中考热点专题讲练----方程与不等式
方程与不等式的实际运用【考点专练】- 中考数学考点总复习高分导航(全国通用)(原卷版)
专题06 方程与不等式的实际运用题型1:工程问题1.九龙坡区某工程公司积极参与“精美城市,幸福九龙坡建设,该工程公司下属的甲工程队、乙工程队别承包了杨家坪地区的A工程、B工程,甲工程队晴天需要14天完成,雨天工作效率下降30%,乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工.两工程队各工作了天.2.(湖南中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的13 30.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?题型2:行程问题3.某体育场的环形跑道长400m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,他们每隔30s相遇一次.如果同向而行,那么每隔80s乙就追上甲一次.则甲的速度是m/s.4.(山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.5.(湖南岳阳市·中考真题)星期天,小明与妈妈到离家16km的洞庭湖博物馆参观.小明从家骑自行车先走,1h后妈妈开车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈开车的平均速度是小明骑自行车平均速度的4倍,求妈妈开车的平均速度.题型3:历史文献问题6.(甘肃武威市·中考真题)我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为()A.3(2)29y xy x-=⎧⎨-=⎩B.3(2)29y xy x+=⎧⎨+=⎩C.3(2)29y xy x-=⎧⎨+=⎩D.3(2)29y xy x-=⎧⎨+=⎩7.(浙江绍兴市·中考真题)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)8.(湖南邵阳市·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.题型4:数字问题9.(山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).题型5:增长率问题10.(内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( )A .()50712833.6x +=B .()50721833.6x ⨯+=C .()25071833.6x +=D .()()250750715071833.6x x ++++= 11.(四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.题型6:几何图形问题12.在一幅长50cm ,宽40cm 的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm 2,设边框的宽为x cm ,那么x 满足的方程是( )A.(50﹣2x)(40﹣2x)=3000B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000D.(50+x)(40+x)=300013.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.题型7:方案问题14.(江苏无锡市·中考真题)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?15.(黑龙江鹤岗市·中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?16.(黑龙江中考真题)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?题型8:利润问题17.(四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?18.(浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.∶若丙种门票价格下降10元,求景区六月份的门票总收入;∶问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?题型9:一般问题19.(辽宁本溪市·中考真题)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?20.(江苏常州市·中考真题)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?21.某商店销售一款工艺品,每件的成本是30元,为了合理定价,投放市场进行试销:据市场调查,销售单价是40元时,每天的销售量是80件,而销售单价每提高1元,每天就少售出2件,但要求销售单价不得超过55元.(1)若销售单价为每件45元,求每天的销售利润.(2)要使每天销售这种工艺品盈利1200元,那么每件工艺品售价应为多少元?题型10:分段收费22.为建设资源节约型社会,醴陵市自2012年以来就对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180度及(含180度)以内的部分,执行基本价格;第二档为用电量在180度以上到450度时(含450度时)的部分,实行提高电价;第三档为用电量超出450度时的部分,执行市场调节价格.经统计,我市小军同学家今年2月份用电200度,电费为119元,3月份用电210度时,电费为125.4元.(1)请根据小军家的用电量和电费情况,求出第一档的电价和第二档的电价分别是多少元/度.(2)已知小军同学家今年4、5月份的家庭用电量分别为160度和230度,请问小军家4、5月份的电费分别为多少元?23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.。
2022中考中考专题复习--方程与不等式专题精选全文
精选全文完整版(可编辑修改)2022中考专题复习方程与不等式专题1 (2021烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中m,n在数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定2 (2021日照) 若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<33 (2021安徽) 计算x2•(﹣x)3的结果是()A.x6B.﹣x6C.x5D.﹣x54 (2021潍坊) 不等式组的解集在数轴上表示正确的是()A.B.C.D.5 ( 2021泰安) 已知关于x的一元二次方程kx2﹣(2k﹣1)x+k﹣2=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣B.k<C.k>﹣且k≠0D.k<且k≠06 (2021临沂) 某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+B.+=C.+=D.=+7 (2021安徽) 设a,b,c为互不相等的实数,且b=a+c,则下列结论正确的是()A.a>b>c B.c>b>a C.a﹣b=4(b﹣c)D.a﹣c=5(a﹣b)8 (2021福建中考) 某市2020年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2022年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x,那么,符合题意的方程是()A.0.63(1+x)=0.68B.0.63(1+x)2=0.68C.0.63(1+2x)=0.68D.0.63(1+2x)2=0.689 (2021苏州中考 )某公司上半年坐产甲、乙两种型号的无人机若干架. 已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架.乙种型号无人机y架,相根题意可列出的方程组是10 (2021嘉兴中考) 为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元()A.﹣=20B.﹣=20C.﹣=20 D.﹣=211 (2021济宁) 不等式组的解集在数轴上表示正确的是()A.B.C.D.12 ( 2021济宁) 已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于( ) A .2019B .2020C .2021D .202213 ( 2021菏泽 )关于x 的方程(k ﹣1)2x 2+(2k +1)x +1=0有实数根,则k 的取值范围是( )A .k 且k ≠1B .k ≥且k ≠1C .kD .k ≥14 (2021北京.)方程=的解为 .15 (2021金华中考) 已知是方程3x +2y =10的一个解,则m 的值是 .16 ( 2021东营) 不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩的解集是________. 17 ( 2021聊城) 若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( ) A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤518 (2021聊城) 关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为( ) A .2或4B .0或4C .﹣2或0D .﹣2或219 (2021日照) 关于x 的方程x 2+bx +2a =0(a 、b 为实数且a ≠0),a 恰好是该方程的根,则a +b 的值为 .20 (2021枣庄) 已知x ,y 满足方程组,则x +y 的值为21 (2021枣庄) 若等腰三角形的一边长是4,另两边的长是关于x 的方程x 2﹣6x +n =0的两个根,则n 的值为 .22 ( 2021泰安) 《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x ,乙的钱数为y ,根据题意,可列方程组为 .23 ( 2021东营) 某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x 万平方米,则所列方程为________.24 (2021北京.)解不等式组:.25 (2021福建中考) 解不等式组:26 (2021泰安) 接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?27 ( 2021济宁) 某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?28 ( 2021济南) 端午节吃粽子是中华民族的传统习俗,某超市节前购进了甲,乙两种畅销口味的粽子。
中考热点-- 二次函数与方程、不等式,求参数范围(原卷版)
中考热点01二次函数与方程、不等式,求参数范围一、解答题1(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江杭州·统考二模)在平面直角坐标系中,已知二次函数y=-x2+bx+c(b,c是常数).(1)当b=2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,-3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.4(2023·浙江宁波·校考三模)如图,已知二次函数y=-x2+bx+c的图像经过点A4,1,点B0,5.(1)求该二次函数的表达式及顶点坐标;(2)点C m,n在该二次函数图像上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图像直接写出m的取值范围.5(2023·浙江舟山·统考三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A1,0.点P在此抛物线上,其横坐标为m.,点B0,3(1)求此抛物线的解析式.(2)若-1≤x≤d时,-1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.6(2023·浙江杭州·统考二模)在平面直角坐标系中,设二次函数y=x2-2ax+1(a是常数).(1)当a=2时,求函数图象的顶点坐标和对称轴.(2)若函数图象经过点(1,p),(-1,q),求证:pq≤4.(3)已知函数图象经过点A(-3,y1),B(a+1,y2),点C(m,y3),若对于任意的4≤m≤6都满足y1>y3> y2,求a的取值范围.7(2023·浙江杭州·统考二模)已知函数y1=x2-m+2x+2m+3,y2=nx+k-2n(m,n,k为常数且n≠0).(1)若y1的图象经过点A-1,3,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当-1≤x≤2时,总有y1≤y2,求m+n的取值范围.8(2023·浙江杭州·统考二模)已知二次函数y1=ax x-ma≠0.和一次函数y2=ax+b a≠0(1)二次函数y1的图象过1,0点,求二次函数的表达式;,2,2(2)若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点.①求证:b=-am;②若两个函数图象的另一个交点为二次函数的顶点,求m的值.9(2023·浙江杭州·杭州市公益中学校考二模)在平面直角坐标系中,当x=-2和x=4时,二次函数y=ax2+bx-2(a,b是常数,a≠0)的函数值相等.(1)若该函数的最大值为1,求函数的表达式,并写出函数图象的顶点坐标;(2)若该函数的图象与x轴有且只有一个交点,求a,b的值.(3)记(2)中的抛物线为y1,将抛物线y1向上平移2个单位得到抛物线y2,当-2≤x≤m时,抛物线y2的最大值与最小值之差为8,求m的值.10(2023·浙江丽水·统考二模)二次函数y=x2+bx+c的图象与x轴交于点A x1,0且x1≠,B x2,0x2.(1)当x1=2,且b+c=-6时,①求b,c的值②当t≤x≤t+2时,二次函数y=x2+bx+c的最小值为2t,求t的值;(2)若x1=3x2,求证:3b-c≤3.211(2023·浙江杭州·统考二模)二次函数y=ax2+bx-1(a,b为常数,a≠0)的图像经过点A1,2.(1)求该二次函数图像的对称轴(结果用含a的代数式示)(2)若该函数图像经过点B3,2;①求函数的表达式,并求该函数的最值.②设M x1,y1,N x2,y2是该二次函数图像上两点,其中x1,x2是实数.若x1-x2=1,求证:y1+y2≤11 212(2023·浙江杭州·统考一模)二次函数y=ax2+bx+c(a≠0)与x轴交于A(1,0),B(m,0)两点.(1)当a=1,b=2时,求m的值.(2)当0<a<2,c=2时,①求证:m>1.②点C x1,y1,D x2,y2在该抛物线上,且x1>x2,x1+x2<2,试比较y1与y2的大小.13(2023·浙江绍兴·统考一模)在平面直角坐标系xOy中,已知抛物线y=x2-2tx+1.(1)求该抛物线的对称轴(用含t的式子表示);(2)若点M t-2,m在抛物线y=x2-2tx+1上,试比较m,n的大小;,N t+3,n(3)P x1,y1是抛物线y=x2-2tx+1上的任意两点,若对于-1≤x1<3且x2=3,都有y1≤y2, ,Q x2,y2求t的取值范围;(4)P t+1,y1是抛物线y=x2-2tx+1上的两点,且均满足y1≥y2,求t的最大值. ,Q2t-4,y214(2023·浙江杭州·模拟预测)在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1,B m+2,y2.(1)求抛物线的对称轴;(用含m的式子表示)(2)记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C0,a,过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;(3)若点M2,y3也是抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G 上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,求m的取值范围.15(2022春·九年级课时练习)抛物线y =(k -1)x 2-x +1与x 轴有交点,则k 的取值范围是.16(2020秋·九年级课时练习)抛物线y =x 2+8x -4与直线x =-4的交点坐标是.17(2023·安徽淮北·校考一模)若对称轴为直线x =-2的抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),则一元二次方程ax 2+bx +c =0的根是.18(2021春·九年级课时练习)抛物线y =2x 2+2k -1 x -k (k 为常数)与坐标轴交点的个数是.19(2023·湖北武汉·统考模拟预测)已知二次函数y =ax 2+bx +c a ≠0 的部分图象如图所示,图象过点-1,0 ,对称轴为直线x =1,下列结论:①2a +b =0;②当m ≠-1时,am 2-b m +1 <a ;③若点A -2,y 1 ,点B 12,y 2 ,点C 52,y 3 均在该图象上,则y 1<y 3<y 2;④若关于x 的方程a x +1 x -3 =p p >0 的两根都是整数,则这样的p 值有3个.其中正确的结论有(填序号).20(2023·浙江·校联考三模)已知点x1,y1,x2,y2为二次函数y=-x2图象上的两点(不为顶点),则以下判断正确的是()A.若x1>x2,则y1>y2B.若x1<x2,则y1<y2C.若:x1x2<x22,则y1>y2 D.若x1x2>x22,则y1<y221(2023·浙江杭州·统考二模)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<-1时,则y1>y2C.若ab<-1,当x<-1时,则y1>y2D.若ab>-1,当x>1时,则y1>y222(2023·浙江杭州·统考二模)点P m,n在二次函数y=ax2-2ax a≠0的图象上,针对n的不同取值,存在点P的个数不同,甲乙两位同学分别得到如下结论:甲:若P的个数为1,则n=-a;乙:若P的个数为2,则n≥-a则下列判断中正确的是()A.甲正确,乙正确B.甲正确,乙错误C.甲错误,乙正确D.甲错误,乙错误23(2023·浙江宁波·校考二模)已知点A x1,y1,B x2,y2在抛物线y=-(x-4)2+m(m是常数)上.若x1<4<x2,x1+x2>8,则下列大小比较正确的是()A.y1>y2>mB.y2>y1>mC.m>y1>y2D.m>y2>y124(2023·统考二模)已知二次函数y=x2+bx+c过点A x1,y1,B x1+t,y2,C x1+2t,y3三点.记m=y2-y1,n=y3-y2,下列命题正确的是()A.若n-m>2,则t<-1B.若n-m<2,则t>-1C.若t>1,则n-m>2D.若t<1,则n-m<225(2023·浙江杭州·统考二模)已知y关于x的二次函数y=2mx2+1-mx-1-m,下列结论中正确的序号是()①当m=-1时,函数图象的顶点坐标为12,12 ;②当m≠0时,函数图象总过定点:③当m>0时,函数图象在x轴上截得的线段的长度大于3 2;④若函数图象上任取不同的两点P1x1,y1、P2x2,y2,则当m<0时,函数在x>14时一定能使y2-y1x2-x1<0成立.A.①②③B.①③④C.②③④D.①②④26(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3a ≠0 上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.2<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥427(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3(a ≠0)上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.1<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥428(2023·浙江宁波·校考一模)已知二次函数y =ax 2+bx +c 的图象经过点A x 1,y 1 ,B 1-m ,n ,C x 2,y 2 ,D m +3,n ,若x 1-2 >x 2-2 ,则下列表达式正确的是()A.y 1>y 2B.y 1<y 2C.a y 1-y 2 >0D.a y 1-y 2 <029(2022·浙江宁波·校考三模)如图,二次函数y =ax 2+bx +c a <0 与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =2,则下列说法中正确的有()①abc <0;②4ac -b 24a>0;③16a +4b +c >0;④5a +c >0;⑤方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为-2<x <-1.A.1个B.3个C.4个D.5个。
中考分类汇编--方程与不等式
中考分类汇编—方程与不等式一、解方程与不等式(组)。
1.(2011昌平二模)解不等式组:2(21)413.2x x x x --⎧⎪⎨+>⎪⎩≤-,2.(2011朝阳二模) 解不等式组: ,并把解集在数轴上表示出来。
3.(2011西城二模)解分式方程:11322x x x -+=--.4.(2011房山二模)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来.5.(2011海淀二模)解方程:32322x x x +=+-。
6.(2011门头沟二模)解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 并求它的正整数解.7.(2011石景山二模)用配方法解方程:01632=--x x8.(2011西城二模)已知:关于x 的一元二次方程2420x x k ++=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.9.(2011昌平一模)解不等式:512x -≤2(43)x -,并把它的解集在数轴上表示出来.1–x > 03x –(x –5)≥ 5 1 2 3 0 1-2-3- 1 2 3 0 1-2-3-0-4-3-2-10432110.(2011大兴一模) 解不等式组1(4)223(1) 5.x x x ⎧+<⎪⎨⎪-->⎩,11.(2011东城一模)求不等式组46,1(3)22x x +≤⎧⎪⎨->-⎪⎩ 的整数解.12.(2011房山一模)解方程:xx x --=--31132.13.(2011丰台一模)解不等式4-5x ≥3(2x+5),并把它的解集在数轴上表示出来.14.(2011海淀一模)解不等式组:48011.32x x x -<⎧⎪+⎨-<⎪⎩,15.(2011门头沟一模)解分式方程6133x x x +=+-.16.(2011密云一模)解不等式1315>--x x ,并将解集在数轴上表示出来.17.(2011通州一模)解方程:542332xx x +=--.二、列方程解应用题。
中考数学专题复习:方程与不等式
中考数学专题复习:方程与不等式一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元一次方程1、一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)2、一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)3、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
4、一元一次方程有唯一的一个解。
三、一元二次方程1、一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)2、一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法3、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根; 当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根 5、一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 6、以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x 三、分式方程1、定义:分母中含有未知数的方程叫做分式方程。
2、分式方程的解法: 一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
3、检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
中考数学《方程与不等式》专题知识训练50题-含答案
中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A.10007505=-x xB.10007505=-x xC.10007505=+x xD.1000750+5=x x2.不等式组215840xx-≤⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.3.下列各式,是一元一次不等式的有()①4>1①232x-<4①12x<①4327x y-<-①16x+=A.4个B.3个C.2个D.1个4.小亮解方程组2212x yx y+=⎧⎨-=⎩▲,的解为5xy=⎧⎨=⎩☆,由于不小心滴上了两滴墨水,刚好遮住了两个数▲和①,则这两个数分别为()A.4和- 6B.- 6和4C.- 2和8D.8和– 2 5.方程2x2+6x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6.若关于x的一元二次方程220x x a+-=有两个相等的实数根,则a的取值为()A.1a=B.1a=-C.4a=D.4a=-7.3020xx+>⎧⎨-≥⎩不等式组的解集在数轴上表示为()A .B .C .D .8.甲、乙两人生产某种机器零件,甲每小时比乙多生产5个,甲生产120个所用的时间与乙生产90个所用的时间相等.设甲每小时生产x 个零件,根据题意,列出的方程是( ) A .120905x x =+ B .120905x x=- C .120905x x=+ D .120905x x =- 9.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=10.方程2320x x +-=的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定有没有实数根11.根据等式的性质,若等式m n =可以变形得到m a n b +=-,则a 、b 应满足的条件是( ) A .互为相反数B .互为倒数C .相等D .0a =,0b ≠12.若223894614M x xy y x y =+++-﹣(x ,y 是实数),则M 的值一定是( )A .0B .负数C .正数D .整数13.一元二次方程x 2﹣ax ﹣2=0,根的情况是( ) A .有两个不相等的实根 B .有两个相等的实数根 C .无法判断D .无实数根14.下列等式变形正确的是( ) A .如果0.58x -=,那么4x =- B .如果x y =,那么22x y -=- C .如果mx my =,那么x y =D .如果x y =,那么x y =15.若关于x 的一元二次方程2(3)410k x x -++=有两个不相等的实数根,则k 的取值范围是( ) A .7k <B .7k <,且3k ≠C .7k ≤,且3k ≠D .7k >16.已知过点(2,﹣3)的直线y=ax+b (a≠0)不经过第一象限,设s=a+2b ,则s 的取值范围是( )A .﹣5≤s≤﹣B .﹣6<s≤﹣C .﹣6≤s≤﹣D .﹣7<s≤﹣17.如图,在平面直角坐标系中,点A 的坐标为(4,3)M 1B ①x 轴于点B .点C 是线段OB 上的点,连接AC ,点P 在线段AC 上且AP =PC ,函数y =kx(x >0)的图象经过点P .当点C 在线段OB 上运动时上k 的取值范围是( )A .0<k ≤3B .3≤k ≤6C .0≤k ≤6D .6≤k ≤1218.已知两个多项式222A x x =++,222B x x =-+,以下结论中正确的个数有( )①若12A B +=,则2x =±;①若2A B ax bx ++-的值与x 的值无关,则2a b +=-; ①若|8||4|12A B A B --+-+=,则12x -≤≤;①若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有3个. A .1个B .2个C .3个D .4个19.下列解方程的过程中正确的是( ) A .将2﹣371745x x -+=去分母,得2﹣5(5x ﹣7)=﹣4(x+17)B .由0.150.710.30.02x x--=,得10157032x x --=100 C .40﹣5(3x ﹣7)=2(8x+2)去括号,得40﹣15x ﹣7=16x+4D .﹣25 x=5,得x=﹣252二、填空题20.“x 的4倍与2的和是非负数”用不等式表示为__________________. 21.二元一次方程310x y +=的正整数解共有_________个. 22.已知2x|m|﹣2+3=9是关于x 的一元二次方程,则m=_____.23.已知关于x 的一元二次方程3x 2+4x +m =0有实数根,则m 的取值范围是_______. 24.观察下列一组方程:①20x x -=;①2320x x -+=;①2560x x -+=;①27120x x -+=;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”,若2560x kx ++=也是“连根一元二次方程”,则k 的值为____________.25.对于实数a 、b ,定义运算“①”如下:a ①b =a 2﹣ab ,例如:5①3=52﹣5×3=10.若(x +2)①(x ﹣3)=25,则x 的值为 ___.26.已知不等式组232(1)1x x x x -<-⎧⎨->-⎩,x 是非负整数,则x 的值是________.27.已知关于x 的一元二次方程250x x m ++=的一个根是2,则m =___________. 28.已知方程2x ﹣a =8的解是x =2,则a =_____.29.高斯符号[]x 首次出现是在数学家高斯(C .F. Gauss )的数学著作《算术研究》一书中,对于任意有理数x ,通常用[]x 表示不超过x 的最大整数,如[]2.92=.给出如下结论:①[]33-=-;①[]2.92-=-;①[]0.90=;①[][]3.1 3.97+=.以上结论中,你认为正确的是_________(填序号). 30.分式方程1233xx x-=---解得______. 31.已知关于x 的方程2x a +=23x a++1的解与方程4x ﹣5=3(x ﹣1)的解相同,则a 的值_____.32.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a 与较长的直角边b 的比值为__.33.一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为________元.34.某商品标价28元,按九折出售,仍可获利20%,则该商品的进价为________元. 35.汛期来临之前,某地要对辖区内的4600米河堤进行加固.施工单位在加固800米后,采用新的加固模式,这样每天加固长度是原来的2倍,结果共用10天便完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固河堤x 米,根据题意可得方程_________________.36.某种品牌的笔记本电脑原价为5000元,如果连续两次降价的百分率都为10%,那么两次降价后的价格为_____元.37.有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.38.已知方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,则ab =_____.39.已知关于x 的方程242x mx +=-的解是正数,则m 的取值范围为______.三、解答题 40.解方程:14211x x x++=-- 41.解下列一元二次方程: (1)22(1)18x -=; (2)22330x x ; (3)2230x x --=; (4)22340x x +-=. 42.解不等式:2123x x -≤-,把解集在数轴上表示出来. 43.(1)解方程组2=57320x y x y -⎧⎨-=⎩;(2)解不等式组21241x xx x >-⎧⎨+<-⎩.44.解方程组:45.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元. (1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品. 46.某学习网站针对疫情停课不停学推出了套餐优惠服务:已知购买2个学习账号和1个错题伴印设备需要2700元,购买3个学习账号和2个错题伴印设备需要4800元.(1)求1个学习账号和1个错题伴印设备的单价各是多少元?(2)若某学习小组准备购买账号和错题伴印设备共45个,且要求伴印设备不低于账号数量的23,请问如何购买才能使得总费用最低,最低费用为多少? 47.计算题(1)解不等式组31122(3)5x x x x -⎧+⎪⎨⎪--≥⎩(2)分式化简:2321(2)22a a a a a -++-÷++ 48.已知,关于的方程组3{25x y a x y a-=++= 的解满足.(1)求的取值范围.(2)化简.49.山地自行车越来越受中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车今年每辆销售价比去年降低400元,则今年销售5辆车与去年销售4辆车的销售金额相同.(1)求该车行今年和去年A型车每辆销售价各多少元?(2)该车行今年计划进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.若今年A型车进货价每辆1100元,B型车进货价每辆1600元、销售价每辆2200元.设进A型车a辆,这批车卖完后获得利润W元?应如何进货才能使这批车获得利润最多?参考答案:1.A【分析】设甲类玩具的进价为x元/个,根据用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同这个等量关系列出方程即可.【详解】解:设甲类玩具的进价为x元/个,则乙类玩具的进价为(x−5)元/个,由题意得,10007505=-x x,故选A.【点睛】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.2.B【分析】分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.【详解】解:215840xx-≤⎧⎨-<⎩①②,解不等式2x−1≤5,得:x≤3,解不等式8−4x<0,得:x>2,故不等式组的解集为:2<x≤3,故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.3.D【分析】根据一元一次不等式的定义,未知数的次数是1,对各选项分析判断后利用排除法求解.【详解】解:①没有未知数,不是一元一次不等式;①是一元一次不等式;①未知数在分母上,不是一元一次不等式;①含有两个未知数,不是一元一次不等式;①是一元一次方程,不是一元一次不等式.故选D.【点睛】本题主要是对一元一次不等式定义的考查.4.D【分析】根据方程的解的定义,把x=5代入2x−y=12,求得y的值,进而求出▲的值,即可得到答案.【详解】解:①方程组2212x yx y+=⎧⎨-=⎩▲的解为5xy=⎧⎨=⎩☆,①把x=5代入2x−y=12,得:2×5−y=12,解得:y=-2,把x=5,y=-2代入2x+y=▲,得:2×5+(−2)=▲,即:▲=8,①这两个数分别为:8和﹣2.故选D.【点睛】本题主要考查二元一次方程组的解的定义,掌握二元一次方程组的解满足各个方程,是解题的关键.5.C【详解】解:①在方程2x2+6x+5=0中,①=62﹣4×2×5=﹣4<0,①方程2x2+6x+5=0没有实数根,故选C.6.B【分析】根据方程有两个相等的实数根,可推出根的判别式240b ac-=,代入相应的系数即可解得a的取值.【详解】220x x a+-=有两个相等的实数根∴()22410a-⨯⨯-=解得:1a=-故选:B.【点睛】本题主要考查一元二次方程根的判别式,能根据方程有两个相等的实数根推出根的判别式等于零是解题的关键.7.C【分析】解出不等式组,根据解集即可选出正确的数轴.【详解】30 20 xx+>⎧⎨-≥⎩①②解:由①得:x >-3, 由①得:x ≤2故原不等式组得解集为:-3<x ≤2 故选:C【点睛】本题主要考查了一元一次不等式组以及用数轴表示解集,熟练地掌握不等式的性质,正确地解出不等式组,能够正确地在数轴上表示不等式组的解集是解题的关键.注意:“≥、≤”在数轴上表示为实心圆点,“>、<”在数轴上表示为空心圆圈. 8.D【分析】设甲每小时生产x 个零件,根据题意列出分式方程式即可. 【详解】解:设甲每小时生产x 个零件,根据甲生产120个所用的时间与乙生产90个所用的时间相等, 可列方程120905x x =-, 故选D .【点睛】本题考查了分式方程的实际应用,正确列出方程式是本题关键. 9.A【分析】第一天为2亿元,根据增长率为x 得出第二天为2(1+x )亿元,第三天为2(1+x )2亿元,根据“第三天票房收入约达到4亿元”,即可得出关于x 的一元二次方程. 【详解】设平均每天票房的增长率为x , 根据题意得:22(1)4x +=. 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10.A【分析】利用一元二次方程根的判别式进行判断. 【详解】解:方程2320x x +-=中,a=1,b=3,c=-2 ①22=4341(2)170b ac -=-⨯⨯-=> ①方程有两个不相等的实数根. 故选:A .【点睛】本题考查一元二次方程根的判别式,掌握2=40b ac ->方程有两个不相等的实数根,2=4=0b ac -方程有两个相等的实数根,2=4<0b ac -方程无实数根是解题关键. 11.A【分析】根据等式的基本性质得到a b =-,再根据相反数的定义解决此题.【详解】①m n =,①0-=m n ,且m a n b +=-,①a b =-,即0a b +=,①a 与b 互为相反数,故选:A【点睛】本题主要考查等式的基本性质、相反数,熟练掌握等式的基本性质、相反数的定义是解决本题的关键.12.C【分析】先将整式M 进行变形为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,然后根据二次方的非负性,即可得出答案.【详解】解:M =3x 2﹣8xy +9y 2﹣4x +6y +14=(x 2﹣4x +4)+(y 2+6y +9)+2(x 2﹣4xy +4y 2)+1=(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1①()220x -≥,()230y +≥,()220x y -≥,①(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1>0,故C 正确.故选:C .【点睛】本题主要考查了配方法的应用和非负数的性质,将整式M 变为(x ﹣2)2+(y +3)2+2(x ﹣2y )2+1,是解题的关键.13.A【详解】:①=(-a )2-4×1×(-2)=a 2+8>0,①方程有两个不相等的实数根.故选A .14.B【分析】分别利用等式的基本性质判断得出即可.【详解】解:A、如果-0.5x=8,那么x=-16,错误;B、如果x=y,那么x-2=y-2,正确;C、如果mx=my,当m=0时,x不一定等于y,错误;D、如果|x|=|y|,那么x=y或x=-y,错误;故选:B.【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.15.B【分析】利用一元二次方程的定义和判别式的意义得到k-3≠0且Δ=42-4(k-3)×1>0,然后解不等式组即可.【详解】解:根据题意得k-3≠0且Δ=42-4(k-3)×1>0,解得k<7且k≠3.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.16.B【详解】试题分析:由直线y=ax+b(a≠0)不经过第一象限可得a<0,b≤0,又因直线y=ax+b(a≠0)经过点(2,﹣3),可得2a+b=—3,所以,b=—2a—3,因此 s=a+2b=a+2(—2a—3)=—3a—6,由a<0可得s>—6, s=a+2b=+2b=,由b≤0可得s≤—,所以s的取值范围是﹣6<s≤﹣.故答案选B.考点:一次函数图象与系数的关系.17.B【分析】设C(c,0)(0≤c≤4),过P作PD①x轴于点D,由①PCD①①ACB,用c表示P点坐标,再求得k关于c的解析式,最后由不等式的性质求得k的取值范围.【详解】解:①点A的坐标为(4,3),AB①x轴于点B,①OB=4,AB=3,设C(c,0)(0≤c≤4),过P作PD①x轴于点D,则BC=4-c,PD AB,OC=c,①①PCD①①ACB,①PD CD CPAB CB CA==①AP PC=,①1 342 PD CDc==-①PD=32,122CD c=-①OD=OC+CD=2+12c,①P(2+12c,32),把P(2+12c,32)代入函数kyx=(x>0)中,得k=3+34c,①0≤c≤4,①3≤k≤6,故选:B.【点睛】本题主要考查了反比例函数的图象与性质,相似三角形的性质与判定,不等式的性质,解题关键是求出k关于c的解析式.18.C【分析】代入多项式列方程求解即可判断①;先代入多项式化简,再利用结果与x的值无关得到a、b的值,即可判断①;代入多项式列绝对值方程求解即可判断①;代入多项式,得到41ym=-,根据题意得到符合条件的非负整数m值,即可判断①.【详解】解:222A x x=++,222B x x=-+,①12A B+=,()22222212x x x x∴+++-+=,240x ∴-=,2x ∴=±,①正确;①()()()22222222224A B ax bx x x x x ax bx a x bx ++-=+++-++-=+-+,2A B ax bx ++-的值与x 的值无关,()224a x bx ∴+-+的值与x 的值无关,20a ∴+=,0b -=,2a ∴=-,0b =,2a b ∴+=-,①正确; ① ()2282222848A B x x x x x --=++--+-=-,()2242222444A B x x x x x -+=++--++=+,当1x <-时,()8444128x x x -+-=-,当12x -≤≤时,844412x x -++=,当2x >时,484484x x x -++=-,若|8||4|12A B A B --+-+=,即484412x x -++=,∴当12x -≤≤时,满足条件,①正确;①2(1)2m y A B x -=+-,()14m y ∴-=,41y m ∴=-, ∴若关于y 的方程2(1)2m y A B x -=+-的解为整数,则符合条件的非负整数m 有0、2、3、5,共4个,①错误,故结论中正确的是①①①,故选C .【点睛】本题考查了整式的加减运算,解一元一次方程,解绝对值方程,非负整数的概念,熟练掌握解方程的步骤与方法是解题关键,注意0是非负整数.19.D【详解】试题解析:A. 方程两边同乘以20得,40-5(3x -7)=4(x +17),所以本选项错误;B. 从左边看,方程应用的是分式的性质;从右边看,方程应用的是等式的性质2;故所得方程与原方程不是同解方程, 所以本选项错误;C. 去括号时漏乘常数项,且去括号未变号;所以本选项错误;D.计算正确.故选D.20.4x+2≥0【详解】由题意得,4x+2≥0.故答案为4x+2≥0.21.3【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是正整数,那么把最小的正整数y=1代入,算出对应的x的值,再把y=2代入,再算出对应的x的值,依此可以求出结果.【详解】解:①x+3y=10,①x=10-3y,①x、y都是正整数,①y=1时,x=7;y=2时,x=4;y=3时,x=1.①二元一次方程x+3y=10的正整数解共有3对.故答案为:3.【点睛】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数求出另一个未知数.22.±4【分析】根据一元二次方程的定义解答即可.【详解】①2x|m|﹣2+3=9是关于x的一元二次方程,①|m|﹣2=2,解得m=±4.故答案为±4.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义是解决问题的关键.23.43m ≤ 【分析】一元二次方程有实数根,则2=40b ac ∆-≥,建立关于m 的不等式,求出m 的取值范围.【详解】解:①关于x 的一元二次方程3x 2+4x +m =0有实数根,22=44430b ac m ∆-=-⨯≥ ①43m ≤, 故答案为:43m ≤. 【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,2=40b ac ∆-≥.24.15-【分析】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得()11156x x +=,可得方程的两根,继而根据一元二次方程根与系数关系即可得出k 的值;【详解】设方程的两根分别是1x 和11x +,根据一元二次方程根与系数关系可得:()11156x x +=,解得:17x =,118x +=,①11115x x k ++==-,①15k =-,故答案为:15-【点睛】本题考查解一元二次方程,解题的关键是熟练解一元二次方程的方法以及一元二次方程根与系数关系.25.3【分析】根据新定义运算列出方程,故可求解.【详解】①a ①b =a 2﹣ab ,(x +2)①(x ﹣3)=25,①(x +2)2-(x +2)(x ﹣3)=25,x 2+4x +4-(x 2-x -6)=25x 2+4x +4- x 2+x +6=255x =15x=3故答案为:3.【点睛】此题主要考查新定义运算与解方程,解题的关键是熟知整式的乘法运算与方程的求解.26.2【分析】求出不等式组的解集,确定出非负整数解即可.【详解】解:不等式组整理得:521xx⎧<⎪⎨⎪>⎩,解得:512x<<,由x为非负整数,得到2x=,则x的值为2.故答案为:2.【点睛】此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.27.14-【分析】先将x=2代入250x x m++=,然后求解关于m的方程即可.【详解】把2x=代入250x x m++=,得:22100m++=,①14m=-.故答案为:-14.【点睛】本题主要考查了方程的解以及解一元一次方程的解,理解方程的解成为解答本题的关键.28.-4【分析】把x=2代入方程计算即可求出a的值.【详解】解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】通过阅读知道[x]有两层意义,一是其值小于x ,二是其值为整数,根据这两点可以得到解答.【详解】解:由题意得:[-3]3≤-,且为整数,所以[-3]= -3,①正确;[-2.9] 2.9≤-,且为整数,所以[-2.9]= -3,①错误;[0.9]0.9≤ ,且为整数,所以[0.9]= 0,①正确;[3.1] 3.1≤ ,且为整数,所以[3.1]= 3;[3.9] 3.9≤ ,且为整数,所以[3.9]= 3,所以[3.1]+[3.9]=6,①错误.故答案为:①①.【点睛】本题考查阅读理解应用能力,在对材料内容进行归纳提取的基础上应用其方法解答是解题关键.30.5x =【分析】根据分式方程的求解步骤进行求解即可;【详解】解:方程两边同时乘以()3x -,得:()123x x =--,去括号、移项得:5x -=-,系数化为1得:5x =,经检验,当5x =时,30x -≠,故5x =是原方程的根,故答案为:5x =.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 31.8【分析】先求出第二个方程的解,把x =2代入第一个方程,求出方程的解即可.【详解】解方程4x ﹣5=3(x ﹣1)得:x =2,把x =2代入方程2x a +=23x a ++1中,可得:22a +=43a ++1, 解得:a =8.故答案为8【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键.【详解】解:①小正方形与大正方形的面积之比为1:13,①设大正方形的面积是13,①c2=13,①a2+b2=c2=13,①直角三角形的面积是1314-=3,又①直角三角形的面积是12ab=3,①ab=6,①(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,①a+b=5.则a、b是方程x2﹣5x+6=0的两个根,故b=3,a=2,①23ab=.故答案是:2:3.考点:勾股定理证明的应用33.160【详解】一套运动装标价200元,按标价的八折(即原价的80%)销售,则这套运动装的实际售价为200×80%=160元,故答案为:160.34.21【分析】根据题意得到方程28×0.9=(1+20%)x,求解即可.【详解】解:设该商品的进价为x元,依题意得,28×0.9=(1+20%)x解得:x=21故答案是21.【点睛】本题考查了一次方程的实际应用,属于简单题,找到等量关系,建立一元一次方程是解题关键.35.8004600800102x x-+=【详解】本题的等量关系是:加固800米用的时间+加固(4600-800)米用的时间=10. 所以可列方程为:8004600800102x x-+= 36.4050【分析】根据题意可知第一次降价为5000(1-10%)=4500,第二次降价为4500(1-10%)=4050.【详解】解:依题意得:5000(1-10%)2=4050.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉降价率的计算方法是解题关键.37.24【分析】设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.【详解】解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ①x 为正整数,①x =2,①10x +x +2=24,则这个两位数是24.故答案为:24.【点睛】本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键.38.-1 【分析】根据方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,所以把2x y +=和27x y --=组成方程组求出 x 、y 的值,再把 x 、y 的值代入其他两个方程 4ax y +=和8x by +=即可求出a 、 b 的值,即可得答案.【详解】解:①方程组24x y ax y +⎧⎨+⎩==和278x y x by --⎧⎨+⎩==有相同的解,①方程组227x y x y +⎧⎨--⎩=①=②的解也是它们的解, ①× 2+①,得:2x +x = 4-7,解得:x =-1,把x = -1代入①,得:-1+y =2,解得:y =3,把x =-1, y =3代入4ax y +=得:-a +3= 4解得:a = -1,把x =-1, y =3代入8x by +=得:-1+3b =8,解得:b =3,①ab =(-1)3=-1,故答案为:-1.【点睛】本题主要考查了二元一次方程组的解及二元一次方程组的解法,做题的关键是熟练的解二元一次方程组.39.8m >-且4m ≠-【分析】先解分式方程用含有m 的代数式表示x ,再根据x >0,且x -2≠0,求出答案即可. 【详解】242x m x +=- 82m x +=因为方程的解是正数,且x -2≠0, 所以802m +>,且8202m +-≠,解得m >-8,且m ≠-4.故答案为:m >-8,且m ≠-4.【点睛】本题主要考查了分式方程的解,注意:解分式方程时要保证分母不能是0. 40.x =-1【分析】去分母解整式方程,再代入最简公分母检验即可.【详解】解:去分母,得x +1-4=2(x -1)去括号,得x -3=2x -2解得x =-1,检验:当x =-1时x -10≠,①原分式方程的解为x =-1.【点睛】此题考查了解分式方程,正确掌握解分式方程的解法是解题的关键.41.(1)14x =,22x =-;(2)方程没有实数解;(3)13x =,21x =-;(4)134x -+=,2x = 【分析】(1)先变形为2(1)9x -=,然后利用直接开平方法解方程;(2)利用判别式的意义判断方程没有实数解;(3)利用因式分解法解方程;(4)利用求根公式法解方程.【详解】解:(1)22(1)18x -=可化为:2(1)9x -=,①13x -=±,①14x =,22x =-;(2)①2(3)423150,所以方程没有实数解;(3)2230x x --=可化为:(3)(1)0x x -+=,①30x -=或10x +=,①13x =,21x =-;(4)①2342(4)41, ①24341222b b ac x a①1x =2x = 【点睛】本题考查了解一元二次方程,熟悉相关解法是解题的关键.42.x≤2【分析】先将不等式左右两边同时扩大6倍,去掉分母;然后在按照解一元一次不等式的步骤进行求解【详解】左右两边同时扩大6倍得:3x≤6-2(x -2)去括号得:3x≤6-2x+4移项得:5x≤10解得:x≤2数轴上表示如下:【点睛】本题考查了解不等式,需要注意,不等式两边同乘除负数时,不等号要变号43.(1)55xy=⎧⎨=⎩;(2)x>1.【分析】(1)利用加减消元法解二元一次方程组即可;(2)先求出每一个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)25 7320x yx y-=⎧⎨-=⎩①②,由①得:y=2x﹣5①,把①代入①得:7x﹣3(2x﹣5)=20,解得:x=5,把x=5代入①得:y=5,方程组的解为55xy=⎧⎨=⎩;(2)21241x xx x>-⎧⎨+<-⎩①②,解不等式①,得:x13 >,解不等式①,得:x>1,不等式组的解集为:x>1.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.44.【详解】试题分析:用加减法解方程组,①×2+①求出x=2,代入①可求出y=3,.试题解析:解方程组:解:①×2得:③①+③得:把代入①得: 原方程组的解为考点:解二元一次方程组.45.(1)甲种奖品的单价为15元,乙种奖品的单价为10元(2)学校在商场最多能购买30个甲种奖品【分析】(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,根据“购买3个甲种奖品和2个乙种奖品共需65元;购买4个甲种奖品和3个乙种奖品共需90元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,根据总价=单价×数量,结合此次购买奖品的费用不超过600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.(1)解:(1)设甲种奖品的单价为x 元,乙种奖品的单价为y 元,依题意得:32654390x y x y ⎧⎨⎩+=+=,解得:1510x y =⎧⎨=⎩, 答:甲种奖品的单价为15元,乙种奖品的单价为10元;(2)解:设学校在商场可购买m 个甲种奖品,则可购买(60−m )个乙种奖品,依题意得:15×0.8m +10×0.8(60−m )≤600,解得:m ≤30,答:学校在商场最多能购买30个甲种奖品.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.46.(1)1个学习账号和1个错题半印设备的单价各是600元和1500元;(2)购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元【分析】(1)本题有两个相等关系:购买2个学习账号的费用+1个错题伴印设备的费用=2700元,购买3个学习账号的费用+2个错题伴印设备的费用=4800元,据此设未知数列方程组解答即可;(2)设购买学习账号m 个,总费用为W 元,先根据题意列出W 与m 的一次函数关系式,然后由伴印设备不低于账号数量的23可得关于m 的不等式,解不等式即可求出m 的取值范围,再根据一次函数的性质解答即可.【详解】解:(1)设1个学习账号和1个错题伴印设备的单价各是x 元和y 元,依据题意得: 22700324800x y x y +=⎧⎨+=⎩,解得:6001500x y =⎧⎨=⎩, 答:1个学习账号和1个错题伴印设备的单价各是600元和1500元.(2)设购买学习账号m 个,则购买伴印设备()45m -个,总费用为W 元,依据题意得:()60015004590067500W m m m =+-=-+, 由2453m m -≥,解得:27m ≤, 9000-<,∴W 随m 的增大而减小,①当m 取最大值27时,函数值W 最小,最小值为675002430043200-=,答:购买学习账号27个,伴印设备18个总费用最低,最低费用为43200元.【点睛】本题考查了二元一次方程组、一元一次不等式和一次函数的应用,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.47.(1)2≤x <3;(2)11a a +-. 【分析】(1)分别解得各不等式的解集,再求出两个不等式的公共解集即可.(2)根据分式的混合运算法则进行化简即可.【详解】(1)31122(3)5x x x x -⎧+>⎪⎨⎪--≥⎩由3112x x -+> 得:x <3 由2(3)5x x --≥ 得:x≥2①不等式组的解集为:2≤x <3(2)原式=23(2)(2)2·22(1)a a a a a a -++⎡⎤+⎢⎥++-⎣⎦ =22122(1)a a a a -++- =a+1a-1【点睛】本题考查解不等式,分式的混合运算,熟练掌握不等式的解法及分式的运算法则是解题关键.48.(1)a >2 (2)2【详解】试题分析:(1)解不等式得出用a 表示的x 与y ,然后根据x >y >0得到不等式组,求得不等式组的解集可求得a 的范围;(2)根据绝对值的意义直接由(1)的结论可求得结果.试题解析:解:(1)3{25x y a x y a -=++=①②由①+①得3x=6a+3解得x=2a+1,把x=2a+1代入①可得y=a-2由x >y >0可得2a+1>a-2>0解不等式可得a >-3且a >2所以a 的取值范围为a >2(2)由a >2可知=a-(a-2)=a-a+2=2.考点:二元一次方程组,不等式组,绝对值49.该车行今年A 型车每辆销售价1600元,去年每辆销售价2000元;(2)当进A 型车20辆,B 型车40辆时,这批车获利最大.【详解】试题分析:(1)设今年A 型车每辆售价x 元,则去年售价每辆为y 元,根据题意建立方程组求出其解即可;(2)设今年新进A 型车a 辆,则B 型车(60-a )辆,获利W 元,由条件表示出W 与a 之间的关系式,由a 的取值范围就可以求出W 的最大值.。
(完整版)中考方程和不等式专题
热点专题二方程与不等式【考点聚焦】“方程与不等式”包括方程与方程组、不等式与不等式组两方面内容.“方程与不等式”均存在标准形式,其解法具有程序式化的特点是一种重要的数学基本技能.此外,“方程与不等式”也是刻画现实世界的一个有效的数学模型,在现实生活中存在大量的“方程与不等式”问题.“方程与不等式"是初中数学的核心内容之一.就解法与自身的应用来说,“方程与不等式”是初中数学最重要的基础知识之一,同时也是学习函数等知识的基础;就所蕴含的“方程思想和转化思想”而言,它更是培养同学们分析问题和解决问题思想方面的重要源泉和场所.同时对“方程与不等式”的考查,一方面注重对其解法和与其它知识点联系的考查,另一方面更注重对其与现实生活的联系,加强对解决简单实际问题的数学考查.在学业考试中所有题型均可出现,题量不小,而且难度将随着题型变化而变化.【热点透视】热点1:设计重结果的问题考查方程与不等式的有关概念例1(1)二元一次方程组320x yx y-=-⎧⎨+=⎩的解是()(A)12xy=-⎧⎨=⎩(B)12xy=⎧⎨=-⎩(C)12xy=-⎧⎨=-⎩(D)21xy=-⎧⎨=⎩(2)不等式组24010xx-<⎧⎨+⎩≥的解集在数轴上表示正确的是()分析:(1)小题对二元一次方程组的解法多样,供同学们选择的解题途径较多,即使同学们只从方程组的解的概念出发通过验算也能够解决问题,因而题目的效度较高.(2)小题通过对不等式组解集的选择,考查了同学们解不等式组的基本功.解答:(1)(A);(2)(B).点评:这样的问题由于只关心对同学们解答问题结果正确性的考查,具有较强的针对性,比较适合对理解方程(组)的解和不等式(组)解集的概念水平的考查.热点2:设置具体的情景考查同学们构建方程(不等式)模型的能力.例2 (2008湘潭)在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为x cm ,那么x 满足的方程是( )(A)213014000x x +-= (B)2653500x x +-= (C)213014000x x --= (D)2653500x x --=分析:观察图形可知,金色纸边的面积与矩形风景画的面积之和为54002cm ,而矩形风景画的面积为40002cm ,设金色纸边的宽为x cm,则可用含x 的代数式表示出金色纸边的面积为22[42(8050)]cm x x x ++. 解:(B ).点评:从同学们所熟知的生活情景入手,考查同学们建立方程模型的能力,使考查的过程具有一定的趣味性,同时,建模的思想作为初中数学的重点和难点是需要师生在学习过程中有针对性突破的,而中考的命题毫无疑问在这方面给出了一种明显的导向,应当引起重视.例3 (2008长沙)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成. (1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数. 分析:工作总量÷工作时间=工作效率.解:(1)设乙工程队单独完成这项工程需要x 天,根据题意得:101120140x x ⎛⎫++⨯= ⎪⎝⎭, 解之得:60x =,经检验:60x =是原方程的解. 答:乙工程队单独完成这项工程所需的天数为60天.(2)设两队合做完成这项工程所需的天数为y 天,根据题意得:1116040y ⎛⎫+= ⎪⎝⎭,解之得:24y =.答:两队合做完成这项工程所需的天数为24天.点评:本题背景取材于同学们所熟悉的“社会主义新农村建设",巧妙将分式方程,一元一次方程的应用结合起来考查,符合新课程理念,并且层次分明,难度适中,考查要求达到课程标准所规定的毕业水平. 热点3:设置与生活和社会实际相关的问题考查运用方程解决简单实际问题的能力.例4 (2008湘潭)小刚、小明一起去精品文具店买同种钢笔和同种练习本,根据下面的对话解答问题: 小刚:阿姨,我买3支钢笔,2个练习本,共需多少钱? 售货员:刚好19元.小明:阿姨,那我买1支钢笔,3个练习本,需多少钱呢? 售货员:正好需11元.(1)求出1支钢笔和1个练习本各需多少钱?(2)小明现有20元钱,需买1支钢笔,还想买一些练习本,那么他最多可买练习本多少个?分析:第(1)问利用二元一次方程组求钢笔和练习本的单价,第(2)问通过一元一次不等式求出最多可买多少个练习本.解:(1)设买一支钢笔需x 元,买一个练习本需y 元,依题意:3219311x y x y +=⎧⎨+=⎩解之得52x y =⎧⎨=⎩. (2)设买的练习本为z 个,则15220z ⨯+≤,得7.5z ≤.因为z 为非负整数,所以z 的最大值为7.答:(1)买1支钢笔需5元,1个练习本需2元.(2)小明最多可买7个练习本.点评:这类问题的解答遵循“问题←→数学问题←→解数学问题←→解决问题”,不仅对于考查“数学化"具有较高的效度,而且考查了同学们在生活中用数学的意识.热点4:考查同学们综合运用方程(组)与不等式(组)解决数学问题的能力. 例5(2008长沙)某班到毕业时共结余经费 1 800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念品.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?分析:本例第(1)问通过列二元一次方程组解决,第(2)问利用不等式解题,而后在(1),(2)的基础上作出决策分析,较好地考查了学生综合运用数学知识解决简单问题的能力.解:(1)设文化衫和相册的价格分别为x 元和y 元,则925200x y x y -=⎧⎨+=⎩解得3526x y =⎧⎨=⎩.答:一件文化衫和一本相册的价格分别为35元和26元. (2)设购买文化衫t 件,则购买相册(50)t -本, 则15003526(50)1530t t +-≤≤,解得20023099t ≤≤. ∵t 为正整数,∴t =23,24,25,即有三种方案.第一种方案:购文化衫23件,相册27本,此时余下资金293元; 第二种方案:购文化衫24件,相册26本,此时余下资金284元; 第三种方案:购文化衫25件,相册25本,此时余下资金275元; 所以第一种方案用于购买教师纪念品的资金更充足.点评:决策型问题最大特点是其所对应的问题的答案具有不确定性,尽管其中相当多的一部分可归结为利用“方程与不等式”来解决,也是“方程(不等式)思想”的应用与体现,但是利用“方程与不等式”不能够直接求出问题的最终解答.要最终解决这样的问题,涉及到解决问题的策略,以及需要其他的数学知识.好的决策型问题在考查同学们运用知识解决实际问题能力方面具有较好的效度,因而,决策型问题成为近年来较为常见的考查同学们运用“方程与不等式”思想和知识解决实际问题能力的题目.热点5:考查同学们综合运用方程(组)、不等式(组)与其它数学知识结合解决数学问题的能力.例6(2008长沙)如图2,已知直线12y x =-与抛物线2164y x =-+交于A B ,两点.(1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图3,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.分析:(1)联立两个函数解析式得方程组,可求出A B ,两点的坐标.(2)先作出AB 的垂直平分线,利用解直角三角形或者是三角形相似的知识,可求出AB 的垂直平分线与坐标轴的交点坐标,从而求得直线的解析式.(3)由于线段AB 的长度确定,要使PAB △的面积最大,只要点P 到AB 的距离最大即可,故点P 既要在抛物线上,又必须在与AB 平行的直线上.解:(1)依题意得216412y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解之得1163x y =⎧⎨=-⎩,2242x y =-⎧⎨=⎩. ∴(63)A -,,(42)B -,.(2)作AB 的垂直平分线交x 轴,y 轴于C D ,两点,交AB 于M (如图4), 由(1)可知:35OA =,25OB =, ∴55AB =, ∴152OM AB OB =-=, 过B 作BE x ⊥轴,E 为垂足,由BEO CMO △∽△,得:OC OM OB OE =,∴54OC =, 同理:52OD =,∴550042C D ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,, 设CD 的解析式为y kx b =+(0k ≠),∴50452k b b ⎧=+⎪⎪⎨⎪-=⎪⎩ ∴252k b =⎧⎪⎨=-⎪⎩.∴AB 的垂直平分线的解析式为:522y x =-.(3)若存在点P 使APB △的面积最大,则点P 在与直线AB 平行且和抛物线只有一个交点的直线12y x m =-+上,并设该直线与x 轴,y 轴交于G 、H 两点.∴212164y x m y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩∴2116042x x m -+-=, ∵抛物线与直线只有一个交点, ∴2114(6)024m ⎛⎫--⨯-= ⎪⎝⎭,∴254m =,∴2314P ⎛⎫ ⎪⎝⎭,. 在直线125:24GH y x =-+中,∴25250024G H ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,. 设O 到GH 的距离为d , ∴1122GH d OG OH =,∴11252524224d ⨯=⨯⨯,∴d =.∵AB GH ∥,∴P 到AB 的距离等于O 到GH 的距离d .∴1112552224S AB d ==⨯=最大面积. 点评:本题的背景对同学们既现实又亲切,考查同学们经历建立函数关系和解方程组的过程意图明显,有较好的效度、可推广性和教育价值. 【考题预测】1.方程组3520x y x y +=⎧⎨-=⎩的解是____________.2.分式方程532x x=-的解为x =____________. 3.不等式组2450x x >-⎧⎨-⎩≤的解集是( )(A)2x >- (B)25x -<≤(C)5x ≤ (D)无解 4.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( ) (A )50005000 3.06x -=⨯% (B )5000205000(1 3.06)x +⨯=⨯+%% (C )5000 3.06205000(1 3.06)x +⨯⨯=⨯+%%% (D )5000 3.06205000 3.06x +⨯⨯=⨯%%%5. 已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.6.为净化空气,美化环境,市冷水滩区在许多街道和居民小区都种上了玉兰和樟树,冷水滩区新建的某住宅区内,计划投资1。
中考数学专题训练第3讲一次方程与一元一次不等式(知识点梳理)
整式知识点梳理考点01 方程的有关概念一、等式1.等式:用“=”来表示相等关系的式子叫作等式。
2.等式的性质:(1)性质1:等式两边加(或减)同一个数(或式子),结果仍相等(如果b a =,那么c b c a ±=±(c 为一个数或式子))。
(2)性质2:等式两边乘同一个数或除以同一个不为0的数,结果仍相等(如果b a =,那么bc ac =.如果)(0≠=c b a ,那么cb c a =) 3.等式性质的延伸:(1)对称性:等式左右两边互换,所得结果仍相等,即如果b a =,那么a b =。
(2)传递性:如果b a =,c b =,那么c a =。
二、方程的概念和方程的解1.方程的概念:含有未知数的等式叫作方程。
2.方程与等式的区别:方程是等式,但等式中不一定含有未知数,即等式不一定是方程。
3.方程的解:使方程左右两边相等的未知数的值,叫作方程的解。
4.判断一个数(或一组数)是不是某方程的解,只需看两点:(1)它是方程中的未知数的值.(2)将它分别代入方程的左右两边,若左边等于右边,则它是方程的解,否则不是。
5.解方程:求方程解的过程叫作解方程。
6.方程的解和解方程的区别:方程的解是一个结果,解方程则是得到这个结果的一个过程。
7.一元一次方程:只含有一个未知数(元),并且未知数的次数是1,这样的整式方程叫作一元一次方程。
8.一元一次方程知识拓展:(1)“元”是指未知数,“次”是指未知数的次数.(2)一元一次方程满足3个条件:①是整式方程.②只含有一个未知数.③未知数的次数是1.(3)一元一次方程的标准形式:),0(0是已知数、b a a b ax ≠=+。
考点02 解一元一次方程与一元一次方程的应用一、解一元一次方程1.移项:把等式一边的某项变号后移到另一边,叫作移项,注意移项要变号。
2.解一元一次方程的步骤:(1)去分母:把方程两边都乘以各分母的最小公倍数(去分母时,若分子是多项式,要添括号).(2)去括号:先去小括号,再去中括号,最后去大括号(不要漏乘括号里的项,不要弄错符号).(3)移项:把含有未知数的项移到方程的一边,其他项移到另一边(注意移项要变号).(4)合并同类项:把等号两边的同类项分别合并,化成“b ax =”的形式(0≠a ).(5)系数化为1:方程两边同除以未知数的系数a 得方程的解为ab x =。
2020年中考数学复习解答题专项训练---方程(组)和不等式的实际应用(无答案))
方程(组)和不等式的实际应用一、一元一次方程的应用1.(2019∙安徽)为实施乡村振兴战略,解决某山区老百姓出行难问题,当地政府决定修建一条高速公路。
其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工。
甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米。
已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?2.(2019∙岳阳)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积600多亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的1,求休闲小广场总面积最3多为多少亩?3.(2019∙甘肃)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?二、二元一次方程组的应用1.(2019∙淄博)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A、B两种产品在欧洲市场热销,今年第一季度这两种产品的销售额为2060万元,总利润为1020万元(利润=售价-成本),其每件产品的成本和售价信息如问该公司这两种产品的销售件数分别是多少?2.(2019∙百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时。
(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?3.(2019∙广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同。
(完整版)中考复习方程与不等式专题含答案详解
方程与不等式专题。
一.选择题(共12小题)1.使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A.﹣1 B.2 C.﹣7 D.02.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>13.不论x,y取何实数,代数式x2﹣4x+y2﹣6y+13总是()A.非实数B.正数C.负数D.非正数4.关于x的分式方程﹣=1有增根,则m的值为()A.1 B.4 C.2 D.05.有一个底面半径为10cm,高为30cm的圆柱形大杯中存满了水,把水倒入一个底面直径为10cm的圆柱形小杯中,刚好倒满12杯,则小杯的高为()A.6cm B.8cm C.10cm D.12cm6.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%,那么商店在这次交易中()A.赚了10元B.亏了10元C.赚了20元D.亏了20元7.已知关于x的方程x﹣=﹣1的解是正整数,则符合条件的所有整数a的积是()A.12 B.36 C.﹣4 D.﹣128.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<19.按国家2011年9月1日起实施的有关个人所得税的规定个人月工资(薪金)中,扣除国家规定的免税部分3500元后的剩余部分为应纳税所得额,全月应纳税所得额不超过1500元的税率为3%,超过1500元至4500元部分的税率为10%,若小明妈妈某月缴了145元的个人所得税,则她的月工资是()A.6000元B.5500元C.2500元D.2000元10.分式方程=无解,则m的值为()A.2 B.1 C.1或2 D.0或211.若关于x的分式方程有增根,则k的值是()A.﹣1 B.﹣2 C.2 D.112.已知关于x的不等式组有五个整数解,m的取值范围是()A.﹣4≤m<﹣3 B.﹣8≤m<﹣6 C.4<m≤6 D.4≤m<6二.填空题(共10小题)13.已知点P(x,y)位于第二象限,并且y≤2x+6,x、y为整数,则点P的个数是.14.若不等式组无解,则m的取值范围是.15.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,现我军以7千米/小时的速度追击小时后可追上敌军.16.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n ﹣1)=﹣6,则a的值为.17.已知x,y均为实数,且满足关系式x2﹣2x﹣6=0,y2﹣2y﹣6=0,则=.18.若不等式组无解,则m的取值范围是.19.一座桥长1200米,一列火车以每秒20米的速度通过这座桥,火车车身长300米,则火车从上桥到离开需要秒.20.若实数a,b满足(a2+b2)(a2+b2﹣8)+16=0,则a2+b2=.21.方程=x﹣1的根为.22.要使关于x的方程有唯一的解,那么m≠.三.解答题(共6小题)23.已知方程组的解x、y满足x+y<1,且m为正数,求m的取值范围.24.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,求这件夹克衫的成本是多少元?25.如图,在Rt△ACB中,∠C=90°,BC=6m,AC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,已知点P移动的速度是20cm/s,点Q移动的速度是10cm/s,几秒后△PCQ的面积为Rt△ACB面积的?26.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为,根据上面的信息解答:(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.27.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1①,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b 为实数),a叫这个复数的实部,b叫做这个复数的虚部.如果只把i当成代数,则i将符合一切实数运算规则,但要根据①式变通来简便运算.(不要把复数当成高等数学,它只是一个小学就学过的代数而已!它的加,减,乘法运算与整式的加,减,乘法运算类似.)例题1:i3=i2•i=﹣1•i=﹣i;i4=i3•i=﹣i•i=﹣i2=﹣(﹣1)=1例题2:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i(5+i)×(3﹣4i)=15﹣20i+3i ﹣4i2=15﹣17i+4=19﹣17i同样我们也可以化简===2i也可以解方程x2=﹣1,解为x1=i,x2=﹣i.读完这段文字,请你解答以下问题:(1)填空:i5=,i6=;(2)计算:(2+i)2;(3)在复数范围内解方程:x2﹣x+1=0.28.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B 型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?方程与不等式专题。
初三数学中考复习专题2方程与不等式
方程与不等式一、方程与方程组二、不等式与不等式组知识结构及内容:(一)方程与方程组1几个概念'2一元一次方程、3 一元二次方程4方程组5分式方程6应用1、概念:方程、方程的解、解方程、方程组、方程组的解2、一元一次方程:解方程的步骤:去分母、去括号、移项、合并同类项、系数化一(未知项系数不能为零)例题:•解方程:(1)(2)解:(3)【05湘潭】关于x的方程mx + 4 = 3x + 5的解是x= 1,则m = _________________ 解:3、一兀二次方程:2(1) 一般形式:ax bx c 0 a 0(2)解法:直接开平方法、因式分解法、配方法、公式法例题:① 、解下列方程:2求根公式axbx c 0 a 0b ,b 2 4ac2ab 2 4ac解:(1) x 2 - 2x = 0 ; (3) (1 - 3x)2 二 1 ; (5) (t -2) (t + 1 )= 0;(7 )2x 2-6x -3 = 0;(2) 45 -x 2 = 0; (4) (2x + 3)2-25 = 0 .(6) x 2 + 8x - 2 = 0 (8) 3 (x -5) 2 = 2 (5-x )②填空:(1) x 2 + 6x +() = ( x +) 2;(2) x 2 — 8x +( ) = ( x — ) 23(3) x 2 + -x +() = ( x + ) 22(3) 判别式^62 —4ac 的三种情况与根的关系当0时<= -- =>有两个不相等的实数根F-b.1当0时 h--有两个相等的实数根- 当0时 -" 没有实数根.当△组时有两个实数根例题.①.(无锡市)若关于x 的方程x 2 + 2x + k = 0有两个相等的实数根,则k满足 ()A.k > 1B.k >1C.k = 1D.k v 1②(常州市)关于x 的一元二次方程x 2 (2k 1)x k 1 0根的情况是( )(C )没有实数根(D )根的情况无法判定(A )有两个不相等实数根(B )有两个相等实数根2px q 0有两个不相等的实数根,③.(浙江富阳市)已知方程x2则p、q满足的关系式是(A、P2 4q 0P2 q 0 C、P2 4qx 2y 0【05南京】解方程组3x 2y 8解x 山1 【05苏州】解方程组: 2 3 3x 2y 10x y 1【05遂宁课改】 解方程组:2x y 8解(4)根与系数的关系:x i + X 2 = b一 >ac X 1X 2=-a例题:(浙江富阳市)已知方程3x 2 2x11 0的两根分别为捲 的值是()A 、LB 、11 11 2C 、 A11X2,贝U ——x 1 x 24、方程组:三元一次方程组:减消元二元一次方程组代减消元元一次方程例题:【05泸州】解方程组二元(三元)一次方程组的解法:代入消元、加减消元x y 7,2x y 8.x + y = 9【05宁德】解方程组:3 (x + y ) + 2x = 33解5、分式方程:分式方程的解法步骤:(1) 一般方法:选择最简公分母、去分母、解整式方程,检验x 2②、【北京市海淀区】当使用换元法解方程()x 1xyd ,则原方程可变形为( )A . y 2 + 2y + 3 = 0 C . y 2 + 2y — 3 = 023(3) 、用换元法解方程x 2 3x -——x 3xB . y 2— 2y + 3 = 0D . y 2 — 2y — 3 = 04时,设y x 2 3x ,则原方程可化为6、应用:(1) 分式方程(行程、工作问题、顺逆流问题) (2) 一元二次方程(增长率、面积问题)(2) 换元法 例题:①、解方程: 严1x 2 4---- 的解为 ______________x 2x 2 5x 60根为 _____________(A ) y34yy —— 4 03y(D ) y1 3yx2(— ) 3 0时,若设 x 1(3)方程组实际中的运用例题:①轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.(提示:顺水速度= 静水速度+水流速度,逆水速度=静水速度-水流速度)解:②乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10 千米/时,结果两辆车同时到达C城.求两车的速度解③某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1% )解④【05绵阳】已知等式(2A —7B)x + (3A —8B)= 8x + 10对一切实数x都成立,求A、B 的值解⑤【05南通】某校初三(2 )班40名同学为“希望工程”捐款,共捐款如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组A 、x y 27 x y 27B、2x 3y 66 2x 3y 100C、x y 27D、3x 2y 66x y 273x 2y 100100元•捐款情况实用标准文案⑥已知三个连续奇数的平方和是 371,求这三个奇数. 解⑦一块长和宽分别为60厘米和40厘米的长方形铁皮, 要在它的四角截去四个相等的小正方形,折成一个无盖 的长方体水槽,使它的底面积为800平方米.求截去正方1几个概念2不等式3不等式(组)(二)不等式与不等式组 解:实用标准文案1、几个概念:不等式(组)、不等式(组)的解集、解不等式(组)2、不等式:(1)怎样列不等式:1 •掌握表示不等关系的记号2 •掌握有关概念的含义,并能翻译成式子.(1 )和、差、积、商、幕、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语. 例题:用不等式表示:①a为非负数,a为正数,a不是正数解:②⑴盂的|■与5的差小于主(2)8与y的2倍的和是正数;(3)x与5的和不小于0;(4农的扑于或等于山(5) x的4倍大于x的3倍与7的差;(6慮与E的差的专不超过0.解:(2) 不等式的三个基本性质不等式的性质1 :如果a> b,那么a+ c> b + c, a —c> b —c推论:如果a + c > b,那么a > b —c.不等式的性质2 :如果a> b,并且c> 0,那么ac>bc .不等式的性质3 :如果a> b,并且c v 0,那么ac v bc .(3) 解不等式的过程,就是要将不等式变形成x > a或x v a的形式步骤:(与解一元一次方程类似)去分母、去括号、移项、合并同类项、系数化一(注:系数化一时,系数为正不等号方向不变;系数为负方向改变) 例题:①解不等式1(1 —2x)> 3(2」3 2解:②一本有300页的书,计划10天内读完,前五天因各种原因只读完100页•问从第六天起,每天至少读多少页?解:(4) 在数轴上表示解集:“大右小左”(5) 写出下图所表示的不等式的解集:1 ) , I ■] ■‘ 一_ ■■■二-2-10 12⑴「h 」-..- 1 -----------10 5 ft 5 10 153、不等式组:求解集口诀:同大取大,同小取小,交叉中间,分开两边例题:①②例题:如果a > b,比较下列各式大小1 1(1) a 3 b 3,(2) a - ___________ b -,(3) 2a_ 2b3 3(4)2a 1 ___ b 1,(5) a 1_ b 13 x 1 x38【05黄岗】不等式组2x 1 1 x1的解集应为( )3 21A、x2B、 2 x2C、 2 x 17D、x 2 或x >1解④求不等式组2<3x —7 V8的整数解.解:课后练习:1、下面方程或不等式的解法对不对?(1)由一x = 5,得x = —5;( )(2)由一x>5,得x> —5;( )(3)由2x>4,得x V —2;( )1(4)由—1<3,得x >—6 .( )2、判断下列不等式的变形是否正确:(1)由a V b,得ac V be;( )(2)由x>y,且m 0,得一上V y;( )m m(3)由x >y,得xz2> yz2;( )(4)由xz2> yz2,得x >y;( )3、把一堆苹果分给几个孩子,如果每人分 3个,那么多8个;如果 前面每人分5个,那么最后一人得到的苹果不足 3个,问有几个孩 子?有多少只苹果?辅导班方程与不等式资料答案: 例题:•解方程:(1)解:(x = 1)(3)【05湘潭】 解:(m = 4 )(2) (x i = 3v5 x 2 = -3V 5 )(4) (x i = — 4 X 2 = 1)(6) (X 1 = — 4 + 3v2 X 2 = — 4(7)(x 1 = (3 + V 15) /2 x 2 = ( 3 — V 15) /2 )(8) (x 1 = 5 X 2 = 3/13 )②填空:(1) x 2 + 6x +( 9 ) = ( x + 3 ) 2;(2 ) x 2 — 8x +(16 ) = ( x — 4 ) 2;3(3 ) x 2 + -x +( 9/16) = ( x + 3/4 ) 22例题.①. (C ) ②B ③.(A )bc①、解下列方程:解: (1) ( X 1= 0X 2 = 2 )(3 ) (X 1 = 0X 2 = 2 / 3)(5 ) ( t 1 =—1 t2 = 2 )—3 V )(x = 1)例题:(4)根与系数的关系:X1 + X2 = - , X1X2 =-a a例题:(A )②、【北京市海淀区】(D )例题:【05泸州】解方程组x 2xy 7, y 8.解得:【05 南京】解方程组3x 2y 2y解得:【05 苏州】解方程组:23x y 13 2y 解得:x = 310y = 1/2【05 遂宁课改】解方程组:x y 1 2x解得【05 x + y = 9宁德】解方程组:3 (x + y ) + 2x = 33解得:例题: 4 ①、解方程: --- ---x 2 42x ,x 25x 1 的解为x 20根为 (x = 2)(3)、(A )例题:①解:设船在静水中速度为x千米/小时依题意得:80/(x + 3) = 60/( x —3)解得:x = 21 答:(略)②解:设乙车速度为x千米/小时,则甲车的速度为(x + 10)千米/小时依题意得:450/ (x + 10 )= 400/x解得x = 80 x + 1 = 90 答:(略)③解:设原零售价为a元,每次降价率为x依题意得:a(1 —x )2 =a/2 解得:x ~0.292 答:(略)④【05绵阳】解:A = 6/5 B= —4/5⑤解:A⑥解:三个连续奇数依次为x—2、x、x+ 2依题意得:(x —2)2 + x2 +(x + 2)2 = 371 解得:x =±11当x = 11时,三个数为9、11、13 ;当x = —11时,三个数为一13、一11、一9 答(略)⑦解:设小正方形的边长为x cm依题意:(60 —2x)(40 —2x)= 800 解得x1 = 40 (不合题意舍去)x2 = 10 答(略)例题:用不等式表示:① a为非负数,a为正数,a不是正数解:a>0 a > 0 a O② 解:(1) 2x/3 — 5 v 1 (2) 8 + 2y >0 (3) x+ 5 X)(4) x/4 <2 (5) 4x>3x—7 (6) 2 (x—8) / 3 < 0例题:①解不等式1(1 -2x)> 3(2x 113 2解得:x v 1/2②解:设每天至少读x页依题意(10 —5) x + 100 X 300 解得x>40 答(略) (6) 写出下图所表示的不等式的解集!I)「・■!------ 1"_'——I J L —I * ・・x>x X------------ ——12 ____________________________10 5 0 5 10 15x v 0例题:①②例题:如果a > b,比较下列各式大小1 1(1) a 3 > b 3, (2) a - > b - , (3) 2a v 2b3 3(4) 2a 1 > 2b 1, (5) a 1 v b 1②【05黄岗】(C )③求不等式组2<3x —7v8的整数解.解得:3<x v5课后练习:1、下面方程或不等式的解法对不对?(5)由一x = 5,得x = —5;(对)(6)由一x>5,得x>— 5;(错 )(7)由2x>4,得x v —2;(错)1(8)由—x^3,得x6.(对 )2、判断下列不等式的变形是否正确:(5)由a v b,得ac v be;(错)(6)由x>y,且m 0,得一—v —;(错 )m m(7)由x >y,得xz2> yz2;(错 )(8)由xz2> yz2,得x >y;(对)3、把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果不足3个,问有几个孩子?有多少只苹果?解:设有x个孩,依题意:3x + 8 — 5 (x —1) v 3 解得5 v x<6.5X= 6 答(略)3(B) y —4 0y。
2023年中考数学二轮《方程与不等式》专题练习-人教版(含答案)
2023年中考数学二轮《方程与不等式》专题练习-人教版(含答案)一、选择题(共16题)1.在数轴上表示不等式﹣2≤x <4,正确的是( ) A.B.C. D.2.下列方程中是关于x 的一元二次方程的是( ) A. B.C.D.3.用配方法解方程2237x x +=时,方程可变形为( )A.273724x ⎛⎫-= ⎪⎝⎭B.274324x ⎛⎫-= ⎪⎝⎭C.271416x ⎛⎫-= ⎪⎝⎭D.2725416x ⎛⎫-= ⎪⎝⎭4.若2211m m m m m --=--,则m 等于( ) A.1- B.0 C.1-或1 D.1-或25.对于任意的实数x ,代数式259x x -+的值是一个( ) A.整数B.非负数C.正数D.不能确定6.关于x 的一元一次方程3xy -2=4的解为2,则y 的值是( ) A.y = 1B.y =-2C.y =-6D.y =-57.已知下列方程:①2x +3y =0;①x +3=7;①y 2-y +1=0;①3x =7x +2;①2x -3=4x ;①73y =3.其中属于一元一次方程的有( ) A.2个 B.3个 C.4个 D.5个8.不等式组的解集在数轴上表示为( ).A. B. C. D.9.在平面直角坐标系中,若点(),1P a a -在第一象限内,则a 的取值范围在数轴上表示为( )A. B.C. D.10.下列方程组的解为31x y =⎧⎨=⎩的是① ①A.224x y x y -=⎧⎨+=⎩ B.253x y x y -=⎧⎨+=⎩ C.32x y x y +=⎧⎨-=⎩ D.2536x y x y -=⎧⎨+=⎩ 11.已知a 、b 、c 都是实数,则关于三个不等式:a >b 、a >b +c 、c <0的逻辑关系的表述,下列正确的是( ) .A.因为a >b 、c <0所以a >b +cB.因为a >b +c ,c <0,所以a >bC.因为a >b +c ,所以a >b ,c <0D.因为a >b 、a >b +c ,所以c <012.下列方程中,有实数根的方程是( ) A.4y 10+=B.2x x 10++=C.x 1x 1x 1=-++x -13.下列方程变形中,正确的是( ) A.方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2B.方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1C.方程23t =32,未知数系数化为1,得t =1D.方程2x+3=x ,去分母得x +6=2x14.下列一元二次方程中,两根分别为5和-7的是( ) A.7)50()(x x ++= B.7)50()(x x =-- C.7)50()(x x +-=D.7)50()(x x +=-15.方程组3455792x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A.20.25x y =⎧⎨=-⎩B. 5.54x y =-⎧⎨=⎩C.10.5x y =⎧⎨=⎩D.10.5x y =-⎧⎨=-⎩16.如果二次函数22y x x t =++与一次函数y x =的图像两个交点的横坐标分别为m 、n ,且1m n <<,则t 的取值范围是( )A.2t >-B.2t <-C.14t >D.14t <二、综合题(共10题)17.用不等式表示:x 的4倍大于x 的3倍与7的差:__________.18.把分式方程311xx x -=+化成整式方程,去分母后的方程为______________________ 19.关于x 的方程(2m ﹣1)x 2+mx+2=0是一元二次方程,则m 的取值范围是_____. 20.一项工程,甲单独完成要10天,乙单独完成要15天,则由甲先做5天,然后甲、乙合做余下的部分还要_____天完成.21.买一些4分、8分、1角的邮票共15张,用币100分最多可买1角的______张。
中考数学高分专题 二 《方程与不等式》考点-例题-过关训练
第二讲:方程与不等式第一关:考点点睛一元一次方程考点一方程解的应用例1(2009·芜湖)已知方程3x2x-9x+m=0的一个根是1,则m的值是。
解题思路:根据方程解的定义,把方程的解x=1代入方程成立,然后解决关于m的方程即可,解:把x=1代入原方程,得3×21-9×1+m=0,解得m=6 答案:6点评:解题依据是方程解的定义,解题方法是把方程的解代入原方程,转化为关于待定系数的方程。
考点二巧解一元一次方程例2(2008·江苏)解方程:341138 43242x x ⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦解题思路:此题先用分配律简化方程,再解就容易了。
解:去括号,得1136242x x--=移项、合并同类项,得-x=614,系数化为1,得x=-614点评:解一元一次方程,掌握步骤,注意观察特点,寻找解题技巧,灵活运用分配委或分数基本性质等,使方程简化。
考点三根据方程ax=b解的情况,求待定系数的值例3已知关于x的方程1(6)326x xa x+=--无解,则a的值是()A.1B.-1C.±1D.不等于1的数解题思路:需先化成最简形式,再根据无解的条件,列出a的等式或不等式,从而求出a的值。
解:去分母,得2x+6a=3x-x+6,即0·x=6-6a因为原方程无解,所以有6-6a≠0,即a≠1,答案:D考点四一元一次方程的应用例4(2009·福州)某班学生为希望工程共捐款131元,比每人平均2 元还多35元,设这个班的学生有x 人,根据题意列方程为_________________。
解题思路:本题的相等关系是捐款总数相等,解决此题的关键是用学生人数、平均数与余数35元表示出捐款总数(2x+35)元。
答案:2x+35=131二元一次方程考点1:二元一次方程及其解例1:下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-思路点拨:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.所以选D例2:二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解思路点拨:不加限制条件时,一个二元一次方程有无数个解.所以选B考点2:二元一次方程组及其解例1:下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩思路点拨:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.所以选A例2:已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.思路点拨:由已知得x -1=0,2y+1=0,∴x=1,y=-12,把112x y =⎧⎪⎨=-⎪⎩代入方程2x -ky=4中,2+12k=4,∴k=1. 考点3:二元一次方程组的应用例1”捐款,共捐款100元.捐款情况如表:47表格中捐款2若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A.⎩⎨⎧=+=+663227y x y xB.⎩⎨⎧=+=+1003227y x y xC.⎩⎨⎧=+=+662327y x y xD.⎩⎨⎧=+=+1002327y x y x 思路点拨:这是一道表格信息题,通过已知条件可发现两个等量关系:总人数为40人,总捐款金额100元.利用表格信息可列方程组⎩⎨⎧=+=+663227y x y x ,故应选A .例2 :如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是( )A.⎩⎨⎧-==+10180y x y xB.⎩⎨⎧-==+103180y x y x C.⎩⎨⎧+==+10180y x y x D.⎩⎨⎧-==1031803y x y思路点拨:本题侧重考查学生的数形结合思想.已知条件看似给了一个,其实还有一个隐含条件,即1∠与2∠互为邻补角.利用它们可列方程组⎩⎨⎧-==+103180y x y x ,故应选B .分式方程考点1:分式的定义例1:请从下列三个代数式中任选两个构成一个分式,并化简该分式x2-4xy+4y2x2-4y2x-2yA .1 B. 2 C.3 D.4 思路点拨:分母中含字母的代数式,xy x 1,2-都是分式,其他都不是。
中考数学专题复习《方程与不等式》测试卷-附带答案
中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。
中考数学复习知识点专题讲解49---方程(组)与不等式(组)中转化思想的应用
解析 可以先解出 x 的解集,得 x > 6 − a ,又因为关于 x 的不等式 3x + a > 6 的解 3
集是 x > 3 ,所以 x > 6 − a 与 x > 3 是同一个解集,所以 6 − a = 3 ,可求得 a = −3。
3
3
例 6 关于 x 的的不等式组 −2 < 2x + a < b + 2 的解集是 −4 < x < 1,求 b 的值。
x 的解,又因为 x 是非负数,所以建立关于 a 的不等式,从而可以把方程 问题转化为不
等式问题,体现了数学学习中 的转化思想。
求解的方法是:1. 解(方程),2,代(用 a 的代数式代替 x ) ,3.求(不等式的解集)
解 由 3x − a = 6 得: x = 6 + a 3
因为关于 x 的方程 3x − a = 6 的解是非负数,所以 x ≥ 0 ,所以 6 + a ≥ 0 。所以 a ≥ −6 。 3
于
x、y
的
方
程组
2x
+
y
=
a
的
解
x + 2y = 3
y
=
6
− 3
a
x + 2y = 3
x、y
是非负数,所以
x
≥
0
,即
2a − 3
3
≥
0
,所以
3
≤
a
≤
6
。
y ≥0
6
− 3
a
≥
0
2
3. 从不等式(组)到方程(组)的转化问题
2/3
例 5 关于 x 的不等式 3x + a > 6 的解集是 x > 3 ,求 a 的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考热点专题讲练--------方程与不等式(二)山东 李其明专讲一:一元二次方程1.整体动向:主要考查二元一次方程的有关概念、解法和应用,题型多以填空、选择为主,难度不大,另外关于列二元一次方程解决实际问题的考题在中考中出现的几率也较大2.重点、难点、疑点(1)一元二次方程的概念只含有一个未知数x 并且未知数的最高次数是2的整式方程叫一元二次方程. 一元二次方程的一般形式是20ax bx c ++=(a ,b ,c 为常数,a ≠0)其中2ax ,bx ,c 分别称为二次项,一次项和常数项,a ,b 分别称为二次项系数、一次项系数,它的特征有二:一是方程的右边为0;二是左边的二次项系数不能为0,(2)一元二次方程的四种解法直接开平方法、配方法、公式法和因式分解法 (3)一元二次方程根与系数的关系 3.思想方法主要思想方法有:整体思想、转化思想、方程根的估算思想等 4.典例剖析例1.(2006年武汉市)解方程:012=-+x x析解:本题重点考查一元二次方程的公式解,由求根公式易得1x =,2x = 例2.(2006年威海市)已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )11析解:本题综合考查一元二次方程根的定义与根与系数之间的关系,由于a 、b 为一元二次方程0922=-+x x 的两个根,所以,将a 代入方程得:2290a a +-=,所以292a a =-,由根与系数之间的关系得a +b =-2,所以原式=9-2a +a -b =9-(a +b )=9-(-2)=11,故应选D 例3.(2006年海淀区)已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可。
解:(1)<1>()()x x +-=110,所以x x 1211=-=, <2>()()x x +-=210,所以x x 1221=-=, <3>()()x x +-=310,所以x x 1231=-=,……<n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等。
评析:本题是一元二次方程的阅读理解型的考题,它通过阅读(解方程的过程)来归纳、提炼出一般规律,是一开放型试题专练一:1.(2006年台州市)方程x 2-4x +3=0的两根之积为( ) (A )4 (B )-4 (C )3 (D )-3 2.(2006年温州市)方程,x 2-9=0的解是( )A .x l =x 2=3 B. x l =x 2=9 C .x l =3,x 2=-3 D. x l =9,x 2=-9 3.(2006年常德市)已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).4.(2006年荆洲市)已知关于x 的二次方程012)21(2=---x k x k 有实数根,则k 的取值范围是 。
5.(20006年荆洲市)已知y 关于x 的函数:1)1(2)2(2++---=k x k x k y 中满足k ≤3。
(1)求证:此函数图象与x 轴总有交点;(2)当关于x 的方程2332+-=--z kz z 有增根时,求上述函数图象与x 轴的交点坐标。
6.(2006年维坊市)(已知01a a bx ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .7.(2006年福州市)关x 的一元二次方程(x -2)(x -3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值. 8.(2006年南昌市)已知关于x 的一元二次方程210x kx +-= (I)求证方程有两个不相等的实数根:(2)设的方程有两根分别为12,x x 日满足1212x x x x +=⋅ 求k 的值专讲二:方程根的估算1.整体动向:我们在解一元二次方程时,有时去求它的精确,但有时也没有必要求它的精确解,只需要近似地估算就可以了2.重点、难点、疑点关于一元二次方程的近似解,应先根据实际问题确定其解的大致范围,再通过计算进行两边“夹逼”,逐步获得其近似解,“夹逼”思想是近似近似的重要思想,“新课标”要求发展学生的估算意识和能力,应引起我们的重视3.思想方法:估算思想、转化思想 4.典例剖析例1.有一张长方形的桌子,它的长为6尺,宽为3尺,有一台布的面积是桌面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求垂下的长度(精确到尺) 如图1,长方形ABCD 表示桌面,长方形EFGH 表示台布 解:设台布下垂x 尺,则台布的长为(6+2x )尺,宽为 (3+2x )尺,依题意,得(6+2x )(3+2x )=36①, 整理得22990x x +-=②,从方程②可以看出所列方程是一个一元二次方程,我们运用估算的方法进行: (1)从方程①估算x 的取值范围 若x ≥1,则(6+2x )(3+2x )≥8×5=40>36,不符合方程①,所以x <1,但x 不可是负数,故x 的取值范围:0<x <1, (2)进一步逼近x 的值从上表可以看出x 的取值范围:<x <(3)由题中的精确度确定x 的值,把x 从取到,故精确到时,x ≈, 即台布下垂尺例2.(2006年常德市)根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )F图1A. B. C.6.18 6.19x <<D.6.19 6.20x <<解:由例1的估算方法可以知道:2ax bx c ++的值接近0时,x 的值,应选C例3.“一块矩形铁片,面积为1平方米,长比宽多3米,求铁片的长”,小明在做这道题时,是这样思考的:设铁片的长为x 米,列出方程为x (x -3)=1,整理得2310x x --=,小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程,所以: <x <所以: <x <(1)请你帮小明填完空格,完成他未完成的部分;(2)通过以上探索,你能估计出矩形铁片的整数部分为 ,十分位为解:(1)由问题的背景可知:x ≥1,所以x 的值应从1开始估算,通过计算当x =1,2时,231x x --的值为-3,当x =3,4时,231x x --的值分别为3,4;所以x 的范围应3<x <4,然后在3和4之间再取值估算,231x x --的值分别为,,,,所以x 的范围应 <x <,(2)由上可以估计出矩形铁片的整数部分为3,十分位为3专练二:1.(2006年武汉市)估算方程:012=-+x x 的近似解是2.(2006年广东省)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)一个解x 的范围是( )A 、3<x <B 、<x <C 、<x <D 、 <x <4.自编一个一元二次方程,使二次项系数为-2,常数项为2,并用估算的方法求其解专讲三:方程(组)与不等式(组)的综合应用1.整体动向:根据新课标的要求,这部分内容考试所占的比重较大,不但有填空、选择、解答题,近年来考查这类应用的题目越来越多,而且一大批具有较强的时代气息,设计自然,紧密联系日常生活实际问题的应用题不断涌现,对于情境设计、设问方式等方面有新突破2.重点、难点、疑点(1)列方程解决实际问题的关键是找“等量关系”,在寻找等量关系时有时要借助于图表等(2)应用方程组解决实际问题的关键再于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性(3)列不等式(组)解应用题的特征:一般所求问题中含有“至少”、“最多”、“不高于”、“不低于”等词语,要正确理解这些词语的含义,它解题的一般步骤与列方程(组)类似3.思想方法主要思想方法有:转化、类比、方程、函数、整体、数形结合等思想方法 4.典例剖析 例1.(2006年济南市)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280.x y x y +=⎧⎨+=⎩, 解这个方程组,得960360.x y =⎧⎨=⎩,答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐. (2)因为9605360255205300⨯+⨯=>,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.例2.(2006年黑龙江省鸡西市)某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价lO 万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元. (1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.解:(1)设购进甲种商品茗件,乙种商品(20-x )件.190≤12x +8(20-x )≤200 , 解得≤x ≤10. ∵ x 为非负整数,∴ x 取8,9,lO有三种进货方案:购甲种商品8件,乙种商品12件,购甲种商品9件,乙种商品ll 件,购甲种商品lO 件,乙种商品10件(2)购甲种商品10件,乙种商品10件时,可获得最大利润,最大利润是45万元(3)购甲种商品l 件,乙种商品4件时,可获得最大利例3.(2006年广东省实验区)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有—个小朋友分不到8个苹果.求这一箱苹果的个数与小朋友的人数.解:设有x 人, 则苹果有(512x +)个 ,由题意, 得5128(1)85128(1)0x x x x +--<⎧⎨+-->⎩解得:2043x <<,∵ X 为正整数,∴X =5或6 ,当X =5时,51237x +=人 当X =6时,51242x +=人专练二:1.(2006年烟台市)2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则a 3+b 4的值为( ) A .35 B .43 C .89 D .97 2.(2006年年山东省青岛市)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案. 3.(湖北省十堰市2006年课改实验区)市“康智”牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p (万元)满足:110120p <<.已知有关数据如下表所示,那么该公司明年应怎样安排新增产品的产量?产品 每件产品的产值甲 4.5万元 乙7.5万元4.(江苏省淮安市2006年中考题)小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下.究竟是哪个队赢了,本场比赛特里、纳什各得了多少分? 5.(2006年益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?参考答案:专练一:1.C ;2.C ;3.240x -=; 4.k≤1;5.略;6.5;7.m >14-;2; 8.(1)证明 △=2241(1)40k k -⨯⨯-=+>, 原方程有两个不相等的实数根 (2)解:由根与系数的关系,得 1212,1,x x k x x +=-⋅=-1212x x x x +=⋅ 1k -=- 解得k=1专练二:1.;2.(1)4,16;(2)不能剪成两段使得面积和为12cm 2;3.C ;4.答案不唯一(略)专练三:1.C ;2.解:(1)385÷42≈∴单独租用42座客车需10辆,租金为320×10=3200元. 385÷60≈,∴单独租用60座客车需7辆,租金为460×7=3220元.(2)设租用42座客车 x 辆,则60座客车(8-x )辆,由题意得:⎩⎨⎧≤-+≥-+.)(,)(3200846032038586042x x x x 解之得:733≤x ≤1855.∵x 取整数, ∴x =4,5. 当x =4时,租金为320×4+460×(8-4)=3120元;当x =5时,租金为320×5+460×(8-5)=2980元. 答:租用42座客车5辆,60座客车3辆时,租金最少. 说明:若学生列第二个不等式时将“≤”号写成“<”号,也对.3.解:设该公司安排生产新增甲产品x 件,那么生产新增乙产品()20x -件,由题意, 得()110 4.57.520120x x <+-<, 解这个不等式组,得40103x <<, 依题意,得111213x =,,.当11x =时,20119-=;当12x =时,20128-=;当13x =时,20137-=. 所以该公司明年可安排生产新增甲产品11件,乙产品9件;或生产新增甲产品12件, 乙产品8件;或生产新增甲产品13件,乙产品7件. 4.设本场比赛特里得了x 分,则纳什得分为x +12由题意,得⎩⎨⎧>+>+-x x x x 3)12(2,10)12(2 解得22<x <24. 因为x 是整数,所以x =23 答:小牛队赢了,特里得了23分,纳什得了35分.5.解:设钢笔每支为x 元,笔记本每本y 元,据题意得⎩⎨⎧-=++=510015102y x y x解方程组得,⎩⎨⎧==35y x ,答:钢笔每支5元,笔记本每本3元.。