最新中考数学复习专题特殊平行四边形
中考数学专题知识点精讲1:特殊的平行四边形
特殊的平行四边形一、知识要点概述、边(或两底和)的一半.4、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:过三角形一边中点且平行于另一边的直线必平分第三边.推论2:过梯形一腰中点且平行于两底的直线必平分另一腰.二、典型例题剖析例1、已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下六个命题:①若所得四边形MNPQ为矩形,则原四边形ABCD是菱形;②若所得四边形MNPQ为菱形,则原四边形ABCD是矩形;③若所得四边形MNPQ为矩形,则AC⊥BD;④若所得四边形MNPQ为菱形,则AC=BD;⑤若所得四边形MNPQ为矩形,则∠BAD=90°;⑥若所得四边形MNPQ为菱形,则AB=AD.以上命题中,正确的是()A.①②B.③④C.③④⑤⑥D.①②③④答案:选B.例2、下列命题:①一组对边平行且相等的四边形是梯形;②一组对边平行且不相等的四边形是梯形;③一组对边平行,另一组对边相等的四边形是梯形;④一条直线与矩形的一组对边相交,必分矩形为两个直角梯形.其中真命题的序号是__________.分析:可采用反例法,即举的例子符合题设但不符合结论,从而说明原命题是假命题.①可举反例:平行四边形;②可证得另一组对边不平行,故符合定义;③可举反例:矩形;④直线与矩形垂直相交,则得到两个矩形.答案:②例3、已知:如图AB∥CD,AE⊥DC,AE=12,BD=15,AC=20,则梯形的面积是()A.130B.140C.150D.160分析:要求梯形的面积,由于,而AE=12,所以关键是求(AB+DC)的长,注意已知BD和AC,这样我们可过B作对角线AC的平行线交DC的延长线于F,则可证AB=CF,于是转化求(DC+CF)的长,又过B作BH⊥DC于H,则BH=AE=12,现在只要求DH和HF即可.在Rt△BDH中,利用勾股定理得在Rt△BHF中,故DF=DH+HF=DC+AB=9+16=25.这样梯形的面积为.答案:选C.例4、如图,梯形ABCD中,AD∥BC,中位线EF分别与BD、AC交于点G,H,若AD=6,BC=10,则GH=__________.分析:本题主要考查三角形、梯形的中位线定理.因为EF是中位线,,EG、HF分别是△ABD、△ACD的中位线,,故GH=EF-EG-HF=8-3-3=2.答案:2.例5、如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,求△BED的面积.解:由△BCD沿直线BD折叠与△BC′D重合,∠1=∠2,又∵AD∥BC,∴∠2=∠3.∠1=∠3,故△BED是等腰三角形.∴BE=ED.设ED=x,则AE=AD-ED=8-x.在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解之得x=5.故例6、如图,M、N分别是□ABCD的对边AD、BC的中点,且AD=2AB.求证:PMQN为矩形.证明:∵ABCD是平行四边形,∴AD BC.又M、N分别是AD、BC的中点,∴MD BN,BNDM为平行四边形.∴BM∥ND,同理AN∥MC,∴PMQN为平行四边形.连结MN,∵AM BN,∴ABNM为平行四边形.又AD=2AB,M为AD中点,∴AM=AB.∴ABNM为菱形,∴AN⊥BM.∴PMQN为矩形.说明:本例是一道平行四边形、菱形、矩形性质定理和判定定理反复运用的较好的综合题,同学们认真体会其证题思路和证明方法.例7、如图,过正方形ABCD的顶点B作BE∥AC且使AE=AC,又CF∥AE,求证:.分析:按常规思路将∠AEB取半或将∠BCF加倍,但由于图形的“不规则”性,难于达到目的,易见AEFC为菱形,∠ACB=45°,若结论成立,则∠ACF=∠AEF=30°,不妨利用正方形和菱形的特性求出∠E=30°.证明:连结BD交AC于O,作AH⊥BE于H.∵ABCD为正方形,∴AC与BD互相垂直平分于点O,且AO=BO.已知BE∥AC,已知AH⊥BE易证四边形AOBH为正方形,.∴∠AEH=30°又BE∥AC,AE∥CF,AE=AC.∴ACFE为菱形,∴∠AEF=∠ACF=30°,又∠ACB=45°,∴∠BCF=15°..例8、在梯形ABCD中,AD∥BC且AB=AD+BC,M为DC的中点,求证:AM⊥BM.分析:由题设AB=AD+BC,应将两底集中.证明:延长AM交BC延长线于N,∵M是DC的中点,AD∥BC,则△ADM≌△NCM.∴AD=CN,AM=MN.故AB=AD+BC=CN+BC=BN.由等腰三角形“三线合一”知BM⊥AM.说明:根据证题的需要,集中梯形的两底是常用辅助线之一,本例也可以先延长BC到N使BN=AB,再证A、M、N共线而得.例9、如图,在等腰梯形ABCD中AD∥BC,AB=DC,点P为BC边上的一点,PE⊥AB,PF⊥CD,BG⊥CD,垂足分别为E、F、G,求证:PE+PF=BG.证明:过P点作PH⊥BG于点H,∵BG⊥CD,PF⊥CD,PH⊥BG,∴四边形PHGF为矩形.∴PF=HG,PH∥CD,∴∠BPH=∠C.又在等腰梯形ABCD中AB=DC,∵∠PBE=∠C,∴∠PBE=∠BPH.故Rt△BPH≌Rt△PBE,∴BH=PE.∴PE+PF=BH+HG=BG.说明:在梯形的有关问题中常是化归为特殊的平行四边形及三角形来处理.例10、如图,ABCD为等腰梯形,AB∥CD,对角线AC、BD交于O,且∠AOB=60°,又E、F、G分别为DO、AO、BC的中点,求证:△EFG为等边三角形.分析:这里中点较多,显然,又AD=BC,要能证EG,FG为BC的一半才行,但无法用中位线定理,只有另辟蹊径,注意∠AOB=60°.证明:连结EC,∵ABCD为等腰梯形,∴AD=BC且AC=BD,又DC=DC,∴△ADC≌△BCD,∠ACD=∠BDC.∴△ODC为等腰三角形.∵∠DOC=∠AOB=60°,∴△ODC为等边三角形.又E为OD中点,∴∠OEC=90°.在Rt△BEC中,G为斜边的中点,,在△OAD中,∵E、F分别是OD、OA的中点,,∴△EFG为等边三角形.说明:本例中除揭示等腰梯形的诸性质外,还提醒同学们注意遇到中点应联想中位线,但不要只想到中位线,须将所学过的知识综合运用,这里运用了“直角三角形斜边上的中线等于斜边的一半”.。
2024年中考福建专用数学一轮知识点训练复习5.2 特殊的平行四边形
11.(2023·大连)如图,在正方形ABCD中,AB=3,延长BC至
E,使CE=2,连接AE.CF平分∠DCE交AE于F,连接DF,则ABCD中,M,N,P,Q分别为边AB,BC,CD,DA
上的点(不与端点重合),对于任意矩形ABCD,下面四个结
∠ABD=60°,动点E在线段OB上,动点F在线段OD上,点E,
F同时从点O出发,分别向终点B,D运动,且始终保持OE=
OF.点E关于AD,AB的对称点为E1,E2;点F关于BC,CD的对
称点为F1,F2在整个过程中,四边形E1E2F1F2形状的变化依次
是( A )
A
A.菱形→平行四边形→矩形→平行四边形→菱形
图3
∴,∴2y=x+n,∴2+n,∴2at=t2+n2,在Rt△CDE中,n2=t2+a2,∴2at=2t2+a2,∴a=t,∵AF∥CD,∴,∴,∴AF==a-=a-t,∵AE=a-t,∴AE=AF.
∴∠ADF=∠H;
【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE
=DF=11,DE=8,∠AED=60°,求CF的长.
(3)如图3,延长BC至点G,使CG=DE=8,连接DG,
∵四边形ABCD是菱形,∴AD=DC,AD∥BC,
∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),
∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF;
【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,
AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF
=∠H.
(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°,∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF,∵CH=DE,∴CF=CH,∵点H在BC的延长线上,∴∠DCH=∠DCF=90°,又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H,∵AD∥BC,∴∠ADF=∠DFC,
中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)
中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。
专题60 二次函数背景下的特殊平行四边形存在性问题(原卷版)-中考数学解题大招复习讲义
模型介绍要求证平行四边形的存在,得先了解平行四边形的性质:(1)对应边平行且相等.(2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:A B D C AB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D,移动路径完全相同.(2)对角线互相平分转化为:2222A CB D AC B Dx x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D B A B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩,2222A CB D AC B Dx x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩.当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A +C =B +D ”,则四边形ABCD 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCD 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1)四边形ABCD 是平行四边形:AC 、BD 一定是对角线.(2)以A 、B 、C 、D 四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.【题型分类】1.三定一动已知A (1,2)B (5,3)C (3,5),在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形.思路1:利用对角线互相平分,分类讨论:设D 点坐标为(m ,n ),又A (1,2)B (5,3)C (3,5),可得:(1)BC 为对角线时,531352m n +=+⎧⎨+=⎩,可得()17,6D ;(2)AC 为对角线时,135253m n +=+⎧⎨+=+⎩,解得()21,4D -;(3)AB 为对角线时,153235m n +=+⎧⎨+=+⎩,解得()33,0D .当然,如果对这个计算过程非常熟悉的话,也不用列方程解,直接列算式即可.比如:1=D B C A +-,2=D A C B +-,3D A B C =+-.(此处特指点的横纵坐标相加减)2.两定两动已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2).(1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质:(1)对边平行且相等;(2)对角线互相平分.但此两个性质统一成一个等式:A C B D AC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.由图形性质可知未知量,由未知量可知动点设计,由动点设计可化解问题.例题精讲考点一:二次函数背景下的平行四边形存在性问题【例1】.如图,抛物线y =ax 2+bx +6与x 轴交于A (2,0),B (﹣6,0)两点.(1)求该抛物线的表达式;(2)点P是抛物线上一点,点Q是抛物线对称轴上一点,是否存在点P,使得以B、Q、C、P为顶点的四边形是平行四边形,若存在,请求出点P的坐标;若不存在,请说明理由.变式训练【变1-1】.如图所示,在平面直角坐标系xOy中,抛物线y=(m﹣1)x2﹣(3m﹣4)x﹣3与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴是经过(1,0)且与y轴平行的直线,点P是抛物线上的一点,点Q是y轴上一点;(1)求抛物线的函数关系式;(2)若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)若tan∠PCB=,求点P的坐标.考点二:二次函数背景下的菱形存在性问题【例2】.如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.变式训练【变2-1】.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.考点三:二次函数背景下的矩形存在性问题【例3】.综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.变式训练【变3-1】.如图1,若二次函数y=﹣x2+3x+4的图象与x轴交于点A、B,与y轴交于点C,连接AC、BC.(1)求三角形ABC的面积;(2)若点P是抛物线在一象限内BC上方一动点,连接PB、PC,是否存在点P,使四边形ABPC的面积为18,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K 为顶点,BC为边的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.考点四:二次函数背景下的正方形存在性问题【例4】.已知O为坐标原点,抛物线y=x2﹣3x﹣4与x轴交于A,B两点(点A在点B的右侧),有点C(﹣2,6).(1)求A,B两点的坐标.(2)若点D(1,﹣3),点E在线段OA上,且∠ACB=∠ADE,延长ED交y轴于点F,求△EFO的面积.(3)若M在直线AC上,点Q在抛物线上,是否存在点M和点N,使以Q,M,N,A 为顶点的四边形是正方形?若存在,直接写出M点的坐标.若不存在,请说明理由.变式训练【变4-1】.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点Q在该抛物线的对称轴上,若△BCQ是以BC为直角边的直角三角形,求点Q 的坐标;(3)若P为BD的中点,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.1.综合与探究如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB,点P是第三象限内抛物线上的一动点,连接AC,过点P作PE∥y 轴,与AC交于点E.(1)求此抛物线的解析式;(2)当PC∥AB时,求点P的坐标;(3)用含x的代数式表示PE的长,并求出当PE的长取最大值时对应的点P的坐标;(4)在(3)的条件下,平面内是否存在点Q,使以A、P、C、Q为顶点的四边形是平行四边形,若存在,直接写出点Q的坐标,若不存在,请说明理由.2.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.4.如图1,在平面直角坐标系xOy中,抛物线C:y=﹣x2+bx+c与x轴相交于A,B两点,顶点为D,其中A(﹣4,0),B(4,0),设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C'.(1)求抛物线C的函数解析式;(2)若抛物线C'与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围;(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C'上的对应点P',设M是C上的动点,N是C'上的动点,试探究四边形PMP'N能否成为正方形?若能,求出m的值;若不能,请说明理由.5.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点F为直线AD下方抛物线上一动点,连接FA,FD,求△FAD面积的最大值;(3)在(2)的条件下,将抛物线y=ax2+bx﹣4(a≠0)沿射线AD平移4个单位,得到新的抛物线y1,点E为点F的对应点,点P为y1的对称轴上任意一点,在y1上确定一点Q,使得以点D,E,P,Q为顶点的四边形是平行四边形,请直接写出所有符合条件的点Q的坐标.6.如图,直线y=﹣x+4分别交x轴、y轴于A、C两点,抛物线y=﹣x2+mx+4经过点A,且与x轴的另一个交点为点B.连接BC,过点C作CD∥x轴交抛物线于点D(1)求抛物线的函数表达式;(2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点C、M、N、P为顶点的四边形是菱形,求菱形的边长.7.如图,已知直线y=2x+n与抛物线y=ax2+bx+c相交于A,B两点,抛物线的顶点是A(1,﹣4),点B在x轴上.(1)求抛物线的解析式;(2)若点M是y轴上一点,点N是坐标平面内一点,当以A、B、M、N为顶点的四边形是矩形时,求点M的坐标.(3)在抛物线上是否存在点Q,使∠BAQ=45°,若存在,请直接写出点Q的横坐标;若不存在,说明理由.8.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、(结位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.果保留根号)9.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,点E为抛物线在直线AD下方的一个动点,连接AE、DE,问:△ADE的面积是否存在最大值?若存在,请求出面积的最大值和点E的坐标.若不存在,请说明理由.(3)P为抛物线上的一动点,Q为对称轴上一动点,若以A、D、P、Q为顶点的四边形为平行四边形,请直接写出点P的坐标(至少写两个).10.如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c 图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=﹣x2+x+4与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)点B与点D的坐标;(2)点P是第一象限内抛物线上位于对称轴右侧的一个动点,设点P点的横坐标为m,=S△ABC,求m的值;且S△CDP(3)K是抛物线上一个动点,在平面直角坐标系中是否存在点H,使B、C、K、H为顶点的四边形成为矩形?若存在,直接写出点H的坐标;若不存在,说明理由.12.如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.13.如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧),且A(﹣2,0),直线BC的解析式为y=﹣+3.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE、EB、BD、DC,求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+3(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+3(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.14.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBFG,随着点P的运动,正方形的大小、位置也随着改变,当顶点F或G恰好落在y轴上时,请直接写出点P的横坐标.15.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a 的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB 于点D,求线段PD的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy中,△ABC的顶点A在y轴上,BC边与x轴重合,过C 点作AB的垂线分别交AB和y轴于点D、H,AB=HC,线段OB、OC(OB<OC)的长是方程x2﹣6x+8=0的根.(1)求直线CD的解析式;(2)点P是线段BC上的一动点,点Q是线段OA上的一动点且2BP=3OQ,设BP=t,△OPQ的面积为S,请求出S与t的函数关系;(3)在(2)的条件下,在平面上是否存在一点M,使得以P,Q,O,M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,请说明理由.18.如图,抛物线y=x2﹣4x+3与坐标轴交于A、B、C三点,过点B的直线与抛物线交于另一点E,若经过A、B、E三点的⊙M满足∠EAM=45°.(1)求直线BE的解析式;(2)若D点是直线BE下方的抛物线上一动点,连接BD和ED,求△BED面积的最大值;(3)点P在抛物线的对称轴上,平面内是否存在一点Q,使得以点A,C,P,Q为顶点的四边形为矩形,若存在,请直接写出Q点坐标.19.如图,直线y=x+2与x轴,y轴分别交于点A,C,抛物线y=﹣x2+bx+c经过A,C两点,与x轴的另一交点为B,点D是抛物线上一动点.(1)求抛物线的解析式;(2)当点D在直线AC上方时,连接BC,CD,BD,BD交AC于点E,令△CDE的面积为S1,△BCE的面积为S2,求的最大值;(3)点F是该抛物线对称轴上一动点,是否存在以点B,C,D,F为顶点的平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.20.如图1,平面直角坐标系中,O是坐标原点,二次函数y=x2+bx+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣3),点B坐标是(3,0),点P是抛物线的顶点.(1)请直接写出二次函数的表达式及顶点P的坐标;(2)如图2,设二次函数图象的对称轴PH与x轴交于点H,①连接AC,BC,CP,点D为对称轴PH上的一点,且△CDP与△ABC相似,求点D的坐标;②点M为对称轴PH上一点且在x轴下方,在x轴负半轴上有一点E,在y轴负半轴上有一点F,且满足OF=4EO=4MH,已知点N在抛物线上,以E,F,M,N为顶点的四边形为平行四边形,请直接写出点E的坐标.21.在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)如图,直线y=与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当点F在直线AD上方的抛物线上,且S△EFG=S△OEG时,求m的值;②在平面内是否存在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式,并写出x为何值时y=0.(2)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【提示】①以AB为边时,求点M的坐标.②以AB为对角线时,求点M的坐标.23.如图1(注:与图2完全相同)所示,抛物线y=﹣+bx+c经过B、D两点,与x 轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)24.如图所示,抛物线与x轴相交于A,B两点(B在A的右边),与y轴相交于点C(0,﹣3),点M(1,﹣4)为抛物线的顶点.(1)求此抛物线的解析式.(2)若点N是第四象限内抛物线上的一个动点,连接BN,CN,当△BNC是以BN,NC 为腰的等腰三角形时,求点N的坐标.(3)若点D G是抛物线上的动点,是否存在以点B,C,D,G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P,E,O 为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.25.如图所示,抛物线y=ax2+bx a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x=1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.26.如图,抛物线y=ax2+bx﹣6与x轴相交于A,B两点,与y轴相交于点C,OA=2,OB =4,直线l是抛物线的对称轴,在直线l右侧的抛物线上有一动点D,连接AD,BD,BC,CD.(1)求抛物线的函数表达式;(2)若点D在x轴的下方,当△BCD的面积是时,求△ABD的面积;(3)在(2)的条件下,点M是x轴上一点,点N是抛物线上一动点,是否存在点N,使得以点B,D,M,N为顶点,以BD为一边的四边形是平行四边形,若存在,求出点N的坐标;若不存在,请说明理由.27.综合与探究在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)直线AB的函数解析式为,点M的坐标为,cos∠ABO=;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为;(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.。
中考数学专题复习 特殊的平行四边形
矩形、菱形、正方形知识点一、矩形的性质与判定1.矩形的定义:有一个角是的平行四边形叫做矩形。
2.矩形的性质:(1)矩形的四个角都是;(2)矩形的对边;(3)矩形的对角线;(4)矩形既是中心对称图形,也是轴对称图形,有条对称轴。
3.矩形的判定:(1)用定义判定:有一个角是的平行四边形是矩形;(2)有三个角是直角的是矩形;(3)对角线相等的是矩形。
◆◆◆名师提醒◆◆◆(1)矩形是中心对称图形,对称中心是两条对角线的交点,矩形又是轴对称图形,对称轴有8条;(2)矩形被它的对角线分成四个全等的等腰三角形和两对全等的直角三角形;(3)矩形中常见题目是对角线相交成60°或120°角时,利用直角三角形、等边三角形等图形的性质解决问题。
知识点二、菱形的性质与判定1.菱形的定义:有一组邻边的平行四边形叫做菱形。
2.菱形的性质:(1)菱形的四条边都;(2)菱形的对角;(3)菱形的对角线,且每条对角线。
3.菱形的判定:(1)用定义判定:有一组邻边的平行四边形是菱形;(2)对角线互相的平行四边形是菱形;(3)四条边都相等的是菱形。
◆◆◆名师提醒◆◆◆(1)菱形既是中心对称图形,也是轴对称图形,它有两条对称轴,分别是两条对角线;(2)菱形被对角线分成四个全等的直角三角形和两对全等的等腰三角形;(3)菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的一半来计算;(4)菱形常见题目是内角为120°或60°时,利用等边三角形或直角三角形的相关知识解决的题目。
知识点三、正方形1.正方形的定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2.正方形的性质:(1)正方形四个角都,都是;(2)正方形四边条都;(3)正方形两对角线 、 且 ,每条对角线平分一组内角; (4)正方形既是中心对称图形,也是轴对称图形,有 条对称轴。
3.正方形的判定:(1)有一组邻边 的矩形是正方形,即先证是矩形,再证 ; (2)对角线互相 的矩形是正方形,即先证是矩形,再证 ; (3)有一个角是 的菱形是正方形,即先证是菱形,再证 ; (4)对角线 的菱形是正方形,即先证是菱形,再证 。
中考数学专题复习:特殊的平行四边形
特殊的平行四边形
返回目录
例1 练习1
例2 练习2
例3 练习3
(3)如图,当点F是BD的中点时,则BF=DF, ∴AF⊥BD,∠BAF=∠DAF=12 ∠BAD=45°. ∵∠EAF=45°,∴∠EAF=∠BAF, ∴AE与AB重合,点E与点B重合, ∴∠AEF=∠ABD=45°,∠AFE=∠AFB=90°. 由旋转,得∠AEQ=∠ADF=45°,∠Q=∠AFD=90°, ∴∠FEQ=90°, ∴四边形AFEQ是矩形. ∵AQ=AF, ∴四边形AFEQ是正方形.
(3)对称性:既是中心对称图形,又是轴对称图形,有⑳ 4 条对称轴.
(4)面积:S= ○21 a2 (a表示正方形边长)=○22
1AC2(或 1BD2)
2
2
。
(用对角线计算).
特殊的平行四边形
返回目录
1.有一个角是直角的○23 菱 形是正方形.菱∠形ABACB=CD90° 菱形ABCD是正方形
2.有一组邻边相等的○24 矩 形是正方形.矩形ABCD
返回目录
例1
三、正方形的性质与判定 例3. 如图,在正方形ABCD中,E,F是对角线BD上两点,且∠EAF=
练习1 45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ.
例2
(1)由旋转的特征可得AQ= ,∠BAQ=∠ ,由正方形的性质可得
∠BAD= °,进而可证明△AEQ ≌ ,证明依据:
解析:如图,连接FC,AE,设AC,EF交于点O.∵EF为AC的垂直平分线,∴AF =FC,AE=EC,AO=OC.∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,
∠FAC=∠ECA, ∴∠FAC=∠ECA.在△AFO和△CEO中, AO=CO,
2023年中考数学 几何专题:特殊的平行四边形(含答案)
2023中考数学 几何专题:特殊的平行四边形(含答案)例1 矩形的性质(1)如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α=∠________度.(2)矩形边长为10和15,其中一内角平分线分长边为两部分,这两部分的长为( )A .6和9B .5和10C .4和11D .7和8(3) 如图,矩形ABCD中,120AOD BC ∠=︒=,,则下列结论:①AOB △是等边三角形②130∠=︒③3cm AB =④6cm AC =⑤2ABCD S =矩形.其中正确的有( )A .①②③B .①②③④C .②③④⑤D .①②③④⑤(4) 如图,矩形ABCD 中,O 是两对角线的交点,AE BD ⊥,垂足为E.若2OD OE AE =,则DE 的长为________.【答案】(1)30;(2)B ;(3)D ;(4)3例2 矩形模型 (1)如图,已知矩形ABCD 中,对角线AC 、BD 相交于点O ,AE BD ⊥,垂足为E ,:3:1DAE BAE ∠∠=,则EAC ∠的度数为_______.α60°lm DCBAO 1DC BA第14题图E OCBDAA B(2)如图所示,矩形ABCD 内一点P 到A 、B 、C 的长分别是2、3、4,则PD 的长为_______.(3)已知,如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3AB =,4AD =,那么PE+PF=_______.【答案】(1)45︒;(2(3)125例3 矩形的判定(1)在四边形ABCD 中,AB DC =,AD BC =.请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是________.(写出一种即可)【答案】AC BD =或AB BC ⊥或90ABC =︒∠(答案不唯一)(2)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,若MA=MC ,∠BAN=90°,求证:四边形ADCN 是矩形.证明:∵CN ∥AB , ∴∠DAC=∠NCA , 在△AMD 和△CMN 中,∵∠DAC =∠NCA ,MA =MC ,∠AMD =∠CMN ∴△AMD ≌△CMN (ASA ), ∴AD=CN . 又∵AD ∥CN ,∴四边形ADCN 是平行四边形. 又∵∠BAN=90度,∴四边形ADCN 是矩形.(3)如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分PDCBAABCDPEF线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.【答案】∵四边形ABCD 为平行四边形∴AB CD ∥,AD BC ∥∵AQ 、BN 分别是DAB ∠、ABC ∠的平分线 ∴180BAD ABC ∠+∠=︒ ∴90QPN ∠=︒同理90PQM QMN MNP ∠=∠=∠=︒ ∴四边形PQMN 是矩形.例4 (1)如图,已知菱形ABCD 的两条对角线相交于点O ,若6AC =,4BD =,则菱形ABCD 的周长是( )A .24B .16C.D.(2)如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( ) A .2.4cmB .4.8cmC .5cmD .9.6cm(3)如图,在边长为2的菱形ABCD 中,∠A=60°,DE ⊥AB ,DF ⊥BC ,则△DEF 的周长为_______(4)如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若70B =︒∠,则AED ∠的大小为( )NMQPDCBAODC BAA .60︒B .55︒C .65︒D .70︒ (5)如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点E ,点F 为垂足,连接DE ,则CDE ∠=( )A .80︒B .70︒C .65︒D .60︒(6)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 是对角线AC 上的一个动点,点E 是AB 边上的中点,则PB PE +的最小值为( )A .2B.C. D .4【答案】(1)C ;(2)B ;(3)(4)B ;(5)D ;(6)B能力提升例5 菱形的判定(1)已知:如图,平行四边形的对角线、相交于点,且,,求证:平行四边形是菱形;ABCDEHFABCDEABCD AC BD O 10AB =5AO =BO =ABCD【答案】∵在中,,, ∴ ∴是直角三角形∴平行四边形是菱形.AOB △10AB =5AO=BO =222AB AO BO =+AOB △AC BD ⊥ABCD(2)如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD 于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.【答案】∵∠ACB=90°,AD 是∠CAB 的平分线,DE ⊥AB , ∴DC=DE ,∠CAD=∠EAD ,∠CDF+∠CAD=90°, ∵CH 是AB 边上的高, ∴CH ⊥AB ,∴CH ∥DE ,∠AFH+∠EAD=90°, ∴∠CDF=∠AFH , ∵∠CFD=∠AFH , ∴∠CDF=∠CFD , ∴CF=DC , ∴CF=DE ,∴四边形CDEF 是平行四边形, ∴四边形CDEF 是菱形.例6 (1)如图,在正方形ABCD 中,E 是对角线BD 上任意一点,过E 作EF ⊥BC 于F ,作EG ⊥CD 于G ,若正方形ABCD 的周长为m ,则四边形EFCG 的周长为(2)如图,AC 为正方形ABCD 的对角线,E 为AC 上一点,联结EB ,ED ,当126BED ∠=°时,EDA ∠的度数为( )A .54°B .27°C .36°D .18°(3)已知正方形ABCD ,以AB 为边构造等边ABP ∆,那么DCP ∠=HF DECBAEDCB A【答案】(1)2m;(2)D ;(3)15°或75° 例7 下列说法不正确的是( ) A .有一个角是直角的菱形是正方形 B .两条对角线相等的菱形是正方形 C .对角线互相垂直的矩形是正方形D .四条边都相等的四边形是正方形【答案】D练1 (1)如图,矩形ABCD 中,3AB =,两条对角线AC 、BD 所夹的钝角为120︒,则对角线BD 的长为________(2) 矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长是 .【答案】(1)6 ;(2)10cm练2 (1)下列说法不能判定四边形是矩形的是( ) A .三个角是直角的四边形 B .四个角都相等的四边形 C .对角线相等的平行四边形 D .对角线垂直且相等的四边形 【答案】D(2)已知:如图,M 为▱ABCD 的AD 边上的中点,且MB=MC , 求证:▱ABCD 是矩形.证明:∵四边形ABCD 是平行四边形, ∴AB=CD .∵AM=DM ,MB=MC , ∴△ABM ≌△DCM . ∴∠A=∠D . ∵AB ∥CD ,∴∠A+∠D=180°. ∴∠A=90°.∴▱ABCD 是矩形.练3 (1)如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为_______;BC 上的高为_____(2)菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较长的对角线的长度为 【答案】(1)5、245;(2)练4 如图.矩形的对角线相交于点.,. ⑴ 求证:四边形是菱形;⑵ 若,菱形的面积为ABCD 的面积.【答案】⑴ ∵, ∴四边形是平行四边形 ∵四边形是矩形∴(矩形对角线相等且互相平分)∴四边形是菱形(邻边相等的平行四边形是菱形)⑵ABCD S练5 四边形ABCD 是正方形,延长BC 至E ,使CE AC =,连结AE 交CD 于F ,那么AFC ∠的度数为________.【答案】112.5°ABCD O DE AC ∥CE BD ∥OCED 30ACB ∠=︒OCED OEDC BADE AC ∥CE BD ∥OCED ABCD OC OD =OCED 12OCD OCED S S =△菱形FED CBA。
2024年中考复习-重难点04 平行四边形与特殊平行四边形(解析版)
重难点04平行四边形与特殊平行四边形考点一:平行四边形平行四边形的性质和判定属于难度不大,但是考察性比较多的一个考点,并且可综合性也比较强,特别是平行四边形的存在性问题,常常和函数结合出大题考察。
题型01多边形相关易错点:n边形内角和公式:(n-2)×180°【中考真题练】1.(2023•北京)正十二边形的外角和为()A.30°B.150°C.360°D.1800°【分析】本题考查多边形的外角和问题,多边形外角和定理:任意多边形的外角和都等于360°.【解答】解:因为多边形的外角和为360°,所以正十二边形的外角和为:360°.故选:C.2.(2023•湘西州)一个七边形的内角和是()A.1080°B.900°C.720°D.540°【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:(7﹣2)×180°=900°,故选:B.3.(2023•绵阳)蜜蜂的蜂巢美观有序,从入口处看,蜂巢由许多正六边形构成,则正六边形的对称轴有()A.4条B.5条C.6条D.9条【分析】根据轴对称定义画出正六边形的对称轴即可.【解答】解:如图,正六边形的对称轴有6条.故答案为:C.4.(2023•湖北)若正n边形的一个外角为72°,则n=5.【分析】根据正多边形的性质及其外角和为360°列式计算即可.【解答】解:∵正n边形的一个外角为72°,∴n=360÷72=5,故答案为:5.5.(2023•长春)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B',折痕为AF,则∠AFB'的大小为45度.【分析】由多边形的内角和及轴对称的性质和三角形内角和可得出结论.【解答】解:∵五边形的内角和为(5﹣2)×180°=540°,∴∠B=∠BAE=108°,由图形的折叠可知,∠BAM=∠EAM=∠BAE=54°,∠BAF=∠FAB'=∠BAM=27°,∠AFB'=∠AFB=180°﹣∠B﹣∠BAF=180°﹣108°﹣27°=45°.故答案为:45.6.(2023•淮安)如图,3个大小完全相同的正六边形无缝隙、不重叠的拼在一起,连接正六边形的三个顶点得到△ABC,则tan∠ACB的值是.【分析】以BH,HG,GD为边,作正六边形BHGDFE,,连接BD,DE,AD,由正六边形性质可得C,B,E共线,A,D,E共线;而∠BDE=∠EDG﹣∠BDG=90°﹣60°=30°,∠DBE=∠DBH=60°,即有∠DEB=90°,即∠AEC=90°,设正六边形的边长为m,则BD=2BE=2m=BC,故DE=BE =m=AD,CE=BC+BE=3m,从而tan∠ACB===.【解答】解:以BH,HG,GD为边,作正六边形BHGDFE,,连接BD,DE,AD,如图:由正六边形性质可知∠HBC=60°,∠HBE=120°,∴∠HBC+∠HBE=180°,∴C,B,E共线;由正六边形性质可得∠KDG=120°=∠AKD,AK=DK,∴∠ADK=30°,∴∠ADG=∠KDG﹣∠ADK=90°,同理∠EDG=∠FDG﹣∠FDE=120°﹣30°=90°,∴∠ADG+∠EDG=180°,∴A,D,E共线;∵∠BDE=∠EDG﹣∠BDG=90°﹣60°=30°,∠DBE=∠DBH=60°,∴∠DEB=90°,即∠AEC=90°,设正六边形的边长为m,则BD=2BE=2m=BC,∴DE=BE=m=AD,CE=BC+BE=3m,∴AE=2m,∴tan∠ACB===;故答案为:.【中考模拟练】1.(2024•恩施市校级一模)若一个多边形每一个内角都为144°,则这个多边形是()边形.A.6B.8C.10D.12【分析】根据多边形的内角与外角的关系可求解外角的度数,再利用多边形的外角和可求解.【解答】解:∵一个多边形每一个内角都为144°,∴外角为180°﹣144°=36°,∴多边形的边数为360°÷36°=10,故选:C.2.(2024•江城区一模)小聪利用最近学习的数学知识,给同伴出了这样一道题:假如从点A出发,沿直线走6米后向左转θ,接着沿直线前进6米后,再向左转θ……如此下去,当他第一次回到A点时,发现自己走了72米,θ的度数为()A.30°B.36°C.60°D.72°【分析】小聪第一次回到出发点A时,所经过的路线正好构成一个正多边形.计算这个正多边形的边数和外角即可.【解答】解:∵第一次回到出发点A时,所经过的路线正好构成一个正多边形,∴多边形的边数为:72÷6=12.根据多边形的外角和为360°,∴他每次转过的角度θ=360°÷12=30°.故选:A.3.(2024•巧家县模拟)一个多边形外角和是内角和的.则这个多边形的边数是()A.10B.11C.12D.13【分析】设这个多边形的边数为n,根据题意列得方程,解方程即可.【解答】解:设这个多边形的边数为n,则(n﹣2)•180°=360°,解得:n=12,即这个多边形的边数为12,故选:C.4.(2024•子洲县校级二模)工人师傅选用三种规格的边长都是1m的正多边形地砖铺地.他先用两块正六边形地砖和一块正方形地砖铺成如图所示的图形,若再用一块正多边形地砖无缝隙不重叠地铺在∠AOB 处,则选用的这块正多边形地砖的周长是12米.【分析】根据题意得到∠AOB的大小,结合多边形内角和列式求解即可得到答案.【解答】解:∵一块正六边形和一块正方形地砖绕着点O进行的铺设,∴,∴设这块正多边形地砖的边数是n,∴(n﹣2)×180°=n×150°,解得:n=12,∵选用三种规格的边长都是1m的正多边形地砖铺地,∴这块正多边形地砖的周长=12×1=12(米),故答案为:12.5.(2024•西安一模)如图,由六个全等的正五边形和五个全等的等腰三角形镶嵌组成一个大五边形,则图中∠BAC=36°.【分析】根据多边形的内角和公式计算正五边形的内角,然后计算∠BAC即可.【解答】解:∵正五边形的内角为:=108°,∴∠BAC=360°﹣108°×3=36°.故答案为:36.题型02平行四边形的判定和性质易错点01:平行四边形的性质都很重要,有很多的角相等和边相等,都要多加重视;易错点02:平行四边形的判定方法比较多,其中定义法后期的可综合性很强解题大招01:平行四边形问题常转化为全等三角形来思考;解题大招02:坐标平面内有3个定点,找第4个点形成平行四边形的基本步骤①设第4个点的坐标;②以3个定点组成的3条线段为对角线分类讨论;③以中心对称图形的性质为等量关系列式求解;【中考真题练】1.(2023•成都)如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BD B.OA=OC C.AC⊥BD D.∠ADC=∠BCD【分析】利用平行四边形的性质一一判断即可解决问题.【解答】解:A、错误.平行四边形的对角线互相平分,但不一定相等,不合题意;B、正确.因为平行四边形的对角线互相平分,符合题意;C、错误.平行四边形的对角线不一定垂直,不合题意;D、错误.平行四边形的对角相等,但邻角不一定相等,不合题意;故选:B.2.(2023•海南)如图,在▱ABCD中,AB=8,∠ABC=60°,BE平分∠ABC,交边AD于点E,连接CE,若AE=2ED,则CE的长为()A.6B.4C.D.【分析】由平行四边形的性质得∠D=∠ABC=60°,CD=AB=8,AD∥BC,再证∠ABE=∠AEB,则AE=AB=8,过点E作EF⊥CD于点F,则∠FED=30°,然后由含30°角的直角三角形的性质得DF=ED=2,则EF=2,CF=6,即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠ABC=60°,CD=AB=8,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=8,∵AE=2ED,∴2ED=8,∴ED=4,如图,过点E作EF⊥CD于点F,则∠EFC=∠EFD=90°,∴∠FED=90°﹣∠D=90°﹣60°=30°,∴DF=ED=2,∴EF===2,CF=CD﹣DF=8﹣2=6,∴CE===4,故选:C.3.(2023•泸州)如图,▱ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E 是PD中点,若AD=4,CD=6,则EO的长为()A.1B.2C.3D.4【分析】根据平行四边形的性质可得AB∥DC,AB=CD,OD=OB,可得∠CDP=∠APD,根据DP平分∠ADC,可得∠CDP=∠ADP,从而可得∠ADP=∠APD,可得AP=AD=4,进一步可得PB的长,再根据三角形中位线定理可得EO=PB,即可求出EO的长.【解答】解:在平行四边形ABCD中,AB∥DC,AB=CD,OD=OB,∴∠CDP=∠APD,∵DP平分∠ADC,∴∠CDP=∠ADP,∴∠ADP=∠APD,∴AP=AD=4,∵CD=6,∴AB=6,∴PB=AB﹣AP=6﹣4=2,∵E是PD的中点,O是BD的中点,∴EO是△DPB的中位线,∴EO=PB=1,故选:A.4.(2023•邵阳)如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平行四边形,则下列正确的是()A.AD=BC B.∠ABD=∠BDC C.AB=AD D.∠A=∠C【分析】由平行四边形的判定方法分别对各个选项进行判断即可.【解答】解:A、由AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,故选项A不符合题意;B、∵AB∥CD,∴∠ABD=∠BDC,∴不能判定四边形ABCD为平行四边形,故选项B不符合题意;C、由AB∥CD,AB=AD,不能判定四边形ABCD为平行四边形,故选项C不符合题意;D、∵AB∥CD,∴∠ABC+∠C=180°,∵∠A=∠C,∴∠ABC+∠A=180°,∴AD∥BC,又∵AB∥CD,∴四边形ABCD是平行四边形,故选项D符合题意;故选:D.5.(2023•聊城)如图,在▱ABCD中,BC的垂直平分线EO交AD于点E,交BC于点O,连接BE,CE,过点C作CF∥BE,交EO的延长线于点F,连接BF.若AD=8,CE=5,则四边形BFCE的面积为24.【分析】先根据平行四边形的性质得出AD=BC=8,再由EF是线段BC的垂直平分线得出EF⊥BC,OB=OC=BC=4,根据勾股定理求出OE的长,再由CF∥BE可得出∠OCF=OBE,故可得出△OCF=S△BCE+S△BFC即可得出结论.≌△OBE,OE=OF,利用S四边形BFCE【解答】解:∵四边形ABCD是平行四边形,AD=8,∴AD=BC=8,∵由EF是线段BC的垂直平分线,∴EF⊥BC,OB=OC=BC=4,∵CE=5,∴OE===3.∵CF∥BE,∴∠OCF=∠OBE,在△OCF与△OBE中,,∴△OCF≌△OBE(ASA),∴OE=OF=3,=S△BCE+S△BFC∴S四边形BFCE=BC•OE+BC•OF=×8×3+×8×3=12+12=24.故答案为:24.6.(2023•西宁)如图,在▱ABCD中,点E,F分别在AB,CD的延长线上,且BE=DF,连接EF与AC 交于点M,连接AF,CE.(1)求证:△AEM≌△CFM;(2)若AC⊥EF,,求四边形AECF的周长.【分析】(1)直接利用平行四边形的性质结合全等三角形的判定方法分析得出答案;(2)利用菱形的判定与性质得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形∴AB∥DC,AB=DC(平行四边形的对边平行且相等),∴∠AEM=∠CFM(两直线平行,内错角相等),∵BE=DF,∴AB+BE=CD+DF即AE=CF,在△AEM和△CFM中∴△AEM≌△CFM(AAS);(2)解:∵AE=CF AE∥CF,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵AC⊥EF,∴▱AECF是菱形(对角线互相垂直的平行四边形是菱形),∴AE=EC=CF=AF(菱形的四条边都相等),∴菱形AECF的周长=.7.(2023•无锡)如图,△ABC中,点D、E分别为AB、AC的中点,延长DE到点F,使得EF=DE,连接CF.求证:(1)△CEF≌△AED;(2)四边形DBCF是平行四边形.【分析】(1)根据三角形的中位线定理得到AE=CE,DE∥BC,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质和平行四边形的判定定理即可得到结论.【解答】证明:(1)∵点D、E分别为AB、AC的中点,∴AE=CE,在△CEF与△AED中,,∴△CEF≌△AED(SAS);(2)由(1)证得△CEF≌△AED,∴∠A=∠FCE,∵点D、E是AB、AC的中点,∴DE∥BC,即DF∥BC,∴四边形DBCF是平行四边形.8.(2023•株洲)如图所示,在△ABC中,点D、E分别为AB、AC的中点,点H在线段CE上,连接BH,点G、F分别为BH、CH的中点.(1)求证:四边形DEFG为平行四边形;(2)DG⊥BH,BD=3,EF=2,求线段BG的长度.【分析】(1)由三角形中位线定理得DE∥BC,DE=BC,GF∥BC,GF=BC,则DE∥GF,DE=GF,再由平行四边形的判定即可得出结论;(2)由平行四边形的性质得DG=EF=2,再由勾股定理求出BG的长即可.【解答】(1)证明:∵点D、E分别为AB、AC的中点,点G、F分别为BH、CH的中点,∴DE是△ABC的中位线,GF是△HBC的中位线,∴DE∥BC,DE=BC,GF∥BC,GF=BC,∴DE∥GF,DE=GF,∴四边形DEFG为平行四边形;(2)解:∵四边形DEFG为平行四边形,∴DG=EF=2,∵DG⊥BH,∴∠DGB=90°,∴BG===,即线段BG的长度为.【中考模拟练】1.(2024•雁塔区校级二模)如图,已知平行四边形ABCD中A、C、D三点的坐标,则点B的坐标为()A.(﹣3,﹣2)B.(﹣2,﹣2)C.(﹣3,﹣1)D.(﹣2,﹣1)【分析】由平行四边形的性质可得AD∥BC,AD=BC=4,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵A(﹣1,2),D(3,2),∴AD=4=BC,∵C(2,﹣1),∴B(﹣2,﹣1),故选:D.2.(2024•韶关模拟)如图,在平行四边形ABCD中,∠A的平分线AE交CD于E,AB=4,BC=3,则EC等于()A.1B.1.5C.2D.3【分析】根据平行四边形的性质及AE为角平分线可得:BC=AD=DE=6,又有CD=AB=8,可求EC 的长.【解答】解:∵四边形ABCD为平行四边形,∴CD=AB=4,AD=BC=3.CD∥AB,∵∠DAB的平分线AE交CD于E,∴∠DAE=∠BAE,∵CD∥AB,∴∠AED=∠BAE,∴∠DAE=∠AED.∴ED=AD=3,∴EC=CD﹣ED=4﹣3=1.故选:A.3.如图,已知点P,Q分别是四边形ABCD的边AB,CD上的点,有如下条件:①AP=CQ;②∠APD=∠CQB;③AB∥CD;④四边形ABCD是平行四边形.则根据已知及下列条件的组合不能得到四边形BQDP是平行四边形的是()A.①和④B.①和③C.②和③D.②和④【分析】根据平行四边形的判定进行证明即可.【解答】解:添加的条件为①和④,证明如下;∵四边形ABCD是平行四边形,∵AB∥CD,AB=CD.∵AP=CQ,∴AB﹣AP=DC﹣CQ,即PB=DQ.又PB∥DQ,∴四边形BQDP是平行四边形.故A不符合题意;添加条件为①和③,不能证明四边形BQDP是平行四边形;故B选项符合题意;添加的条件为②和③,证明如下:∵AB∥CD,∴∠CQB=∠ABQ.∵∠APD=∠CQB,∴∠ABQ=∠APD,∴DP∥QB,∴四边形BQDP是平行四边形.故选项C不符合题意,添加的条件为②和④,证明如下:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠CQB=∠ABQ,∵∠APD=∠CQB.∴∠ABQ=∠APD,∴DP∥QB,∴四边形BQDP是平行四边形.故选项D不符合题意,故选:B.4.(2024•河西区模拟)如图,在▱ABCD中,AB=18,BC=30.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°,连接AF并延长,交CD于点G.若EF∥AB,则DG的长为6.【分析】由题意可知EF是梯形ABCG的中位线.根据梯形中位线定理可知,,求出CG的长,再根据平行四边形的性质得AB=CD=18,即可求解最终结果.【解答】解:∵E是边BC的中点,且∠BFC=90°,BC=30,∴Rt△BCF中,,∵EF∥AB,AB∥CG,∴F是边AG的中点.∴EF是梯形ABCG的中位线.∴(AB+CG),∵AB=18,∴CG=2EF﹣AB=12.在▱ABCD中,CD=AB=18.DG=CD﹣CG=18﹣12=6,故答案为:6.5.(2024•东安县一模)如图,在▱ABCD中,E,F分别是BC,AD的中点,连接AE,EF,CF分别交对角线BD于点G,H,I,若△ABE的面积为6,则图中阴影部分的面积为10.【分析】由平行四边形的性质推出△FHD≌△EHB(ASA),得到FH=EH,判定四边形ABEF是平行四边形,推出EF=AB,AB∥EF,由△EGH∽△AGB,推出GE:AG=EH:AB=1:2,得到AG:AE=2:3,因此S△ABG=S△ABE=×6=4,由△EGH∽△AGB,推出==,得到S△EGH=1,=1,由△ABG≌△CDI(AAS),得到S△CDI=S△ABG=4,于是得到阴影的面积=4×2+1×2因此S△FHI=10.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB∥CD,AB=CD,∵E,F分别是BC,AD的中点,∴FD=BE,AF=BE,∵AD∥BC,∴∠FDH=∠HBE,∠DFH=∠BEH,∵FD=EB,∴△FHD≌△EHB(ASA),∴FH=EH,∵E,F分别是BC,AD的中点,∴四边形ABEF是平行四边形,∴EF=AB,AB∥EF,∵EH=FE,∴EH=AB,∵EH∥AB,∴△EGH∽△AGB,∴GE:AG=EH:AB=1:2,∴AG:AE=2:3,=S△ABE=×6=4∴S△ABG∵△EGH∽△AGB,∴==,=1,∴S△EGH=1,∴S△FHI∵AB∥CD,∴∠ABG=∠CDI,∵∠AGB=∠EGH,∠CID=∠FIH,∵AB=CD,∴△ABG≌△CDI(AAS),=S△ABG=4,∴S△CDI∴阴影的面积=4×2+1×2=10.故答案为:10.6.(2024•浙江一模)如图,在▱ABCD中,点O是对角线AC的中点.某数学学习小组要在AC上找两点E,F,使四边形BEDF为平行四边形,现总结出甲、乙两种方案如下:甲方案乙方案分别取AO,CO的中点E,F作BE⊥AC于点E,DF⊥AC于点F请回答下列问题:(1)以上方案能得到四边形BEDF为平行四边形的是甲方案或乙方案,选择其中一种并证明,若不能,请说明理由;=6,求▱ABCD的面积.(2)若EF=2AE,S△AED【分析】(1)甲方案,由平行四边形的性质得AB∥CD,AB=CD,则∠BAE=∠DCF,由AO=CO,E、F分别是AO、CO的中点,得AE=CF,可证明△ABE≌△CDF,得BE=DF,∠AEB=∠CFD,所以∠BEF=∠DFE,则BE∥DF,即可证明四边形BEDF是平行四边形;乙方案,由BE⊥AC于点E,DF⊥AC于点F,得BE∥DF,∠AEB=∠CFD=90°,由平行四边形的性质得AB∥CD,AB=CD,则∠BAE=∠DCF,可证明△ABE≌△CDF,得BE=DF,即可证明四边形BEDF 是平行四边形;(2)由AO=CO,AE=CF,推导出OE=OF,则EF=2AE=2OE,所以OE=AE=CF=OF,则S△ABC =4S△AED=24,所以S▱ABCD=48.=S△ADC【解答】解:(1)甲方案,证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠DCF,∵O是对角线AC的中点,∴AO=CO,∵E、F分别是AO、CO的中点,∴AE=AO,CF=CO,∴AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF,∠AEB=∠CFD,∵∠BEF=180°﹣∠AEB,∠DFE=180°﹣∠CFD,∴∠BEF=∠DFE,∴BE∥DF,∴四边形BEDF是平行四边形.乙方案,证明:∵BE⊥AC于点E,DF⊥AC于点F,∴BE∥DF,∠AEB=∠CFD=90°,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF,∴四边形BEDF是平行四边形.(2)解:由(1)得△ABE≌△CDF,∴AE=CF,∴AO﹣AE=CO﹣CF,∴OE=OF,∴EF=2OE,∵EF=2AE,∴2OE=2AE,∴OE=AE=CF=OF,=S△ADC=4S△AED=4×6=24,∴S△ABC∴S▱ABCD=2×24=48,∴▱ABCD的面积是48.题型03中心对称与三角形中位线解题大招01:判断中心对称图形图象时,可以把试卷直接头尾颠倒看,还一样的那个就是中心对称图形;解题大招02:三角形的中位线的性质既可以提供线段间的数量关系,也可以提供线段的位置关系;数量关系可以用来求长度,位置关系常用来求角度;【中考真题练】1.(2023•菏泽)剪纸文化是我国最古老的民间艺术之一.下列剪纸图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.原图既是轴对称图形,又是中心对称图形,故此选项符合题意;B.原图是轴对称图形,不是中心对称图形,故此选项不合题意;C.原图既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D.原图是中心对称图形,不是轴对称图形,故此选项不合题意.故选:A.2.(2023•宜昌)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘徽割圆术”“赵爽弦图”中,中心对称图形是()A.B.C.D.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、B、C都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.3.(2023•陕西)如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A.B.7C.D.8【分析】根据三角形中中位线定理证得DE∥BC,求出DE,进而证得△DEF∽BMF,根据相似三角形的性质求出BM,即可求出结论.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC=×6=3,∴△DEF∽△BMF,∴===2,∴BM=,CM=BC+BM=.故选:C.4.(2023•盐城)在△ABC中,D,E分别为边AB,AC的中点,BC=10cm,则DE的长为5cm.【分析】由三角形中位线定理可直接求解.【解答】解:∵D,E分别为边AB,AC的中点,BC=10cm,∴DE=BC=5cm,故答案为:5.5.(2023•陕西)如图,在▱ABCD中,AB=3,AD=4,点E在AD的延长线上,且DE=2,过点E作直线l分别交边CD,AB于点M,N.若直线l将▱ABCD的面积平分,则线段CM的长为.【分析】依据题意,连接AC交l于点O,由直线l将▱ABCD的面积平分,从而O为AC的中点,结合平行四边形的性质可得△AON≌△COM,进而AN=CM,再由AN∥DM有=,求出AN,故而可以得解.【解答】解:连接AC交l于点O.∵直线l将▱ABCD的面积平分,AC为▱ABCD的对角线,∴O为AC的中点,为平行四边形的中心.∴OA=OC.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠NAO=∠MCO,=.又∠AON=∠COM,∴△AON≌△COM(ASA).∴AN=CM.∴=.又ED=2,AD=4,AB=3,∴=.∴CM=.故答案为:.6.(2023•湖州)如图,在△ABC中,AB=AC,AD⊥BC于点D,点E为AB的中点,连结DE.已知BC =10,AD=12,求BD,DE的长.【分析】根据等腰三角形的性质求出,根据勾股定理求出AB=13,【解答】解∵AB=AC,AD⊥BC于点D,∴,∵BC=10,∴BD=5,∵AD⊥BC于点D,∴∠ADB=90°,在Rt△ABD中,AB2=AD2+BD2,∵AD=12,∴,∵E为AB的中点,D点为BC的中点,∴.【中考模拟练】1.(2024•扶沟县一模)围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项符合题意;B、不是中心对称图形,故本选项不合题意;C、不是中心对称图形,故本选项不合题意;D、不是中心对称图形,故本选项不合题意.故选:A.2.(2024•秦都区校级模拟)如图,点O是菱形ABCD的对称中心,连接OA、OB,OA=4,OB=6,EF 为过点O的一条直线,点E、F分别在AD、BC上,则图中阴影部分的面积为()A.24B.16C.18D.12【分析】先算出菱形的面积,再算出四边形ABFE的面积,因为阴影部分的面积=四边形ABFE的面积,求得三角形ABO的面积,可得阴影部分的面积.﹣S△ABO【解答】解:连接OC、OD,,∵点O是菱形ABCD的对称中心,∴AC⊥BD,O是AC与BD的交点,∴CO=AO=4,DO=BO=6,∴AC=8,BD=12,∵EF为过点O的一条直线,∴四边形ABFE的面积=四边形CDEF的面积=菱形ABCD的面积,∵菱形ABCD的面积=×AC×BD=48,∴四边形ABFE的面积=24,,S△ABO=×AO×BO=12,∵阴影部分的面积=四边形ABFE的面积﹣S△ABO∴阴影部分的面积=12,故选:D.3.(2024•东平县校级一模)如图,在△ABC中,D是BC边的中点,AE是∠BAC的角平分线,AE⊥CE 于点E,连接DE.若AB=7,DE=1,则AC的长度是()A.4B.4.5C.5D.5.5【分析】延长CE,交AB于点F,通过ASA证明△EAF≌△EAC,根据全等三角形的性质得到AF=AC,EF=EC,根据三角形中位线定理得出BF=2,即可得出结果.【解答】解:延长CE,交AB于点F.∵AE平分∠BAC,AE⊥CE,∴∠EAF=∠EAC,∠AEF=∠AEC,在△EAF与△EAC中,,∴△EAF≌△EAC(ASA),∴AF=AC,EF=EC,又∵D是BC中点,∴BD=CD,∴DE是△BCF的中位线,∴BF=2DE=2.∴AC=AF=AB﹣BF=7﹣2=5;故选:C.4.(2024•东明县一模)如图,△ABC称为第1个三角形,它的周长是1,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,以此类推,则第2024个三角形的周长为()A.B.C.D.【分析】找出每一个新的三角形周长是上一个三角形周长的即可判断.【解答】解:△ABC周长为1,∵每条中位线均为其对边的长度的,∴第2个三角形对应周长为;第3个三角形对应的周长为;第4个三角形对应的周长为;…以此类推,第n个三角形对应的周长为;∴第2024个三角形对应的周长为,即,故选:B.5.(2024•张店区一模)如图,在△ABC中,AC=3,BC=4,AB=5,E,F分别为边AC,BC上的点,M,N分别为EF,AB的中点.若AE=BF=2,则MN的长为.【分析】连接BE,取BE的中点H,连接MH、NH,根据勾股定理的逆定理得到∠C=90°,根据三角形中位线定理得到MH=BF=1,NH=AE=1,∠MHN=90°,再根据勾股定理计算,得到答案.【解答】解:如图,连接BE,取BE的中点H,连接MH、NH,∵AC2+BC2=32+42=25,AB2=52=25,∴AC2+BC2=AB2,∴∠C=90°,∴∠A+∠ABC=90°,∵M,N,H分别为EF,AB,BE的中点,∴MH为△BEF的中位线,NH为△ABE的中位线,∴MH=BF=1,MH∥BF,NH=AE=1,NH∥AE,∴∠EHM=∠EBF,∠HNB=∠A,∵∠EHN=∠HNB+∠ABE=∠A+∠ABE,∴∠MHN=∠EHM+∠EHN=∠EBF+∠A+∠ABE=90°,∴MN==,故答案为:.6.(2023•杭州二模)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点,若AE =AD,DF=2.(1)求证:DE为∠ADF的角平分线;(2)求BD的长.【分析】(1)根据等腰三角形的性质得到∠AED=∠ADE,根据三角形中位线定理得到DF∥AE,根据平行线的性质得到∠AED=∠FDE,根据角平分线的定义即可得到结论;(2)根据三角形中位线定理得到AE=2DF=4,求得AD=4,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵AE=AD,∴∠AED=∠ADE,∵D为斜边AC的中点,F为CE中点,∴DF是△ACE的中位线,∴DF∥AE,∴∠AED=∠FDE,∴∠ADE=∠FDE,∴DE为∠ADF的角平分线;(2)解:∵D为斜边AC的中点,F为CE中点,DF=2,∴AE=2DF=4,∵AE=AD,∴AD=4,在Rt△ABC中,D为斜边AC的中点,∴BD=AC=AD=4.考点二:矩形矩形是特殊平行四边形中比较重要的两个图形,也是几何图形中难度比较大的几个图形之一。
中考数学专题复习:特殊平行四边形
中考数学专题复习:特殊平行四边形1.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.2.如图,四边形PNQM为菱形,延长MP使得PB=MP,延长NQ使得QD=NQ,延长BN 使得NC=BN,延长DM使得DM=MA,连接AB,CD.(1)求证:四边形BNDM是平行四边形.(2)猜想:四边形ABCD是哪种特殊的四边形?并证明你的猜想.3.如图1,四边形ABCD为菱形,对角线AC,BD相交于点O,点E为OC上的动点.(1)当AD=AE时,OE=1,OD=5,求菱形ABCD的面积;(2)如图2,当OE=OD时,过点A作CD的垂线,垂足为F,交ED延长线于点G,求证:GE=AO.4.如图①,点P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:PD=PE;(2)如图②,当∠ABC=90°时,连接DE,则是否为定值?如果是,请求其值;如果不是,请说明理由.5.如图1,菱形ABCD中,∠A=60°,F,E分别为AD,BD边上的点,且DE=AF,CF 交BD于点G,AD=2.(1)求证:CE=BF;(2)当E点和G点重合时,求DF的长;(3)如图2,延长CE交BF于点H,连接HG,当F为AD的中点时,求证:GH⊥BF.6.在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.(1)如图(1),求证:BE=DF;(2)如图(2),设BE,DF交于点G,连接AC,EF,在不添加任何辅助线的情况下,直接写出图中所有的等腰三角形.7.如图,在▱ABCD中,E、F分别为AD、BC的中点,点M、N在对角线AC上,且AM =CN.(1)求证:四边形EMFN是平行四边形;(2)若AB⊥AC,求证:四边形EMFN是菱形.8.点E、F分别在菱形ABCD的边BC、CD上,BE=DF,作FG∥AE,交AC的延长线于点G,连接AF、EG.(1)如图1,求证:四边形AEGF是菱形;(2)如图2,当AF平分∠CAD时,在不添加辅助线及字母的情况下,请直接写出图中所有的等腰三角形(不包括腰长等于AB的等腰三角形).9.如图1,已知平行四边形ABCD中,BD平分∠CBA.(1)求证:平行四边形ABCD是菱形;(2)如图2,E为边AB上一动点,连接CE,作CE的垂直平分线交CE于F,交DB于G,连接AG、EG,①求证:△AGE为等腰三角形;②若∠CBA=60°,求的值.10.四边形ABCD为矩形,E是AB延长线上的一点.(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△DGF 是等腰直角三角形.11.在矩形ABCD中,AB=6,AD=8,E是边BC上一点,以点E为直角顶点,在AE的右侧作等腰直角△AEF.(1)如图1,当点F在CD边上时,求BE的长;(2)如图2,若EF⊥DF,求BE的长.12.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,求矩形ABCD长与宽的比值.13.矩形ABCD,点E在直线CD上,CF⊥AE垂足为F,连接BF、DF.(1)如图1,点E在线段CD上,写出线段BF与DF的位置关系并证明;(2)如图2,点E不在线段CD上,请补全图形,写出线段BF与DF的位置关系并证明.14.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向C、A运动.(1)四边形DEBF是平行四边形吗?请说明理由;(2)若BD=12cm,AC=16cm,当四边形DEBF是矩形,求运动时间t为何值?15.如图,四边形ABCD是矩形,∠ACP=90°,∠APC=∠P AD+∠PCD.(1)求∠ACD的度数;(2)过点D作DE⊥AP,垂足为点E,延长DE交AC于点F.请补全图形,探究线段AF,CF,PC的数量关系,并证明.16.如图,在矩形ABCD中,AB=8,BC=6.动点P、Q分别从点D、A同时出发向右运动,点P的运动速度为2个单位/秒,点Q的运动速度为1个单位/秒,当一个点到达终点时两个点都停止运动.设运动的时间为t(s)(1)当t=2时,PQ的长为________;(2)若PQ=PB,求运动时间t的值;(3)若BQ=PQ,求运动时间t的值.17.在矩形ABCD中,AB=4,BC=3,E是AB边上一点,连接CE,过点E作EF⊥CE交AD于点F,作∠AEH=∠BEC,交射线FD于点H,交射线CD于点N.(1)如图1,当点H与点F重合时,求BE的长;(2)如图2,当点H在线段FD上时,用等式表示线段BE与DN之间的数量关系(其中2<BE≤3),并证明.18.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°.(1)如图1,求证:△AOB为等边三角形.(2)如图2,若AE平分∠BAD交BC于点E,连接OE,请直接写出图中除等边三角形外的所有等腰三角形.19.如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.20.如图,点E为▱ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:当∠F AD=90°时,四边形AFHD为矩形.21.如图,在▱ABCD中,延长AB到点E,使BE=AB,DE交BC于点O,连接EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,当∠BOD等于多少度时四边形BECD是矩形,并说明理由.22.如图,在▱ABCD中,E,F分别是AD,BC边上的点,DE=BF,连接EF,∠EFB,∠FED的平分线分别交AB,CD边于点M,N,连接ME,NF.(1)求证:四边形EMFN是平行四边形;(2)小明在完成(1)的证明后继续探索,他猜想:当M为AB的中点时,四边形EMFN 是矩形,请补全他的证明思路.小明的证明思路:连接MN.由(1)知四边形EMFN是平行四边形.要证▱EMFN是矩形,只要证MN=EF.故只要证∠FEN=∠MNE.由已知条件________,故只要证MN∥AD,即证四边形AMND为平行四边形,易证________,故只要证AM=DN,易证AM=BM,故只要证________,易证△BMF≌△DNE,即可得证.23.在▱ABCD中,点E、F均在AD边上,AE=FD.连接BE、CF并延长,它们交于点G,且GB=GC.(1)如图1,求证:四边形ABCD是矩形;(2)如图2,连接BF、CE,若EF=AE,在不添加任何字母和辅助线的前提下,请直接写出所有面积是△GEF面积8倍的四边形.24.如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:△ABM≌△BCN.(2)请判定△OMN的形状,并说明理由.(3)若点K在线段AD上运动(不包括端点),当AK=时,求△OMN的面积.25.如图1,M为正方形ABCD的对角线BD上一点,过M作BD的垂线交AD于E,连BE,取BE中点O.(1)如图1,连AO、MO,求证:∠AOM=90°;(2)如图2,若M在对角线DB的延长线上,连接AM,使得∠MAN=135°,AN与DB的反向延长线相交于点N,求证:2AM 2﹣MB 2=MN 2﹣BN 2.26.如图,已知正方形ABCD,AB=2,E是对角线BD上一点,且不与B、D两点重合,F 是射线CB上一点,且EF=EC.(1)求证:AE=EF;(2)若BE=AB,请在图2中补全图形,判断AF与EC的数量关系并加以证明.27.[问题呈现]如图①,点E是正方形ABCD的边CD上的一点,点F是CB的延长线上的一点,且EA⊥AF.求证:DE=BF.[拓展探究]如图②,在△ABC中,∠ACB=90°,AC=CB=2,CD⊥AB,垂足为点D,点E是边AC上的动点,点F是边CB上的一点,且ED⊥DF.(1)直接写出四边形EDFC的面积.(2)若∠CDE=15°,则四边形EDFC的周长为________.28.在矩形ABCD中,AB=3,BC=4,动点E从B出发,以每秒1个单位的速度,沿射线BC方向运动,连接AE,以AE为边向上作正方形AEFG.设点E的运动时间为t(t>0).(1)如图1,EF与CD边交于点M,当DM=EM时,求此时t的值;(2)如图2,当点F恰好落在矩形任意两个顶点的所在直线上时,请求出所有符合条件的t的值.29.在正方形ABCD中,对角线AC、BD相交于点O,点E在线段OC上,点F在线段AB 上,连接BE,连接EF交BD于点M,已知∠AEB=∠OME.(1)如图1,求证:EB=EF;(2)如图2,点N在线段EF上,AN=EN,AN延长线交DB于H,连接DF,求证:DF=AH.30.在正方形ABCD中,E是BC中点,F是CD上一点,且CF=CD.(1)如图1,求证:∠AEF=90°;(2)如图2,连接DE,延长FE交AB的延长线于点G,过点B作BH⊥AF交AD于点H,垂足为M,交AE于点N,在不添加任何辅助线的情况下,请直接写出图2中的所有等腰三角形.31.如图,在正方形ABCD中,点E在边BC上,AE交BD于点F,DG⊥AE于G,∠DGE 的平分线GH分别交BD,CD于点P,H,连接FH.(1)求证:∠DHG=∠DF A;(2)求证:FH∥BC;(3)求:的值.32.正方形ABCD,点E在射线CD上,连接AE,以AE为斜边,作Rt△AEF,FE=F A(点F,B在直线AE的两侧),连接DF.(1)如图,点E在线段CD上.①求∠ADF的度数.②求证:CE=DF.(2)若DE=2,以A,E,D,F为顶点的四边形的面积为6时,请直接写出DF的长.33.如图,正方形ABCD中,点G是CD边上的一点(点G不与点C,点D重合),以CG 为一边向正方形ABCD外做正方形GCEF,联结DE交BG的延长线于点H.(1)求证:BH⊥DE;(2)若正方形ABCD的边长为1,当点H为DE中点时,求CG的长.34.如图,点O为正方形ABCD的中心.DE=AG,连接EG,过点O作OF⊥EG交AD于点F.(1)连接EF,△EDF的周长与AD的长有怎样的数量关系,并证明;(2)连接OE,求∠EOF的度数;(3)若AF:CE=m,OF:OE=n,求证:m=n2.35.正方形ABCD,点E在AB上,过点E作AD的平行线交CD于点F点G在EF上,CG 平分∠BCD,点H在CG上,HE=HD.(1)如图(1),求证:HG=HC;(2)如图(2),连接DE,FH,在不添加任何辅助线的情况下,请直接写出图(2)中的所有的等腰直角三角形.36.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O.(1)如图1,设E、F分别是AD、AB上的点,且∠EOF=90°,线段AF、BF和EF之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设E、F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE、BF和EF之间的数量关系,并证明.37.点E在正方形AOCD的边AD上,点H在边AO上,AH=DE.(1)如图1,求证:DH⊥CE;(2)如图2,EF⊥CE,FH⊥AO,垂足为点H.求证:FH=AH.38.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.39.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,FC⊥EC 于点C,且EC=FC,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG =BE.40.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G,求证:BF=FG+DG.41.如图,正方形ABCD和正方形AEFG有公共点A,点B在线段DG上.(1)判断DG与BE的位置关系,并说明理由;(2)若正方形ABCD的边长为1,正方形AEFG的边长为,求BE的长.42.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE 交DG的延长线于点H,连接BH.(1)直接写出GF与GC的数量关系:________;(2)用等式表示线段BH与AE的数量关系,并证明.43.如图1,△ABC是以∠ACB为直角的直角三角形,分别以AB,BC为边向外作正方形ABFG,BCED,连接AD,CF,AD与CF交于点M,AB与CF交于点N.(1)求证:△ABD≌△FBC;(2)如图2,在图1基础上连接AF和FD,若AD=6,求四边形ACDF的面积.44.如图,已知正方形ABCD,点E在BC上,点F在CD延长线上,BE=DF(1)求证:AE=AF;(2)若BD与EF交于点M,连接AM,试判断AM与EF的数量与位置关系,并说明理由.45.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点E作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.46.如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立;(1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请说明理由.(2)若将(1)中的条件改为:如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD 是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.47.如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G.过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)求证:△ABC≌△BAD;(2)若AB=BC,四边形AHBG是什么特殊四边形?请说明理由.48.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=4,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.参考答案1.(1)证明:如图所示,连接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)解:过点B作BE⊥MN于点E.设BM=BN=MN=x,则,故,∴当BM⊥AD时,x最小,此时,,.∴△BMN面积的最小值为.2.(1)证明:∵四边形PNQM为菱形,∴MP=NQ,MP∥NQ,∵PB=MP,QD=NQ,∴MB=DN,∵MP∥NQ,∴四边形BNDM是平行四边形;(2)四边形ABCD是矩形.证明:∵四边形BNDM是平行四边形.∴DM=BN,∵NC=BN,∴DM=NC,∵DM∥NC,∴四边形DMNC是平行四边形.∴MN=DC,MN∥DC,∵DM=MA,∴MA=BN,∴四边形AMNB是平行四边形.∴AB∥MN,AB=MN,∴AB=DC,AB∥DC,∴四边形ABCD是平行四边形.∵四边形PNQM为菱形,∴MQ=NQ,∵QD=NQ,∴QD=NQ=MQ,∴∠NMD=90°,∴∠CDM=90°,∴四边形ABCD是矩形.3.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,BD=2DO=10,∵AD=AE,∴AD=AE=AO+OE=1+OA,∵AD2=OD2+AO2,∴(1+OA)2=25+AO2,∴AO=12,∴AC=24,∴菱形ABCD的面积==120;(2)如图,过点G作GH⊥AC于H,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,AD=CD,∠DAC=∠DCA,∵OE=OD,∴∠DEO=∠EDO=45°,∵GH⊥AC,∴∠HED=∠HGE=45°,∴GH=HE,GE=GH,设∠DAC=∠DCA=x,∴∠EDC=45°﹣x=∠GDF,∵AF⊥CF,∴∠FGD=90°﹣∠GDF=45°+x,∵∠DAF=90°﹣2x,∴∠ADC=180°﹣∠GAD﹣∠AGD=45°+x,∴∠ADC=∠AGD,∴AG=AD,在△AHG和△DOA中,,∴△AHG≌△DOA(AAS),∴GH=AO,∴GE=GH=AO.4.证明:(1)∵四边形ABCD是菱形,∴BC=DC,∠BCP=∠DCP,AB∥DC,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,∵PE=PB,∴PD=PE;(2),理由如下:∵∠ABC=90°,∴四边形ABCD是正方形,由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠CFE=∠DFP(对顶角相等),∴180°﹣∠DFP﹣∠CDP=180°﹣∠CFE﹣∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC=90°,又∵PD=PE,∴DE=PE,∴.5.(1)证明:∵四边形ABCD为菱形,∠A=60°,∴AB=BC=CD=DA=BD,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴CE=BF.(2)DF的长是﹣1.(3)证明:∵F为AD的中点,∴BF⊥AD,AF=DF,∠DBF=30°,由(1)知:AF=DE,∴AF=DF=DE=BE,∴CE⊥BD,∴∠BFD=∠BEH=90°,∴∠EBH=∠FBD,∴BH=,HG=,由(2)知DF:BC=DG:BG=1:2,∴,∴BH2+HG2=BG2,∴△BHG为直角三角形,∴∠BHG=90°,∴GH⊥BF.6.证明:(1)∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠BAC=∠DAC,∵E、F分别是AD和AB的中点,∴AF=AE=BF=DE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=DF;(2)∵AE=AF,∴△AEF是等腰三角形,∵AB=AD=BC=CD,∴△ABC,△ADC是等腰三角形,∵AE=AF,∠BAC=∠DAC,∴AG垂直平分EF,∴FG=EG,∴△GEF是等腰三角形.7.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAM=∠FCN,∵E、F分别为AD、BC的中点,∴AE=DE=BF=CF,在△AEM和△CFN中,,∴△AEM≌△CFN(SAS),∴EM=FN,∠AME=∠CNF,∴∠EMN=∠FNM,∴EM∥FN,∴四边形EMFN是平行四边形;(2)连接EF交AC于O,如图所示:由(1)得:AE∥BF,AE=BF,∴四边形AEFB是平行四边形,∴AB∥EF,∵AB⊥AC,∴∠BAC=90°,∴∠COF=∠BAC=90°,∴EF⊥MN,∴四边形EMFN是菱形.8.(1)证明:∵菱形ABCD,∴AB=AD,∠B=∠D,∠BAC=∠DAC,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF,∴∠EAG=∠F AG,∵FG∥AE,∴∠EAG=∠FGA,∴∠F AG=∠FGA,∴FG=AF=AE,∵FG∥AE,∴四边形AECF是平行四边形,又∵AF=AE,∴四边形AECF是菱形;(2)解:△AEG、△AFG、△CEG、△CFG.理由如下:由(1)及菱形的性质可得△AEG、△AFG是等腰三角形,∴∠F AC=∠FGA,∵∠DAC=2∠F AC,∴∠DAC=2∠FGA,∵AD=DC,∴∠DAC=∠DCA,∵∠DCA=∠FGA+∠CFG,∴2∠FGA=∠FGA+∠CFG,∴∠FGA=∠CFG,∴△CFG是等腰三角形,同理可得△CEG是等腰三角形,∴符合要求的等腰三角形为△AEG、△AFG、△CEG、△CFG.9.证明:(1)∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDB=∠ABD,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠CDB=∠CBD,∴DC=BC,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)①∵四边形ABCD是菱形,∴DC=DA,∠CDG=∠ADG,在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴AG=CG,∵GF是EC的垂直平分线,∴CG=EG,∴AG=EG,即△AGE是等腰三角形;②连接AC交BD于O,∵GC=GE,∴∠GCE=∠GEC,∵AG=CG=GE,∴∠GCA=∠GAC,∠GAE=∠GEA,∵∠CBA=60°,BC=AB,∴∠CAB=∠ACB=60°,∴∠GAC+∠GAE=60°,∴∠GAC+∠GCA+∠GAE+∠GEA=120°,∴∠AGC+∠AGE=240°,∴∠CGE=120°,∴∠GCE=30°,∴CG=2GF,∴AG=2GF,∴=.10.证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AB=CD,CB⊥AE,又∵AC=EC,∴AB=BE,∴BE=CD,BE∥CD,∴四边形BECD为平行四边形;(2)∵AB=AD,∴矩形ABCD是正方形,∵EG⊥AC,∴∠E=∠GAE=45°,∴GE=GA,又∵AF=BE,∴AB=FE,∴FE=AD,在△EGF和△AGD中,,∴△EGF≌△AGD(SAS),∴GF=GD,∠DGA=∠FGE,∠DGF=∠DGA+∠AGF=∠EGF+∠AGF=∠AGE=90°,∴△DGF是等腰直角三角形.11.解:(1)如图1中,∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC,∵EF⊥AE,∠AEF=90°,∴∠AEB=∠EFC,∵△AEF是等腰直角三角形,∴EF=AE,在△ABE和△ECF中,,∴△ABE≌△ECF(AAS),∴CE=AB,∵AB=6,∴CE=6,∵AD=8,∴BC=8,∴BE=BC﹣CE=2.(2)如图2中,延长DF,BC交于点N,过点F作FM⊥BN于点M,同理可证△ABE≌△EMF,∴AB=EM,BE=FM,设BE=x,则EM=AB=6,FM=BE=x,EC=8﹣x,∵EF⊥DF,∴∠NFE=∠DCB=90°,∴∠CDF+∠N=90°,∠FEC+∠N=90°,∴∠FEC=∠CDF,在矩形ABCD中,AB=DC,∴CD=AB=EM,在△EFM和△DNC中,,∴△EFM≌△DNC(AAS),∴NC=FM=x,EN=EC+NC=8,NM=EN﹣EM=2,即在Rt△FMN中,FN2=FM2+NM2=x2+22,在Rt△EFM中,EF2=FM2+EM2=x2+62,在Rt△EFN中,FN2+EF2=EN2,即x2+22+x2+62=82,解得x=2或﹣2舍弃),即BE=2.12.解:连接DE,如图:∵沿过A点的直线折叠,使得B点落在AD边上的点F处,∴四边形ABEF为正方形,∴∠EAD=45°,由第二次折叠知,M点正好在∠NDG的平分线上,∴DE平分∠GDC,∴∠GDE=∠CDE,∵DG为折痕,∴∠DGE=90°=∠C,而DE=DE,∴Rt△DGE≌Rt△DCE(AAS),∴DC=DG,∵∠EAD=45°,∠DGA=90°,∴△AGD为等腰直角三角形,∴AD=DG=CD,∴矩形ABCD长与宽的比值为,故答案为.13.解:(1)BF⊥DF,如图1,连接AC,BD交于点O,连接OF,∵四边形ABCD是矩形,∴AC与BD相等且互相平分,∴OA=OC=OB=OD,∵CF⊥AE垂足为F,∴∠AFC=90°,∵在Rt△ACF中,OA=OC,∴OF=AC=OA=OB=OD,∴OF=OB=OD,∴∠DBF=∠OFB,∠BDF=∠OFD,∵∠BFD+∠BDF+∠DBF=180°,∴∠OFB+∠OFD+∠OFB+∠OFD=180°,∴∠OFB+∠OFD=90°,∴∠BFD=∠OFB+∠OFD=90°,即BF⊥DF.(2)补全图形如图2或图3,BF⊥DF,连接AC,BD交于点O,连接OF,∵四边形ABCD是矩形,∴AC与BD相等且互相平分,∴OA=OC=OB=OD,∵CF⊥AE垂足为F,∴∠AFC=90°,∵在Rt△ACF,OA=OC,∴OF=AC=OA=OB=OD,∴OF=OB=OD,∴∠DBF=∠OFB,∠BDF=∠OFD,∵∠BFD+∠BDF+∠OFB+∠OFD=180°,∴∠OFB+∠OFD=90°,∴∠BFD=∠OFB+∠OFD=90°,即BF⊥DF.14.解:(1)是.理由:∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,∵E、F两点移动的速度相同,即AE=CF,∴OE=OF,∵OD=OB,∴四边形DEBF是平行四边形.(2)因为矩形对角线相等,所以EF=12时,其为矩形,即AE=CF=(16﹣12)=2,或者AE=CF=(16+12)=14,所以当t=2或14时,四边形DEBF是矩形.15.解:(1)∵四边形ABCD是矩形,∴∠D=90°,∴∠DAC+∠DCA=90°,即∠DAP+∠P AC+∠DCA=90°,∵∠ACP=90°,∴∠APC+∠CAP=90°,∵∠APC=∠P AD+∠PCD.∴∠CAP+∠P AD+∠PCD=90°,∴∠PCD=∠ACD,∵∠ACP=90°,∴∠PCD+∠ACD=90°,∴∠ACD=45°;(2)AF=CF+PC.连接BD,交AC于点O,过点C作CN∥AP交BD于点N,如图.证明:由(1)知,∠ACD=45°,∴∠CAD=∠ACD=45°,∴AD=CD,∴矩形ABCD是正方形,∴∠DAO=∠CDO=45°,∠AOD=90°,∵∠ACP=∠AOD=90°,∴MN∥PC,∵AP∥CN,∴∠1=∠2,四边形PCNM为平行四边形,∴PC=MN,∵∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,在△ADF和△DCN中,,∴△ADF≌△DCN(AAS),∴AF=DN,∵∠7+∠ADE=90°,∠8+∠ADE=90°,∴∠7=∠8,在△ADM和△DCF中,,∴△ADM≌△DCF(ASA),∴DM=CF,∵AF=DN,PC=MN,∴AF=DN=DM+MN=CF+PC.16.解:(1)如图所示:作PH⊥AB于H,由题意得,DP=4,AQ=2,则QH=2,又PH=AD=6,由勾股定理的,PQ===2,故答案为:2;(2)当PQ=PB时,如图,QH=BH,则t+2t=8,解得,t=;(3)当PQ=BQ时,(2t﹣t)2+62=(8﹣t)2,解得,t=.17.解:(1)如图,∵EF⊥EC,∴∠NEC=90°,∴∠AEF+∠BEC=90°,∵∠AEF=∠BEC,∴∠BEC=45°,∵四边形ABCD是矩形,∴∠B=90°,∴BE=BC,∵BC=3,∴BE=3;(2)线段BE与DN之间的数量关系为DN=2BE﹣4.证明:如图,过点E作EG⊥CN,垂足为点G,∵四边形ABCD是矩形,∴AB∥CN,∴∠B=∠BCG=90°=∠EGC,∴四边形BEGC是矩形,∴BE=CG,∵AB∥CN,∴∠AEH=∠N,∠BEC=∠ECN,∵∠AEH=∠BEC,∴∠N=∠ECN,∴EN=EC,∴CN=2CG=2BE,∵CD=AB=4,∴CN=2CG=2BE=DN+4,∴DN=2BE﹣4.18.(1)证明:∵矩形ABCD的对角线AC,BD相交于点O,∴OA=OB,又∵∠AOB=60°,∴△AOB为等边三角形.(2)解∵矩形ABCD的对角线AC,BD相交于点O,∠AOB=60°,AE平分∠BAD交BC于点E,∴OA=OD=OB=AB=OC,∠BAE=45°,∴AB=BE,∴BE=OB,所以△ABE是等腰三角形,△OAD,△OBC,△BEO是等腰三角形.19.(1)证明:∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS),∴EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(2)解:四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.理由如下:作G关于BC的对称点G′,连接EG′,可得EG′的长度就是EF+FG的最小值.连接AC,∵CG′=CG=AE,AB∥CG′,∴四边形AEG′C为平行四边形,∴EG′=AC.在△EFG′中,∵EF+FG′>EG′=AC,∴四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.20.(1)解:∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∥BC,∵∠DCE=20°,AB∥CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形,∵∠F AD=90°,∴四边形AFHD为矩形.21.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形;(2)解:若∠A=40°,当∠BOD=80°时,四边形BECD是矩形,理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=40°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=80°﹣40°=40°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∴∠FED=∠EFB,∵EN,FM分别平分∠FED,∠EFB,∴∠FEN=∠DEN=FED,∠EFM=∠BFM=EFB,∴∠FEN=∠EFM,∠DEN=∠BFM,∴FM∥EN,在△BFM与△DEN中,,∴△BFM≌△DEN(ASA),∴FM=EN,∴四边形EMFN是平行四边形;(2)连接MN.由(1)知四边形EMFN是平行四边形.要证▱EMFN是矩形,只要证MN=EF.故只要证∠FEN=∠MNE.由已知条件EN平分∠FED,故只要证MN∥AD,即证四边形AMND为平行四边形,易证AM∥DN,故只要证AM=DN,易证AM=BM,故只要证BM=DN,易证△BMF≌△DNE,即可得证.故答案为:EN平分∠FED;AM∥DN;BM=DN.23.(1)证明:∵▱ABCD,∴AD∥BC,∠A+∠D=180°,∴∠GBC=∠GEF,∠GCB=∠GFE,∵GB=GC,∴∠GBC=∠GCB,∴∠GEF=∠GFE,∴GE=GF,∠AEB=∠DFC,∴GB﹣GE=GC﹣GF,即EB=FC,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠A=∠D,又∠A+∠D=180°,∴∠A=∠D=90°,∴四边形ABCD是矩形;(2)∵▱ABCD,∴AD∥BC,AD=BC,∴∠GBC=∠GEF,∠GCB=∠GFE,∴S四边形EBCF=8S△GEF,∵AE=FD=EF,∴S△AEB=S△EFB=S△EFC=S△FDC,∴S△AEB+S△BCE=S△EFC+S△BCE,S△EFB+S△BCF=S△FDC+S△BCF,即S四边形ABCE=S四边形EBCF,S四边形EBCF=S四边形DCBF,∴S四边形ABCE=S四边形EBCF=S四边形DCBF=8S△GEF.面积是△GEF面积8倍的四边形有:四边形ABCE,四边形EBCF,四边形DCBF.24.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABM+∠CBM=90°,∵AM⊥BM,CN⊥BN,∴∠AMB=∠BNC=90°,∴∠MAB+∠MBA=90°,∴∠MAB=∠CBM,在△ABM和△BCN中,,∴△ABM≌△BCN(AAS);(2)△OMN是等腰直角三角形,理由如下:如图,连接OB,∵点O是正方形ABCD的中心,∴OA=OB,∠OBA=∠OAB=45°=∠OBC,AO⊥BO,∵∠MAB=∠CBM,∴∠MAB﹣∠OAB=∠CBM﹣∠OBC,∴∠MAO=∠NBO,又∵AM=BN,OA=OB,∴△AOM≌△BON(SAS),∴MO=NO,∠AOM=∠BON,∵∠AON+∠BON=90°,∴∠AON+∠AOM=90°,∴∠MON=90°,∴△MON是等腰直角三角形;解:(3)设AK=x(0<x<1),在Rt△ABK中,BK==, ∵S△ABK=×AK×AB=×BK×AM,∴AM==,∴BN=AM=,∴BM==,∴MN=BM﹣BN=,∵S△OMN=MN2==(0<x<1),将x=代入得:S△OMN===,∴当AK=时,S△OMN=.25.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,∠ABD=∠ADB=45°,∵ME⊥BD,∴∠BME=90°,∵O是BE的中点,∴AO=MO=BE=BO=EO,∴∠ABO=∠BAO,∠OBM=∠OMB,∴∠AOE=2∠ABO,∠MOE=2∠MBO,∴∠AOM=∠AOE+∠MOE=2∠ABO+2∠MBO=2∠ABD=90°;(2)∵四边形ABCD是正方形,∴∠ADB=45°,即∠N+∠DAN=45°,∵∠MAN=135°,∴∠MAB+∠DAN=135°﹣∠BAD=45°,∴∠MAB=∠N,又∠M=∠M,∴MA2=MN•MB∴2AM2=MN•2BM=MN•(BM+BM)=MN•(MN﹣BN+BM)=MN2﹣MN((BN﹣BM)=MN2﹣(BN+BM)•(BN﹣BM)=MN2﹣BN2+BM2,∴2AM2﹣MB2=MN2﹣BN2.26.证明:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ADB=∠CDB=45°,在△ADE与△CDE中,,∴△ADE≌△CDE(SAS),∴AE=EC,∵EF=EC,∴AE=EF;(2)AF=CE,理由如下:∵AB=BE=BC,∠ABD=∠DBC=45°,∴∠BAE=∠AEB=∠BEC=∠BCE=67.5°,∵EF=EC,∴∠EFC=∠ECF=67.5°,∴∠FEC=45°,∠BFE=112.5°,∵∠BAE+∠AEF+∠BFE+∠ABF=360°,∴∠AEF=90°,且AE=EF,∴∠AFE=45°,∴∠AFE=∠FEC=45°,∴AF=EF,∴AF=CE.27.证明:[问题呈现]∵四边形ABCD是正方形,∴AD=AB,∠BAD=∠D=∠ABF=90°.∵EA⊥AF,∴∠F AE=90°.∴∠DAE+∠BAE=∠BAF+∠BAE=90°,∴∠BAF=∠DAE.在△ADE和△ABF中,,∴△ADE≌△ABF(ASA),∴DE=BF.[拓展探究](1)∵∠ACB=90°,ED⊥DF,∴∠CED+∠CFD=180°,∵∠BFD=∠CFD=180°,∴∠CED=∠BFD,又∵AC=CB=2,CD⊥AB,∴△ABC为等腰直角三角形,∴CD=BD=AD,∠B=∠DCE=45°,∴△DCE≌DBF(AAS).∴S四边形CEDF=S△CDB=S△ABC=AC•BC=3.(2)作DM⊥AC于点M,则CM=AM=DM=AC=,∵∠CDE=15°,∠ACD=45°,∴∠MED=∠CDE+∠ACD=60°,∴ED=2.∵△DCE≌DBF,∴ED=FD,EC=BF,∴四边形EDFC的周长=ED+FD+EC+BF=2ED+BC=4+2.故答案为:4+2.28.解:(1)连接AM,如图,∵正方形AEFG,矩形ABCD,∴∠AEM=∠ADM=∠ABE=90°,AD=BC=4,在Rt△AEM和Rt△ADM中,,∴Rt△AEM≌Rt△ADM(HL),∴AE=AD=4,在Rt△ABE中,BE==,∵动点E从B出发,以每秒1个单位的速度,∴;(2)分四种情况,1°当点F在CD上时,如图,∵矩形ABCD,∴∠ABE=∠ECF=90°,∴∠BAE+∠AEB=90°,∠FEC+∠EFC=90°,∵正方形AEFG,∴∠AEF=90°,AE=EF,∴∠FEC+∠AEB=90°,∴∠BAE=∠FEC,∠AEB=∠EFC,在△BAE和△CEF中,,∴△BAE≌△CEF(ASA),∴AB=EC=3,∴BE=BC﹣CE=4﹣3=1,∵动点E从B出发,以每秒1个单位的速度,∴t=1;2°当点F落在AD上时,如图,∵AF时正方形AEFG的对角线,∴∠EAF=45°,∵矩形ABCD,∴∠B=∠BAD=90°,∴∠BAE=45°=∠AEB,∴BE=AB=3,∵动点E从B出发,以每秒1个单位的速度,∴t=3;3°当点F落在AC上时,过点F作FM⊥BC交BC于点M,如图,∵正方形AEFG,∴AE=EF,∠AEF=90°,∴∠AEB+∠FEM=90°,∵矩形ABCD,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠BAE=∠FEM,在△BAE和△MEF中,,∴△BAE≌△MEF(AAS),∴FM=BE,EM=AB=3,设FM=BE=x,则MC=4﹣3﹣x=1﹣x,∵∠FCM=∠ACM,∠FMC=∠ABC,∴△FMC~△ABC,∴x=,即FM=BE=,∵动点E从B出发,以每秒1个单位的速度,∴;4°当点F落在BD上时,过点F作FM⊥BC交BC于点M,如图,∵正方形AEFG,∴AE=EF,∠AEF=90°,∴∠AEB+∠FEM=90°,∵矩形ABCD,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠BAE=∠FEM,在△BAE和△MEF中,,∴△BAE≌△MEF(AAS),∴FM=BE,EM=AB=3,设CE=a,,则FM=BE=4+a,BM=7+a,∵∠DBC=∠FBM,∠FMB=∠BCD=90°,∴a=5,∴BE=4+a=9,∵动点E从B出发,以每秒1个单位的速度,∴t=9;故所有符合条件的t的值t=1或t=3或t=9或.29.证明:(1)如图所示:∵四边形ABCD是正方形,∴AC⊥BD,∠1=∠2=45°,∴在Rt△OME和Rt△OEB中,∠3+∠OME=∠4+∠OEB=90°,∵∠OME=∠OEB,∴∠3=∠4,∴∠5=∠1+∠3=∠2+∠4=∠FBE,∴EF=EB;(2)连接DE,∵AN=EN,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠7=∠8=90°,在△AOH和△BOE中,,∴△AOH≌△BOE(ASA),∵四边形ABCD是正方形,∴DC=BC,∠1=∠2=45°,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴DE=BE=AH=EF,∵AC⊥BD,∴∠6=∠AEB,∵∠3=∠4,∠4+∠AEB=90°,∴∠3+∠6=90°,即∠DEF=90°,∴△DEF是等腰直角三角形,∴.30.解:(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,AB=BC=CD.∵E是BC中点,∴,EC=BC=CD.∴∠BAE=∠CEF.∵∠BAE+∠BEA=90°,∴∠BEA+∠CEF=90°.∴∠AEF=90°.(2)∵四边形ABCD为正方形,∴∠GBE=∠C=90°,AB∥CD.∴∠G=∠CFE.在△BEG和△CEF中,.∴△BEG≌△CEF(AAS).∵∠AEF=90°,∴AE是GF的垂直平分线.∴AG=AF.∴△AGF为等腰三角形.∴∠GAE=∠F AE.∵BH⊥AF,∴∠MAH+∠AHM=90°.∵AD∥BC,∴∠AHM=∠HBC.∵∠ABC=90°,∴∠HBC+∠ABH=90°.∴∠ABH=∠MAH.∵∠ANH=∠ABH+∠GAE,∴∠ANH=∠MAH+∠EAF=∠NAH.∴HA=HN.∴△HAN为等腰三角形.∵AD∥BC,∴∠HAN=∠BEN.∵∠ANH=∠BNE,∴∠BEN=∠BNE.∴△BEN为等腰三角形.在△ABE和△DCE中,.∴△ABE≌△DCE(SAS).∴EA=ED.∴△AED为等腰三角形.综上,等腰三角形有:△AED,△BEN,△AHN,△AGF.31.证明:(1)∵四边形ABCD是正方形,∴∠BDC=45°,∵DG⊥AE,∴∠DGE=90°,∵GH平分∠DGE,∴∠DGH=∠EGH=45°,∴∠BDC=∠EGH=45°,∵∠DPH=∠GPF,∴∠DHG=∠DF A.(2)由(1)可知:∠BDC=∠EGH=45°,∠DPH=∠GPF,∴∠DGP=∠HFP=45°,又∠DBC=45°,∴∠DBC=∠HFP=45°,∴FH∥BC.(3)连接P A,过点P作PM⊥AE于M,PN⊥DG于N,QP⊥GP交GD于Q,如图所示.由(2)证法,易证∠P AG=∠PDG,∵PM⊥AE,PN⊥DG,GH平分∠DGE,∴PM=PN,∴Rt△PMA≌Rt△PND(AAS),∴P A=PD,∵四边形ABCD是正方形,∠ADB=45°,∴∠APD=90°=∠GPQ,∴∠APG=∠DPQ,∴△APG≌△DPQ(ASA),∴QD=AG,∵∠PGQ=45°,∴△PGQ是等腰直角三角形,∴GQ=PG,∴DG﹣AG=DG﹣DQ=GQ=PG,∴.32.解:(1)①连接AC,∵四边形ABCD是正方形,∴∠CAD=45°,Rt△AEF中,FE=F A,∴∠EAF=45°,即∠CAE=∠DAF,∴∠ADF=∠ACE=45°.∴CE=DF;(2)①当点E在线段CD上时,则S△ADE+S△ADF=6,过点F作FH⊥AD,∵∠ADF=45°,∴HF=DF,设方形ABCD的边长为a,则CE=a﹣2,DF=CE=(a﹣2),∴2a+a×(a﹣2)×=6,解得:a=4,∴CE=4﹣2=2,∴DF=CE=×2=,②当点E在CD的延长线上时,则S△ADE+S△AEF=6,过点F作FM⊥AE,FN⊥AD,连接AC,设正方形ABCD的边长为a,则AE==,MF=,∴×2a+×=6,解得a=2﹣2或a=﹣2﹣2(舍去),∴CE=2﹣2+2=2,∴DF=CE=×2=2,综上所述:DF=或2.33.(1)证明:∵正方形ABCD,∴∠BCD=90°,BC=CD,同理:CG=CE,∠GCE=90°,∴∠BCD=∠GCE=90°,,∴△BCG≌△DCE(SAS),∴∠GBC=∠CDE,在Rt△DCE中∠CDE+∠CED=90°,∴∠GBC+∠BEH=90°,∴∠BHE=180°﹣(∠GBC+∠BEH)=90°,。
新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析
新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。
中考数学专题复习辅导讲义 特殊平行四边形
中考数学专题复习辅导讲义特殊平行四边形年级:辅导科目:数学课时数:3课题特殊平行四边形教学目的教学内容一、【中考要求】掌握矩形、菱形、正方形的概念和性质,了解平行四边形、矩形、菱形、正方形、梯形之间的关系,掌握矩形、菱形、正方形的性质,探索并掌握四边形是矩形、菱形、正方形的条件。
二、【三年中考】1.(台州)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a解析:在菱形ABCD中,AC⊥BD,又OE平分AB,∴AB=2OE=2a,∴菱形ABCD的周长为8a.答案:C2.(杭州)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°解析:过F作FN∥AB,交PE于点N,则FN⊥EP且FN平分EP,∴FE=FP,∴∠FEP=∠FPE,∴∠FPC=∠FEB=55°.答案:D3.(舟山)如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.2m+3 B.2m+6 C.m+3 D.m+6解析:设另一边长为a,由面积法可得:(m+3)2=m2+3·a,∴a=2m+3.答案:A4.(温州)如图,菱形ABCD中,∠A=60°,对角线BD=8,则菱形ABCD的周长等于________.解析:菱形ABCD中,AB=AD,又∠A=60°,∴△ABD是等边三角形,∴AB=BD=8,∴菱形ABCD的周长是32.答案:325.(丽水)如图,正方形ABCD中,E与F分别是AD,BC上一点.在①AE=CF,②BE∥DF,③∠1=∠2中,请选择其中一个条件,证明BE=DF.(1)你选择的条件是________;(只需填写序号)(2)证明.解:(解法一)(1)选__①__;(2)证明:∵ABCD是正方形,∴AB=CD,∠A=∠C=Rt∠.又∵AE=CF,∴△AEB≌△CFD.∴BE=DF.(解法二)(1)选__②__;(2)证明:∵ABCD是正方形,∴AD∥BC.又∵BE∥DF,∴四边形EBFD是平行四边形.∴BE=DF.(解法三)(1)选__③__;(2)证明:∵ABCD是平行四边形,∴AB=CD,∠A=∠C=Rt∠.又∵∠1=∠2,∴△AEB≌△CFD.∴BE=DF.6.(湖州)如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF.(2)请连结BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.证明:(1)∵CF∥BE,∴∠EBD=∠FCD.又∵∠BDE=∠CDF,BD=CD,∴△BDE≌△CDF.(2)四边形BECF是平行四边形.由△BDE≌△CDF,得ED=FD.∵BD=CD,∴四边形BECF是平行四边形.三、【考点知识梳理】(一)矩形的定义、性质和判定1.定义:有一个角是直角的平行四边形是矩形.2.性质:(1)矩形的四个角都是直角;(2)矩形的对角线互相平分且相等;(3)矩形既是轴对称图形,又是中心对称图形,它有两个对称轴;它的对称中心是对角线的交点.3.判定:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.(二)菱形的定义、性质和判定1.定义:有一组邻边相等的平行四边形是菱形.2.性质:(1)菱形的四条边都相等,对角线互相互相垂直,并且每条对角线平分一组对角;(2)菱形既是轴对称图形又是中心对称图形.3.判定:(1)有一组邻边相等的平行四边形是菱形;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.(三)正方形的定义、性质和判定1.定义:有一个角是直角的菱形是正方形或有一组邻边相等的矩形是正方形.2.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.3.判定:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.温馨提示:1.矩形、菱形和正方形具有平行四边形的所有性质;2.平行四边形及特殊平行四边形的有关知识点较多,要想做到准确而不混淆就要从“边、角、对角线、对称性”这四个方面来研究它们的性质和判定,多用数形结合法,掌握它们的区别及联系,把握它们的特征是关键。
2024年中考第一轮复习特殊平行四边形2
3.[2019·上海]如图25-7,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE
翻折,点A落在点F处,连结DF,那么∠EDF的正切值是
图25-7
.
[答案]2
1
[解析] 如图所示,由折叠可得 AE=FE,∠AEB=∠FEB= ∠AEF,
■ 知识梳理
1.定义:顺次连结四边形各边中点所得的四边形称为中点四边形.
2.任意四边形的中点四边形是① 平行四边形 .
对角线相等的四边形的中点四边形是② 菱形
.
对角线垂直的四边形的中点四边形是③ 矩形
.
对角线互相垂直且相等的四边形的中点四边形是④ 正方形 .
考向一
中点四边形
例1 如图25-4,D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点
1
2
∵AC=BD=8,AE=CF=2,∴OD=4,OE=OF= (8-2-2)=2.
由勾股定理,得 DE= 2 + 2 = 42 + 22 =2 5,
∴四边形 BEDF 的周长=4DE=4×2 5=8 5.
■ 知识梳理
图25-2
考点二
中点四边形
4.顺次连结任意四边形各边的中点,所得的四边形一定是
,O是△ABC所在平面上的动点,连结OA,OB,OC,点G,F分别是OB,OC的中点,顺
次连结点D,G,F,E.
(1)当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
解:(1)证明:∵D,E 分别是 AB,AC 的中点,
1
∴DE∥BC,且 DE=2BC.
1
同理,GF∥BC,且 GF=2BC,
中考数学专题复习题:特殊平行四边形
中考数学专题复习题:特殊平行四边形一、单项选择题(共5小题)1.下列结论中,矩形具有而平行四边形不一定具有的性质是()A.对边平行且相等B.对角线互相平分C.任意两个邻角互补D.对角线相等2.如图,在△ABC中,DE∥CA,DF∥BA,下列四个判断不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC,且AB=AC,那么四边形AEDF是菱形第2题图第3题图3.如图,在矩形ABCD中,对角线AC,BD相交于点O,下列说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD4.如图,四边形ABCD的对角线AC与BD相交于点O,下列条件中,能判定四边形ABCD是矩形的是()A.AB∥DC,AB=CD B.AB∥CD,AD∥BCC.AC=BD,AC⊥BD D.OA=OB=OC=OD5.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20二、填空题(共5小题)6.如图,小明把面积为8的矩形纸板挂在墙上,则图中阴影区域的面积是________.7.如图,四边形ABCD是矩形,对角线AC与BD交于点O,∠AOD=60°,AD=2,则AC=________,矩形的面积等于________.8.如图,在矩形ABCD中,已知AE⊥BD于点E,∠DBC=30°,BE=1 cm,则AE的长为________.9.已知Rt△ABC的两直角边长分别为3 cm,4 cm,则斜边上的中线是________,斜边上的高是________.10.如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是________.三、解答题(共2小题)11.如图,在平行四边形ABCD中,∠ABC和∠BCD的平分线相交于点E,BF∥CE,CF∥BE. 求证:四边形BFCE是矩形.12.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.。
中考数学《特殊平行四边形》专题复习课件(共32张PPT)
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边
角
对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等
中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)
特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。
中考数学复习---特殊平行四边形综合压轴题练习(含作案解析)
中考数学复习---特殊平行四边形综合压轴题练习(含作案解析)一.平行四边形的性质1.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A.4<m<3+B.3﹣<m<4C.2﹣<m<3D.4<m<4+【答案】A【解答】解:可得C(,),A(4,0),B(4+,),∴直线AB的解析式为:y=x﹣4,∴x=y+4,直线AC的解析式为:y=﹣,∴x=4+y﹣2y,∴点F的横坐标为:y+4,点E的横坐标为:4+y﹣2y,∴EF=(y+4)﹣(4+y﹣2y)=2,∵EP=3PF,∴PF=EF=y,∴点P的横坐标为:y+4﹣y,∵0<y<,∴4<y+4﹣y<3+,故答案为:A.2.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD 上,∠EBA=60°,则的值是()A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥AD于H,设∠ADB=x,∵四边形ABCD是平行四边形,∴BC∥AD,∠ADC=∠ABC=105°,∴∠CBD=∠ADB=x,∵AD=BD,∴∠DBA=∠DAB=,∴x+=105°,∴x=30°,∴∠ADB=30°,∠DAB=75°,∵BH⊥AD,∴BD=2BH,DH=BH,∵∠EBA=60°,∠DAB=75°,∴∠AEB=45°,∴∠AEB=∠EBH=45°,∴EH=BH,∴DE=BH﹣BH=(﹣1)BH,∵AB===(﹣)BH=CD,∴=,故选:D.二.矩形的性质3.(2022•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A.B.C.﹣D.﹣2【答案】D【解答】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠ADM+∠DAM=90°,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.4.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是.【答案】a﹣b;3+2.【解答】解:(1)由图可知:PQ=a﹣b,故答案为:a﹣b;(2)∵a2﹣2ab﹣b2=0,∴a2﹣b2=2ab,(a﹣b)2=2b2,∴a=b+b(负值舍),∵四个矩形的面积都是5.AE=a,DE=b,∴EP=,EN=,则======3+2.故答案为:3+2.5.(2022•宿迁)如图,在矩形ABCD中,AB=6,BC=8,点M、N分别是边AD、BC的中点,某一时刻,动点E从点M出发,沿MA方向以每秒2个单位长度的速度向点A匀速运动;同时,动点F从点N出发,沿NC方向以每秒1个单位长度的速度向点C匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF,过点B作EF的垂线,垂足为H.在这一运动过程中,点H所经过的路径长是.【答案】π【解答】解:如图1中,连接MN交EF于点P,连接BP.∵四边形ABCD是矩形,AM=MD,BN=CN,∴四边形ABNM是矩形,∴MN=AB=6,∵EM∥NF,∴△EPM∽△FPN,∴===2,∴PN=2,PM=4,∵BN=4,∴BP===2,∵BH⊥EF,∴∠BHP=90°,∴点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.此时AM=4,NF=2,∴BF=AB=6,∵∠ABF=90°,BH⊥AF,∴BH平分∠ABF,∴∠HBN=45°,∴∠HON=2∠HBN=90°,∴点H的运动轨迹的长==π.故答案为:π.6.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.【答案】5或4【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.三.正方形的性质和判定7.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1【答案】B【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FK⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.8.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4【答案】C【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.9.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【答案】5+【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.10.(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.【答案】45°【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.11.(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=PA+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.【答案】①②④⑤【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,P四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBF,故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.12.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为.【答案】3+3【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF==4,∵∠BEF=90°,BM=MF,∴EM=BF=2,∵BO=OD,BM=MF,∴OM=DF=,∵OE=BD=×6=3,∴△OEM的周长=3++2=3+3,解法二:辅助线相同.证明△BAG≌△FHD,推出AB=HF=3,再证明△FHM≌△BCM,推出CM=HM=,求出BD,DF,BF,利用直角三角形斜边中线的性质,三角形中位线定理,可得结论.故答案为:3+3.13.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有(填上所有正确结论的序号).【答案】①②③④【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.四.菱形的性质14.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cos B=,则FG的长是()A.3B.C.D.【答案】B【解答】解:方法一,如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD 于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∴AH===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠FAG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cos D=cos B==,∴DQ=x,∴FQ===x,∵S梯形CEAD=S梯形CEGF+S梯形GFDA,∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD的等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.方法二:如图,作AH垂直BC于H,延长AE和DC交于点M,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,所以AE=AB=EM=CM=4,设GF=x,则AG=x,GE=4﹣x,由GF∥BC,∴△MGF∽△MEC,∴=,解得x=.故选:B.15.(2022•甘肃)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【答案】B【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.27。
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)
中考数学总复习《(特殊)平行四边形的动点问题》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.2.(1)如图1,点P 为矩形ABCD 对角线BD 上一点,过点P 作//EF BC ,分别交AB 、CD 于点E 、F .若2BE =,PF=6,AEP △的面积为1S ,CFP 的面积为2S ,则12S S +=________;(2)如图2,点P 为ABCD 内一点(点P 不在BD 上),点E 、F 、G 、H 分别为各边的中点.设四边形AEPH 的面积为1S ,四边形PFCG 的面积为2S (其中21S S >),求PBD △的面积(用含1S 、S的代数式表示);2(3)如图3,点P为ABCD内一点(点P不在BD上)过点P作//EF AD,HG//AB与各边分别相交于点E、F、G、H设四边形AEPH的面积为1S,四边形PGCF的面积为2S(其中21),S S求PBD△的面积(用含1S、2S的代数式表示);(4)如图4 点A B C D把O四等分.请你在圆内选一点P(点P不在AC BD 上)设PB PC BC围成的封闭图形的面积为1S PA PD AD围成的封闭图形的面积为2S PBD△的面积为3S PAC△的面积为4S.根据你选的点P的位置直接写出一个含有1S2S3S4S的等式(写出一种情况即可).3.已知直线y=x+4与x轴y轴分别交于A B两点∠ABC=60°BC与x轴交于点C.(1)试确定直线BC的解析式.(2)若动点P从A点出发沿AC向点C运动(不与A C重合)同时动点Q从C点出发沿CBA向点A运动(不与C A重合) 动点P的运动速度是每秒1个单位长度动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S P点的运动时间为t秒求S与t的函数关系式并写出自变量的取值范围.(3)在(2)的条件下当△APQ的面积最大时y轴上有一点M 平面内是否存在一点N 使以A Q M N为顶点的四边形为菱形?若存在请直接写出N点的坐标;若不存在请说明理由.4.如图在等腰梯形ABCD中AB∥DC AB=8cm CD=2cm AD=6cm.点P 从点A出发以2cm/s的速度沿AB向终点B运动;点Q从点C出发以1cm/s的速度沿CD DA向终点A运动(P Q两点中有一个点运动到终点时所有运动即终止).设P Q同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时求t的值;(2)试问是否存在这样的t 使四边形PBCQ的面积是梯形ABCD面积的一半?若存在求出这样的t的值若不存在请说明理由.5.如图在平面直角坐标系中以坐标原点O为圆心2为半径画⊙O P是⊙O上一动点且P在第一象限内过点P作⊙O的切线与轴相交于点A与轴相交于点B.(1)点P在运动时线段AB的长度也在发生变化请写出线段AB长度的最小值并说明理由;(2)在⊙O上是否存在一点Q使得以Q O A P为顶点的四边形时平行四边形?若存在请求出Q点的坐标;若不存在请说明理由.6.如图已知长方形ABCD中AD=6cm AB=4cm 点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动同时点Q在线段BC上由点B向点C运动.(1)若点Q的运动速度与点P的运动速度相等经过1秒后△AEP与△BPQ是否全等请说明理由并判断此时线段PE和线段PQ的位置关系;(2)若点Q的运动速度与点P的运动速度相等运动时间为t秒设△PEQ的面积为Scm2请用t的代数式表示S;(3)若点Q的运动速度与点P的运动速度不相等当点Q的运动速度为多少时能够使△AEP与△BPQ全等?7.如图长方形ABCD中5cm,8cm==现有一动点P从A出发以2cm/s的速度沿AB BC----返回到点A停止设点P运动的时间为t秒.长方形的边A B C D At=时BP=___________cm;(1)当2(2)当t为何值时连接,,△是等腰三角形;CP DP CDP(3)Q为AD边上的点且6DQ=P与Q不重合当t为何值时以长方形的两个顶点及点P为顶点的三角形与DCQ全等.8.如图平行四边形ABCD中6cmB∠︒G是CD的中点E是BC==60AB=8cm边AD上的动点EG的延长线与BC的延长线交于点F连接CE DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=______时四边形CEDF是矩形;②AE=______时四边形CEDF是菱形.9.在平面直角坐标系中点A在第一象限AB⊥x轴于点B AC⊥y轴于点C已知点B(b0)C(0 c)其中b c满足|b﹣8|6+-=0.c(1)直接写出点A坐标.(2)如图2 点D从点O出发以每秒1个单位的速度沿y轴正方向运动同时点E从点A出发以每秒2个单位的速度沿射线BA运动过点E作GE⊥y轴于点G设运动时间为t 秒当S四边形AEGC<S△DEG时求t的取值范围.(3)如图3 将线段BC平移使点B的对应点M恰好落在y轴负半轴上点C的对应点为N连接BN交y轴于点P当OM=4OP时求点M的坐标.10.如图在平面直角坐标系中点A B的坐标分别是(﹣4 0)(0 8)动点P从点O出发沿x轴正方向以每秒1个单位的速度运动同时动点C从点B出发沿12.在四边形ABCD中//,90,10cm,8cm∠=︒===点P从点A出发沿折线AB CD BCD AB AD BCABCD方向以3cm/s的速度匀速运动;点Q从点D出发沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发当一个点到达终点时另一点也停止运动设运动时间为()s t.(1)求CD的长;(2)当四边形PBQD为平行四边形时求四边形PBQD的周长;(3)在点P Q的运动过程中是否存在某一时刻使得BPQ的面积为220cm若存在请求出所有满足条件的t的值;若不存在请说明理由.13.在平面直角坐标系中矩形OABC的边OA任x轴上OC在y轴上B(4 3)点M从点A开始以每秒1个单位长度的速度沿AB→BC→CO运动设△AOM的面积为S 点M运动的时间为t.(1)当0<t<3时AM=当7<t<10时OM=;(用t的代数式表示)(2)当△AOM为等腰三角形时t=;(3)当7<t<10时求S关于t的函数关系式;(4)当S=4时求t的值.14.如图1 在平面直角坐标系中正方形OABC的边长为6 点A C分别在x y 正半轴上点B在第一象限.点P是x正半轴上的一动点且OP=t连结PC将线段PC绕点P顺时针旋转90度至PQ连结CQ取CQ中点M.(1)当t=2时求Q与M的坐标;(2)如图2 连结AM以AM AP为邻边构造平行四边形APNM.记平行四边形APNM 的面积为S.①用含t的代数式表示S(0<t<6).②当N落在△CPQ的直角边上时求∠CPA的度数;(3)在(2)的条件下连结AQ记△AMQ的面积为S'若S=S'则t=(直接写出答案).15.如图平面直角坐标系中矩形OABC的顶点B的坐标为(7 5)顶点A C 分别在x轴y轴上点D的坐标为(0 1)过点D的直线与矩形OABC的边BC交于点G 且点G不与点C重合以DG为一边作菱形DEFG 点E在矩形OABC的边OA 上设直线DG的函数表达式为y=kx+b(1)当CG=OD时求直线DG的函数表达式;(2)当点E的坐标为(5 0)时求直线DG的函数表达式;(3)连接BF 设△FBG的面积为S CG的长为a 请直接写出S与a的函数表达式及自变量a 的取值范围.16.如图 在四边形ABCD 中 //AD BC 3AD = 5DC = 42AB = 45B ∠=︒ 动点M 从点B 出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动 设运动的时间为s t .(1)求BC 的长.(2)当//MN AB 时 求t 的值(3)试探究:t 为何值时 MNC ∆为等腰三角形?参考答案:1.(1)证明:∵四边形ABCD 是矩形∴AD ∥BC∴∠CAD =∠ACB ∠AEF =∠CFE∵EF 垂直平分AC 垂足为O∴OA =OC∴△AOE ≌△COF∴OE =OF∴四边形AFCE 为平行四边形又∵EF ⊥AC∴四边形AFCE 为菱形设菱形的边长AF =CF =x cm 则BF =(8﹣x )cm在Rt △ABF 中 AB =4cm由勾股定理得42+(8﹣x )2=x 2解得x =5iii )如图3 当P 点在AB 上 Q 点在CD 上时 AP =CQ 即12﹣a =b 得a +b =12. 综上所述 a 与b 满足的数量关系式是a +b =12(ab ≠0).2.(1)过P 点作AB∥MN∵S 矩形AEPM +S 矩形DFPM =S 矩形CFPN +S 矩形DFPM =S 矩形ABCD -S 矩形BEPN又∵11,,22AEP CFP AEPM CFPN SS S S ==矩形矩形 ∴1==26=62AEP CFP S S ⨯⨯, ∴1212.S S +=(2)如图 连接PA PC在APB △中 因为点E 是AB 中点可设APE BPE S S a ==同理 ,,BPF CPF CPG DFG DPH APH S S b S S c S S d ======所以APE APH CPF AEPH PFCG CPG S S SS a b d S S c =+++=++++四边形四边形 BPE BPF DPH DPH EDFP HPGD S S S S S S a b c d +=+++=+++四边形四边形.所以12EBFP HPGD AEPH PFCG S S S S S S +++=+四边形四边形四边形四边形所以1212ABD ABCD SS S S ==+ 所以1DPH APH S S S a ==-. ()()()1121121PBD ABD BPE PDH S S S S S S S S a S a S S =-++=+-++-=-.(3)易证四边形EBGP 四边形HPFD 是平行四边形.EBP SHPD S .()()121211122222ABD ABCD EBF HPD EBP HPD SS S S S S S S S S ==+++=+++ ()()12112FBD ABD EBP HPD S S S S S S S =-++=-. (4)试题解析:(1)由已知得A 点坐标(﹣4﹐0) B 点坐标(0﹐43﹚ ∵OB=3OA ∴∠BAO=60° ∵∠ABC=60° ∴△ABC 是等边三角形 ∵O C=OA=4 ∴C 点坐标﹙4 0﹚ 设直线BC 解析式为y kx b =+∴ ∴直线BC 的解析式为343y x =-+; ﹙2﹚当P 点在AO 之间运动时 作QH⊥x 轴 ∵QH CQ OB CB= ∴2843QH t = ∴QH=3t ∴S △APQ =AP•QH=132t t ⋅=232t ﹙0<t≤4﹚ 同理可得S △APQ =t·﹙833t -﹚=23432t t -+﹙4≤t<8﹚∴223(04)2{343?(48)2t t S t t t <≤=-+≤<; (3)存在 如图当Q 与B 重合时 四边形AMNQ 为菱形 此时N 坐标为(4 0) 其它类似还有(﹣4 8)或(﹣4 ﹣8)或(﹣4 ).4.(1)53(2)存在 使四边形PBCQ 的面积是梯形ABCD 面积的一半.(1)过D 作DE⊥AB 于E 过C 作CF⊥AB 于F 通过Rt ADE Rt BCF ∆≅∆ 得AE BF = 若四边形APQD 是直角梯形 则四边形DEPQ 为矩形 通过AP AE EP =+ 代入t 值 即可求解(2)假设当时 通过点Q 在CD 上或在AD 上 两种情况进行讨论求解5.(1)线段AB 长度的最小值为4理由如下:连接OP如图② 设四边形APQO 为平行四边形因为OQ PA ∥ 90APO ︒∠=所以90POQ ︒∠= 又因为OP OQ =所以45PQO ︒∠= 因为PQ OA ∥所以PQ y ⊥轴.设PQ y ⊥轴于点H在Rt △OHQ 中 根据2,45OQ HQO ︒=∠= 得Q 点坐标为(2,2-)所以符合条件的点Q 的坐标为(2,2-)或(2,2-).6.(1)∵长方形ABCD∴∠A =∠B =90°∵点E 为AD 的中点 AD =6cm∴AE =3cm又∵P 和Q 的速度相等可得出AP =BQ =1cm BP =3 ∴AE =BP在△AEP 和△BQP 中∴y=xy 3=4-y⎧⎨⎩ 解得:x=1y=1⎧⎨⎩ (舍去). 综上所述,点Q 的运动速度为32cm /s 时能使两三角形全等.7.(1)1(2)54t =或4或232 (3) 3.5t = 5.5或10(1)解:动点P 的速度是2cm/s∴当2t =时 224AP =⨯=∵5cm AB =∴BP =1cm ;(2)解:①当点P 在AB 上时 CDP △是等腰三角形∴PD CP =在长方形ABCD 中 ,90AD BC A B =∠=∠=︒∴()HL DAP CBP ≌∴AP BP =∴1522AP AB ==∵动点P 的速度是2cm/s∵90D5DP CD == 2AB CB CD t ++=∴要使一个三角形与DCQ 全等①当点P运动到1P时16△≌△DCQ CDPCP DQ==此时1∴点P的路程为:1527AB BP+=+=∴72 3.5t=÷=;②当点P运动到2P时26△≌△CDQ ABPBP DQ==此时2∴点P的路程为:25611+=+=AB BP∴112 5.5t=÷=③当点P运动到3P时35△≌△CDQ BAP==此时3AP DQ∴点P的路程为:3585220AB BC CD DP+++=+++=∴20210t=÷=④当点P运动到4P时即P与Q重合时46△≌△CDQ CDPDP DQ==此时4∴点P的路程为:4585624+++=+++=AB BC CD DPt=÷=此结果舍去不符合题意∴24212综上所述t的值可以是: 3.5t= 5.5或10.8.(1)四边形ABCD是平行四边形∥∴BC AD∴∠=∠FCG EDGG是CD的中点∴=CG DG△中在CFG△和DEGCFG∴≅(ASA)DEGFG EG∴=又CG DG=∴四边形CEDF是平行四边形.2)①当5AE=如图过60B∠=12BM∴=5AE=DE AD∴=在MBA△BM DEB=⎧⎪∠=∠⎨⎪(SAS)MBA EDC∴≅CED AMB∴∠=∠四边形CEDF是平行四边形∴平行四边形CEDF②当2AE cm =时 四边形CEDF 是菱形 理由如下:四边形ABCD 是平行四边形8AD ∴= 6CD AB == 60CDE B ∠=∠=︒2AE =6DE AD AE ∴=-=DE CD ∴=CDE ∴∆是等边三角形CE DE ∴=四边形CEDF 是平行四边形∴平行四边形CEDF 是菱形故答案为:2;9.(1)解:∵|b ﹣8|6c +-=0∴b -8=0 c -6=0∴b =8 c =6∵B (b 0) C (0 c )∴B (8 0) C (0 6)又∵AB ⊥x 轴 AC ⊥y 轴∴A (8 6);(2)∵AB ⊥x 轴 AC ⊥y 轴 GE ⊥y 轴∴四边形AEGC 是矩形设运动时间为t 秒∴OD =t AE =2t DG =6+2t-t =6+t∴S 四边形AEGC =8×2t =16t S △DEG =12×(6+t )×8=4t +242∵OM=4OP∴-m=-4×62m解得m=-12综上所述m的值为-4或-12.10.(1)∵点A B的坐标分别是(﹣4 0)(0 8)∴OA=4 OB=8∵点C运动到线段OB的中点∴OC=BC=12OB=4∵动点C从点B出发沿射线BO方向以每秒2个单位的速度运动∴2t=4解之:t=2;∵PE=OA=4 动点P从点O出发沿x轴正方向以每秒1个单位的速度运动∴OE=OP+PE=t+4=2+4=6∴点E(6 0)(2)证明:∵四边形PCOD是平行四边形∴OC=PD OC∥PD当点C在y轴的负半轴上时③如果点M在DE上时24163(3)22t tt--=++解得423t=+④当N在CE上时28(3)8214tt tt-⋅++-=-+解得12t=综上分析可得满足条件的t的值为:t1=28﹣16 3t2=2 t3=4+2 3t4=12.11.(1) ()30D,,()1,3E;(2)933022933222572222t tS t tt t⎧⎛⎫-+≤≤⎪⎪⎝⎭⎪⎪⎛⎫=-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-≤⎪ ⎪⎝⎭⎩<(3)198s解:(1)3922y x=-+当y=0时39=022x-+则x=3 即点()30D,当y=3时39=322x-+则x=1 故点()1,3E故:()30D,,()1,3E;(2)如图1 ①当点P在OD段时此时0≤t<32119()2223233S PD OC t t=⨯⨯=⨯-⨯=-+;②当点P在点D时此时t=32此时三角形不存在0S=;''6ADP BEP S S -=-30232t t ⎛⎫≤≤ ⎪⎝⎭⎫<≤⎪;即当点P 在边AB 上运动 且PD PE +的值最小时 运动时间t 为198s . 12.(1)16cm ;(2)(8813)cm +;(3)53t =秒或395秒 解:(1)如图1过A 作AM DC ⊥于M在四边形ABCD 中 //AB CD 90BCD ∠=︒//AM BC ∴∴四边形AMCB 是矩形10AB AD cm == 8BC cm =8AM BC cm ∴== 10CM AB cm ==在Rt AMD ∆中 由勾股定理得:6DM cm =10616CD DM CM cm cm cm =+=+=;(2)如图2当四边形PBQD 是平行四边形时 PB DQ =即1032t t -=解得2t =此时4DQ = 12CQ = 22413BQ BC CQ =+=所以()28813PBQD C BQ DQ =+=+;1003t 14(102BPQ BP BC ==解得53t =;P 在BC 上时 63t1(32BP CQ t =此方程没有实数解;CD 上时:在点Q 的右侧54(34PQ BC =6< 不合题意若P 在Q 的左侧 如图6 即3485t <14(534)202BPQ S PQ BC t ∆==-= 解得395t =; 综上所述 当53t =秒或395秒时 BPQ ∆的面积为220cm . 13.(1)t 10-t ;(2)5;(3)S =20-2t ;(4)2或8. 解:(1)当0<t <3时 点M 在线段AB 上 即AM =t 当7<t <10时 点M 在线段OC 上 OM =10-t故填:t 10-t ;(2)∵四边形ABCO 是矩形 B (4 3)∴OA =BC =4 AB =OC =3∵△AOM 为等腰三角形∴只有当MA =MO 此时点M 在线段BC 上 CM =BM =2 ∴t =3+2=5故填:5;(3)∵当7<t <10时 点M 在线段OC 上∴114(10)20222S OA OM t t =⋅⋅=⨯⨯-=-;(4)①当点M 在线段AB 上时 4=12×4t 解得t =2;②当点M 在线段BC 上时 S =6 不符合题意;当点M 在线段OC 上时 4=20-2t 解得t =8.∴OD =OP +PD =8∴Q (8 2)∵M 是CQ 的中点 C (0 6)∴M (4 4);(2)①∵△COP ≌△PDQ∴OP =OQ =t OC =PD =6∴OD =t +6∴Q (t +6 t )∵C (0 6)∴M (62t + 62t +) 当0<t <6时 S =AP ×y M =(6﹣t )×62t +=2362t -; ②分两种情况:a 当N 在PC 上时 连接OB PM 如图2﹣1所示:∵点M 的横 纵坐标相等∴点M 在对角线BD 上∵四边形OABC 是正方形∴OC =OA ∠COM =∠AOM∴∠MPA =12(180°﹣45°)=67.5° ∴∠CPA =67.5﹣45=22.5°;综上所述 当点N 在△CPQ 的直角边上时 ∠CPA 的度数为112.5°或22.5°;(3)过点M 作MH ⊥x 轴于点H 过点Q 作QG ⊥x 轴于点G∵AMQ AHM AGQ MHGQ S S S S =--△△△梯形∴S '=12(62t ++t )•62t +﹣12(6﹣62t +)•62t +﹣12t •t =3t ①当0<t <6时 即点AP 在点A 左侧时 如图3所示:∵S =S '∴2362t -=3t 解得:t =﹣3+35 或t =﹣3﹣35(舍去);②当t >6时 即点P 在点A 右侧时 如图4所示:S =AP ×y M =(t ﹣6)×62t +=2362t - ∵S =S '将D (0 1)G (10 5)代入y=kx+b 得:1105b k b =⎧⎪⎨+=⎪⎩解得:21051k b ⎧=⎪⎨⎪=⎩∴当CG=OD 时 直线DG 的函数表达式为y=2105x+1.(3)设DG 交x 轴于点P 过点F 作FM⊥x 轴于点M 延长MF 交BC 于点N 如图所示.∵DG∥EF∴∠FEM=∠GPO.∵BC∥OA∴∠DGC=∠GPO=∠FEM.在△DCG 和△FME 中90DCG FME DGC FEMDG FE⎧∠=∠=⎪∠=∠⎨⎪=⎩ ∴△DCG≌△FME(AAS )∴FM=DC=4.∵MN⊥x 轴∴四边形OMNC 为矩形在Rt△CDH 中 由勾股定理可得: HC=22543-=∴BC=BK+KH+HC=4+3+3=10;(2)如图② 过D 作DG∥AB 交BC 于G 点 则四边形ADGB 为平行四边形 ∴BG=AD=3∴GC=BC−BC=10−3=7由题意得 当M N 运动t 秒后 CN=t CM=10−2t∵AB∥DG MN∥AB∴DG∥MN∴∠NMC=∠DGC又∵∠C=∠C∴△MNC ~△GDC∴CN CM CD CG=, ∴10257tt -=解得t=5017; (3)第一种情况:当NC=MC 时 如图③22∵∠C=∠C∠MFC=∠DHC=90°∴△MFC~△DHC∴FC MCHC DC=即:1 102253tt-=解得:t=6017;综上所述当t=103t=258或t=6017时△MNC为等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017---2018学年中考数学复习专题--《特殊平行四边形》评卷人得分一.选择题(共12小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.138.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确定9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.2510.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4评卷人得分二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则DE的长是.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=.18.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF ⊥BD于F,则PE+PF的值为.评卷人得分三.解答题(共6小题)19.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD 于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB 于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE 于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;—(3)若AG=13,CF=6,求四边形BDFG的周长.2017---2018学年中考数学复习专题--《特殊平行四边形》参考答案与试题解析一.选择题(共12小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等 B.对角线互相平分C.对角线互相垂直 D.对角互补【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.2.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角【解答】解:∵对角线互相垂直平分的四边形是菱形.∴A、B、D都不正确.∵对角相等的四边形是平行四边形,而对角线互相垂直的平行四边形是菱形.故C正确.故选C.3.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等【解答】解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;菱形的性质有:①菱形的四条边都相等,且对边平行,②菱形的对角相等,③菱形的对角线互相平分、垂直,且每一条对角线平分一组对角;∴矩形具有而菱形不一定具有的性质是对角线相等,故选D.4.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.5.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分【解答】解:因为原四边形的对角线与连接各边中点得到的四边形的关系:①原四边形对角线相等,所得的四边形是菱形;②原四边形对角线互相垂直,所得的四边形是矩形;③原四边形对角线既相等又垂直,所得的四边形是正方形;④原四边形对角线既不相等又不垂直,所得的四边形是平行四边形.因为顺次连接四边形ABCD各边中点所成的四边形为菱形,所以四边形ABCD的对角线AC和BD相等.故选A.6.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm【解答】解:如图:∵菱形ABCD中BD=8cm,AC=6cm,∴OD=BD=4cm,OA=AC=3cm,在直角三角形AOD中AD===5cm.故选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.13【解答】解:连结EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理得:OA===8,∴AE=2OA=16.故选:A.8.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确定【解答】解:过F作FM⊥AB于M,过H作HN⊥BC于N,则∠4=∠5=90°=∠AMF∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,∴四边形AMFD是矩形,∴FM∥AD,FM=AD=BC=3,同理HN=AB=2,HN∥AB,∴∠1=∠2,∵HG⊥EF,∴∠HOE=90°,∴∠1+∠GHN=90°,∵∠3+∠GHN=90°,∴∠1=∠3=∠2,即∠2=∠3,∠4=∠5,∴△FME∽△HNG,∴==∴EF:GH=AD:CD=3:2.故选B.9.如图:点P是Rt△ABC斜边AB上的一点,PE⊥AC于E,PF⊥BC于F,BC=15,AC=20,则线段EF的最小值为()A.12 B.6 C.12.5 D.25【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===25,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,此时,S=BC•AC=AB•CP,△ABC即×20×15=×25•CP,解得CP=12.故选A.10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.11.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.55°B.50°C.45°D.35°【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°;故选:A.12.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;—④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误,∵∠OMB=∠BOF=90°,∠OBF=30°,∴MB=,OF=,∵OE=OF,∴MB:OE=3:2,∴④正确;故选:C.二.填空题(共6小题)13.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于75度.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故答案为4.15.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则DE的长是3.【解答】解:如图,连接CE,,设DE=x,则AE=8﹣x,∵OE⊥AC,且点O是AC的中点,∴OE是AC的垂直平分线,∴CE=AE=8﹣x,在Rt△CDE中,x2+42=(8﹣x)2解得x=3,∴DE的长是3.故答案为:3.16.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是①②④.【解答】解:令GF和AC的交点为点P,如图所示:∵E、F分别是OC、OD的中点,∴EF∥CD,且EF=CD,∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠FEG=∠BGE(两直线平行,内错角相等),∵点G为AB的中点,∴BG=AB=CD=FE,在△EFG和△GBE中,,∴△EFG≌△GBE(SAS),即②成立,∴∠EGF=∠GEB,∴GF∥BE(内错角相等,两直线平行),∵BD=2BC,点O为平行四边形对角线交点,∴BO=BD=BC,∵E为OC中点,∴BE⊥OC,∴GP⊥AC,∴∠APG=∠EPG=90°∵GP∥BE,G为AB中点,∴P为AE中点,即AP=PE,且GP=BE,在△APG和△EGP中,,∴△APG≌△EPG(SAS),∴AG=EG=AB,∴EG=EF,即①成立,∵EF∥BG,GF∥BE,∴四边形BGFE为平行四边形,∴GF=BE,∵GP=BE=GF,∴GP=FP,∵GF⊥AC,∴∠GPE=∠FPE=90°在△GPE和△FPE中,,∴△GPE≌△FPE(SAS),∴∠GEP=∠FEP,∴EA平分∠GEF,即④成立.故答案为:①②④.17.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=30°.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AB=BE,∠ABE=90°,∴∠BAE=∠AEB=45°,∵∠1=15°,∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB﹣∠AEB=30°,故答案为:30°.18.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF ⊥BD于F,则PE+PF的值为.【解答】解:连接OP ,∵四边形ABCD 是矩形,∴∠DAB=90°,AC=2AO=2OC ,BD=2BO=2DO ,AC=BD , ∴OA=OD=OC=OB ,∴S △AOD =S △DOC =S △AOB =S △BOC =S 矩形ABCD =×6×8=12, 在Rt △BAD 中,由勾股定理得:BD===10,∴AO=OD=5, ∵S △APO +S △DPO =S △AOD ,∴×AO ×PE +×DO ×PF=12, ∴5PE +5PF=24, PE +PF=,故答案为:.三.解答题(共6小题)19.如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,AE ∥CD ,CE ∥AB ,连接DE 交AC 于点O .(1)证明:四边形ADCE 为菱形.(2)BC=6,AB=10,求菱形ADCE 的面积.【解答】证明:(1)∵在Rt△ABC中,∠ACB=90°,D为AB中点,∴CD=AB=AD,又∵AE∥CD,CE∥AB∴四边形ADCE是平行四边形,∴平行四边形ADCE是菱形;(2)在Rt△ABC中,AC===8.∵平行四边形ADCE是菱形,∴CO=OA,又∵BD=DA,∴DO是△ABC的中位线,∴BC=2DO.又∵DE=2DO,∴BC=DE=6,∴S===24.菱形ADCE20.已知,如图,BD为平行四边形ABCD的对角线,O为BD的中点,EF⊥BD 于点O,与AD、BC分别交于点E、F.试判断四边形BFDE的形状,并证明你的结论.【解答】答:四边形BFDE的形状是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形.21.如图,在△ABC中,AB=AC,点D是BC的中点,DE⊥AC于点E,DG⊥AB 于点G,EK⊥AB于点K,GH⊥AC于点H、EK和GH相交于点F.求证:GE与FD互相垂直平分.【解答】证明:∵DE⊥AC,DG⊥AB,EK⊥AB,GH⊥AC,∴∠DGB=∠DEC=90°,EK∥DG,DE∥GH,∴四边形DEFG是平行四边形,∵AB=AC,∴∠B=∠C,在△DGB和△DEC中,,∴△DGB≌△DEC(AAS),∴DG=DE,∵四边形DEFG是平行四边形,∴四边形DEFG是菱形,∴GE与FD互相垂直平分.22.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE 于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.【解答】(1)证明:∵AE⊥CE于E,AF⊥CF于F,∴∠AEC=∠AFC=90°,又∵CE、CF分别平分∠ACB与它的邻补角∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,∴三个角为直角的四边形AECF为矩形.(2)结论:MN∥BC且MN=BC.证明:∵四边形AECF为矩形,∴对角线相等且互相平分,∴NE=NC,∴∠NEC=∠ACE=∠BCE,∴MN∥BC,又∵AN=CN(矩形的对角线相等且互相平分),∴N是AC的中点,若M不是AB的中点,则可在AB取中点M1,连接M1N,则M1N是△ABC的中位线,MN∥BC,而MN∥BC,M1即为点M,所以MN是△ABC的中位线(也可以用平行线等分线段定理,证明AM=BM)∴MN=BC;法二:延长MN至K,使NK=MN,因为对角线互相平分,所以AMCK是平行四边形,KC∥MA,KC=AM因为MN∥BC,所以MBCK是平行四边形,MK=BC,所以MN=BC(3)解:△ABC是直角三角形(∠ACB=90°).理由:∵四边形AECF是菱形,∴AC⊥EF,∵EF∥AC,∴AC⊥CB,∴∠ACB=90°.即△ABC是直角三角形.23.如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;(3)求四边形EFPH的面积.—【解答】(1)△BEC是直角三角形:理由是:∵矩形ABCD,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)解:四边形EFPH为矩形,证明:∵矩形ABCD,∴AD=BC,AD∥BC,∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP,∵AD=BC,AD∥BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP∥CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.(3)解:在Rt△PCD中FC⊥PD,由三角形的面积公式得:PD•CF=PC•CD,∴CF==,—∴EF=CE﹣CF=﹣=,∵PF==,=EF•PF=,∴S矩形EFPH答:四边形EFPH的面积是.24.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【解答】(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,—∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.。