(AAS ), ∴EF =GF , ∴EF =12EG ,∵BP =BE +EP =BE +GB =EG , ∴EF =12BP ,∵BP =BC 2+CP 2=82+42=45, ∴EF =12BP =2 5.6. 解:(1)△ABP ∽△PCD.【解法提示】∵∠MPN =90°, ∴∠APB +∠DPC =90°, ∵∠B =90°,∴∠APB +∠BAP =90°, ∴∠DPC =∠BAP , 又∵∠B =∠C =90°, ∴△ABP ∽△PCD.(2)在旋转过程中,PE的值为定值.如图,过点F 作FG ⊥BC ,垂足为G.类比(1)可得:△EBP ∽△PGF , ∴EP PF =PB FG ,∵∠A =∠B =∠FGB =90°, ∴四边形ABGF 是矩形, ∴FG =AB =2, ∵BP =1, ∴PE PF =12,即在旋转过程中,PE PF 的值为定值12. (3)由(2)知△EBP ∽△PGF , ∴EB PG =BP GF =12,又∵AE =t , ∴BE =2-t ,∴PG =2(2-t)=4-2t ,∴AF =BG =BP +PG =1+(4-2t)=5-2t , ∴S =S 矩形ABGF -S △AEF -S △BEP -S △PFG=2(5-2t)-12t(5-2t)-12×1×(2-t)-12×2×(4-2t) =t 2-4t +5,即S =t 2-4t +5(0≤t ≤2), 当S =4.2时,4.2=t 2-4t +5,解得:t 1=2-455,t 2=2+455(不合题意,舍去). ∴t 的值是2-45 5. 7. 解:(1)233.【解法提示】sin 120°=32,故这个平行四边形的变形度是233. (2)1sin α=S 1S 2,理由如下: 如图,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h ,则S 1=ab ,S 2=ah ,sin α=hb ,∴S 1S 2=ab ah =b h ,又∵1sin α=b h ,∴1sin α=S 1S 2. (3)由AB 2=AE·AD ,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1. 又∵∠B 1A 1E 1=∠D 1A 1B 1, ∴△B 1A 1E 1∽△D 1A 1B 1, ∴∠A 1B 1E 1=∠A 1D 1B 1, ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1,∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)结论1sin α=S 1S 2,可得1sin ∠A 1B 1C 1=4m2m=2,∴sin ∠A 1B 1C 1=12, ∴∠A 1B 1C 1=30°, ∴∠A 1E 1B 1+∠A 1D 1B 1=30°.8. 解:(1)根据题意BM =2t ,BN =BC -3t , 而BC =5×tan 60°=5 3.∴当BM =BN 时,2t =53-3t ,解得t =103-15. (2)分类讨论:①当∠BMN =∠ACB =90°时,如图①, △NBM ∽△ABC ,cos B =cos 30°=BMBN , ∴2t 53-3t=32,解得t =157.②当∠BNM =∠ACB =90°时,如图②, △MBN ∽△ABC ,cos B =cos 30°=BNBM , ∴53-3t 2t =32,解得t =52.因此当运动时间是157秒或52秒时,△MBN 与△ABC 相似.(3)由于△ABC 面积是定值,∴当四边形ACNM 面积最小时,△MBN 面积最大,而△MBN 的面积是S =12BM ×BN ×sin B =12×2t ×(53-3t)×12=-32t 2+532t , 由于a =-32<0,∴当t =-5322×(-32)=52时,△MBN 面积最大,最大值是-32×(52)2+532×52=2538,因此四边形ACNM 面积最小值是12×5×53-2538=7538. 9. (1)分三种情况: ①若AP =AO ,在矩形ABCD 中,∵AB =6,BC =8, ∴AC =10, ∴AO =CO =5, ∴AP =5, ∴t =5,②若AP =PO =t , 在矩形ABCD 中, ∵AD ∥BC ,∴∠PAO =∠OCE ,∠APO =∠OEC , 又∵OA =OC , ∴△APO ≌△CEO ,∴PO =OE =t.作AG ∥PE 交BC 于点G ,则四边形APEG 是平行四边形, ∴AG =PE =2t ,GE =AP =t. 又∵EC =AP =t ,∴BG =8-2t.在Rt △ABG 中,根据勾股定理知62+(8-2t)2=(2t)2, 解得t =258.③若OP =AO =5,则t =0或t =8,不合题意,舍去. 综上可知,当t =5或t =258时,△AOP 是等腰三角形. (2)如解图②,作OM ⊥BC ,垂足是M ,作ON ⊥CD ,垂足是N.图②则OM =12AB =3,ON =12BC =4,∴S △OEC =12·CE·OM =12·t·3=32t , S △OCD =12·CD·ON =12·6·4=12. ∵QF ∥AC ,∴△DFQ ∽△DOC , ∴S △DFQ S △DOC=(DQ DC )2,即S △DFQ 12=(t6)2, ∴S △DFQ =13t 2, ∴S 四边形OFQC =12-13t 2,∴S 五边形OECQF =S 四边形OFQC +S △OEC =12-13t 2+32t , 即S =-13t 2+32t +12(0<t <6).(3)存在.理由如下:要使S 五边形OECQF :S △ACD =9∶16, 即(-13t 2+32t +12)∶(12×6×8)=9∶16,解得t 1=3,t 2=1.5,两个解都符合题意,∴存在两个t 值,使S 五边形OECQF ∶S △ACD =9∶16,此时t 1=3,t 2=1.5; (4)存在.理由如下:如解图③,作DI ⊥OP ,垂足是I ,DJ ⊥OC ,垂足是J ,图③作AG ∥PE 交BC 于点G.∵S △OCD =12·OC·DJ =12·5·DJ ,且由(2)知,S △OCD =12, ∴DJ =245.∵OD 平分∠POC ,DI ⊥OP ,DJ ⊥OC , ∴DI =DJ =245=4.8. ∵AG ∥PE , ∴∠DPI =∠DAG. ∵AD ∥BC ,∴∠DAG =∠AGB , ∴∠DPI =∠AGB ,∴Rt △ABG ∽Rt △DIP .由(1)知,在Rt △ABG 中,BG =8-2t , ∴AB DI =BG IP ,∴64.8=8-2t IP , ∴IP =45(8-2t).在Rt △DPI 中,根据勾股定理得 (245)2+[45(8-2t)]2=(8-t)2, 解得t =11239.(t =0不合题意,舍去)10. 解:(1)∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF .∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴S △AEF S △ACB =14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC , ∴S △AEF S △ABC =(AE AB )2, ∴(AE AB )2=14. 在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB =42+32=5, ∴(AE 5)2=14,∴AE =52.(2)图①①四边形AEMF 是菱形.证明:如解图①,∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA ,∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平行四边形.又∵AE =ME ,∴四边形AEMF 是菱形.②如解图①,连接AM ,AM 与EF 交于点O ,设AE =x ,则ME =AE =x ,EC =4-x. ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴△ECM ∽△ACB. ∴EC AC =EMAB , ∵AB =5,AC =4, ∴4-x 4=x5, 解得x =209,∴AE =ME =209,EC =169.在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2, 即CM =EM 2-EC 2=(209)2-(169)2=43. ∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S 菱形AEMF =4S △AOE =2OE·AO. 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠MAC , ∴OE AO =CM AC. ∵CM =43,AC =4,∴AO =3OE ,∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE·CM , ∴6OE 2=209×43,∴OE =2109,∴EF =4109. (3)如图②,图②过点F 作FH ⊥CB 于点H ,在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH ,∴EC NC =FH NH, ∵NC =1,EC =47,∴FH NH =47, 设FH =x ,则NH =74x ,∴CH =NH -NC =74x -1.∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x.在Rt △BHF 和Rt △BCA 中,∵tan ∠FBH =tan ∠ABC , ∴HF BH =CA BC , ∴x4-74x =43, 解得x =85,∴HF =85.∵∠B =∠B ,∠BHF =∠BCA =90°, ∴△BHF ∽△BCA , ∴HF CA =BFBA,即HF·BA =CA·BF , ∴85×5=4BF , ∴BF =2,∴AF =AB -BF =3, ∴AF BF =32. 11. (1)①证明:如图①, ∵∠ACE +∠ECB =45°,∠BCF +∠ECB =45°,图①∴∠ACE =∠BCF ,又∵四边形ABCD 和EFCG 是正方形, ∴AC BC =CECF=2, ∴△CAE ∽△CBF.②解:∵AE BF =ACBC =2,AE =2,∴BF =AE2=2,由△CAE ∽△CBF 可得∠CAE =∠CBF , 又∵∠CAE +∠CBE =90°, ∴∠CBF +∠CBE =90°,即∠EBF =90°, 由CE 2=2EF 2=2(BE 2+BF 2)=6,图② 解得CE = 6.(2)解:连接BF ,如图②,同(1)证△CAE ∽△CBF ,可得∠EBF =90°,AC BC =AE BF, 由AB BC =EFFC=k ,可得BC ∶AB ∶AC =1∶k ∶k 2+1, CF ∶EF ∶EC =1∶k ∶k 2+1,∴CE EF =ACAB =k 2+1k ,AE BF =AC BC=k 2+1, ∴EF =kCE k 2+1,EF 2=k 2CE 2k 2+1,BF =AE k 2+1,BF 2=AE 2k 2+1,∴CE 2=k 2+1k 2×EF 2=k 2+1k2(BE 2+BF 2), ∴32=k 2+1k 2(12+22k 2+1), 解得k =104. (3)解:p 2-n 2=(2+2)m 2.【解法提示】如图③,连接BF ,同(1)证△CAE ∽△CBF ,可得∠EBF =90°, 过点C 作CH ⊥AB 交AB 延长线于点H , 类比第(2)问得AB 2∶BC 2∶AC 2=1∶1∶(2+2),图③EF 2∶FC 2∶EC 2=1∶1∶(2+2), ∴p 2=(2+2)EF 2 =(2+2)(BE 2+BF 2)=(2+2)(m 2+n 22+2)=(2+2)m 2+n 2,∴p 2-n 2=(2+2)m 2.12. (1)证明:∵四边形ABCD 是菱形,∠BAD =120°,∴∠BAC =60°,∠B =∠ACF =60°,AB =BC , ∴AB =AC ,∵∠BAE +∠EAC =∠EAC +∠CAF =60°, ∴∠BAE =∠CAF , 在△BAE 和△CAF 中, ⎩⎪⎨⎪⎧∠BAE =∠CAF AB =AC ∠B =∠ACF, ∴△BAE ≌△CAF(ASA ), ∴BE =CF ,∴EC +CF =EC +BE =BC , 即EC +CF =BC ;(2)解:①线段EC ,CF 与BC 的数量关系为:EC +CF =12BC.理由如下:如图①,过点A 作AE′∥EG ,AF ′∥GF ,分别交BC 、CD 于E′、F′.图①类比(1)可得:E′C +CF′=BC , ∵G 为AC 中点,AE ′∥EG , ∴CE CE′=CG AC =12, ∴CE =12CE′,同理可得:CF =12CF′,∴CE +CF =12CE′+12CF′=12(CE′+CF′)=12BC ,即CE +CF =12BC ;②CE +CF =1tBC ;【解法提示】类比(1)可得:E′C +CF′=BC , ∵AE ′∥EG ,ACCG =t ,∴CE CE′=CG AC =1t, ∴CE =1t CE′,同理可得:CF =1tCF′,∴CE +CF =1t CE′+1t CF′=1t (CE′+CF′)=1t BC ,即CE +CF =1tBC.(3)解:如图②,连接BD 与AC 交于点H.图②在Rt △ABH 中,∵AB =8,∠BAC =60°, ∴BH =AB·sin 60°=8×32=43, AH =CH =AB·cos 60°=8×12=4,∴GH =BG 2-BH 2=72-(43)2=1, ∴CG =4-1=3, ∴CG AC =38, ∴t =83(t >2),由(2)②得:CE +CF =1t BC ,∴CE =1t BC -CF =38×8-65=95.∴EC 的长度为95.13. (1)解:①BC ⊥CF ;②BC =CD +CF. 【解法提示】①∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD +BD ,∴BC =CD +CF.(2)解:结论①仍然成立,②不成立. ①证明:∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF ,∴∠ACF =∠ABD =180°-45°=135°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②结论为:BC =CD -CF. 证明:∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD -BD ,∴BC =CD -CF.(3)解:如图,过点E 作EM ⊥CF 于M ,作EN ⊥BD 于点N ,过点A 作AH ⊥BD 于点H. ∵AB =AC =22,∴BC =4,AH =12BC =2,∵CD =14BC ,∴CD =1,∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,∴CN =ME ,CM =EN , ∴∠AGC =∠ABC =45°, ∴CG =BC =4, ∵∠ADE =90°,∴∠ADH +∠EDN =∠EDN +∠DEN =90°, ∴∠ADH =∠DEN ,又∵∠AHC =∠DNE =90°,AD =DE , ∴△AHD ≌△DNE ,∴DN =AH =2,EN =DH =3, ∴CM =EN =3,ME =CN =3, 则GM =CG -CM =4-3=1,∴EG =EM 2+GM 2=10.14. (1)①证明:∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AB =AD ,∠BAD =60°, ∴△ABD 是等边三角形;②证明:由①得△ABD 是等边三角形, ∴AB =BD ,∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AC =AE ,BC =DE ,∴EA =ED ,∴点B ,E 在AD 的中垂线上, ∴BE 是AD 的中垂线, ∵点F 在BE 的延长线上, ∴BF ⊥AD ,AF =DF ; ③解:BE 的长为33-4;【解法提示】由②知AF =12AD =12AB =3,AE =AC =5,BF ⊥AD ,由勾股定理得EF =AE 2-AF 2=4.在等边△ABD 中,AB =6,BF ⊥AD , ∴BF =32AB =33,∴BE =33-4. (2)解:BE +CE 的值为13;【解法提示】如图, ∵∠DAG =∠ACB ,∴∠DAB =2∠CAB. ∵∠DAE =∠CAB , ∴∠BAE =∠CAB , ∴∠BAE =∠CBA , ∴AE ∥BC ,∵AE =AC =BC ,∴四边形ACBE 是菱形,∴CE 垂直平分AB ,BE =AC =5.设CE 交AB 于M ,则CM ⊥AB ,CM =EM ,AM =BM , ∴在Rt △ACM 中,AC =5,AM =3, 由勾股定理得CM =4, ∴CE =8,∴CE +BE =13. 15. (1)解:菱形.(2)证明:如解图①,作AE ⊥CC′于点E , 由旋转得AC′=AC ,∴∠CAE =∠C′AE =12α=∠BAC ,图①∴BA =BC ,BC =DC′, ∴∠BCA =∠BAC , ∴∠CAE =∠BCA , ∴AE ∥BC , 同理AE ∥DC′, ∴BC ∥DC ′,∴四边形BCC′D 是平行四边形, 又∵AE ∥BC ,∠CEA =90°, ∴∠BCC ′=180°-∠CEA =90°,∴四边形BCC′D 是矩形.(3)解:如解图①,过点B 作BF ⊥AC 于点F , ∵BA =BC ,∴CF =AF =12AC =12×10=5.在Rt △BCF 中,BF =BC 2-CF 2=132-52=12. 在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°, ∴△ACE ∽△CBF , ∴CE BF =AC BC ,即CE 12=1013, 解得CE =12013.∵AC =AC′,AE ⊥CC ′, ∴CC′=2CE =2×12013=24013.当四边形BCC″D′恰好为正方形时,分两种情况: ①点C″在边CC′上,a =CC′-13=24013-13=7113,②点C″在边C′C 的延长线上,a =CC′+13=24013+13=40913.综上所述,a 的值为7113或40913.图②(4)解:答案不唯一,例:画出正确图形如图②所示.平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A′C′D ,连接A′B ,DC.结论:四边形A′BCD 是平行四边形. 16. 解:(1)点E 的坐标是(33,3). 【解法提示】如∵OA ∥BC ,∴△DEB ∽△AEO , ∴OE EB =OA BD =BC BD =BD +CD BD =1+CD BD=1+2=3, ∵∠EHO =∠BAO =90°, ∴EH ∥AB ,∴△OEH ∽△OBA , ∴OE OB =EH AB =OH OA =34, ∵AB =4,OA =43, ∴EH =3,OH =33, ∴点E 的坐标是(33,3).(2)如解图①,在矩形OABC 中,∵CD ∶DB =2∶1,点B 的坐标为(43,4), ∴点A 的坐标为(43,0),点D 的坐标为(833,4),可得直线OB 的解析式为y 1=33x , 直线AD 的解析式为y 2=-3x +12.当y 1=y 2=t 时,可得点M ,N 的横坐标分别为: x M =3t ,x N =43-33t , 则MN =|x N -x M |=|43-433t|(0≤t ≤4).当点P 运动到x 轴上时(如图②),图①∵△MNP 为等边三角形, ∴MN ·sin 60°=t ,即(43-433t)·32=t , 解得t =2.讨论:分三种情况:①当0≤t <2时(如图①), 设PM ,PN 分别交x 轴于点F ,G ,则△PFG 的边长为PF =MP -MF =MN -MF =43-433t -233t =43-23t , ∵MN =x N -x M =43-433t ,图②∴S =S 梯形FGNM =(43-23t +43-433t)t ×12=-533t 2+43t. ②当2≤t ≤3时(如图②),此时等边△MNP 整体落在△OAB 内, ∴S =S △PMN =34(43-433t)2=433t 2-83t +12 3. ③当3<t ≤4时(如图③), 在Rt △OAB 中,tan ∠AOB =AB AO =33, ∴∠AOB =30°,∠NME =30°,图③∴△MNE 和△MPE 关于直线OB 对称. ∵MN =|x N -x M |=433t -43, ∴S =12S △PMN =233t 2-43t +6 3.(3)存在t ,使S =12S △ABD 成立.∵S △ABD =12×4×433=833,若S =12S △ABD 成立,则:①当0≤t <2时,-533t 2+43t =433,解得t 1=2(舍去),t 2=25.②当2≤t ≤3时,433t 2-83t +123=433,解得t 3=2,t 4=4.(舍去)③当3<t ≤4时,233t 2-43t +63=433,得t 5=3+2(舍去),t 6=3-2(舍去). 综上所述,符合条件的t 的值有25或2.17. 证明:(1)①连接AH ,如图①,连接AH.图①∴BH =HC =12BC ,OH =HF ,∵△ABC 是等边三角形, ∴AB =BC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2, ∴AH =BC 2-(12BC )2=32BC ,∵OA =AE ,OH =HF ,∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC. ②由①得AH =32BC , AH =12EF∴32BC =12EF , ∴EF =3BC.(2)EF ⊥AB 仍然成立,EF =BC.图②【解法提示】如解图②,连接AH , ∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等腰直角三角形, ∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2= (2BH)2-BH 2=BH 2, ∴AH =BH =12BC ,∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC ,EF =2AH =BC.(3)EF =4k 2-1 BC.【解法提示】如解图③,连接AH , ∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等腰三角形,AB =kBC ,∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2=(kBC)2-(12BC)2=(k 2-14)BC 2,∴AH =124k 2-1 BC ,∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC ,124k 2-1 BC =12EF ,∴EF =4k 2-1 BC.18. 解:(1)如图①,在△ABC 中, ∵∠ACB =90°,∠B =30°,AC =1, ∴AB =2,又∵D 是AB 的中点,图①∴AD =1,CD =12AB =1,又∵EF 是△ACD 的中位线,∴EF =DF =12,在△ACD 中,AD =CD ,∠A =60°,∴△ACD 为等边三角形, ∴∠ADC =60°, 在△FGD 中,GF =DF·sin 60°=34, ∴矩形EFGH 的面积S =EF·GF =12×34=38.(2)如图②,设矩形移动的距离为x ,则0<x ≤12,①当矩形与△CBD 重叠部分为三角形时,则0<x ≤14,重叠部分的面积S =12x·3x =316,∴x =24>14(舍去), ②当矩形与△CBD 重叠部分为直角梯形时,则14<x ≤12,重叠部分的面积S =34x -12×14×34=316, ∴x =38,即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316.图③(3)如图③,作H 2Q ⊥AB 于Q , 设DQ =m ,则H 2Q =3m , 又DG 1=14,H 2G 1=12,在Rt △H 2QG 1中, (3m)2+(m +14)2=(12)2,解得m 1=-1+1316,m 2=-1-1316<0(舍去),∴cos α=QG 1F 1G 1=-1+1316+1412=3+138.。

2019-2020年中考复习:二次函数与几何图形综合题含答案解析

2019-2020年中考复习:二次函数与几何图形综合题含答案解析

解:( 1)平移后以 C为顶点的抛物线解析式为 y
第 3 题图
2
x 1 +3 ,
则可知一种移动方式是:将 y x2 向右平移一个单位长度,再向上平移三个单
位长度; ( 2)由( 1)知移动后的抛物线解析式为: y
2
x 1 +3=
x2
2x
2.
令 x2 2x 2 =0,
解出 x1=1 3 , x2 =1+ 3 , 过点 P 作 PM⊥x 轴于点 M,
此时点 P 的坐标为( 5-1,2 5 -2 ) ;
②当△ PDO∽△ AOC时, PD
OD , 有 -x2 4
x ,
AO CO
24
解得 x3
1 65
4
, x4
1- 65 (不符合题意 , 舍去) ,
4
当x
1 65 时, y
1 (
65 )2 4
1 65 ,
4
4
8
此时,点 P 的坐标为( 1 65 , 1 65 ),
2019-2020 年中考复习:二次函数与几何图形综合题含答案解析
1. 如图,抛物线 y x2 4 与 x 轴交于 A、 B 两点,与 y 轴交于 C 点,点 P 是抛 物线上的一个动点且在第一象限,过点 P 作 x 轴的垂线,垂足为 D,交直线 BC 于点 E. ( 1)求点 A、B、C 的坐标和直线 BC的解析式; ( 2)求△ ODE面积的最大值及相应的点 E 的坐标; ( 3)是否存在以点 P、O、D为顶点的三角形与△ OAC相似?若存在,请求出点 P 的坐标;若不存在,请说明理由.
设点 P 的坐标为( x,- x 2 +4), 0<x<2,
∵△ OAC与△ OPD都是直角三角形,

2019中考数学专题复习 几何变换几何综合题 解析版

2019中考数学专题复习  几何变换几何综合题  解析版

几何变换几何综合题1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DC所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为;∠DFE度数为;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为,AE、BD所在直线的位置关系为;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为;②线段AE,CD之间的数量关系为.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为;②线段AC、CD、CE之间的数量关系为.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=;16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.17.如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,求证:∠ABD=∠ACE;(2)如图2,若∠ADE=∠ABC=30°,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,AB=6,AD=4,若把△ADE绕点A旋转,当∠EAC=90°时,请直接写出PB的长度.18.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF(2)在∠EDF绕点D旋转过程中:①如图2,探究三条线段AB、CE、CF之间的数量关系,并说明理由;②如图3,过点D作DG⊥BC于点G.若CE=4,CF=2,求DN的长.19.感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).解析一.解答题(共14小题)1.(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC 的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).【解答】解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DC所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线OE时,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,2.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连接AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系:AD=BE.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面(1)中的结论是否还成立?若成立请证明,不成立说明理由.此时∠APE是否随着∠ACB的大小发生变化,若变化写出变化规律,若不变,请写出∠APE的度数,不必说明理由.(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形∠ABF,连接AD、BE和CF交于点P.求证:PA+PB+PC=BE.若∠ABC=60°,AB=6,BC=4试求PA+PB+PC的值,只需直接写出结果.【解答】解:(1)如图1,∵△ACE、△CBD均为等边三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;在△ACD与△ECB中,,∴△ACD≌△ECB(SAS),∴AD=BE,故答案为:AD=BE.(2)AD=BE成立,∠APE不随着∠ACB的大小发生变化,始终是60°.证明:∵△ACE和△BCD是等边三角形∴EC=AC,BC=DC,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB,即∠ECB=∠ACD;在△ECB和△ACD中,,∴△ECB≌△ACD(SAS),∴∠CEB=∠CAD;如图2,设BE与AC交于Q,又∵∠AQP=∠EQC,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.(3)由(2)同理可得∠CPE=∠EAC=60°;如图3,在PE上截取PH=PC,连接HC,则△PCH为等边三角形,∴HC=PC,∠CHP=60°,∴∠CHE=120°;又∵∠APE=∠CPE=60°,∴∠CPA=120°,∴∠CPA=∠CHE;在△CPA和△CHE中,,∴△CPA≌△CHE(AAS),∴AP=EH,∴PB+PC+PA=PB+PH+EH=BE.若∠ABC=60°,AB=6,BC=4,则PA+PB+PC=2.理由:如图,过D作DG⊥AB,交AB的延长线于G,当∠ABC=60°=∠CBD时,将DBG=60°,∴∠BDG=30°,∴BG=BD=2,AG=6+2=8,DG=2,∴Rt△ADG中,AD==2,∴BE=2,即PA+PB+PC的值为2.3.(1)如图1,在△ABC和△ECD是等边△,则BE、AD之间的数量关系为BE=AD;∠DFE 度数为60°;请用旋转的性质说明上述关系成立的理由.(2)如图2,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,M是CD的中点,连AM、BE交于F点,则BE、AM之间的数量关系为;∠MFE度数是45°;(3)如图3,在△ABC和△ECD都是等腰直角三角形,∠BAC=∠CED=90°,N是BD的中点,连AN、NB,则AN、NE有何关系并证明你的结论.【解答】解:(1)∵△ABC和△ECD是等边△,∴∠ACB=∠DCE=60°,∴∠BCD=60°,∴△ACD是△BCE顺时针旋转60°来的,∴△ACD≌△BCE,∴BE=AD,∴∠CAD=∠CBE,∴∠DFE=∠CAD+∠CEB=∠CBE+∠CEF=∠ACB=60°;故答案为BE=AD,∠DFE=60°;(2)连接EM,则△CEM是等腰直角三角形,∴CE=CM,∵∠ACB=45°=∠ECM,∴∠BCE=∠ACM,∵BC=AC,∴==,∴△BCE∽△ACM,∴==,∠CBE=∠CAM,∵∠BFM=∠BAF+∠ABF=∠BAC+∠CAM+∠ABF=90°+∠CBE+∠ABF=90°+∠ABC=135°,∴∠MFE=45°;故答案为,45°;(3)取BC中点F,取CD中点M,连接MN,AF,NF,EM,∴NF,NM是△BCD的中位线,∴NF=CD=EM,NM=BC=AF,∵NF∥CD,NM∥BC,∴四边形NFCM是平行四边形,∴∠NFC=∠NMC,∵∠AFC=90°=∠EMC,∴∠AFN=∠EMN,∵在△AFN和△NME中,,∴△AFN≌△NME,(SAS)∴AN=EN,∠NAF=∠ENM,∵MN∥BC,AF⊥BC,∴MN⊥AF,∴∠NAF+∠ANM=90°,∴∠ENM+∠ANM=90°,即∠ANE=90°,∴AN⊥EN.4.△ABC与△CDE是共顶点的等边三角形.直线BE与直线AD交于点M,点D、E不在△ABC的边上.(1)当点E在△ABC外部时(如图1),写出AD与BE的数量关系.(2)若CD<BC,将△CDE绕着点C逆时针旋转,使得点E由△ABC的外部运动到△ABC的内部(如图2).在这个运动过程中,∠AMB的大小是否发生变化?若不变,在图2的情况下求出∠AMB的度数,若变化,说明理由.(3)如图3,当B、C、D三点在同一条直线上,且BC=CD时,写出BM,ME与BC之间的数量关系.【解答】解:(1)AD=BE,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD,∴BE=AD;(2)不变,∠AMB=60°,理由:∵△ABC与△CDE是共顶点的等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BEC≌△ADC,∴∠EBC=∠DAC,∵∠EBC+∠ABM=60°∴∠MAC+∠ABM=60°,∴∠AMB=180°﹣(∠ABM+∠BAM)=60°.(3)如图3,∵当B、C、D三点在同一条直线上,∴∠ACB=∠DCE=60°,∴∠ACE=60°,∴∠BCE=120°,∵△ABC与△CDE是共顶点的等边三角形,且BC=CD,∴BC=CE,∴∠CBE=∠BEC=30°,∵∠BCF=60°,∴∠BFC=90°,∵BC=EC,∴BE=2BF,在Rt△BFC中,∠BCF=30°,∴BF=BC,∴BE=2BF=BC,∵BE=BM+ME,∴BM+ME=BC.5.阅读材料:如图1,△ABC和△CDE都是等边三角形,且点A、C、E在一条直线上,可以证明△ACD≌△BCE,则AD=BE.解决问题:(1)将图1中的△CDE绕点C旋转到图2,猜想此时线段AD与BE的数量关系,并证明你的结论.(2)如图2,连接BD,若AC=2cm,CE=1cm,现将△CDE绕点C继续旋转,则在旋转过程中,△BDE的面积是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.(3)如图3,在△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△DCE绕点C按顺时针方向旋转得到三角形CD′E′(使∠ACD′<180°),连接BE′,AD′,设AD′分别交BC、BE′于O、F,若△ABC满足∠ACB=60°,BC=,AC=,①求的值及∠BFA的度数;②若D为AC的中点,求△AOC面积的最大值.【解答】解:(1)猜想:AD=BE,证明:∵△ABC和△CDE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD∠BCD,即∠ACD=BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如下图1所示,当△CDE旋转到BC与C到DE到高在同一条直线上时,△BDE面积最大,此时,DE边上的高为∴△BDE面积最大值为.(3)①如图3,∵DE∥AB,∴△CDE∽△CAB,∴∵△CD'E'由△CDE绕C点旋转得到∴CE'=CE,CD'=CD,∠DCE=∠D'CE'=60°∴,则又∵∠DCE+∠BCD'=∠D'CE'+∠BCD',即∠ACD'=∠BCE'∴△ACD'∽△BCE'∴由△ACD'∽△BCE'得∠CBE'=∠CAF∴∠BFA=180°﹣(∠BAF+∠ABF)=180°﹣(∠BAF+∠ABC+∠FAC)=180°﹣120°=60°②如图4所示,当D'与点O重合时,△AOC的面积最大过点O作OG⊥AC于G,∴∴△AOC的面积的最大值为.6.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为120°;②线段AE、BD之间的数量关系为AE=BD.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=45°;②请直接写出点D到PC的距离为或.【解答】解:(1)①∵△ABC和△DCE都是等边三角形,∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,故答案为:120°;②∵△ECA≌△DCB,∴AE=BD,故答案为:AE=BD;(2)∵△ABC和△DCE都是等腰直角三角形,∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,∴∠ECA=∠DCB,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=135°,BD=AE,∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,∵△DCE都是等腰直角三角形,CM为△DCE中DE边上的高,∴CM=MD,∵BM=BD+DM,∴BM=AE+CM;(3)①四边形ABCD为正方形,点P在以AC为直径的半圆上,∴∠APC+∠ADC=90°+90°=180°,∴A,P,C,D四点共圆,∴∠DPC=∠DAC=45°,故答案为:45;②过点D作DM⊥PC,垂足为M,∵在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,∴AC=2,PC===,∵∠DPC=45°,∴DM=PM,设DM=PM=x,则MC=﹣x,在Rt△DMC中,DM2+MC2=DC2,则x2+(﹣x)2=22,整理得:2x2﹣2x+3=0,解得;x1=,x2=,即点D到PC的距离为:或.故答案为:或.7.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为AE=BD,AE、BD所在直线的位置关系为AE⊥BD;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由;(3)解决问题:如图3,已知△ABC中,AB=7,BC=3,∠ABC=45°,以AC为直角边作等腰直角△ACD,∠CAD=90°,AC=AD,连接BD,则BD的长为或7﹣3.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC﹣∠CDE=135°﹣45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.(3)情形1:如图3﹣1中,在△ABC的外部,以A为直角顶点作等腰直角△BAE,使∠BAE=90°,AE=AB,连接EA、EB、EC.∵∠ACD=∠ADC=45°,∴AC=AD,∠CAD=90°,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,∴△EAC≌△BAD(SAS),∴BD=CE.∵AE=AB=7,∴BE==7,∠ABE=∠AEB=45°,又∵∠ABC=45°,∴∠ABC+∠ABE=45°+45°=90°,∴EC===,∴BD=CE=.情形2:如图3﹣2中,作AE⊥AB交BC的延长线于E,则△ABE是等腰直角三角形,同法可证:△EAC≌△BAD(SAS),∴BD=CE,∵AB=AE=7,∴BE=7,∴EC=BE=CB=7﹣3,综上所述,BD的长为或7﹣3.故答案为或7﹣3.8.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=120°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.故答案为:120.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE=AE﹣DE=15﹣7=8,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∴AB===17;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=5,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=4,∴∠BED=∠BEC﹣∠PEC=90°,∵∠APD=30°,∴∠DPC=150°﹣30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=8+4=12,在Rt△BDE中,,即BD的长为13.9.(1)问题发现如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;①∠CDB的度数为60°;②线段AE,CD之间的数量关系为AE=CD.(2)拓展探究如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.①求∠CDB的大小;②请判断线段BF,AD,CD之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,AC=2,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.【解答】解:(1)①∵△ACB和△DBE均为等边三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=60°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠BEA.∵△DBE为等边三角形,∴∠CDB=∠BED=60°.故答案为:60°.②∵△BCD≌△BAE,∴CD=AE,故答案为:CD=AE,(2))∠CDB=45°,CD=AD+2BF理由:∵△ACB和△DBE均为等腰直角三角形,∴BA=CB,BD=BE,∠ABC=∠DBE=90°.∴∠ABE=∠CBD.在△BCD和△BAE中,∵AB=BC,∠ABE=∠CBD,BD=BE,∴△BCD≌△BAE(SAS),∴∠CDB=∠AEB,CD=AE∵BF是△DBE均为等腰直角三角形,∴∠CDB=∠AEB=45,DE=2BF,∴CD=AE=AD+DE=AD+2BF.∴∠CDB=45°,CD=AD+2BF;(3)①如图,连接EB,ED,作BH⊥CE,BP⊥BE,∵四边形ABCD是正方形,∴∠BAC=45°,AB=AD=CD=BC=2,∠ABC=90°,∴CD=2,∴AC=2,∵AE=1,∴CE=,∵A,E,B,C四点共圆,∴∠BCE=∠CAB=45°,∴△PBE是等腰直角三角形,∵△ABC是等腰直角三角形,且C,E,P共线,BH⊥CE,∴由(2)的结论可得,CE=AE+2BH,∴=2BH+1,∴BH=.②同①的方法可得,CE=2BH﹣AE,∴=2BH﹣1,∴BH=,∴点B到CE的距离为或.10.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.11.(1)问题发现:如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展探究:如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,且交BC于点F,连接BE.①请判断∠AEB的度数并说明理由;②若∠CAF=∠BAF,BE=2,试求△ABF的面积.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE;(2)①∠AEB=90°证明:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°;②延长BE交AC的延长线于点G,由①可知∠CAD=∠CBE,∠AEB=90°,在△ACF和△BCG中,,∴△ACF≌△BCG,∴AF=BG,∵∠CAF=∠BAF,∠AEB=90°,∴E是BG的中点,∵BE=2,∴BG=4,∴AF=4,∴S==4.△ABF12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=2,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.13.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?【解答】解:(1)①∵△ACB和△DCE均为等边三角形,∴∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°﹣60°=60°;②由①知,△CDA≌△CEB,∴AD=BE;故答案为:60°,AD=BE(2)∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∠BEC=∠ADC=135°.∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°;结论:AE=2CM+BE,在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AE=DE+AD=2CM+BE∴AE=2CM+BE.(3)如图3,∵点P到点B的距离是3,∴点P是以点B为圆心,3为半径的圆,当B、D、A三点在同一条直线上时,BD有最小值,∵∠ACB=90°,∠DCP=90°,∴∠ACD=∠BCP在△ACD与△BCP中,,∴△ACD≌△BCP(SAS),∴∠PBC=∠A=45°,AD=BP=3,在Rt△ABC中,AC=BC=5,∴AB=5∴BD=AB﹣AD=5﹣3此时∠PBC=45°时,BD的最小值为5﹣3,同理可得:如图4,当B、D、A三点在同一条直线上时,BD的最大值为:AB+AD=AB+BP=5+3,14.在平面直角坐标系中,点A(﹣2,0),B(2,0),C(0,2),点D,点E分别是AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接AD′,BE′.(1)如图①,若0°<α<90°,当AD′∥CE′时,求α的大小;(2)如图②,若90°<α<180°,当点D′落在线段BE′上时,求sin∠CBE′的值;(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).【解答】解:(1)如图1中,∵AD′∥CE′,∴∠AD′C=∠E′CD′=90°,∵AC=2CD′,∴∠CAD′=30°,∴∠ACD′=90°﹣∠CAD′=60°,∴α=60°.(2)如图2中,作CK⊥BE′于K.∵AC=BC==2,∴CD′=CE′=,∵△CD′E′是等腰直角三角形,CD′=CE′=,∴D′E′=2,∵CK⊥D′E′,∴KD′=E′K,∴CK=D′E′=1,∴sin∠CBE′===.(3)如图3中,以C为圆心为半径作⊙C,当BE′与⊙C相切时AP最长,则四边形CD′PE′是正方形,作PH⊥AB于H.∵AP=AD′+PD′=+,∵cos∠PAB==,∴AH=2+,∴点P横坐标的最大值为.如图4中,当BE′与⊙C相切时AP最短,则四边形CD′PE′是正方形,作PH⊥AB于H.根据对称性可知OH=,∴点P横坐标的最小值为﹣,∴点P横坐标的取值范围为﹣≤m≤.15.在四边形ABCD中,∠A=∠B=∠C=∠D=90°,AB=CD=10,BC=AD=8.(1)P为边BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处)①如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B铅笔加粗加黑).并直接写出此时DE=6;②如图2,若点P为BC边的中点,连接CE,则CE与AP有何位置关系?请说明理由;(2)点Q为射线DC上的一个动点,将△ADQ沿AQ翻折,点D恰好落在直线BQ上的点D′处,则DQ=4或16;【分析】(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.理由勾股定理可得DE.②如图2中,结论:EC∥PA.只要证明PA⊥BE,EC⊥BE即可解决问题.(3)分两种情形分别求解即可解决问题.【解答】解:(1)①如图1中,以A为圆心AB为半径画弧交CD于E,作∠EAB的平分线交BC于点P,点P即为所求.在Rt△ADE中,∵∠D=90°,AE=AB=10,AD=8,∴DE===6,故答案为6.②如图2中,结论:EC∥PA.理由:由翻折不变性可知:AE=AB,PE=PB,∴PA垂直平分线段BE,即PA⊥BE,∵PB=PC=PE,∴∠BEC=90°,∴EC⊥BE,∴EC∥PA.(2)①如图3﹣1中,当点Q在线段CD上时,设DQ=QD′=x.在Rt△AD′B中,∵AD′=AD=8,AB=10,∠AD′B=90°,∴BD′==6,在Rt△BQC中,∵CQ2+BC2=BQ2,∴(10﹣x)2+82=(x+6)2,∴x=4,∴DQ=4.②如图3﹣2中,当点Q在线段DC的延长线上时,∵DQ∥AB,∴∠DQA=∠QAB,∵∠DQA=∠AQB,∴∠QAB=∠AQB,∴AB=BQ=10,在Rt△BCQ中,∵CQ==6,∴DQ=DC+CQ=16,综上所述,满足条件的DQ的值为4或16.故答案为4和16.16.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长。

2020年中考数学二轮专题——二次函数与几何图形综合(压轴)题型(含详细解答)

2020年中考数学二轮专题——二次函数与几何图形综合(压轴)题型(含详细解答)

2020年中考数学二轮专题——二次函数与几何图形综合(压轴)题型一、基础过关1. (2019宿迁)如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,-3).(1)求抛物线的函数表达式;(2)如图①,连接AC,点P在抛物线上,且满足∠P AB=2∠ACO.求点P的坐标;(3)如图②,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.第1题图2. (2019贺州)如图,在平面直角坐标系中,已知点B的坐标为(-1,0),且OA=OC=4OB,抛物线y =ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P 的坐标及PD的最大值.第2题图二、能力提升1. (2019菏泽)如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,-2),点A 的坐标是(2,0),P 为抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线x =-1.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且PE =14OD ,求△PBE 的面积;(3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的上方,是否存在点M ,使△BDM 是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第1题图三、满分冲关1. (2019襄阳)如图,在直角坐标系中,直线y =-12x +3与x 轴,y 轴分别交于点B ,点C ,对称轴为x=1的抛物线过B , C 两点,且交x 轴于另一点A ,连接A C.(1)直接写出点A ,点B ,点C 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点,当点P 到直线BC 的距离最大时,求点P 的坐标; (3)抛物线上是否存在一点Q (点C 除外),使以点Q ,A ,B 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.第1题图2、(2019滨州)如图①,抛物线y =-18x 2+12x +4与y 轴交于点A ,与x 轴交于点B ,C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D .(1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点. ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离; ②当点P 到直线AD 的距离为524时,求sin ∠P AD 的值.3、(2019金牛区一诊)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点分别为A (-3,0)、B (1,0),与y 轴交于点D (0,3),过顶点C 作CH ⊥x 轴于点H .(1)求抛物线的解析式和顶点C 的坐标;(2)连接AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.第1题图备用图参考答案一、基础过关1. 解:(1)把A (1,0),C (0,-3)代入y =x 2+bx +c 得,⎩⎪⎨⎪⎧1+b +c =0c =-3,解得⎩⎪⎨⎪⎧b =2c =-3, ∴抛物线的函数表达式为y =x 2+2x -3;(2)如解图,作点A 关于y 轴的对称点A ′,连接A ′C ,作AD ⊥A ′C 于点D , ∴点A ′的坐标为(-1,0), 则AA ′=2,OC =3,A ′C =10, ∵S △A ′AC =12AA ′·OC =12A ′C ·AD ,∴AD =AA ′·OC A ′C =3105,在Rt △A ′AD 中,∵A ′D 2+AD 2=A ′A 2, ∴A ′D 2+(3105)2=22.解得A ′D =105(负值已舍去), ∴DC =4105,∴tan ∠ACA ′=AD DC =34. 由对称可得∠ACD =2∠ACO ,则∠P AB =∠ACA ′, 设P (a ,a 2+2a -3),①如解图,当点P 在x 轴的上方时,作P 1H 1⊥x 轴于点H 1, ∴tan ∠P 1AB =P 1H 1AH 1=a 2+2a -31-a =34,解得a 1=1(舍),a 2=-154,把a =-154代入得P (-154,5716);②如解图,当点P 在x 轴的下方时,作P 2H 2⊥x 轴于点H 2, ∴tan ∠P 2AB =P 2H 2AH 2=-a 2-2a +31-a =34,解得a 3=1(舍),a 4=-94,把a =-94代入得P (-94,-3916),综上所述,点P 的坐标为(-154,5716)或(-94,-3916);第1题解图(3)是.设Q (m ,m 2+2m -3),则-3<m <1. 设直线AQ 的解析式为y =k 1x +b 1,把A (1,0),Q (m ,m 2+2m -3),代入解析式解得⎩⎪⎨⎪⎧k 1=m +3b 1=m -3, ∴y =(m +3)x -m -3, 当x =-1时,y =-2m -6, 设直线BQ 的解析式为y =k 2x +b 2,把B (-3,0),Q (m ,m 2+2m -3)代入y =k 2x +b 2,解得⎩⎪⎨⎪⎧k 2=m -1b 2=3m -3,∴y =(m -1)x +3m -3, 当x =-1时,y =2m -2, ∴DM =2m +6,DN =-2m +2, ∴DM +DN =2m +6-2m +2=8. 2. 解:(1)∵B (-1,0), ∴OB =1.又∵OA =OC =4OB , ∴OA =OC =4, ∴A (4,0),C (0,-4);(2)将A 、B 、C 三点坐标代入y =ax 2+bx +c 得,⎩⎪⎨⎪⎧16a +4b +c =0a -b +c =0c =-4,解得⎩⎪⎨⎪⎧a =1b =-3c =-4, ∴抛物线的解析式为y =x 2-3x -4;(3)如解图,过点P 作PE ⊥x 轴交AC 于点E , ∴PE ∥y 轴. ∵OA =OC ,∴∠PED =∠OCA =45°, ∴△DEP 为等腰直角三角形, ∴PD =22PE , ∴当PE 取得最大值时,PD 取得最大值, 易得直线AC 的解析式为y =x -4, 设P (x ,x 2-3x -4),则E (x ,x -4),则PE =(x -4)-(x 2-3x -4)=-x 2+4x =-(x -2)2+4, ∵0<x <4,∴当x =2时,PE 取得最大值,最大值为4, 此时PD 取得最大值,最大值为4×22=22,∴点P 的坐标为(2,-6).第2题解图二、能力提升1. 解:(1)∵抛物线与x 轴交于A ,B 两点,点A 的坐标为(2,0),抛物线的对称轴为直线x =-1, ∴点B 的坐标为(-4,0).∴设抛物线的函数表达式为y =a (x +4)(x -2),将点C (0,-2)代入得-8a =-2,解得a =14.∴抛物线的函数表达式为y =14(x +4)(x -2)=14x 2+12x -2;(2)设点P 的坐标为(x ,14x 2+12x -2),则点D 的坐标为(x ,0),设BC 所在直线的表达式为y =kx +b , 将B (-4,0),C (0,-2)代入得,⎩⎪⎨⎪⎧-4k +b =0b =-2,解得⎩⎪⎨⎪⎧k =-12b =-2, ∴BC 所在直线的表达式为y =-12x -2.∴点E 的坐标为(x ,-12x -2).∴PE =14x 2+x .∵PE =14OD ,∴14x 2+x =-14x ,即14x 2+54x =0, 解得x =-5或x =0(舍). ∴PE =54,BD =1,∴S △PBE =12PE ·BD =12×54×1=58;(3)存在.①当DM =DB =1时,如解图①,过点M 作MF ⊥x 轴于点F , 设M (m ,-12m -2),则MF =-12m -2,DF =-m -5,∵MF 2+DF 2=DM 2,∴(-12m -2)2+(-m -5)2=1,解得m =-285或m =-4(舍去).∴点M 的坐标为(-285,45);第1题解图①②当BD =BM =1时,如解图②,过点M 作x 轴的垂线,垂足为N , ∵DE ⊥x 轴, ∴DE ∥MN ,∴BN ∶BD =BM ∶BE ,∴BN ∶1=1∶BE . ∵E (-5,12),∴DE =12,∴BE =52, ∴BN ∶1=1∶52,解得BN =255. ∴点M 的横坐标为-4-255,将x =-4-255代入y =-12x -2,得y =55,即点M 的坐标为(-4-255,55).综上所述,点M 的坐标为(-285,45)或(-4-255,55).第1题解图②三、满分冲关1. 解:(1)A (-4,0),B (6,0),C (0,3),抛物线的解析式为y =-18x 2+14x +3;【解法提示】令y =-12x +3=0,解得x =6,令x =0,得y =3,∴B (6,0),C (0,3).∵抛物线的对称轴为x =1,且过点B 、A ,∴抛物线与x 轴的另一交点A 坐标为(-4,0),设抛物线的解析式为y =a (x +4)(x -6),将点C (0,3)代入得-24a =3,解得a =-18.∴y =-18(x +4)(x -6)=-18x 2+14x +3(2)如解图①,过点P 作PG ⊥x 轴于点G ,交BC 于点Q ,过点P 作PH ⊥BC 于点H . ∵OC =3,OB =6, ∴BC =OC 2+OB 2=3 5. 又∵∠HQP =∠GQB , ∴∠HPQ =∠CBO , ∴sin ∠HPQ =sin ∠CBO =55. 故点P 到直线BC 的距离最大,即PQ 最大. 设P (m ,-18m 2+14m +3),Q (m ,-12m +3),∴PQ =-18m 2+14m +3-(-12m +3)=-18(m -3)2+98.∵-18<0,∴当m =3时,PQ 有最大值为98.∴P (3,218);第1题解图①(3)存在.由(1)得A (-4,0)、B (6,0)、C (0,3), ∴AB =10,AC =32+42=5. 分为两种情况分类讨论:①当△ABC ∽△AQB 时,如解图②所示. ∴AC AB =ABAQ,∠CAB =∠BAQ . ∴AQ =AB 2AC =1025=20,过点Q 作QD ⊥x 轴,垂足为点D , ∴QD =AQ ·sin ∠BAQ =20×35=12,AD =AQ ·cos ∠BAQ =20×45=16.∴Q (12,-12).第1题解图②②当△ABC ∽△BQA 时,如解图③所示, ∴AB BQ =ACAB,∠CAB =∠ABQ . ∴BQ =AB 2AC=20,过点Q 作QE ⊥x 轴,垂足为E ,同理可得QE =BQ ·sin ∠ABQ =20×35=12,BE =BQ ·cos ∠ABQ =20×45=16, ∴Q (-10,-12).综上所述,点Q 的坐标是(12,-12)或(-10,-12).第1题解图③2、解:(1)抛物线y =-18x 2+12x +4, 令x =0,可得A 点的坐标为(0,4),令y =0,可得B 点的坐标为(-4,0),C 点的坐标为(8,0).易得直线AB 的函数解析式为y =x +4,∵OA =OB ,∴∠BAO =45°.又∵直线AD 由直线AB 逆时针旋转90°而来,∴∠BAD =90°,∴∠OAD =45°,△OAD 为等腰直角三角形,∴OD =OA =4,D (4,0),易得直线AD 的函数解析式为y =-x +4;(2)①如解图①,过点P 作PE ⊥x 轴交AD 于点E ,PF ⊥AD 于点F ,第1题解图①易得△PEF 为等腰直角三角形,∴PF =22PE , ∴当PE 取得最大值时,PF 取得最大值,设P (x ,-18x 2+12x +4), 则E (x ,-x +4),∴PE =-18x 2+12x +4-(-x +4)=-18x 2+32x =-18(x -6)2+92, ∴当x =6时,PE 有最大值92, 此时PF 有最大值924, ∴当x =6时,-18x 2+12x +4=52, ∴当点P 到直线AD 的距离最大时,点P 的坐标为(6,52),最大距离为924; ②如解图②,连接AP ,过点P 作PE ⊥x 轴,交AD 于点E ,PF ⊥AD 于点F ,当点P 到AD 的距离为524时,PF =524, 则此时PE =2PF =52, 将PE =52代入PE =-18(x -6)2+92中, 解得x 1=10,x 2=2,∴此时点P 的坐标为(10,-72)或(2,92), 当点P 的坐标为(2,92)时,AP =22+(92-4)2=172, ∴sin ∠P AD =524172=53434; 当点P 的坐标为(10,-72)时, AP =102+(-72-4)2=252, ∴sin ∠P AD =PF AP =524252=210. 综上,sin ∠P AD 的值是53434或210.3、1. 解:(1)把点A 、B 、D 的坐标分别代入抛物线的解析式中得:⎩⎪⎨⎪⎧a +b +c =09a -3b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3,∴抛物线的对称轴为直线x =-b 2a=-1, ∴点C 的坐标为(-1,4);(2)如解图①,过点C 作CE ∥AD 交抛物线于点E ,交y 轴于点T ,则△ADE 与△ACD 面积相等,直线AD 过点D ,设其解析式为y =mx +3,将点A 的坐标代入得:0=-3m +3,解得m =1,则直线AD 的解析式为y =x +3,∵CE ∥AD ,设直线CE 的解析式为y =x +n ,将点C 的坐标代入上式得:4=-1+n ,解得n =5,则直线CE 的解析式为y =x +5,则点T 的坐标为(0,5),联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +5, 解得x =-1或x =-2(x =-1为点C 的横坐标),即点E 的坐标为(-2,3);在y 轴取一点H ′,使DT =DH ′=2,过点H ′作直线E ′E ″∥AD ,则△ADE ′和△ADE ″都与△ACD 面积相等,同理可得直线E ′E ″的解析式为y =x +1,联立⎩⎪⎨⎪⎧y =-x 2-2x +3y =x +1, 解得x =-3±172, ∴点E ″、E ′的坐标分别为(-3+172,-1+172)、(-3-172,-1-172), 综上,满足要求的点E 的坐标为(-2,3)或(-3+172,-1+172)或(-3-172,-1-172);第1题解图①(3)如解图②,设点P 的坐标为(m ,n ),则n =-m 2-2m +3,把点C 、D 的坐标代入一次函数的解析式y =kx +b 得:⎩⎪⎨⎪⎧4=-k +b b =3, 解得⎩⎪⎨⎪⎧k =-1b =3, 即直线CD 的解析式为y =-x +3,由(1)得,直线AD 的解析式为y =x +3,∴AD ⊥CD ,而直线PQ ⊥CD ,故直线PQ 的解析式中的k 值与直线AD 的解析式中的k 值相同, 同理可得直线PQ 的解析式为y =x +(n -m ),联立⎩⎪⎨⎪⎧y =-x +3y =x +(n -m ), 解得x =3+m -n 2,即点Q 的坐标为(3+m -n 2,3-m +n 2), 则PQ 2=(m -3+m -n 2)2+(n -3-m +n 2)2=(m +n -3)22=12(m +1)2·m 2, 同理可得:PC 2=(m +1)2[1+(m +1)2],AH =2,CH =4,则AC =25,当△ACH ∽△CPQ 时,PC PQ =AC CH =52, 即4PC 2=5PQ 2,整理得3m 2+16m +16=0,解得m =-4或m =-43, ∴点P 的坐标为(-4,-5)或(-43,359); 当△ACH ∽△PCQ 时,同理可得,点P 的坐标为(-23,359)或(2,-5), 综上所述,点P 的坐标为(-4,-5)或(-43,359)或(-23,359)或(2,-5).第1题解图②。

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析在中考中.几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。

学生通常需要在熟悉基本几何图形及其辅助线添加的基础上.将几何综合题目分解为基本问题.转化为基本图形或者可与基本图形、方法类比.从而使问题得到解决。

在解决几何综合题时.重点在思路.在老师讲解及学生解题时.对于较复杂的图形.根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形.将新题目与已有经验建立联系从而找到思路.之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后.注重解题反思.总结题目中的基本图形及辅助线添加方法.将题目归类整理;对于典型的题目.可以解析题目条件.通过拓展题目条件或改变条件.给出题目的变式.从而对于题目及相应方法有更深入的理解。

同时.在授课过程中.将同一类型的几何综合题成组出现.分析讲解.对学生积累对图形的“感觉”有一定帮助。

一.考试说明要求图形与证明中要求:会用归纳和类比进行简单的推理。

图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离.等腰三角形、等边三角形、直角三角形的知识.全等三角形的知识和方法.平行四边形的知识.矩形、菱形和正方形的知识.直角三角形的性质.圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。

图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。

二.基本图形及辅助线解决几何综合题.是需要厚积而薄发.所谓的“几何感觉”.是建立在足够的知识积累的基础上的.熟悉基本图形及常用的辅助线.在遇到特定条件时能够及时联想到对应的模型.找到“新”问题与“旧”模型间的关联.明确努力方向.才能进一步综合应用数学知识来解决问题。

在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。

举例:1、与相似及圆有关的基本图形2、正方形中的基本图形3、基本辅助线(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;(2)与中点相关——倍长中线(八字全等).中位线.直角三角形斜边中线;(3)共端点的等线段——旋转基本图形(60°.90°).构造圆;垂直平分线.角平分线——翻折;转移线段——平移基本图形(线段)线段间有特殊关系时.翻折;(4)特殊图形的辅助线及其迁移....——梯形的辅助线(什么时候需要这样添加?)等作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数平移腰——上下底之差;两底角有特殊关系(延长两腰);梯形——三角形平移对角线——上下底之和;对角线有特殊位置、数量关系。

2019年中考数学复习专题《代数综合、代数几何综合》(有答案)

2019年中考数学复习专题《代数综合、代数几何综合》(有答案)

代数综合题一:对于实数a,b,我们用符号min{a,b}表示a,b两数中较小的数,如min{3,5}=3,因此,min{-1,-2}=________;若{}22min(1),4+=,则x=___________.x x题二:对于实数c,d,我们用符号max{c,d}表示c,d两数中较大的数,如max{3,5}=5,因此,题四:在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y A、B,交抛物线C2:y于点C、D.(1)如图①,原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC 和QD,求△AOB与△CQD面积比为_______.(2)如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F,在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为_______.题七: 设函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,,若互不相等的实数x 1,x 2,x 3,满足y 1=y 2=y 3, 求x 1+x 2+x 3的取值范围.题八: 在平面直角坐标系xOy 中,抛物线y =243x x ++与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C . (1)求直线AC 的表达式;(2)在x 轴下方且垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线AC 交于点N (x 3,y 3),若x 1>x 2>x 3,结合函数的图象,求x 1+x 2+x 3的取值范围.参考答案题一:-2,-3或2.详解:∵-2<-1,∴min{-1,-2}=-2,∵{}22+=,x xmin(1),4当(x+1)2=x2时,解得:x=-0.5,(x+1)2=x2=0.25,这时不可能得出最小值为4,当x>-0.5,(x+1)2>x2,则x2=4,解得x1=2或x2=-2(舍去),当x<-0.5,(x+1)2<x2,则(x+1)2=4,解得x1=-3或x2=1(舍去),∴x=-3或x=2.题二:∵{}22++=,max22,2x x x当x2+2x+2=x2时,解得:x=-1,x2+2x+2=x2=1,这时不可能得出最大值为2,当x>-1,x2+2x+2>x2,则x2+2x+2=2,解得x1=0或x2=-2(舍去),∴x=0.题三:∴C (-3m ,m 2),D (3m ,m 2),∴CD =6m ,∵O 、Q 关于直线CD 对称, ∴PQ =OP ,∵CD ∥x 轴,∴∠DPQ =∠DPO =90°,∴△AOB 与△CQD 的高相等, PQ CD PO AB ⋅⋅2121=mm 64=32.AEM DFMS S=∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S △OFD =S △OEC =2, 2详解:先作出函数y =⎩⎨⎧<+≥+-0130242x x x x x , ,的图象,如图,不妨设x 1<x 2<x 3,∵y =242x x -+(x ≥0)的对称轴为x =2,y 1=y 2,∴x 2+x 3=4, ∵y =242x x -+(x ≥0)的顶点坐标为(2,-2),令y =-2,代入y =3x +1,解得:x =-1,∴-1<x 1<0,则x 1+x 2+x 3的取值范围是:-1+4<x 1+x 2+x 3<0+4,∴3<x 1+x 2+x 3<4.题八: (1)y =x +3;(2)-8<x 1+x 2+x 3<-7.详解:(1)由y =243x x ++得到:y =(x +3)(x +1),C,∴A (-3,0),B (-1,0),设直线AC 的表达式为:y =kx +b (k ≠0), ∴⎩⎨⎧==+303-b b k ,解得:⎩⎨⎧==31b k ,所以直线AC 的表达式为y =x +3,(2)由y =243x x ++得到:y =(x +2)2-1,∴抛物线y =243x x ++的对称轴是x =-2, 顶点坐标是(-2,-1),∵y 1=y 2,∴x 1+x 2=-4,令y =-1,代入y =x +3,解得:x =-4,∵x 1>x 2>x 3,∴-4<x 3<-3,∴-4-4<x 1+x 2+x 3<-3-4,∴-8<x 1+x 2+x 3<-7.代数几何综合题一:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式及顶点M坐标;(2)在抛物线的对称轴上找到点P,使得△P AC的周长最小,并求出点P 的坐标.题二:如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-4,0),B(1,0),与y轴交于点D(0,4),点C(-2,n)也在此抛物线上.(1)求此抛物线的解析式及点C的坐标;(2)设BC交y轴于点E,连接AE,AC请判断△ACE的形状,并说明理由.题三:在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)=,d(B,⊙O)=.是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.参考答案题一: (1)y =214x --+(),M (1,4);(2)P (1,2). 详解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过A (-1,0)、B (3,0),C (0,3)三点,∴93003a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得12c=3a b =-⎧⎪=⎨⎪⎩.故抛物线的解析式为222314y x x x =-++=--+(),故顶点M 为(1,4); (2)如图1,∵点A 、B 关于抛物线的对称轴对称,∴连接BC与抛物线对称轴交于一点,即为所求点P .设对称轴与x 轴交于点H ,题二: (1)y =-x 2-3x +4,C (-2,6);(2)△ACE 为等腰直角三角形.详解:(1)∵抛物线经过A 、B 、D 三点,∴代入抛物线解析式可得164004a b c a b c c -+⎧⎪++⎨⎪⎩===,解得134a b c -⎧⎪-⎨⎪⎩===,∴抛物线的解析式为 y =-x 2-3x +4, ∵点C (-2,n )也在此抛物线上,∴n =-4+6+4=6,∴C 点坐标为(-2,6);∴AE2+CE2=20+20=40=AC2,且AE=CE,∴△ACE为等腰直角三角形.。

2019-2020年中考数学全国部分地区几何综合题真题汇编(含答案解析)

2019-2020年中考数学全国部分地区几何综合题真题汇编(含答案解析)

几何综合专题1.(2019浙江温州24题)如图,在平面直角坐标系中,直线142y x=-+分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当17nm=tan∠EOF时,求点Q2的坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD 交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.2.(2019浙江绍兴24题)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在BC,AD上,MN,EF交于点P,记k=MN∶EF.(1)若a∶b的值是1,当MN⊥EF时,求k的值.(2)若a ∶b 的值是21,求k 的最大值和最小值. (3)若k 的值是3,当点N 是矩形的顶点,∠MPE=60°,MP=EF=3PE 时,求a ∶b 的值.3.(2019浙江绍兴23题)如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂长AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,AD=30,DM=10.(1)在旋转过程中:①当A,D,M 三点在同一直线上时,求AM 的长;②当A,D,M 三点在同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由△ABC 外的点D 1转到其内的点D 2处,连结D 1D 2,如图2,此时∠AD 2C=135°,CD 2=60,求BD 2的长.4.(2019浙江宁波25题)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点. 求证:四边形ABEF是邻余四边形。

备考2024年中考数学二轮复习-函数_一次函数_一次函数图象与几何变换-综合题专训及答案

备考2024年中考数学二轮复习-函数_一次函数_一次函数图象与几何变换-综合题专训及答案

备考2024年中考数学二轮复习-函数_一次函数_一次函数图象与几何变换-综合题专训及答案一次函数图象与几何变换综合题专训1、(2016南京.中考真卷) 如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y= 的图象上各点的纵坐标变为原来的 倍,横坐标不变,得到函数y= 的图象;也可以把函数y= 的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y= 的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y= 的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)2、(2017天津.中考模拟) 如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=2时,则AP=,此时点P的坐标是.(2)当t=3时,求过点P的直线l:y=﹣x+b的解析式?(3)当直线l:y=﹣x+b从经过点M到点N时,求此时点P向上移动多少秒?(4)点Q在x轴时,若S△ONQ=8时,请直按写出点Q的坐标是.3、(2019莲湖.中考模拟) 如图,在平面直角坐标系中,直线l1:y=﹣ x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣ x>的解集;(3)将直线l1:y=﹣ x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.4、(2019海.中考模拟) 如图,正例函数y=kx(k>0)的图象与反比例函数y=(m>0,x>0)的图象交于点A,过A作AB⊥x轴于点B.已知点B的坐标为(2,0),平移直线y=kx,使其经过点B,并与y轴交于点C(0,﹣3)(1)求k和m的值(2)点M是线段OA上一点,过点M作MN∥AB,交反比例函数y=(m>0,x>0)的图象交于点N,若MN=,求点M的坐标5、(2019.中考模拟) 如图,已知抛物线y=x2+bx+c与直线y=﹣x+3相交于坐标轴上的A,B两点,顶点为C.(1)填空:b=,c=;(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c没有交点?(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.6、(2011福州.中考真卷) 如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x 的增大而 (填“增大”或“减小”).7、(2018松滋.中考模拟) 建立模型:(1)如图 1,已知△ABC,AC=BC,∠C=90°,顶点C在直线 l 上.操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.模型应用:(2)如图2,在直角坐标系中,直线l1:y= x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(3)如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点 A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.8、(2018潜江.中考真卷) 如图,在平面直角坐标系中,直线y=﹣ x与反比例函数y= (k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣ x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC 的解析式.9、(2013玉林.中考真卷) 如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t 的函数关系式,并写出自变量t的取值范围.10、(2017泸州.中考真卷) 一次函数y=kx+b(k≠0)的图象经过点A(2,﹣6),且与反比例函数y=﹣的图象交于点B(a,4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0),l与反比例函数y2= 的图象相交,求使y1<y2成立的x的取值范围.11、(2020赤峰.中考真卷) 如图,巳知二次函数y =ax2+bx +c(a≠0)的图象与x轴交于A(1 ,0) ,B(4,0)两点,与y轴交于点C,直线经过B,C两点.(1)直接写出二次函数的解析式________;(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;(3)过(2)中的点Q作QE // y轴,交x轴于点E.若点M是抛物线上一个动点,点N是x轴上一个动点.是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.12、(2021石家庄.中考模拟) 如图,一次函数的图象与反比例函数(为常数且)的图象相交于,B两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求b 的值.13、(2021新华.中考模拟) 如图,在平面直角坐标系中,直线 经过第一象限的点 和点 ,且 ,过点 作 轴,垂足为, 的面积为 .(1) 求B 点的坐标;(2) 求直线 的函数表达式;(3) 直线 经过线段 上一点P (P 不与A 、B 重合),求a 的取值范围.14、(2021恩施.中考模拟) 如图,一次函数 的图象与反比例函数 ( 为常数且 )的图象相交于 , 两点.(1) 求反比例函数的表达式;(2) 将一次函数 的图象沿 轴向下平移 个单位 ,使平移后的图象与反比例函数 的图象有且只有一个交点,求 的值.15、如图,一次函数 =k x + b (k≠0)与反比例函数 (m≠0)的图象交于点A (1,2)和B (-2,a ),与y 轴交于点M.(1) 求一次函数和反比例函数的解析式;(2) 在y 轴上取一点N ,当△AMN 的面积为3时,求点N 的坐标;(3) 将直线 向下平移2个单位后得到直线y 3 , 当函数值 时,求x 的取值范围.一次函数图象与几何变换综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

2019-2020总复习之中考数学几何压轴专题,中考几何专题训练及参考答案

2019-2020总复习之中考数学几何压轴专题,中考几何专题训练及参考答案

1.(10分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.2.(14分)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.3.(10分)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM =MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.4.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.5.(10分)如图,在△ABC中,AB=BC,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点F,BH⊥AB于点B,点M是BC的中点,连接FM并延长交BH于点H.(1)如图①所示,若∠ABC=30°,求证:DF+BH=BD;(2)如图②所示,若∠ABC=45°,如图③所示,若∠ABC=60°(点M与点D重合),猜想线段DF、BH与BD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.6.(10分)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P以cm/s的速度沿AE向终点E运动;点Q 以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=3cm,∠EAD=45°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.7.(14分)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC 之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=,请直接写出FH 的长.8.(10分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:BP⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD 的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.1.【分析】(1)根据ASA证明:△BCE≌△ADF;(2)根据点E在▱ABCD内部,可知:S△BEC+S△AED=S▱ABCD,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.2.【分析】(1)利用等式的性质判断出∠PBC=∠P AB,即可得出结论;(2)由(1)的结论得出,进而得出,即可得出结论;(3)先判断出Rt△AEP∽Rt△CDP,得出,即h3=2h2,再由△P AB∽△PBC,判断出,即可得出结论.【解答】解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.【点评】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠EAP=∠PCD是解本题的关键.3.【分析】延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,得出△EB1C1是等腰直角三角形,由等腰直角三角形的性质得出∠B1EC1=∠B1C1E=45°,证出∠B1C1E+∠M1C1N1=180°,得出E、C1、N1,三点共线,由SAS证明△A1B1M1≌△EB1M1得出A1M1=EM1,∠1=∠2,得出EM1=M1N1,由等腰三角形的性质得出∠3=∠4,证出∠1=∠2=∠5,得出∠5+∠6=90°,即可得出结论.【解答】解:延长A1B1至E,使EB1=A1B1,连接EM1C、EC1,如图所示:则EB1=B1C1,∠EB1M1中=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1,三点共线,在△A1B1M1和△EB1M1中,,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°﹣90°=90°.【点评】此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、三角形的外角性质等知识;本题综合性强,熟练掌握正方形的性质,通过作辅助线构造三角形全等是解本题的关键.4.【分析】(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.【解答】解:(1)四边形ABCD是垂美四边形.证明:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:垂美四边形的两组对边的平方和相等.如图2,已知四边形ABCD中,AC⊥BD,垂足为E,求证:AD2+BC2=AB2+CD2证明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2.(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.5.【分析】(1)连接CF,由垂心的性质得出CF⊥AB,证出CF∥BH,由平行线的性质得出∠CBH=∠BCF,证明△BMH≌△CMF得出BH=CF,由线段垂直平分线的性质得出AF=CF,得出BH=AF,AD=DF+AF=DF+BH,由直角三角形的性质得出AD=BD,即可得出结论;(2)同(1)可证:AD=DF+AF=DF+BH,再由等腰直角三角形的性质和含30°角的直角三角形的性质即可得出结论.【解答】(1)证明:连接CF,如图①所示:∵AD⊥BC,BE⊥AC,∴CF⊥AB,∵BH⊥AB,∴CF∥BH,∴∠CBH=∠BCF,∵点M是BC的中点,∴BM=MC,在△BMH和△CMF中,,∴△BMH≌△CMF(ASA),∴BH=CF,∵AB=BC,BE⊥AC,∴BE垂直平分AC,∴AF=CF,∴BH=AF,∴AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=30°,∴AD=BD,∴DF+BH=BD;(2)解:图②猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=45°,∴AD=BD,∴DF+BH=BD;图③猜想结论:DF+BH=BD;理由如下:同(1)可证:AD=DF+AF=DF+BH,∵在Rt△ADB中,∠ABC=60°,∴AD=BD,∴DF+BH=BD.【点评】本题考查了全等三角形的判定与性质、垂心的性质、平行线的性质、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;熟练掌握直角三角形的性质,证明三角形全等是解题的关键.6.【分析】(1)由勾股定理可求AE的长,由等腰三角形的性质可求∠EAD的度数;(2)分三种情况讨论,由面积和差关系可求解;(3)分三种情况讨论,由勾股定理可求解.【解答】解:(1)∵AB=3cm,BE=AB=3cm,∴AE==3cm,∠BAE=∠BEA=45°∵∠BAD=90°∴∠DAE=45°故答案为:3,45(2)当0<x≤2时,如图,过点P作PF⊥AD,∵AP=x,∠DAE=45°,PF⊥AD∴PF=x=AF,∴y=S△PQA=×AQ×PF=x2,(2)当2<x≤3时,如图,过点P作PF⊥AD,∵PF=AF=x,QD=2x﹣4∴DF=4﹣x,∴y=x2+(2x﹣4+x)(4﹣x)=﹣x2+8x﹣8当3<x≤时,如图,点P与点E重合.∵CQ=(3+4)﹣2x=7﹣2x,CE=4﹣3=1cm ∴y=(1+4)×3﹣(7﹣2x)×1=x+4(3)当0<x≤2时∵QF=AF=x,PF⊥AD∴PQ=AP∵PQ=cm∴x=∴x=当2<x≤3时,过点P作PM⊥CD∴四边形MPFD是矩形∴PM=DF=4﹣2x,MD=PF=x,∴MQ=x﹣(2x﹣4)=4﹣x∵MP2+MQ2=PQ2,∴(4﹣2x)2+(4﹣x)2=∵△<0∴方程无解当3<x≤时,∵PQ2=CP2+CQ2,∴=1+(7﹣2x)2,∴x=综上所述:x=或【点评】本题是四边形综合题,考查了矩形的判定和性质,勾股定理,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.7.【解答】问题情境:解:线段DN、MB、EC之间的数量关系为:DN+MB=EC;理由如下:∵四边形ABCD是正方形,∴∠ABE=∠BCD=90°,AB=BC=CD,AB∥CD,过点B作BF∥MN分别交AE、CD于点G、F,如图1所示:∴四边形MBFN为平行四边形,∴NF=MB,∴BF⊥AE,∴∠BGE=90°,∴∠CBF+∠AEB=90°,∵∠BAE+∠AEB=90°,∴∠CBF=∠BAE,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∵DN+NF+CF=BE+EC,∴DN+MB=EC;问题探究:解:(1)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,如图2所示:∵四边形ABCD是正方形,∴四边形ABIH为矩形,∴HI⊥AD,HI⊥BC,HI=AB=AD,∵BD是正方形ABCD的对角线,∴△DHQ是等腰直角三角形,HD=HQ,AH=QI,∵MN是AE的垂直平分线,∴AQ=QE,在Rt△AHQ和Rt△QIE中,,∴Rt△AHQ≌Rt△QIE(HL),∴∠AQH=∠QEI,∴∠AQH+∠EQI=90°,∴∠AQE=90°,∴△AQE是等腰直角三角形,∴∠EAQ=∠AEQ=45°,即∠AEF=45°;(2)连接AC交BD于点O,如图3所示:则△APN的直角顶点P在OB上运动,设点P与点B重合时,则点P′与点D重合;设点P与点O重合时,则点P′的落点为O′,∵AO=OD,∠AOD=90°,∴∠ODA=∠ADO′=45°,当点P在线段BO上运动时,过点P作PG⊥CD于点G,过点P′作P′H⊥CD交CD 延长线于点H,连接PC,∵点P在BD上,∴AP=PC,在△APB和△CPB中,,∴△APB≌△CPB(SSS),∴∠BAP=∠BCP,∵∠BCD=∠MP A=90°,∴∠PCN=∠AMP,∵AB∥CD,∴∠AMP=∠PNC,∴PC=PN,∴AP=PN,∴∠PNA=45°,∴∠PNP′=90°,∴∠P′NH+PNG=90°,∵∠P′NH+∠NP′H=90°,∠PNG+∠NPG=90°,∴∠NPG=∠P′NH,∠PNG=∠NP′H,由翻折性质得:PN=P′N,在△PGN和△NHP'中,,∴△PGN≌△NHP'(ASA),∴PG=NH,GN=P'H,∵BD是正方形ABCD的对角线,∴∠PDG=45°,易得PG=GD,∴GN=DH,∴DH=P'H,∴∠P'DH=45°,故∠P'DA=45°,∴点P'在线段DO'上运动;过点S作SK⊥DO',垂足为K,∵点S为AD的中点,∴DS=2,则P'S的最小值为;问题拓展:解:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,如图4:则EG=AG=,PH=FH,∴AE=5,在Rt△ABE中,BE==3,∴CE=BC﹣BE=1,∵∠B=∠ECQ=90°,∠AEB=∠QEC,∴△ABE∽△QCE,∴==3,∴QE=AE=,∴AQ=AE+QE=,∵AG⊥MN,∴∠AGM=90°=∠B,∵∠MAG=∠EAB,∴△AGM∽△ABE,∴=,即=,解得:AM=,由折叠的性质得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,∴B'M==,AC'=1,∵∠BAD=90°,∴∠B'AM=∠C'F A,∴△AFC'∽△MAB',∴==,解得:AF=,∴DF=4﹣=,∵AG⊥MN,FH⊥MN,∴AG∥FH,∴AQ∥FP,∴△DFP∽△DAQ,∴=,即=,解得:FP=,∴FH=FP=.【点评】本题是四边形综合题目,考查了正方形的性质、翻折变换的性质、勾股定理、相似三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解题的关键.8.【分析】(1)根据等腰直角三角形的性质得到AD=AE,AB=AC,∠BAC﹣∠EAF=∠EAD﹣∠EAF,求得∠BAE=∠DAC,根据全等三角形的性质得到∠ABE=∠ACD,根据余角的性质即可得到结论;(2)根据全等三角形的性质得到∠ABE=∠ACD,BE=CD,求得∠EPD=90°,得到DE=3,AB=6,求得BD=6﹣3=3,CD==3,根据相似三角形的性质得到PD=,PB=根据三角形的面积公式即可得到结论.【解答】解:(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE =90°.∴AD=AE,AB=AC,∠BAC﹣∠EAF=∠EAD﹣∠EAF,即∠BAE=∠DAC,在△ABE与△ADC中,,∴△ABE≌△ADC(SAS),∴∠ABE=∠ACD,∵∠ABE+∠AFB=∠ABE+∠CFP=90°,∴∠CPF=90°,∴BP⊥CD;(2)在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,BE=CD,∵∠PDB=∠ADC,∴∠BPD=∠CAB=90°,∴∠EPD=90°,BC=6,AD=3,求△PDE的面积.∵BC=6,AD=3,∴DE=3,AB=6,∴BD=6﹣3=3,CD==3,∵△BDP∽△CDA,∴==,∴==,∴PD=,PB=∴PE=3﹣=,∴△PDE的面积=××=.【点评】本题考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰直角三角形的性质.熟练掌握旋转的性质是解题的关键.。

2019届中考数学(通用版)复习专题学案:几何综合题

2019届中考数学(通用版)复习专题学案:几何综合题

几何综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等.【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决.【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势.为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.类型一以三角形为背景的综合题典例1(2019·江苏泰州)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.【技法梳理】(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.【解析】(1)∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE.∴AF=DE.∵BD是△ABC的角平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE.∴BE=DE.∴BE=AF.(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°.∴DE=BE=2.∴四边形ADEF的面积为DE·DG=6.举一反三1. (2019·湖北武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.(1)(2)(第1题)【小结】此类题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.类型二以四边形为背景的综合题典例2(2019·安徽)如图(1),正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于点N.(1)①∠MPN=;②求证:PM+PN=3a;(2)如图(2),点O是AD的中点,连接OM,ON,求证:OM=ON;(3)如图(3),点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.(1)(2)(3)【全解】(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°.∵PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°.∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°.故答案为60°.②如图(1),作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,(1)(2)如图(2),连接OE.(2)∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC, ∴AM=BP=EN.又∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS).(3)如图(3),连接OE.(3)由(2)得,△OMA≌△ONE,∴∠MOA=∠EON.∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形.∴∠AFE=∠AOE=120°.∴∠MON=120°.∴∠GON=60°.∵∠GON=60°-∠EON,∠DON=60°-∠EON,∴∠GOE=∠DON.∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA).又∠GON=60°,∴△ONG是等边三角形.∴ON=NG.∵OM=ON,∠MOG=60°,∴△MOG是等边三角形.∴MG=GO=MO.∴MO=ON=NG=MG.∴四边形MONG是菱形.【技法梳理】(1)①运用∠MPN=180°-∠BPM-∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解;(2)连接OE,由△OMA≌△ONE证明;(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.举一反三2. (2019·山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图(1),当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由.(2)如图(2),当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图(3),当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由.(4)如图(4),当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.(1)(2)(3)(4)(第2题)【小结】主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.类型三以圆为背景的综合题典例3(2019·江苏苏州)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm,矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm,若☉O与矩形ABCD沿l1同时向右移动,☉O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s),(1)如图,连接OA,AC,则∠OAC的度数为°;(2)如图,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【全解】(1)∵l1⊥l2,☉O与l1,l2都相切,∴∠OAD=45°.∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm.∴∠DAC=60°.∴∠OAC的度数为∠OAD+∠DAC=105°.(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为点E, 连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1,如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置,设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2.由(2)得,∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三, 由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,【提醒】本题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【技法梳理】(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1-OO1-2=t-2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与☉O第一次相切时,设移动时间为t1,②当直线AC与☉O第二次相切时,设移动时间为t2,分别求出即可.举一反三3. (2019·浙江宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数表达式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.方案一方案二方案三方案四方案备用图方案备用图(第3题)【小结】本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.类型一2. (2019·浙江嘉兴)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是.(第2题)类型二3. (2019·广东珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;.(第3题)4. (2019·浙江温州)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.(第4题)类型三5. (2019·湖南怀化)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作☉O,DF与☉O相切于点G,若DH=OH=3,求图中阴影部分的面积(结果保留到小数点后面第一位,≈1.73,π≈3.14).(第5题)6. (2019·黑龙江大庆)如图(1),已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图(2),当S取最大值时,等腰梯形ABCD的四个顶点都在☉O上,点E和点F分别是AB 和CD的中点,求☉O的半径R的值.(1)(2)(第6题)参考答案【真题精讲】(2)如图(1),过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,(第1题(1))∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.∴△ACQ∽△CMP.(3)如图(2),仍有PM⊥BC于点M,PQ的中点设为点D,再作PE⊥AC于点E,DF⊥AC于点F,(第1题(2))∵∠ACB=90°,∴DF为梯形PECQ的中位线.∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立.∴D在过R的中位线上.∴PQ的中点在△ABC的一条中位线上.2. (1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF.由于∠CDF+∠ADF=90°.∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是.(3)成立.理由如下:由(1)同理可证AE=DF,∠DAE=∠CDF,如图(1),延长FD交AE于点G,(第2题(1))则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图(2):(第2题(2)) 由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC===,∴CP=OC-OP=-1.3. (1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图(1),方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为☉O与AB,BF的切点.方案二方案三(第3题)方案二:设半径为r.在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB-AO1-CO2=3-2r,∴(2r)2=22+(3-2r)2,比较知,方案三半径较大.(3)①∵EC=x,∴新拼图形水平方向跨度为3-x,竖直方向跨度为2+x.类似题(1),所截出圆的直径最大为3-x或2+x较小的.∴方案四时可取的圆桌面积最大.【课后精练】1.①②③④解析:①∵AB=AC,∴∠B=∠C.∵∠ADE=∠B,∴∠ADE=∠C.∴△ADE∽△ACD.故①结论正确.故③正确.④易证得△CDE∽△BAD,由②可知BC=16, 设BD=y,CE=x,整理,得y2-16y+64=64-10x,即(y-8)2=64-10x,∴0<y<8,0<x<6.4.故④正确.2.①③⑤解析:①连接CD,如图(1)所示.(第2题(1))∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图(2)所示.(第2题(2))∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.③当AD=2时,连接OC,如图(3)所示.(第2题(3))∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB,AF,如图(4)所示.(第2题(4))∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴DB=4.∴AD=AB-DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图(5)中阴影部分.(第2题(5))∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.3. (1)∵四边形ABCD是正方形,∴AD∥BF.∵AE=CF,∴四边形ACFE是平行四边形.∴EF∥AC.(2)连接BG,(第3题)∵EF∥AC,∴∠F=∠ACB=45°.∵∠GCF=90°,∴∠CGF=∠F=45°.∴CG=CF.∵AE=CF,∴AE=CG.在△BAE与△BCG中,∴△BAE≌△BCG(SAS).∴BE=BG.∵BE=EG,∴△BEG是等边三角形.∴∠BEF=60°.(3)∵△BAE≌△BCG,∴∠ABE=∠CBG.∵∠BAC=∠F=45°,∴△AHB∽△FGB.(2)如图(1),连接CD交OP于点G,(第4题(1))在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG.∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图(2),当点M在CE边上时,(第4题(2))∵MF∥OC,∴△EMF∽△ECO.∴t=1.第二种情况:如图(3),当点N在DE边(第4题(3))∵NF∥PD,∴△EFN∽△EPD.(Ⅱ)当点C在BO的延长线上时,第一种情况:如图(4),当点M在DE边上时,(第4题(4))∵MF∥PD,∴EMF∽△EDP.第二种情况:如图(5),当点N在CE边上时,(第4题(5))∵NF∥OC,∴△EFN∽△EOC.5. (1)∵四边形ABCD是矩形, ∴∠A=∠B=90°.∵EF⊥DE,∴∠DEF=90°.∴∠AED=90°-∠BEF=∠EFB.∵∠A=∠B,∠AED=∠EFB,∴△ADE∽△BEF.(2)∵DF与☉O相切于点G, ∴OG⊥DG.∴∠DGO=90°.∵DH=OH=OG,∴∴图中阴影部分的面积约为6.2.6. (1)作AH⊥CD于点H,BG⊥CD于点G,如图(1),(第6题(1))则四边形AHGB为矩形,∴HG=AB=3x.∵四边形ABCD为等腰梯形,∴AD=BC,DH=CG.在Rt△ADH中,设DH=t,∵∠ADC=60°,∴∠DAH=30°.∴AD=2t,AH=t.∴BC=2t,CG=t.∵等腰梯形ABCD的周长为48,∴3x+2t+t+3x+t+2t=48,解得t=8-x.∴AD=2(8-x)=16-2x,CD=8-x+3x+8-x=16+x.(3)连接OA,OD,如图(2),(第6题(2))当x=2时,AB=6,CD=16+2=18,等腰梯形的高为(8-2)=6, 则AE=3,DF=9,∵点E和点F分别是AB和CD的中点,∴直线EF为等腰梯形ABCD的对称轴.∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6.∴等腰梯形ABCD的外接圆的圆心O在EF上.设OE=a,则OF=6-a.在Rt△AOE中,∵OE2+AE2=OA2,∴a2+32=R2.在Rt△ODF中,∵OF2+DF2=OD2,∴(6-a)2+92=R2.∴a2+32=(6-a)2+92,解得a=5.∴R2=(5)2+32=84.∴R=2.。

2019年中考数学二轮复习几何探究题(压轴题) 综合练习 (含参考答案)

2019年中考数学二轮复习几何探究题(压轴题)  综合练习 (含参考答案)

8. 如图,在 Rt△ABC 中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点 M 从点 B 出发,在 BA 边上以 每秒 2 cm 的速度向点 A 匀速运动,同时动点 N 从点 C 出发,在 CB 边上以每秒 3 cm 的速度向点 B 匀速 运动,设运动时间为 t 秒(0≤t≤5),连接 MN. (1)若 BM=BN,求 t 的值; (2)若△MBN 与△ABC 相似,求 t 的值; (3)当 t 为何值时,四边形 ACNM 的面积最小?并求出最小值.
2.如图①,②,③分别以△ABC 的 AB 和 AC 为边向△ABC 外作正三角形(等边三角形)、正四边形(正方 形)、正五边形,BE 和 CD 相交于点 O. (1)在图①中,求证:△ABE≌△ADC. (2)由(1)证得△ABE≌△ADC,由此可推得在图①中∠BOC=120°,请你探索在图②中∠BOC 的度数,并 说明理由或写出证明过程.
(3)填空:在上述(1)(2)的基础上可得在图③中∠BOC=________(填写度数). (4)由此推广到一般情形(如图④),分别以△ABC 的 AB 和 AC 为边向△ABC 外作正 n 边形,BE 和 CD 仍 相交于点 O,猜想∠BOC 的度数为____________________(用含 n 的式子表示).
AC ②在顶点 G 的运动过程中,若CG=t,请直接写出线段 EC、CF 与 BC 的数量关系(不需要写出证明过程); (3)问题解决:
6 如图④,已知菱形边长为 8,BG=7,CF=5,当 t>2 时,求 EC 的长度.
13.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中, ∠BAC=90°,AB=AC,点 D 为直线 BC 上一动点(点 D 不与 B,C 重合),以 AD 为边在 AD 右侧作正 方形 ADEF,连接 CF. (1)观察猜想 如图①,当点 D 在线段 BC 上时,①BC 与 CF 的位置关系为:____________. ②BC,CD,CF 之间的数量关系为:____________(将结论直接写在横线上). (2)数学思考 如图②,当点 D 在线段 CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立, 请你写出正确结论再给予证明. (3)拓展延伸 如图③,当点 D 在线段 BC 的延长线上时,延长 BA 交 CF 于点 G,连接 GE.若已知

2019年中考数学二轮复习专题练【几何图形的证明及计算问题】附答案解析

2019年中考数学二轮复习专题练【几何图形的证明及计算问题】附答案解析

2019年中考数学二轮复习专题练【几何图形的证明及计算问题】附答案解析类型一与全等三角形有关的证明及计算1.如图,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM 上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连接DN,当四边形DNBC为平行四边形时,求线段BC的长;第1题图2.如图①,在等腰三角形ABC中,AB=AC,在底边BC上取一点D,在边AC上取一点E,使AE=AD,连接DE,在∠ABD的内部作∠ABF=2∠EDC,交AD于点F.(1)求证:△ABF是等腰三角形;(2)如图②,BF的延长线交AC于点G.若∠DAC=∠CBG,延长AC至点M,使GM=AB,连接BM,点N是BG的中点,连接AN,试判断线段AN、BM之间的数量关系,并证明你的结论.第2题图3.如图①,在△ABC中,∠ACB=90°,AC=BC,E为AC边上的一点,F为AB边上一点,连接CF,交BE于点D,且∠ACF=∠CBE,CG平分∠ACB交BD于点G.(1)求证:CF=BG;(2)如图②,延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB =CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=33,BG=6,求AC的长.图①图②第3题图4.如图①,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)求证:∠CAE=∠CBD;(2)如图②,F是BD的中点,连接CF交AE于点M,求证:AE⊥CF;(3)如图③,F,G分别是BD,AE的中点,连接GF,若AC=2 2 ,CE=1,求△CGF的面积.第4题图5.如图①,在正方形ABCD中,O是对角线AC上一点,点E在BC的延长线上,且OE=OB,OE交CD于点F.(1)求证:△OBC≌△ODC;(2)求证:∠DOE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=52°,求∠DOE的度数.第5题图6.已知:如图①,等腰直角△ABC和△ECD中,∠ACB=∠ECD=90°,AC=BC,EC=DC.(1)求证:BE=AD;(2)如图②,若将△ECD绕点C按逆时针方向旋转一个锐角,①延长BE交AD于点F,交AC于点O.求证:BF⊥AD;②如图③,取BE的中点M,AD的中点N,连接MN,NC,求∠MNC的度数.第6题图类型二与相似三角形有关的证明及计算1.如图①,已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的点,过点Q作AC的垂线交线段AB(如图①)或线段AB的延长线(如图②)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.第1题图2. 如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点,连接DE 、CE .(1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =5,AB =7,求ACAF 的值.第2题图3. 如图①,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 上,∠EDF =∠B. (1)求证:DE ·CD =DF ·BE ;(2)如图②,若D 为BC 中点,连接EF ,A D. ①求证:DE 平分∠BEF ;②若四边形AEDF 为菱形,求∠BAC 的度数及AEAB 的值.第3题图4. 如图①,△ABC 中,点D 在线段AB 上,点E 在线段CB 延长线上,且BE =CD ,EP ∥AC 交直线CD 的延长线于点P ,交直线AB 的延长线于点F ,∠ADP =∠AC B.(1)图①中是否存在与AC 相等的线段?若存在,请找出,并加以证明,若不存在,说明理由; (2)若将“点D 在线段AB 上,点E 在线段CB 延长线上”改为“点D 在线段BA 延长线上,点E 在线段BC 延长线上”,其他条件不变(如图②).当∠ABC =90°,∠BAC =60°,AB =2时,求线段PE 的长.第4题图5. 如图①,△ABC 中,BC >AC ,CD 平分∠ACB 交AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交CD 于H .(1)若∠EFC =∠A ,求证:CE ·CD =CH ·BC ;(2)如图②,若BH 平分∠ABC ,CE =CF ,BF =3,AE =2,求EF 的长;(3)如图③,若CE ≠CF ,∠CEF =∠B ,∠ACB =60°,CH =5,CE =4 3 ,求 AC BC 的值.第5题图类型三与全等和相似三角形有关的证明及计算1.如图,等边△ABC边长是8,过点C的直线l∥AB,点D为BC上一点(不与点B,C重合),将一个60°角的顶点放在D处,它的边始终过点A,另一边与直线l交于点E,DE交AC于点F.(1)若BD=6,求CF的长;(2)若点D是BC的中点,判定△ADE的形状,并给出证明;(3)若点D不是BC的中点,则(2)中的结论成立吗?如果成立,请给予证明,如果不成立,请说明理由.第1题图2.如图①,在△ABC中,AC=BC,∠ACB=90°,点D、P分别为AC、AB的中点,连接BD、CP,CP交BD于点E,点F在AB上且∠ACF=∠CB D.(1)求证:CF=BE;(2)如图②,过点A 作AG ⊥AB 交BD 的延长线于点G . ①若CF =6,求DG 的长; ②设CF 交BD 于点H ,求HECH 的值.第2题图3. 如图①,已知D 是△ABC 的边BC 上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且BE =CF ,点M 、N 分别是AE 、DE 上的点,AN ⊥FM 于点G .(1)若∠BAC =90°,求证:△ABC 为等腰直角三角形; (2)如图②,若∠BAC ≠90°,AF =2DF . ①求证:FM AN =EM DN ; ②求AN ∶FM 的值.图① 图②第3题图4. (2018六安市模拟)我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I 为△ABC 的内心.(1)如图①,连接AI 并延长交BC 于点D ,若AB =AC =3,BC =2,求ID 的长; (2)如图②,过点I 作直线交AB 于点M ,交AC 于点N . ①若MN ⊥AI ,求证:MI 2=BM ·CN ;②如图③,AI 的延长线交BC 于点D ,若∠BAC =60°,AI =4,求1AM +AN1的值.第4题图5. 如图①,在△ABC 中,∠ACB =90°,AC =BC ,顶点C 恰好在直线l 上,过A 、B 分别作AD ⊥l ,BE ⊥l ,垂足分别为D 、E .(1)求证:DE=AD+BE;(2)如图②,在△ABC中,当AC=kBC,其他条件不变,猜想DE与AD、BE的关系,并证明你的结论;(3)如图③,在Rt△ABC中,AC=4,BC=12,∠ACB=90°,点D是AC的中点,点E在BC上,过点E作EF⊥DE交AB于点F,若恰好EF=2DE,求CE的长.图①图②图③第5题图6.如图①,在等腰Rt△ABC中,∠ACB=90°,AC=BC, D为AB的中点,连接CD,将一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF 与AC交于点M,DE与BC交于点N.(1)若CE=CF,求证:△DCE≌△DCF;(2)如图②,在∠EDF绕点D旋转的过程中:①探究线段AB与CE、CF之间的数量关系,并证明;②若AB=42,CE=2CF,求DN的长.第6题图类型一 与全等三角形有关的证明及计算1. (1)证明:∵AB =AC ,点M 是BC 的中点,∴AM ⊥BC ,∠BAM =∠CAM , ∴∠CAM +∠ACM =90°, ∵AC ⊥BD ,∴∠MBE +∠ACM =90°, ∴∠BAN =∠CAM =∠MBE , ∵MB =MN , ∴∠MNB =∠MBN ,∵∠MNB =∠ABN +∠BAN ,∠MBN =∠MBE +∠NBE , ∴∠ABN +∠BAN =∠MBE +∠NBE , ∴∠ABN =∠NBE , 即BN 平分∠ABE ;(2)解:连接DN ,∵点M 为BC 中点,MB =MN , ∴MB =MN =12BC ,∵四边形DNBC 为平行四边形, ∴BN =CD ,BN ∥CD , ∴∠DBN =∠BDC , 由(1)知∠ABN =∠DBN , ∴∠ABN =∠BDC , ∵AB =BD =1, ∴△ABN ≌△BDC , ∴AN =BC ,∴AM =AN +MN =32BC ,参考答案由(1)中条件可知AM ⊥BC ,即∠AMB =90°, ∴AM 2+MB 2=AB 2,即(32BC )2+(12BC )2=1,解得BC =105.第1题解图2. (1)证明:∵等腰三角形ABC 中,AB =AC ,∴∠ABD =∠ACD , ∵AE =AD , ∴∠ADE =∠AED ,∵∠BAD +∠ABD =∠ADE +∠EDC ,∠EDC +∠ACD =∠AED , ∴∠BAD =2∠EDC , ∵∠ABF =2∠EDC , ∴∠BAD =∠ABF , ∴△ABF 是等腰三角形; (2)解:AN =12BM .证明:如解图,延长CA 至点H ,使AG =AH ,连接BH , ∵点N 是BG 的中点,点A 是HG 的中点, ∴AN =12BH ,∵(1)中已证明∠BAD =∠ABF ,且∠DAC =∠CBG , ∴∠CAB =∠CBA , ∴CA =CB 又∵AB =AC ,∴△ABC 是等边三角形,∠BAC =∠BCA =60°, ∴∠BAH =∠BCM , ∵GM =AB ,AB =AC , ∴AC =GM , ∴CM =AG , ∴AH =CM ,在△BAH 和△BCM 中,⎩⎨⎧AB =BC∠BAH =∠BCM AH =CM, ∴△BAH ≌△BCM (SAS), ∴BH =BM , ∴AN =12BM .第2题解图3. (1)证明:∵∠ACB =90°,AC =BC ,∴∠A =45°, ∵CG 平分∠ACB , ∴∠ACG =∠BCG =45°, ∴∠A =∠BCG , 在△BCG 和△CAF 中,⎩⎨⎧∠A =∠BCGAC =BC∠ACF =∠CBE,∴△BCG ≌△CAF (ASA), ∴CF =BG ;(2)证明:∵PC ∥AG , ∴∠PCA =∠CAG ,∵AC =BC ,∠ACG =∠BCG ,CG =CG , ∴△ACG ≌△BCG (SAS ), ∴∠CAG =∠CBE ,∵∠PCG =∠PCA +∠ACG =∠CAG +45°=∠CBE +45°,∠PGC =∠GCB +∠CBE =∠CBE +45°, ∴∠PCG =∠PGC , ∴PC =PG ,∵PB =BG +PG ,BG =CF , ∴PB =CP +CF ;(3)解:如解图,过E 作EM ⊥AG ,交AG 于M , ∵S △AEG =12AG ·EM =33, 由(2)得:△ACG ≌△BCG , ∴BG =AG =6, ∴ 12×6×EM =33, 解得EM =3,设∠FCH =x °,则∠GAC =2x °, ∴∠ACF =∠EBC =∠GAC =2x °, ∵∠ACH =45°, ∴2x +x =45, 解得x =15,∴∠ACF =∠GAC =30°,在Rt △AEM 中,AE =2EM =23, AM =(23)2-(3)2=3, ∴M 是AG 的中点,第3题解图∴AE =EG =23, ∴BE =BG +EG =6+23, 在Rt △ECB 中,∠EBC =30°, ∴CE =12BE =3+3,∴AC =AE +EC =23+3+3=33+3. 4. (1)证明:在△ACE 和△BCD 中,⎩⎨⎧AC =BC∠ACE =∠BCD CE =CD, ∴△ACE ≌△BCD , ∴∠CAE =∠CBD ;(2)证明:在Rt △BCD 中,点F 是BD 的中点, ∴CF =BF , ∴∠BCF =∠CBF , 由(1)知,∠CAE =∠CBD , ∴∠BCF =∠CAE ,∴∠CAE +∠ACF =∠BCF +∠ACF =∠BCA =90°, ∴∠AMC =90°, ∴AE ⊥CF ;(3)解:∵AC =2 2 , ∴BC =AC =2 2 , ∵CE =1, ∴CD =CE =1,在Rt △BCD 中,根据勾股定理得,BD =CD 2+BC 2=3 , ∵点F 是BD 中点, ∴CF =DF =12BD =32 ,同理:EG =12AE =32 ,如解图,连接EF ,过点F 作FH ⊥BC 于点H , ∵∠ACB =90°,点F 是BD 的中点, ∴FH =12CD =12,∴S △CEF =12CE ·FH =12×1×12=14, 由(2)知,AE ⊥CF ,∴S △CEF =12CF ·ME =12×32ME =34ME , ∴ 34ME =14,∴ME =13 ,∴GM =EG -ME =32-13=76 ,∴S △CFG =12CF ·GM =12×32×76=78. 5. (1)证明:∵AC 是正方形ABCD 的对角线,∴BC =DC ,∠BCA =∠DCA , 在△OBC 和△ODC 中,⎩⎨⎧BC =DC∠BCO =∠DCO CO =CO, ∴△OBC ≌△ODC (SAS);(2)证明:由(1)知,△OBC ≌△ODC , ∴∠CBO =∠CDO , ∵OE =OB , ∴∠CBO =∠E , ∴∠CDO =∠E , ∵∠DFO =∠EFC ,∴180°-∠DFO -∠CDO =180°-∠EFC -∠E ,即∠DOE =∠DCE ,第4题解图∵AB ∥CD , ∴∠DCE =∠ABC , ∴∠DOE =∠ABC ;(3)解:∵AC 是菱形ABCD 的对角线, ∴BC =DC ,∠BCA =∠DCA , 在△BCO 和△DCO 中,⎩⎨⎧BC =DC∠BCO =∠DCO CO =CO, ∴△BCO ≌△DCO (SAS), ∴∠CBO =∠CDO , ∵OE =OB , ∴∠CBO =∠E , ∴∠CDO =∠E , ∵∠DFO =∠EFC ,∴180°-∠DFO -∠CDO =180°-∠EFC -∠E , 即∠DOE =∠DCE , ∵AB ∥CD , ∴∠DCE =∠ABC , ∴∠DOE =∠ABC =52°. 6. (1)证明:在△BEC 和△ACD 中,⎩⎨⎧BC =AC∠ACB =∠ECD EC =DC, ∴△BEC ≌△ADC (SAS), ∴BE =AD ;(2)①证明:∵∠ACB =∠ECD =90°, ∴∠ACB -∠ACE =∠ECD -∠ACE , 即∠BCE =∠ACD ,在△BEC 和△ADC 中,⎩⎨⎧BC =AC∠BCE =∠ACD EC =DC, ∴△BEC ≌△ADC (SAS), ∴∠CBE =∠CAD ,在△BCO 和△AFO 中,∠CBE =∠CAD ,∠BOC =∠AOF , ∴∠AFB =∠ACB =90°, ∴BF ⊥AD ;②解:如解图,连接MC , ∵∠ACB =∠ECD =90°, ∴∠BCE =∠ACD , 又∵AC =BC ,EC =DC , ∴△BEC ≌△ADC ,∴∠CBE =∠CAD ,AD =BE , ∵M 是BE 的中点,N 是AD 的中点, ∴BM =AN ,在△BMC 和△ANC 中,⎩⎨⎧BM =AN∠CBE =∠CAD BC =AC, ∴△BMC ≌△ANC (SAS), ∴CM =CN ,∠BCM =∠ACN , ∴∠ACN +∠MCA =∠BCM +∠MCA , ∴∠MCN =∠ACB =90°, ∴△MCN 是等腰直角三角形, ∴∠MNC =45°.第6题解图类型二 与相似三角形有关的证明及计算1. (1)证明:∵PQ ⊥AQ ,∴∠AQP =90°=∠ABC . 在△AQP 与△ABC 中, ∵∠AQP =∠ABC , ∠QAP =∠BAC , ∴△AQP ∽△ABC ;(2)解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得AC =5. ①当点P 在线段AB 上时,如题图①所示. ∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ , 由(1)可知,△AQP ∽△ABC , ∴P A AC =PQBC ,即3-PB 5=BP 4, 解得PB =43,∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时,如题图②所示. ∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ . ∴∠BQP =∠P ,∵∠BQP +∠AQB =90°,∠A +∠P =90°, ∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6. 2. (1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB .又∵∠ADC =∠ACB =90°, ∴△ADC ∽△ACB , ∴AD AC =AC AB , ∴AC 2=AB ·AD ;(2)证明:∵E 为AB 的中点, ∠ACB =90°, ∴CE =12AB =AE , ∴∠EAC =∠ECA , ∵∠DAC =∠CAB , ∴∠DAC =∠ECA . ∴AD ∥CE ; (3)解:∵CE ∥AD , ∴∠DAF =∠ECF , 又∵∠DF A =∠EFC , ∴△AFD ∽△CFE , ∴AD CE =AF CF , ∵CE =12AB , ∴CE =12×7=72, ∵AD =5,∴572=AFCF,∴CFAF=710,∴AF+CFAF=1+CFAF=1710,即ACAF=1710.3. (1)证明:∵△ABC中,AB=AC,∴∠B=∠C,∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,∴∠FDC=∠DEB,∴△CFD∽△BDE,∴DEDF=BECD,即DE·CD=DF·BE;(2)①证明:由(1)证得△BDE∽△CFD,∴BECD=DEDF,∵D为BC中点,∴BD=CD,∴BEBD=DEDF,∵∠B=∠EDF,∴△BDE∽△DFE,∴∠BED=∠DEF,∴ED平分∠BEF;②解:∵四边形AEDF为菱形,∴∠AEF=∠DEF,由(2)知,∠BED=∠DEF,∵∠AEF+∠DEF+∠BED=180°,∴∠AEF =60°,∵AE =AF ,∴∠BAC =60°.∵AB =AC ,∴△ABC 是等边三角形,∴∠B =60°,又∵∠BED =∠AEF =60°,∴△BED 是等边三角形,∴BE =DE ,∵AE =DE ,∴AE =BE =12AB ,∴AE AB =12.4. 解:(1)AC =BF .证明如下:∵∠ADP =∠ACD +∠A ,∠ACB =∠ACD +∠BCD ,∠ADP =∠ACB ,∴∠BCD =∠A ,又∵∠CBD =∠ABC ,∴△CBD ∽△ABC ,∴ CD AC =BC BA ,①∵FE ∥AC ,∴∠CAB =∠EFB ,又∵∠ABC =∠FBE ,∴△ABC ∽△FBE ,∴ BC BA =BE BF ,②由①②可得CD AC =BE BF ,∵BE =CD ,∴BF =AC ;(2)∵∠ABC =90°,∠BAC =60°,∴∠ACB =30°=∠ADP ,∴∠BCD =60°,∠ACD =60°-30°=30°,∵PE ∥AC ,∴∠E =∠ACB =30°,∠CPE =∠ACD =30°,∴CP =CE ,∵BE =CD ,∴BE -CE =CD -CP ,∴BC =DP ,∵∠ABC =90°,∠D =30°,∴BC =12CD ,∴DP =12CD ,即P 为CD 的中点,又∵PF ∥AC ,∴F 是AD 的中点,∴FP 是△ADC 的中位线,∴FP =12 AC ,∵∠ABC =90°,∠ACB =30°,∴AB =12AC ,∴FP =AB =2,∵DP =CP =BC ,CP =CE ,∴BC =CE ,即C 为BE 的中点,又∵EF ∥AC ,∴A 为FB 的中点,∴AC 是△BEF 的中位线,∴EF =2AC =4AB =8,∴PE =EF -FP =8-2=6.5. (1)证明:∵∠EFC +∠FEC +∠ECF =180°,∠A +∠B +∠ACB =180°,又∵∠EFC =∠A ,∠ECF =∠ACB ,∴∠CEF =∠B ,∵∠ECH =∠DCB ,∴△ECH ∽△BCD ,∴EC BC =CH CD ,∴CE ·CD =CH ·BC ;(2)解:如解图①,连接AH .∵BH 、CH 分别是∠ABC 和∠ACB 的平分线,∴AH 是∠BAC 的平分线,∴∠BHC =180°-12(∠ABC +∠ACB )=180°-12(180°-∠BAC )=90°+12∠BAC =90°+∠HAE ,∵CE =CF ,∠HCE =∠HCF ,∴CH ⊥EF ,HF =HE ,∴∠CHF =90°,∵∠BHC =∠BHF +∠CHF =∠BHF +90°,∴∠HAE =∠BHF ,∵CE =CF ,∴∠CFE =∠CEF ,∴∠AEH =∠BFH ,∴△AEH ∽△HFB ,∴ AE HF =EH FB ,∴FH ·EH =6,∴HE =HF =6,∴EF =26;第5题解图①(3)解:如解图②,作HM ⊥AC 于M ,HN ⊥BC 于N .设HF =x ,FN =y .∵∠HCM =∠HCN =30°,HC =5,∴HM =HN =52 ,CM =CN =532,∵CE =4 3 ,∴EM =332, ∴EH =EM 2+HM 2=13 ,∵S △HCF ∶S △HCE =FH ∶EH =FC ∶EC ,∴x ∶13=(y + 532)∶43,又∵x 2=y 2+(52)2 ,解得y =5314或332,∵当y =332时,CF =CN +NF =43,又∵CE ≠CF ,∴y ≠332,即FN =5314,∴CF =2037 ,∵∠CEF =∠B ,∠ECF =∠ACB ,∴△ECF ∽△BCA ,∴ EC BC =CFAC ,∴ AC BC =CF EC =203743=57.第5题解图②类型三 与全等和相似三角形有关的证明及计算1. 解:(1)∵△ABC 是等边三角形,∴∠B =∠FCD =60°,∵∠BAD =180°-60°-∠ADB ,∠FDC =180°-∠ADE -∠ADB =180°-60°-∠ADB , ∴∠BAD =∠FDC ,∴△ABD ∽△DCF ,∴AB DC =BD CF ,∴CF =DC ·BD AB =(8-6)×68=32;(2)△ADE 是等边三角形.证明:若D 点是BC 边中点,则AD ⊥BC ,∴∠CDE =∠ADC -∠ADE =90°-60°=30°,又∵l ∥AB ,∴∠DCE =180°-∠ABC =180°-60°=120°,∴∠CED =180°-∠DCE -∠CDE =180°-120°-30°=30°,即∠CDE =∠CED ,∴CE =CD .在△ACD 和△ACE 中,⎩⎨⎧AC =AC∠ACD =∠ACE =60°DC =EC,∴△ACD ≌△ACE (SAS),∴AD =AE ,又∵∠ADE =60°,∴△ADE 是等边三角形;(3)(2)中结论仍然成立.证明:如解图,过点D 作DG ∥l 交AC 于点G ,则△GDC ∽△ABC , ∴△GDC 是等边三角形,∴DG =DC ,∠GDC =∠DGC =60°,∵∠ADE =60°,∴∠ADE =∠GDC ,∴∠ADG =∠EDC ,又∵∠AGD =180°-60°=120°,∠DCE =180°-∠ABC =120°,∴∠AGD =∠DCE ,在△ADG 和△EDC 中,⎩⎨⎧∠ADG =∠EDCDG =DC ∠AGD =∠DCE ,∴△ADG ≌△EDC (ASA),∴AD =DE ,又∵∠ADE =60°,∴△ADE 是等边三角形.2. (1)证明:∵P 为AB 的中点,AC =BC ,∠ACB =90°, ∴∠BCE =12∠ACB =12×90°=45°,∠A =45°,∴∠A =∠BCE ,在△ACF 和△CBE 中第1题解图⎩⎨⎧∠A =∠BCEAC =BC ∠ACF =∠CBD,∴△ACF ≌△CBE (ASA),∴CF =BE ;(2)解:①由(1)得CF =BE ,∴BE =CF =6,∵AC =BC ,CE 平分∠ACB ,P 为AB 的中点,∴CP ⊥AB ,∵AG ⊥AB ,∴CE ∥AG ,∴∠GAD =∠ECD ,又∵∠ADG =∠CDE ,∴△ADG ∽△CDE ,∵点D 是AC 的中点,∴AD =CD ,即相似比k =1,∴△ADG ≌△CDE ,∴DG =DE =12GE ,∵CE ∥AG 且P 为AB 中点,∴GE =BE =6,∴DG =3;②设EP =a ,由(2)① 得EP ∥AG ,∴AG =2a ,又由上题得△ADG ≌△CDE ,∴CE =AG =2a ,∴CP =CE +EP =3a ,∵等腰直角△ABC 中 CP ⊥AB ,∴BP =CP =3a ,由题得∠ACP =∠CBP =45°,∵∠ACF =∠CBD ,∴∠ACP -∠ACF =∠CBP -∠CBD ,即∠HCE =∠PBE , ∵∠CEH =∠PEB ,∴∠CHE =180°-∠CEH -∠HCE ,∠BPE =180°-∠PBE -∠PEB , ∴∠CHE =∠BPE =90°,∴△CHE 是直角三角形,∴△CHE ∽△BPE ,∴HE CH =PE BP =a 3a =13.3. (1)证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°,∵D 是BC 的中点,∴BD =CD ,在Rt △BED 和Rt △CFD 中,⎩⎨⎧BD =CDBE =CF ,∴Rt △BED ≌Rt △CFD (HL),∴∠B =∠C ,∵∠BAC =90°,∴△ABC 为等腰直角三角形;(2)①证明:如解图,连接AD 、EF ,相交于点O ,∵由(1)可得Rt △BED ≌Rt △CFD ,∴∠B =∠C ,DE =DF ,∴AB =AC ,∵BE =CF ,∴AE =AF ,∴AD ⊥EF ,又∵∠NEM =∠MGN =90°,∴∠GME +∠ENG =∠DNG +∠ENG =180°, ∴∠EMF =∠DNA ,又∵∠AEO +∠EAO =90°,∠EAO +∠NDA =90°, ∴∠AEO =∠NDA ,∴△FME ∽△AND ,∴FM AN =EM DN ;第3题解图②解:设AF =2k ,DF =k ,在Rt △ADF 中,AD =(2k )2+k 2=5k , 由①可得∠B =∠C ,DE =DF ,∴AD 垂直平分EF ,则OF =12EF ,∵DF ⊥AC ,∴S △ADF =12×5k ·OF =12×2k ×k ,∴OF =255k ,EF =455k ,∴ADEF =54,又∵△FME ∽△AND ,∴AN FM =AD EF =54,即AN ∶FM =5∶4.4. (1)解:如解图①中,作IE ⊥AB 于E .设ID =x , ∵AB =AC =3,AI 平分∠BAC ,∴AD ⊥BC ,BD =CD =1,在Rt △ABD 中,AD =AB 2-BD 2=32-12=2 2 ,在△BEI 和△BDI 中,⎩⎨⎧∠EBI =∠DBI ,∠BEI =∠BDI =90°,BI =BI ,∴△BEI ≌△BDI ,∴ID =IE =x ,BD =BE =1,AE =2,在Rt △AEI 中,∵AE 2+EI 2=AI 2,∴22+x 2=(22-x )2 ,∴x =22,∴ID =22;第4题解图(2)①证明:如解图②,连接BI 、CI .∵I 是内心,∴∠MAI =∠NAI ,∵AI ⊥MN ,∴∠AIM =∠AIN =90°,又∵AI =AI ,∴△AMI ≌△ANI (ASA),∴∠AMN =∠ANM ,∴∠BMI =∠CNI ,设∠BAI =∠CAI =α,∠ACI =∠BCI =β,∴∠NIC =90°-α-β,∵∠ABC =180°-2α-2β,∴∠MBI=90°-α-β,∴∠MBI=∠NIC,∴△BMI∽△INC,∴BMNI=MINC,∴NI·MI=BM·CN,∵NI=MI,∴MI2=BM·CN;②解:如解图③,过点N作NG∥AD交MA的延长线于G. ∵NG∥AD,∴∠ANG=∠DAN,∠AGN=∠BAD,∵∠BAC=60°,∴∠BAD=∠DAN=30°,∴∠ANG=∠AGN=30°,∴AN=AG,NG=3AN,∵AI∥NG,∴∠MIA=∠MNG,∠MAI=∠MGN,∴△AMI∽△GMN,∴AMMG=AING,∴AMAM+AN=43AN,∴AM+ANAM=3AN4,∴1AM+1AN=34.第4题解图③5.(1)证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°,∵AD ⊥DE ,BE ⊥DE ,∴∠DAC +∠DCA =90°,∠ADC =∠BEC ,∴∠DAC =∠ECB ,在△ADC 和△CEB 中,⎩⎨⎧∠ADC =∠CEB∠DAC =∠ECBAC =CB,∴△ADC ≌△CEB (AAS),∴AD =CE ,CD =BE ,∴DE =CE +DC =AD +BE ;(2)解:DE =kBE +1k AD .证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°,∵AD ⊥DE ,∴∠DAC +∠DCA =90°,∴∠DAC =∠ECB ,∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴△ADC ∽△CEB ,∴AD CE =DC BE =AC BC =k ,∴DC =kBE ,CE =1k AD ,∴DE =DC +CE =kBE +1k AD ;(3)解:如解图,过点F 作FG ⊥BC 于点G ,∵AC =4,D 是AC 的中点,∴CD =2,∵EF =2DE ,易证△DCE ∽△EGF ,FG =2CE ,EG =2DC =4, 设CE =x ,则BG =BC -CG =12-4-x =8-x ,∵FG ⊥BC ,AC ⊥BC ,∴∠ACB =∠FGB =90°,∵∠B =∠B ,∴△FGB ∽△ACB ,∴FG AC =BG BC ,即2x 4=8-x 12,解得x =87,即CE 的长为87.第5题解图6. (1)证明:∵∠ACB =90°,AC =BC ,D 为AB 的中点,∴∠BCD =∠ACD =45°,∠BCE =∠ACF =90°,∴∠DCE =∠DCF =135°,在△DCE 与△DCF 中,⎩⎨⎧CE =CF∠DCE =∠DCFCD =CD,∴△DCE ≌△DCF (SAS);(2) ①解:AB 2=4CE ·CF .证明:∵∠DCF =∠DCE =135°,∴∠CDF +∠F =180°-135°=45°,∵∠CDF +∠CDE =45°,∴∠F =∠CDE ,∴△CDF ∽△CED , ∴CD CE =CF CD ,即CD 2=CE ·CF ,∵∠ACB =90°,AC =BC ,CD 平分∠ACB ,∴CD =AD =BD =12AB ,∴(12AB )2=CE ·CF ,∴AB 2=4CE ·CF ;②解:如解图,过D 作DG ⊥BC 于G ,由①得AB 2=4CE ·CF , ∵AB =42,CE =2CF ,∴CE =4,CF =2,∵DG ⊥BC 于G ,由题得∠B =45°,BD =12AB =2 2∴△DGB 是等腰直角三角形,∴BG =DG =22·sin 45°=2,∵DG ⊥BC ,AC ⊥BC ,∴DG ∥AC 即DG ∥CE ,∴∠ECN =∠DGN 又∵∠ENC =∠DNG ∴△CEN ∽△GDN ,∴CE DG =CN NG =42=2,又∵D 点为AB 中点,DG ∥AC ,∴CG =BG =2, ∴NG =13CG =23,在Rt △DGN 中,DN =DG 2+NG 2=22+(23)2=2103.第6题解图。

2019-2020年中考二轮专题几何综合试题

2019-2020年中考二轮专题几何综合试题

2019-2020年中考二轮专题几何综合试题【复习要点】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点:⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.⑵ 掌握常规的证题方法和思路.⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等). 【实弹射击】 一、填空题 1、(08)如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°,则∠AN M= °; 2、(07)如图2,AD 是⊙O 的直径,AB ∥CD ,∠AOC=60°,则∠BAD=______度. 3、(08)如图3,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.4、(08佛山市)如图4,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .5、(07广州市)如图5,点D 是AC 的中点,将周长为4㎝的菱形ABCD 沿对角线AC 方向平移AD 长度得到菱形OB ’C ’D ’,则四边形OECF 的周长是 ㎝6、(08茂名市)如图6,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°,则∠OAC 的度数是 .(1) (08梅州市) 如图7,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB的中点D ,测得CD=30米,则AB=______米.图2OD CB A A M NB C图1 O B D C A 图3 图4 B CD A POC BA 图6 图5图7OCBA(2) (08梅州市) 如图8, 点 P 到∠AOB 两边的距离相等,若∠POB=30°,则 ∠AOB=_____度. (3) (09广东省) 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°,则BC=_________cm.二、解答题1.(08广东省)如图,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.2、(08广东省)如图,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF. (1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积.3、(08广东省)(本题满分9分)(1)如图a ,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .(1)求∠AEB 的大小;(2)如图b ,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.图8C B OD 图a A B A O D CE 图b图9C OBB 1C C B A 1114、(09广东省) 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长;(2)点P为线段BC 上的点,连接PO 并延长交AD 于点Q.求证:BP=DQ. 5、(09广东省) 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为邻边作第3个平行四边形1211C B B O ……依此类推.(1)求矩形ABCD 的面积;(2)求第1个平行四边形 、第2个平行四边形和第6个平行四边形的面积.6、(09广东省)(1)如图1,圆内接△ABC 中,AB=BC=CA ,OD 、OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC 于点G ,求证:阴影部分四边形OFCG 的面积是△ABC 的面积的31. (2)如图2,若∠DOE 保持120°角度不变,求证:当∠DOE 绕着O 点旋转时,由两条半径和△ABC 的两条边围成的图形(图中阴影部分)面积始终是△ABC 的面积的31.7、(10广东省)如图,PA 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA=2,OP=4。

2019-中考数学第二轮专题复习几何综合题

2019-中考数学第二轮专题复习几何综合题

2019-2020 年中考数学第二轮专题复习几何综合题几何综合题是中考试卷中常有的题型,大体可分为几何计算型与几何论证型综合题,它主要观察考生综合运用几何知识的能力。

一、几何论证型综合题例 1、(盐城)如图,已知:⊙O1与⊙O2是等圆,它们订交于A、B两点,⊙O2在⊙O1上,AC 是⊙ O2的直径,直线 CB 交⊙ O1于 D ,E 为 AB 延长线上一点,连接 DE。

(1)请你连接AD ,证明: AD 是⊙ O1的直径;(2)若∠ E=60°,求证: DE 是⊙ O1的切线。

解析:解几何综合题,一要注妄图形的直观提示,二要注意解析挖掘题目的隐含条件,不断地由已知想可知,发展条件,为解题创条件打好基础。

证明:( 1)连接 AD ,∵ AC 是⊙ O2的直径, AB ⊥DC A∴∠ ABD=90° ,∴ AD 是⊙ O1的直径O 1O 2( 2)证法一:∵ AD 是⊙ O1的直径,∴O1为 AD 中点D C连接 O1O2,B ∵点 O2在⊙ O1上,⊙ O1与⊙ O2的半径相等,E ∴ O1O2=AO 1=AO 2∴△ AO 1O2是等边三角形,∴∠ AO 1O2=60°由三角形中位线定理得: O1O2∥DC,∴∠ ADB= ∠AO 1O2=60 °∵ AB ⊥ DC,∠ E=60,∴∠ BDE=30 ,∠ ADE= ∠ADB+ ∠BDE=60° +30°=90°又 AD 是直径,∴ DE 是⊙ O1的切线证法二:连接 O1O2,∵点 O2在⊙ O1上, O1与 O2的半径相等,∴点 O1在⊙ O2∴ O1O2=AO 1=AO 2,∴∠ O1AO 2=60 °∵ AB 是公共弦,∴ AB ⊥ O1O2,∴∠ O1AB=30°∵∠ E=60°∴∠ ADE=180° - ( 60° +30°) =90°由( 1)知: AD 是的⊙ O1直径,∴DE 是⊙ O1的切线 .说明:本题观察了三角形的中位线定理、圆有关看法以及圆的切线的判判定理等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年中考数学第二轮专题复习几何综合题几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。

一、几何论证型综合题例 1、(盐城)如图,已知:⊙O1与⊙O2是等圆,它们相交于A、B两点,⊙O2在⊙O1上,AC 是⊙ O2的直径,直线 CB 交⊙ O1于 D ,E 为 AB 延长线上一点,连接 DE。

(1)请你连结AD ,证明: AD 是⊙ O1的直径;(2)若∠ E=60°,求证: DE 是⊙ O1的切线。

分析:解几何综合题,一要注意图形的直观提示,二要注意分析挖掘题目的隐含条件,不断地由已知想可知,发展条件,为解题创条件打好基础。

证明:( 1)连接 AD ,∵ AC 是⊙ O2的直径, AB ⊥DC A∴∠ ABD=90° ,∴ AD 是⊙ O1的直径O 1O 2( 2)证法一:∵ AD 是⊙ O1的直径,∴O1为 AD 中点D C连接 O1O2,B ∵点 O2在⊙ O1上,⊙ O1与⊙ O2的半径相等,E ∴ O1O2=AO 1=AO 2∴△ AO 1O2是等边三角形,∴∠ AO 1O2=60°由三角形中位线定理得: O1O2∥DC,∴∠ ADB= ∠AO 1O2=60 °∵ AB ⊥ DC,∠ E=60,∴∠ BDE=30 ,∠ ADE= ∠ADB+ ∠BDE=60° +30°=90°又 AD 是直径,∴ DE 是⊙ O1的切线证法二:连接 O1O2,∵点 O2在⊙ O1上, O1与 O2的半径相等,∴点 O1在⊙ O2∴ O1O2=AO 1=AO 2,∴∠ O1AO 2=60 °∵ AB 是公共弦,∴ AB ⊥ O1O2,∴∠ O1AB=30°∵∠ E=60°∴∠ ADE=180° - ( 60° +30°) =90°由( 1)知: AD 是的⊙ O1直径,∴DE 是⊙ O1的切线 .说明:本题考查了三角形的中位线定理、圆有关概念以及圆的切线的判定定理等。

练习一1.( 2005 年临沂)如图,梯形ABCD内接于⊙ O, AD∥ BC,过点 C 作⊙ O的切线,交 BC的延长线于点 P,交 AD的延长线于点 E,若 AD=5, AB=6, BC=9。

⑴求 DC的长;⑵求证:四边形ABCE是平行四边形。

2.( 2005 年陕西课改)已知:如图, AB是⊙ O的直径,点 P 在 BA 的延长线上, PD切⊙ O 于点 C,BD⊥ PD,垂足为 D,连接 BC。

D求证:( 1) BC平分∠ PBD;( 2)BC2AB BDCP A O B图 5-1- 23.( 2005 年陕西) PC切⊙ O于点 C,过圆心的割线P AB交⊙ O于 A、B 两点, BE⊥PE,垂足为 E,BE交⊙ O于点 D, F 是 PC上一点,且PF= AF, FA 的延长线交⊙ O于点 G。

PC PO求证:( 1)∠ FGD= 2∠ PBC;( 2).AG AB4.( 2005 年四川)已知:如图,△ ABC内接于⊙ O,直径 CD⊥ AB,垂足为 E。

弦 BF交 CD于点M,交 AC于点 N,且 BF=AC,连结 AD、 AM,求证: (1)△ ACM≌△ BCM;A F(2)AD· BE=DE· BC;N(3)BM 2=MN·MF 。

D E M O CB5.( 2005 年宿迁)已知:如图,△ ABC中, AC= BC,以 BC为直径的⊙ O交 AB 于点 D,过点 D作 DE⊥ AC于点 E,交 BC的延长线于点 F.求证:( 1) AD=BD;A ( 2) DF是⊙ O的切线.DEBO C F二、几何计算型综合题解这类几何综合题,应该注意以下几点:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,或通过添加辅助线补全或构造基本图形;(2)灵活运用数学思想与方法 .例 2.( 2005 年南通)如图,矩形 ABCD的对角线 AC、 BD相交于点OB的中点.(1)求证:△ ADE≌△ BCF;(2)若 AD = 4cm , AB = 8cm ,求 CF 的长.解:( 1)∵四边形 ABCD为矩形,∴ AD=BC, OA=OC, OB=OD, AC=BD, AD∥ BC,D∴OA=OB= OC,∠ DAE=∠ OCB,∴∠ OCB=∠ OBC,O, E、 F 分别是 OA、BFO(例2题)C∴∠ DAE=∠ CBF.又∵ AE=1OA, BF=1OB,∴ AE= BF,22∴△ ADE≌△ BCF.(2)解:过点 F 作 FG⊥ CD于点 G,则∠ DGF= 90o,∵∠ DCB= 90o,∴∠ DGF=∠ DCB,又∵∠ FDG=∠ BDC,∴△ DFG∽△ DBC,∴FG DF DG. BCDB DCB F由( 1)可知 DF= 3FB,得DF3 ,D DB4∴FG3DG,∴FG=3,DG=6,448∴GC=DC- DG=8- 6= 2.(例 2)G C在 Rt△ FGC中,CF FG 2GC29 413 .说明:本题目考查了矩形的性质,三角形全等的判定以及相似三角形的判定及性质。

练习二1.( 2005 年宁德)已知:如图,直线 PA交⊙ O于 A、E 两点, PA 的垂线 DC切⊙ O于点 C,过 A 点作⊙ O的直径 AB。

(1)求证: AC平分 DAB;(2)若 DC=4, DA= 2,求⊙ O的直径。

2.(2005 年四川)已知:如图,以Rt △ ABC的斜边 AB 为直径作⊙O, D 是⊙ O 上的点,且有 AC=CD。

过点 C 作⊙ O的切线,与BD的延E长线交于点E,连结 CD。

C D(1)试判断 BE与 CE是否互相垂直 ?请说明理由;(2) 若 CD=2 5, tan ∠ DCE=1,求⊙ O的半径长。

AOB 23.( 2005 年苏州)如图, AB 是⊙ O 的直径, BC 是⊙ O 的切线, D 是⊙ O 上的一点,且 AD ∥CO 。

(1) 求证:ADB ∽ OBC ;(2) 若 AB=2, BC= 2 ,求 AD 的长。

( 结果保留根号 )CDABO4.(2005 年潍坊)如图 , AD 是 ABC 的角平分线 , 延长 AD 交 ABC 的外接圆 O 于点 E ,过 C 、D 、E 三点的圆 O 1 交 AC 的延长线于点F ,连结 EF 、DF .A(1) 求证: AEF ∽ FED ;(2) 若 AD 6,DE3, 求 EF 的长;DC(3) 若DF ∥BE ,试判断 ABE 的形状,并说明理由.BO 1EOF5.( 2005年温州)如图,已知四边形ABCD 内接于⊙O ,A 是BDC的中点,AE ⊥ AC 于A ,与⊙O 及 CB 的延长线分别交于点F 、 E ,且BFAD, EM 切⊙ O于M 。

⑴△ ADC ∽△ EBA ;⑵ AC 2= 1BC ·CE ;2⑶如果 AB = 2,EM = 3,求 cot ∠ CAD 的值。

能力提高1、(2005 年绍兴)如图矩形ABCD中,过 A,B 两点的⊙ O切 CD于 E,交 BC于 F,AH⊥ BE 于 H,连结 EF。

(1)求证:∠ CEF=∠ BAH(2)若 BC=2CE= 6,求 BF 的长。

2.( 2005 年辽宁)如图,⊙ O的弦 AB=10, P 是弦 AB所对优弧上的一个动点,tan ∠APB=2,(1) 若△ APB为直角三角形,求PB的长;P(2) 若△ APB为等腰三角形,求△APB的面积。

OA B3.( 2005 年临沂课改)如图 l ,已知正方形 ABCD的对角线 AC、BD相交于点 O,E 是 AC上一点,连结 EB,过点 A 作 AM BE,垂足为 M, AM交 BD于点 F.(1)求证: OE=OF;(2)如图 2,若点 E 在 AC的延长线上, AM BE于点 M,交 DB 的延长线于点 F,其它条件不变,则结论“ OE=OF”还成立吗 ?如果成立,请给出证明;如果不成立,请说明理由.A DA DOOFE MMB C B C E图1F图 24.( 2005 年乌鲁木齐)如图11,在△ ABC中,∠ ABC= 90,AB= 6, BC= 8。

以 AB 为直径的⊙ O 交 AC于 D,E 是 BC的中点,连接 ED并延长交 BA 的延长线于点 F。

(1)求证: DE是⊙ O的切线;(2)求 DB的长;(3)求 S△FAD∶ S△FDB的值5.( 2005 年淮安)已知:□ABCD的对角线交点为 O,点 E、F 分别在边 AB、CD上,分别沿A、 C 两点恰好都落在 O点处,且四边形 DEBF为菱形(如图).⑴求证:四边形 ABCD是矩形; D ⑵在四边形 ABCD中,求AB的值.BC DE、BF 折叠四边形 ABCD,FO C·AB E6.( 2005 年淮安)如图, AB 是⊙ O的直径,点 C 在 BA的延长线上,CA=AO,点 D在⊙ O上,∠ABD=30°.⑴求证: CD是⊙ O的切线;⑵若点 P 在直线 AB 上,⊙ P 与⊙ O外切于点 B,与直线 CD相切于点 E,设⊙ O与⊙ P 的半径分别为 r 与 R,求r的值.R EDCA··O B P7、( 2005 年茂名)知直线 L 与◎○相切于点 A,直径 AB=6,点 P 在 L 上移动,连接 OP交⊙○于点 C,连接 BC并延长 BC交直线 L 于点 D.(1)若 AP=4,求线段 PC的长 ; ( 4 分)(2)若 PAO与 BAD相似,求∠ APO的度数和四边形 OADC的面积 . (答案要求保留根号)8、(2005 年绵阳)如图7,已知 BC是⊙ O的直径, AH⊥ BC,垂足为 D,点 A为 BF 的中点, BF交 AD于点 E,且 BE EF=32, AD=6.(1)求证: AE=BE; (2) 求 DE的长; (3) 求 BD的长 .9、( 2005 年江苏)如图1:⊙ O的直径为AB,过半径 OA的中点 G作弦 CE⊥AB,在CB上取一点 D,分别作直线 CD、 ED交直线 AB于点 F、M。

(1)求∠ COA和∠ FDM的度数;(2)求证:△ FDM∽△ COM;( 3)如图 2:若将垂足 G改取为半径 OB上任意一点,点 D 改取在EB上,仍作直线 CD、 ED,分别交直线 AB于点 F、 M,试判断:此时是否仍有△ FDM∽△ COM?证明你的结论。

10、( 2005 年福州)已知:如图 12,在直角梯形 ABCD中, AD∥ BC,BC= 5cm,CD= 6cm,∠ DCB= 60°,∠ ABC= 90°。

相关文档
最新文档