高中数学必修2测试卷

合集下载

高中数学必修2直线的方程测试二

高中数学必修2直线的方程测试二

直线的方程测试(二)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.经过点),2(m P -和)4,(m Q 的直线的斜率等于1,则m 的值是( B ) A .4B .1C .1或3D .1或4 2.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足 ( C . )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m 3.直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为 M (1,-1),则直线l 的斜率为 ( D )A .23B .32C .-23D . -32 4.△ABC 中,点A(4,-1),AB 的中点为M(3,2),重心为P(4,2),则边BC 的长为( A )A .5B .4C .10D .85.直线kx -y +1=3k ,当k 变动时,所有直线都通过定点 ( C )A .(0,0)B .(0,1)C .(3,1)D .(2,1)6.如果AC <0且BC <0,那么直线Ax +By +C =0不通过 ( C )A .第一象限B .第二象限C .第三象限D .第四象限7.下列说法的正确的是 ( D )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a y b +=1表示D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程 ()()()()121121y y x x x x y y --=--表示8.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是DA ab 21B ||21abC ab21 D 9. ||21ab 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位 置,那么直线l 的斜率是( A ) A .-13 B .-3 C .13D .3 10.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为 ( D )A .()a c m ++12B .()m a c -C .a cm -+12 D . a c m -+12二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.△OAB 三个顶点O(0,0),A(-3,0),B(0,6),则过点O 将△OAB 的面积分为1:2的直线l 的方程是______ x+y=0或4x+y=0_______;12.与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为3x+y+6=0 或x-3y+2=013.与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为_____2x+3y-4=0; ___;14.经过点A(-2,2)且在第二象限与两坐标轴围成的三角形的面积最小时的直线方程为____ x-y+4=0___。

高中数学选择性必修二 综合检测试卷一

高中数学选择性必修二 综合检测试卷一
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
∴S5=9×1+1+13 315=247×1+315=691. 当 q=12时,a1=q12=4. ∴S5=4×1-1-12 215=8×1-215=341.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
解析 f′(x)=4x-2+41x22.
由f′(x)>0,解得-1<x<1, 所以函数f(x)的单调递增区间为(-1,1). 又因为f(x)在(m,2m+1)上单调递增,
m≥-1,
所以m<2m+1, 2m+1≤1,
11.函数f(x)=x2-ln 2x在下列区间上单调的是
A.-∞,
2
2

B.
22,+∞
C.-
22,0

D.0,
2
2
解析 因为 f′(x)=2x-1x=2x2x-1,
所以 f′(x) <0⇔x2>x2-0,1<0, 解得 0<x< 22;
f′(x)
x>0, >0⇔2x2-1>0,
解得
解析

an=2
020-3n>0,得
2 n<
0320=67313,
又∵n∈N*,∴n的最大值为673.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
14.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树 的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于_6___.

高中数学必修二测试题及答案人教版

高中数学必修二测试题及答案人教版

第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。

人教版高中数学必修第二册 第九章 统计 单元测试卷 (含答案)

人教版高中数学必修第二册 第九章 统计 单元测试卷 (含答案)

人教版高中数学必修第二册第九章统计单元测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.抽签法B.按性别分层随机抽样C.按学段分层随机抽样D.随机数法2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下表:身高[100,110)[110,120)[120,130)[130,140)[140,150]频数535302010由此表估计这100名学生身高的中位数为(结果保留4位有效数字)()A.119.3B.119.7C.123.3D.126.73.高二(1)班某宿舍有7人,他们的身高(单位:cm)分别为170,168,172,172,175,176,180,则这7个数据的第60百分位数为()A.168B.175C.172D.1764.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于()A.mhB.C.D.m+h5.2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静、韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程、金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到如图C4-1所示的频率分布直方图,由于不慎将部分数据丢失,但知道后5组频数之和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()图C4-1A.64B.54C.48D.277.某商场一年中各月份的收入、支出情况的统计如图C4-2所示,则下列说法中正确的是()图C4-2A.支出最高值与支出最低值的比是8∶1B.4至6月份收入的平均数为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同8.为了研究一种新药的疗效,选100名患者随机分成两组,每组50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成图C4-3,其中“*”表示服药者,“+”表示未服药者.则下列说法中,错误的是()图C4-3A.服药组的指标x的平均数和方差比未服药组的都小B.未服药组的指标y的平均数和方差比服药组的都大C.以统计的频率作为概率,估计患者服药一段时间后指标x低于100的概率为0.94D.这种疾病的患者的生理指标y基本都大于1.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了如图C4-4所示的折线图,根据该折线图,下列结论正确的是()图C4-4A.月跑步里程逐月增加B.月跑步里程的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳10.某学校为了调查学生在一周生活方面的支出(单位:元)情况,抽取了一个容量为n的样本,将样本数据按[20,30),[30,40),[40,50),[50,60]分组后所得频率分布直方图如图C4-5所示,其中支出在[50,60]内的学生有60人,则下列说法正确的是()图C4-5A.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数有132C.n的值为200D.若该校有2000名学生,则一定有600人支出在[50,60]内11.统计某校n名学生某次数学同步练习的成绩(单位:分,满分150分),根据成绩依次分成六组[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到频率分布直方图如图C4-6所示,若不低于140分的人数为110,则下列说法正确的是()图C4-6A.m=0.031B.n=800C.100分以下的人数为60D.成绩在区间[120,140)内的人数超过50%12.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某社会调查中心联合问卷网,对2400人进行问卷调查,并根据调查结果得到如图C4-7所示的扇形图,则下列结论正确的是()图C4-7A.“不支持”部分所占的比例是10%B.“一般”部分对应的人数是800C.扇形图中如果圆的半径为2,则“非常支持”部分对应扇形的面积是65πD.“支持”部分对应的人数是1080请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一组数据按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=.14.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图C4-8所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.图C4-815.国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是17,20,16,18,19,则这五位同学答对题数的方差是.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图C4-9所示).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用比例分配的分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.图C4-9四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)将一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,已知这组数据的中位数为5,求这组数据的平均数与方差.18.(12分)某车站在春运期间为了了解旅客的购票情况,随机调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min).下面是对所得数据进行统计分析后得到的频率分布表和频率分布直方图.频率分组频数[5,10)100.10[10,15)10②[15,20)①0.50[20,25]300.30合计1001.00解答下列问题:(1)在表中填写出缺失的数据并补全频率分布直方图(如图C4-10所示);(2)估计旅客购票用时的平均数.图C4-1019.(12分)某班主任利用周末时间对该班2019年最后一次月考的语文作文分数进行了统计,发现分数都位于20~55之间,现将分数情况按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]分成七组后,作出频率分布直方图如图C4-11所示,已知m=2n.(1)求频率分布直方图中m,n的值;(2)求该班这次月考语文作文分数的平均数和中位数.(每组数据用该组区间的中点值作为代表)图C4-1120.(12分)已知甲、乙两人在相同条件下各射靶10次,每次射击的命中环数如图C4-12所示.(1)求甲、乙两人射击命中环数的平均数和方差;(2)请根据甲、乙两人射击命中环数的平均数和方差,分析谁的射击水平高.图C4-1221.(12分)某地区100位居民的人均月用水量(单位:t)的分组及各组的频数分别为[0,0.5],4;(0.5,1],8;(1,1.5],15;(1.5,2],22;(2,2.5],25;(2.5,3],14;(3,3.5],6;(3.5,4],4;( 4,4.5],2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数.(3)当地政府制定了人均月用水量不超过3t的标准,若超过3t则加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?22.(12分)我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100户家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图C4-13所示的频率分布直方图.(1)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(2)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).图C4-13参考答案与解析1.C[解析]由题意得,最合理的抽样方法是按学段分层随机抽样,故选C.2.C[解析]设中位数为t,则有5100+35100+30100× -12010=0.5,解得t≈123.3.故选C.3.B[解析]将这7人的身高从小到大排序,可得168,170,172,172,175,176,180.∵7×60%=4.2,∴第5个数据为所求的第60百分位数,即这7个数据的第60百分位数为175.故选B.,所以h= | - |,则|a-b|= ,故选C.4.C[解析]在频率分布直方图中小长方形的高等于频率组距5.A[解析]根据题意可知,不变的数字特征是中位数.故选A.6.B[解析]前两组的频数为100×(0.05+0.11)=16.因为后五组的频数之和为62,所以前三组的频数之和为38,所以第三组的频数为38-16=22.又最大频率为0.32,故第四组的频数为0.32×100=32.所以a=22+32=54.故选B.7.D[解析]由图可知,支出最高值为60万元,支出最低值为10万元,其比是6∶1,故A错误;4至6月份的平均收入为13×(50+30+40)=40(万元),故B错误;利润最高的月份为3月份和10月份,故C 错误;由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确.故选D.8.B[解析]服药组的指标x的取值相对集中,方差较小,且服药组的指标x的平均数小于未服药组的指标x的平均数,故选项A中说法正确;未服药组的指标y的取值相对集中,方差较小,故选项B 中说法错误;服药组的指标x值有3个大于100,所以估计患者服药一段时间后指标x低于100的概率为0.94,故选项C中说法正确;未服药组的指标y值只有1个数据比1.5小,则这种疾病的患者的生理指标y基本都大于1.5,故选项D中说法正确.故选B.9.BCD[解析]2月跑步里程比1月的小,故A错误;月跑步里程9月最大,故B正确;月跑步里程从小到大对应的月份依次为2月、7月、3月、4月、1月、8月、5月、6月、11月、10月、9月,故月跑步里程的中位数为8月份对应的里程,故C正确;1月至5月的月跑步里程相对于6月至11月,波动性更小,变化比较平稳,故D正确.故选BCD.10.BC[解析]由频率分布直方图得,样本中支出在[50,60]内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.3×60+60=132,故B正确;n=600.3=200,故C正确;在D中,若该校有2000名学生,则大约有600人支出在[50,60]内,故D错误.故选BC.11.AC[解析]由图可知10×(m+0.020+0.016+0.016+0.011+0.006)=1,解得m=0.031,故A正确;因为不低于140分的频率为0.011×10=0.11,所以n=1100.11=1000,故B错误;因为100分以下的频率为0.006×10=0.06,所以100分以下的人数为1000×0.06=60,故C正确;对选项D,成绩在区间[120,140)内的频率为0.031×10+0.016×10=0.47<0.5,人数不超过50%,故D错误.故选AC.12.ACD[解析]“不支持”部分所占的比例是1-45%-30%-15%=10%,A正确;“一般”部分对应的人数是2400×15%=360,B不正确;“非常支持”部分对应扇形的面积是π×22×30%=65π,C正确;“支持”部分对应的人数为2400×45%=1080,D正确.故选ACD.13.15[解析]由中位数的定义知 +172=16,∴x=15.14.25[解析]∵该校通过手机收看“空中课堂”的学生人数所占的百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25.15.2[解析]这五位同学答对题数的平均数 =17+20+16+18+195=18,则方差s2=15×[(17-18)2+(20-18)2+(16-18)2+(18-18)2+(19-18)2]=2.16.0.0303[解析]因为10×(0.035+0.020+0.010+0.005+a)=1,所以a=0.030.身高在[120,130),[130,140),[140,150]三组内的学生人数为100×(0.030+0.020+0.010)×10=60,其中身高在[140,150]内的学生中人数为100×0.010×10=10,所以从身高在[140,150]内的学生中选取的人数应为1060×18=3.17.解:因为数据-1,0,4,x,7,14的中位数为5,所以4+ 2=5,解得x=6.设这组数据的平均数为 ,方差为s2,则 =16×(-1+0+4+6+7+14)=5,s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18.解:(1)表中缺失的数据分别为①50,②0.10.补全后的频率分布直方图如图所示.(2)估计旅客购票用时的平均数为7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.30=17.5(min).19.解:(1)由频率分布直方图,得=2 ,(0.01+0.03+0.06+ +0.03+ +0.01)×5=1,解得 =0.04, =0.02.(2)该班这次月考语文作文分数的平均数为22.5×0.05+27.5×0.15+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.25.因为(0.01+0.03+0.06)×5=0.5,所以该班这次月考语文作文分数的中位数为35.20.解:(1)由折线图可知甲射击10次命中的环数分别为9,5,7,8,7,6,8,6,7,7.乙射击10次命中的环数分别为2,4,6,8,7,7,8,9,9,10.则x 甲=110×(9+5+7+8+7+6+8+6+7+7)=7(环).x 乙=110×(2+4+6+8+7+7+8+9+9+10)=7(环),甲2=110×[(9-7)2+(5-7)2+(7-7)2×4+(6-7)2×2+(8-7)2×2]=1.2,乙2=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.(2)因为x 甲=x 乙, 甲2< 乙2,所以甲的射击稳定性比乙好,故甲的射击水平高.21.解:(1)作出频数分布表,如下.分组频数频率[0,0.5]40.04(0.5,1]80.08(1,1.5]150.15(1.5,2]220.22(2,2.5]250.25(2.5,3]140.14(3,3.5]60.06(3.5,4]40.04(4,4.5]20.02合计1001.00(2)由频率分布表画出频率分布直方图,如图所示.由频率分布直方图得这组数据的平均数=0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.∵人均月用水量在[0,2]内的频率为0.04+0.08+0.15+0.22=0.49,在(2,2.5]内的频率为0.25,∴中位数为2+0.5−0.490.25×0.5=2.02.众数为2+2.52=2.25.(3)月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量不超过3t,因此政府的解释是正确的.22.解:(1)因为0.06×2×1+0.11×2×3+0.18×2×5+0.09×2×7+0.06×2×9=4.92.因此全市家庭月均用水量平均数的估计值为4.92t.(2)频率分布直方图中,用水量低于2t的频率为0.06×2=0.12.用水量低于4t的频率为0.06×2+0.11×2=0.34.故全市家庭月均用水量的25%分位数的估计值为2+0.25−0.120.11≈3.18(t).。

人教版高中数学必修第二册第九章 统计 单元检测(含答案)

人教版高中数学必修第二册第九章 统计 单元检测(含答案)

人教版高中数学必修第二册第九章统计单元检测说明:本试卷满分100分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

考试时间45分钟。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列抽样方法是简单随机抽样的是A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方法确定号码的后四位是2709的为三等奖B.某车间包装一种产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格C.从8台电脑中逐个不放回地随机抽取2台,进行质量检验,假设8台电脑已编好号,对编号随机抽取D.从20个零件中一次性抽出3个进行质量检查2.对于考试成绩的统计,如果你的成绩处在第95的百分位数上,以下说法正确的是A.你得了95分B.你答对了95%的试题C.95%的参加考试者得到了和你一样的考分或还要低的分数D.你排名在第95名3.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差4.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用比例分配的分层随机抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=A.9B.10C.12D.135.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.86.设样本数据x1,x2,…,x2020的方差为4,若y i=2x i+4(i=1,2,…,2020),则y1,y2,…,y2020的方差为A.13B.14C.15D.167.已知一组数据:125,121,123,125,127,129,125,128,130,129,126,124,125,127,126.则这组数据的第25百分位数和第80百分位数分别是A.125128B.124128C.125129D.125128.58.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳二、多项选择题:本题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.为了了解参加运动会的2000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数法抽样;A.④B.①②C.②③D.⑤10.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半三、填空题:本题共4小题,每小题5分,共20分.11.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的第50%位数_________(米).12.某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为_________13.若40个数据的平方和是56,平均数是22,则这组数据的标准差是________14.在高一年级学生身高的调查中,采用分层随机抽样,如果不知道样本数据,只知道抽取男生23人,其平均数和方差分别为170.6和12.59,女生27人,其平均数和方差分别为160.6和38.62.用这些数据对高一年级全体学生的身高平均值为_______,方差________四、解答题:本题共3小题,每小题10分,共30分.解答应写出文字说明、证明过程或演算步骤.15.对甲、乙两名同学的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:(1)甲、乙的平均成绩谁最好.(2)谁的各门功课发展较平衡16.有1个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表(含累计频率).(2)画出频率分布直方图.(3)根据频率分布表的累计频率估计样本的90%分位数.甲6080709070乙806070807517.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准,用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:t),制作了频率分布直方图.(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(2)用样本估计总体,如果希望80%的居民每月的用水量不超过标准,则月均用水量的最低标准定为多少吨?并说明理由;(3)从频率分布直方图中估计该100位居民月均用水量的平均数.(同一组中的数据用该区间的中点值代表)人教版高中数学必修第二册第九章统计单元检测答案解析说明:本试卷满分100分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

普通高中课程标准必修数学②测试题

普通高中课程标准必修数学②测试题

普通高中课程标准必修数学②测试题测试题一、单选题1. 若a,b,c均是正数,且a,b,c满足a+b+c=1,则a²+b²+c²不小于:A.1/2B.1/3C.1/4D.1/62. 若x²+2x-3=0,y²-6y+13=0,求x²+y²的值为:A.20B.22C.24D.263. 已知抛物线y=ax²+bx+c的顶点坐标为(2,-5),则a,b,c的值为:A.a=1/2, b=-2, c=-3B.a=1/2, b=2, c=-3C.a=-1/2, b=-2, c=-3D.a=-1/2, b=2, c=-34. 若∠A:∠B:∠C=2:3:5,则∠A,∠B,∠C的大小依次为:A.40°,60°,80°B.80°,120°,200°C.20°,30°,50°D.60°,90°,150°5. 已知点A(3,4),B(-1,-6),点P在线段AB上且AP:PB=2:3,则点P的坐标为:A.(-3,-10)B.(1,-2)C.(2,-2)D.(5,-2)二、填空题6. 已知函数y=x³+ax²+bx+c,当x=1时,y=0;当x=-1时,y=4,则a,b,c的值分别为________。

7. 下列哪个数是3的倍数,又是4的倍数,又是5的倍数:________。

8. 整式4x³-3x²+2x-1÷2x-1=(________)x²+(-________)x+(________)。

三、解答题9.(6分)已知等差数列{a_n}的首项为a_1,公差为d,若a_5+a_7=12,且a_1+a_2+a_3=6,则求a_4。

10.(8分)已知正方形ABCD的边长为2,点P在AB上,点Q在线段CD上,且AP:PB=1:2,DQ:CQ=1:3,线段PQ与AC交于点M,求AM:MC的长度比。

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

2022年高中数学选择性必修第二册综合测试卷

2022年高中数学选择性必修第二册综合测试卷

2022年高中数学选择性必修第二册综合测评(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}的公差d≠0,且a3+a6+a9=18,若a n=6,则n为()A.12B.8C.6D.42.已知函数f(x)=aln x+2,f'(e)=2,则a的值为()A.-1B.1C.2eD.e23.在等比数列{a n}中,a2+a3=1,a4+a5=2,则a6+a7=()A.2B.2√2C.4D.4√24.我国古代数学名著《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织出的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,该女子第3天所织布的尺数为()A.1031B.2031C.54D.525.在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为S n(n∈N*),且满足S3=S15,则S n 的最大项为()A.S7B.S8C.S9D.S106.已知函数f(x)=e-x(cos x+sin x),记f'(x)是f(x)的导函数,将满足f'(x)=0的所有正数x从小到大排成数列{x n},n∈N*,则f(x n)=()A.(-1)n e-(n+1)πB.(-1)n+1e-nπC.(-1)n e-nπD.(-1)n+1e-(n+1)π7.设奇函数f(x)在R 上存在导函数f'(x),且在(0,+∞)上f'(x)<x 2,若f(1-m)-f(m)≥13[(1-m)3-m 3],则实数m 的取值范围为( )A.[-12,12]B.(-∞,-12]∪[12,+∞)C.(-∞,-12]D.[12,+∞)8.已知定义在R 上的函数y=f(x)满足:函数y=f(x-1)的图象关于直线x=1对称,且当x ∈(-∞,0)时,有f(x)+xf'(x)<0(f'(x)是函数f(x)的导函数)成立.若a=(sin 12)·f (sin 12),b=(ln 2)·f(ln 2),c=(log 1214)·f (log 1214),则a,b,c 的大小关系是(深度解析)A.a>b>cB.b>a>cC.c>a>bD.a>c>b二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.设等差数列{a n }的首项为a 1,公差为d,其前n 项和为S n ,已知S 16>0,S 17<0,则下列结论正确的是( ) A.a 1>0,d<0 B.a 8+a 9>0C.S 8与S 9均为S n 的最大值D.a 9<010.已知函数f(x)=e x -ln x-2,则下列说法正确的是( ) A. f(x)有且仅有一个极值点 B. f(x)有零点C.若f(x)的极小值点为x 0,则0< f(x 0)<12D.若f(x)的极小值点为x 0,则12< f(x 0)<111.已知数列{a n}为等差数列,a1=1,且a2,a4,a8是一个等比数列中的相邻三项,记b n=a n q a n(q≠0,1),则{b n}的前n项和S n可以是()A.nB.nqC.q+nq n+1-nq n-q n(1-q)D.q+nq n+2-nq n+1-q n+1 (1-q)212.已知f(x)=e x·x3,则下列结论正确的是()A.f(x)在R上单调递增B.f(log52)<f(e-12)<f(lnπ)C.方程f(x)=-1有实数根D.存在实数k,使得方程f(x)=kx有4个实数根三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.在等差数列{a n}中,已知a3=4,a6=10,则a10-a7=.14.已知数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n∈N*),则a6=.15.已知函数f(x)=xg(x),曲线y=f(x)在点(1,f(1))处的切线方程是x-y-1=0,则曲线y=g(x)在点(1,g(1))处的切线方程是.16.已知函数f(x)=(4-x2)(x2+ax+b)的图象关于直线x=1对称,则a+b=,f(x)的最大值为.(第一空2分,第二空3分)四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{a n}中,a2=3,a5=6.(1)求数列{a n}的通项公式;(2)设b n=1,求数列{b n}的前n项和S n.a n a n+118.(本小题满分12分)已知函数f(x)=e x(x-1)-1e a x2,a<0.2(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)的极小值;(3)求函数f(x)的零点个数.}的前n项19.(本小题满分12分)已知数列{a n}是首项为正数的等差数列,数列{1a n a n+1.和为n2n+1(1)求数列{a n}的通项公式;(2)设b n=(a n+1)·2a n,求数列{b n}的前n项和T n.20.(本小题满分12分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n 万元.(1)用d表示a1,a2,并写出a n+1与a n的关系式;(2)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).21.(本小题满分12分)如图,有一块半径为20米,圆心角∠AOB=2π3的扇形展示台,该展示台分为四个区域:三角形OCD,弓形CMD,扇形AOC 和扇形BOD(其中∠AOC=∠BOD).某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50元/米2,紫龙卧雪30元/米2,朱砂红霜40元/米2.(1)设∠COD=θ,试建立日效益总量y 关于θ的函数关系式; (2)试探求θ为何值时,日效益总量达到最大值.22.(本小题满分12分)已知函数f(x)=ln(2x+a)(x>0,a>0),曲线y=f(x)在点(1,f(1))处的切线在y 轴上的截距为ln 3-23.(1)求a 的值;(2)讨论函数g(x)=f(x)-2x(x>0)和h(x)=f(x)-2x 2x+1(x>0)的单调性;(3)设a 1=25,a n+1=f(a n ),求证:5−2n+12<1a n-2<0(n ≥2).答案全解全析一、单项选择题1.C 由a 3+a 6+a 9=18,得3a 6=18,∴a 6=6,又a n =6,∴a n =a 6,又d ≠0,∴{a n }为单调数列,∴n=6.故选C. 2.C 由f(x)=aln x+2得, f'(x)=ax ,∴f'(e)=ae=2,解得a=2e.故选C.3.C 设等比数列{a n }的公比为q,则a 4+a 5a 2+a 3=a 2q 2+a 3q 2a 2+a 3=q 2=2, ∴a 6+a 7=a 4q 2+a 5q 2=(a 4+a 5)q 2=2×2=4. 故选C.4.B 设该女子每天分别织布的尺数构成数列{a n },则数列{a n }为等比数列,设其首项为a 1,公比为q,前n 项和为S n .则q=2,S 5=5, ∴5=a 1(1-25)1−2,解得a 1=531,∴a 3=531×22=2031.故选B.5.C 由S 3=S 15得,a 4+a 5+…+a 15=0, ∴6(a 9+a 10)=0,即a 9+a 10=0. 又a 1>0,∴a 9>0,a 10<0, ∴S n 的最大项为S 9.故选C.6.C f'(x)=-e -x (cos x+sin x)+e -x (-sin x+cos x)=-2e -x sin x.令f'(x)=0,得-2e -x sin x=0,解得x=kπ,k ∈Z,从而x n =nπ,n ∈N *, f(x n )=(-1)n e -nπ.因为f(x n+1)f(x n )=-e -π,所以数列{f(x n )}是公比为-e -π的等比数列,其首项f(x 1)=(-1)1e -π=-e -π.其通项公式为f(x n )=(-1)n e -nπ,故选C.7.D 由f(1-m)-f(m)≥13[(1-m)3-m 3]得, f(1-m)-13(1-m)3≥f(m)-13m 3,构造函数g(x)=f(x)-13x 3,则g'(x)=f'(x)-x 2<0.故g(x)在(0,+∞)上单调递减,由函数f(x)为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减, 因此原不等式可化为1-m ≤m,解得m ≥12,故选D.8.A 由函数y=f(x-1)的图象关于直线x=1对称知,f(x)是偶函数,设g(x)=x ·f(x),则g(x)是奇函数,且当x<0时,g'(x)=f(x)+x ·f'(x)<0,即g(x)是减函数,∴当x>0时,g(x)也是减函数.又0<sin 12<12<ln 2<lo g 1214=2,∴g (sin 12)>g(ln 2)>g (log 1214).即(sin 12)f (sin 12)>(ln 2)f(ln 2)>(log 1214)f (log 1214). ∴a>b>c. 故选A.解题模板 构造函数,利用单调性解决比较大小的问题中,掌握一些基本的大小关系可帮助解题,如本题中,当0<x<π2时,sin x<x,ln 2>ln √e =12等.二、多项选择题 9.ABD ∵S 16=16(a 1+a 16)2>0,∴a 8+a 9=a 1+a 16>0,∴B 正确. 又S 17=17(a 1+a 17)2=17a 9<0,∴a 9<0,∴a 8>0,∴d=a 9-a 8<0,∴a 1>0,∴A 、D 正确.易知S 8是S n 的最大值,S 9不是S n 的最大值,∴C 错误.故选ABD.10.AC 由题意得, f(x)的定义域为(0,+∞),且f'(x)=e x -1x,设h(x)=f'(x),则h'(x)=e x +1x>0,∴h(x)在(0,+∞)上单调递增, 又h (12)=e 12-2=√e -2<0,h(1)=e 1-1>0,∴h(x)存在唯一零点,设为x 0, 当0<x<x 0时, f'(x)<0, f(x)单调递减, 当x>x 0时, f'(x)>0, f(x)单调递增, ∴f(x)有唯一极小值点x 0,∴A 正确. 令f'(x 0)=e x 0-1x 0=0,得e x 0=1x 0,∴x 0=ln 1x 0=-ln x 0.∴f(x 0)=e x 0-ln x 0-2=1x 0+x 0-2≥2√1x 0·x 0-2=0(当且仅当x 0=1时等号成立),又12<x 0<1,∴f(x 0)>0,即[f(x)]min >0, ∴f(x)无零点,∴B 错误. 由f(x 0)=1x 0+x 0-2,12<x 0<1,可设g(x)=1x+x-2,则g'(x)=-1x+1.当12<x<1时,g'(x)<0,∴g(x)在(12,1)上单调递减.∴g(1)<g(x)<g (12),即0<f(x 0)<12, ∴C 正确,D 错误.故选AC.11.BD 设等差数列{a n }的公差为d,由题意得a 42=a 2a 8,即(1+3d)2=(1+d)(1+7d),∴d 2-d=0,解得d=0或d=1. 当d=0时,a n =a 1=1, ∴b n =a n q a n =q,∴{b n }的前n 项和为nq,B 正确. 当d=1时,a n =n, ∴b n =n ·q n (q ≠0,1). ∴S n =1×q+2×q 2+…+nq n ,∴qS n =1×q 2+…+(n-1)q n +n ·q n+1, ∴(1-q)S n =q+q 2+…+q n-nq n+1=q(1-q n)1−q-nqn+1=q -qn+1+nq n+2-nq n+11−q.又q ≠1,∴S n =q+nq n+2-nq n+1-q n+1(1-q)2,D 正确.故选BD.12.BCD f(x)=e x ·x 3, ∴f'(x)=e x (x 3+3x 2). 令f'(x)=0,得x=0或x=-3. 当x<-3时, f'(x)<0, f(x)单调递减, 当x>-3时, f'(x)≥0, f(x)单调递增,A 错误. 又0<log 52<12<e -12<1<ln π,∴f(log 52)< f(e -12)< f(ln π),B 正确. ∵f(0)=0, f(-3)=e -3·(-3)3=-(3e)3<-1,∴f(x)=-1有实数根,C 正确. 设f(x)=kx,显然x=0是方程的根, 当x ≠0时,k=f(x)x=e x ·x 2,设g(x)=e x ·x 2,则g'(x)=x(x+2)e x ,令g'(x)=0,得x=0或x=-2.当x 发生变化时,g'(x),g(x)的变化情况如下表:x (-∞,-2) -2 (-2,0) 0 (0,+∞) g'(x) + 0 - 0 + g(x)↗4e 2↘↗画出y=g(x)的大致图象,如图,∴当0<k<4e2时,g(x)=k 有3个实数根,∴D 正确.故选BCD.三、填空题 13.答案 6解析 设等差数列{a n }的公差为d.则3d=a 6-a 3=6,解得d=2. 所以a 10-a 7=3d=6. 14.答案 768解析 由a n+1=3S n ,得S n+1-S n =3S n ,即S n+1=4S n ,又S 1=a 1=1,所以数列{S n }是首项为1,公比为4的等比数列,所以S n =4n -1,所以a 6=S 6-S 5=45-44=3×44=768. 15.答案 x-y-1=0解析 ∵f(x)=xg(x),∴f'(x)=g(x)+xg'(x).∵曲线y=f(x)在(1, f(1))处的切线方程是x-y-1=0, ∴{1−f(1)-1=0,f'(1)=1,∴{f(1)=0,f'(1)=1.∴{f(1)=1×g(1)=0,f'(1)=g(1)+1×g'(1)=1,解得{g(1)=0,g'(1)=1.则曲线y=g(x)在(1,g(1))处的切线方程为y-0=1×(x-1),即x-y-1=0, 即切线方程为x-y-1=0. 16.答案 -4;16解析 由4-x 2=0可得x=2或x=-2,即2,-2是函数f(x)的零点,∵f(x)=(4-x 2)(x 2+ax+b)的图象关于直线x=1对称,且(2,0),(-2,0)关于x=1对称的点分别为(0,0),(4,0),∴0,4也是函数f(x)的零点, ∴0,4是x 2+ax+b=0的根,∴b=0,a=-4,∴a+b=-4, ∴f(x)=(4-x 2)(x 2-4x),∴f'(x)=-4(x-1)(x 2-2x-4), 令f'(x)=0,得x=1或x=1-√5或x=1+√5.当x>1+√5或1-√5<x<1, f'(x)<0, f(x)单调递减, 当1<x<1+√5或x<1-√5时, f'(x)>0, f(x)单调递增.又当x →∞时, f(x)<0, f(1+√5)=f(1-√5)=16,∴f(x)的最大值为16. 四、解答题17.解析 (1)设等差数列{a n }的首项为a 1,公差为d. ∵a 2=3,a 5=6,∴{a 1+d =3,a 1+4d =6,解得{a 1=2,d =1,(2分) ∴a n =a 1+(n-1)d=n+1.(4分) (2)由(1)知a n =n+1,∴b n =1a n a n+1=1(n+1)(n+2)=1n+1-1n+2,(6分)∴S n =b 1+b 2+…+b n =12-13+13-14+…+1n+1-1n+2(8分)=12-1n+2=n2(n+2).(10分)18.解析 (1)由已知得, f(x)的定义域为R, f'(x)=e x (x-1)+e x -e a x=x(e x -e a ), f'(0)=0. 又f(0)=-1,∴切点坐标为(0,-1).∴曲线y=f(x)在点(0,-1)处的切线方程为y=-1.(4分) (2)由(1)知f'(x)=x(e x -e a ). 令f'(x)=0,得x=0或x=a(a<0).当x 发生变化时, f'(x), f(x)的变化情况如下表:x (-∞,a) a (a,0) 0 (0,+∞) f'(x) + 0 - 0 + f(x)↗极大值↘极小值↗∴f(x)在(-∞,a),(0,+∞)上单调递增,在(a,0)上单调递减.∴f(x)在x=0处取得极小值,且极小值为f(0)=-1.(8分)(3)由(2)知f(x)的极大值为f(a)=e a (a-1)-12e a a 2=(a -1-12a 2)e a <0(a<0),f(0)=-1<0, f(2)=e 2-2e a . ∵a<0,∴0<e a <1,∴f(2)>0. ∴函数f(x)的零点个数为1.(12分)19.解析 (1)设等差数列{a n }的首项为a 1,公差为d, 令n=1,得1a 1a 2=13,所以a 1a 2=3.①(1分) 令n=2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.②(3分)由①②得a 1=1,d=2,所以a n =2n-1.(5分) (2)由(1)知b n =2n ·22n-1=n ·4n , 所以T n =1·41+2·42+…+n ·4n ,所以4T n =1·42+…+(n-1)·4n +n ·4n+1,(7分) 两式相减,得-3T n =41+42+…+4n -n ·4n+1(9分) =4(1−4n )1−4-n ·4n+1=1−3n 3·4n+1-43,(11分)所以T n =3n -19·4n+1+49=4+(3n -1)·4n+19.(12分)20.解析 (1)由题意得a 1=2 000(1+50%)-d=3 000-d,a 2=a 1(1+50%)-d=32a 1-d=4 500-52d,(2分)a n+1=a n (1+50%)-d=32a n -d.(5分)(2)由(1)得a n =32a n-1-d=32·(32a n -2-d)-d=(32)2·a n-2-32d-d=…=(32)n -1a 1-d1+32+(32)2+…+(32)n -2,(7分)整理得a n =(32)n -1(3 000-d)-2d ·[(32)n -1-1]=(32)n -1(3 000-3d)+2d.(9分)由题意知a m =4 000,所以(32)m -1(3 000-3d)+2d=4 000,解得d=[(32)m -2]×1 000(32)m -1=1 000(3m -2m+1)3m -2m.(11分)故该企业每年上缴资金d 的值为1 000(3m -2m+1)3m -2m万元时,经过m(m ≥3)年企业的剩余资金为4 000万元.(12分) 21.解析 (1)依题意得,∠AOC=2π3-θ2=π3-θ2,(2分)则y=12×(π3-θ2)×202×40×2+12×202×sin θ×50+12×θ×202-12×202×sin θ×30 =16 000×(π3-θ2)+10 000sin θ+6 000θ-6 000sin θ =16 000π3+4 000sin θ-2 000θ,0<θ<2π3.(6分)(2)由(1)得,y'=4 000cos θ-2 000, 令y'=0,得cos θ=12,又0<θ<2π3,所以θ=π3,(8分)当0<θ<π3时,y'>0,当π3<θ<2π3时,y'<0,(10分)所以θ=π3是函数的极大值点,且唯一;所以当θ=π3时,日效益总量达到最大值.(12分)22.解析 (1)由f(x)=ln(2x+a), 得f'(x)=22x+a,因此f'(1)=22+a.(1分)又因为f(1)=ln(2+a),所以曲线y=f(x)在点(1, f(1)处的切线方程为y-ln(2+a)=22+a(x-1),即y=22+ax+ln(2+a)-22+a.(2分)由题意得,ln(2+a)-22+a=ln 3-23,易得a=1,符合上式.(3分) 令φ(a)=ln(2+a)-22+a(a>0),则φ'(a)=12+a +2(2+a)>0,所以φ(a)为单调递增函数,故a=1是唯一解.(4分) (2)由(1)可知,g(x)=ln(2x+1)-2x(x>0),h(x)=ln(2x+1)-2x 2x+1(x>0),则g'(x)=22x+1-2=-4x2x+1<0,所以g(x)=f(x)-2x(x>0)为单调递减函数.(6分) 因为h'(x)=22x+1-2(2x+1)=4x(2x+1)>0,所以h(x)=f(x)-2x 2x+1(x>0)为单调递增函数.(8分)(3)证明:由a 1=25,a n+1=f(a n )=ln(2a n +1),易得a n >0.所以5−2n+12<1a n-2等价于a n <2n5.(9分)由(2)可知,g(x)=f(x)-2x=ln(2x+1)-2x 在(0,+∞)上为单调递减函数. 因此,当x>0时,g(x)<g(0)=0,即f(x)<2x. 令x=a n-1(n ≥2),得f(a n-1)<2a n-1, 即a n <2a n-1.因此,当n ≥2时,a n <2a n-1<22a n-2<…<2n-1·a 1=2n5.所以5−2n+12<1a n-2成立.(10分)下面证明:1a n-2<0.由(2)可知,h(x)=f(x)-2x2x+1=ln(2x+1)-2x2x+1在(0,+∞)上为单调递增函数,因此,当x>0时,h(x)>h(0)=0, 即f(x)>2x 2x+1>0.因此1f(x)<12x+1,即1f(x)-2<12(1x-2). 令x=a n-1(n ≥2), 得1f(a n -1)-2<12(1an -1-2),即1a n-2<12(1an -1-2).当n=2时,1a n-2=1a 2-2=1f(a 1)-2=1f(25)-2=1ln1.8-2.因为ln 1.8>ln √3>ln √e =12,所以1ln1.8-2<0,所以1a 2-2<0.(11分)所以,当n ≥3时,1a n-2<12(1an -1-2)<12(1an -2-2)<…<12(1a 2-2)<0.所以,当n ≥2时,1a n-2<0成立. 综上所述,当n ≥2时,5−2n+12n<1a n-2<0成立.(12分)。

(人教版)高中数学必修二(全册)单元测试卷汇总

(人教版)高中数学必修二(全册)单元测试卷汇总

(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。

分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。

招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。

高中数学必修2直线与圆测试卷

高中数学必修2直线与圆测试卷

驻市一高2009~2010学年度暑假作业高一数学必修二(直线与圆)第I 卷(选择题60分)一、选择题(下列各题都有四个选择项,其中一项正确,请选出,每题5分,共60分)1.若A (3,5)、B (a ,7)、C (-1,-3)三点共线,则a 值为()A .2B .3C .4D .52.已知 a c > 0 ,b c < 0,那么直线 a x +b y + c =0不通过()A .第一象限B .第二象限C .第三象限D .第四象限3.直线kx -y + 1-3 k = 0,当k 变化时,所有直线都通过点()A .(0,0)B .(0,1)C .( 2 ,1)D .( 3 ,1)4.点A ( a ,6 )到直线3 x -4 y = 2的距离不小于4,则 a 的取值范围是()A .a ≥346B .a ≤-2C .a ≥346或a ≤2 D .a ≤-2或a ≥3465.直线012ay x和直线01)13(ayx a平行则()A .61aB .0aC .32aD .61a或0a 6.过原点O 作直线L 的垂线,垂足为A (2,3),则L 的方程是A .2x -3y -13=0B .2x +3y -13=0C .2x -3y +13=0D .2x +3y +13=0 7.过点P( 2 , 3)并且在两轴上截距的绝对值相等的直线有()条。

A .3B .2C .1D .08.经过点)1,2(M 作圆522yx的切线,则切线的方程为:A .52yx B .52y xC .052y xD .250xy 9.圆C :1)3()1(22y x 关于直线x -y -1=0对称的曲线方程为()A .1)4(22y x B .1)4(22y x C .1)4(22yxD .1)4(22yx10.设直线过点(0,a),其斜率为1,且与圆x 2+y 2=2相切,则 a 的值为()A .±2B .±2B .±2 2D .±411.直线1xy与圆2220(0)xyay a 没有公共点,则a 的取值范围是A.(0,21) B.(21,21) C.(21,21) D.(0,21)12.如果把直线x -2 y + =0按向量a=(-1,-2)平移后所得直线与圆(x +1)2 + ( y -2)2=5相切,则实数的值是()A.13或-3 B.13或3 C.-13 或3 D.-13或-3一、选择题(60分)题号 1 2 3 4 5 6 7 8 9 10 11 12选项第Ⅱ卷(选择题90分)二、填空题(每题5分,共20分)13.已知点A(7 ,-4)、B(-5 ,6)关于直线L对称,则L的方程是14.曲线y = ︳x ︳与圆x 2+ y 2=4所围成的最大区域的面积是15.两圆x 2+ y 2-10 x -10 y=0 ,x 2+ y 2+6 x +2 y -40 = 0公共弦的长是16.已知直线 a x + y + 2 = 0与点 A (-2 ,1),点B(3 ,2),当直线与线段AB总相交时,实数a的取值范围是三、解答题(共6大题,共70分)17.(12分)已知圆过点P (2,-1),和直线x -y=1相切,且它的圆心在直线y=-2x上,求这个圆的方程。

高中数学必修一必修二综合测试题(含答案)

高中数学必修一必修二综合测试题(含答案)

Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。

高中数学必修二期末考试试卷(三)(含答案解析)

高中数学必修二期末考试试卷(三)(含答案解析)

高中数学必修二期末考试试卷(三)(含答案解析)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线l 经过原点和(1,-1),则l 的倾斜角是( ) A.45° B.-45° C.135° D.45°和135° 答案 C解析 ∵直线l 经过坐标原点和点(1,-1),∴直线l 的斜率k =-11=-1,∴直线l 的倾斜角α=135°,故选C.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |等于( )A.10B.180C.6 3D.6 5考点 两点间的距离公式 题点 求两点间的距离 答案 D 解析 k MN =a -4-2-a=-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A.k ≥34或k ≤-4B.-4≤k ≤34C.-34≤k ≤4D.以上都不对考点 直线的图象特征与倾斜角、斜率的关系 题点 倾斜角和斜率关系的其他应用 答案 A解析 建立如图所示的直角坐标系.由图可得k ≥k PB 或k ≤k P A .∵k PB =34,k P A =-4,∴k ≥34或k ≤-4.4.若光线从点P (-3,3)射到y 轴上,经y 轴反射后经过点Q (-1,-5),则光线从点P 到点Q 走过的路程为( ) A.10 B.5+17 C.4 5D.217考点 对称问题的求法 题点 光路可逆问题 答案 C解析 Q (-1,-5)关于y 轴的对称点为Q 1(1,-5),易知光线从点P 到点Q 走过的路程为|PQ 1|=42+(-8)2=4 5.5.到直线3x -4y -1=0的距离为2的直线方程是( ) A.3x -4y -11=0B.3x -4y -11=0或3x -4y +9=0C.3x -4y +9=0D.3x -4y +11=0或3x -4y -9=0 答案 B解析 直线3x -4y -11=0与3x -4y +9=0到直线3x -4y -1=0的距离均为2, 又因为直线3x -4y +11=0到直线3x -4y -1=0的距离为125,故不能选择A ,C ,D ,所以答案为B.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A.-32 B.-23 C.25 D.2考点 直线的两点式方程 题点 利用两点式求直线方程 答案 A解析 由两点式y -19-1=x +13+1,得y =2x +3,令y =0,得x =-32,即为在x 轴上的截距.7.若直线mx +ny +2=0平行于直线x -2y +5=0,且在y 轴上的截距为1,则m ,n 的值分别为( ) A.1和2 B.-1和2 C.1和-2D.-1和-2 考点 直线的一般式方程与直线的平行关系 题点 根据平行求参数的值答案 C解析 由已知得直线mx +ny +2=0过点(0,1),则n =-2,又因为两直线平行,所以-m n =12,解得m =1.8.若直线(2m -3)x -(m -2)y +m +1=0恒过某个点P ,则点P 的坐标为( ) A.(3,5) B.(-3,5) C.(-3,-5) D.(3,-5)答案 C解析 方程(2m -3)x -(m -2)y +m +1=0可整理得m (2x -y +1)-(3x -2y -1)=0,联立⎩⎪⎨⎪⎧ 2x -y +1=0,3x -2y -1=0,得⎩⎪⎨⎪⎧x =-3,y =-5.故P (-3,-5).9.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A.(0,4) B.(0,2) C.(-2,4)D.(4,-2)考点 对称问题的求法 题点 直线关于点的对称问题 答案 B解析 ∵l 1:y =k (x -4)过定点M (4,0), 而点M 关于点(2,1)的对称点为N (0,2), 故直线l 2过定点(0,2).10.直线y =ax +1a的图象可能是( )考点 直线的斜截式方程 题点 直线斜截式方程的应用 答案 B解析 根据斜截式方程知,斜率与直线在y 轴上的纵截距同正负.11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12考点 直线的一般式方程与直线的垂直关系 题点 根据垂直求参数的值 答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 12.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且两者之间的距离是5,则m +n 等于( ) A.-1 B.0 C.1 D.2考点 两条平行直线间的距离公式及应用 题点 利用两条平行直线间的距离求参数的值 答案 B解析 由题意知,所给两条直线平行,∴n =-2. 由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0.二、填空题(本大题共4小题,每小题5分,共20分)13.过点(-2,-3)且在x 轴,y 轴上的截距相等的直线方程为____________. 考点 直线的截距式方程 题点 利用截距式求直线方程 答案 x +y +5=0或3x -2y =0解析 当直线过原点时,所求直线的方程为3x -2y =0;当直线不过原点时,所求直线的方程为x +y +5=0.14.过两直线x -3y +1=0和3x +y -3=0的交点,并且与原点的最短距离为12的直线的方程为________.答案 x =12或x -3y +1=0解析 易求得两直线交点的坐标为⎝⎛⎭⎫12,32,当斜率不存在时,显然直线x =12满足条件.当斜率存在时,设过该点的直线方程为y -32=k ⎝⎛⎭⎫x -12, 化为一般式得2kx -2y +3-k =0, 因为直线与原点的最短距离为12,所以|3-k |4+4k 2=12,解得k =33,所以所求直线的方程为x -3y +1=0.15.已知直线x -2y -2k =0与两坐标轴围成的三角形的面积不大于1,则实数k 的取值范围是________________. 答案 [-1,0)∪(0,1]解析 令x =0,得y =-k ,令y =0,得x =2k , ∴三角形的面积S =12|xy |=k 2.又S ≤1,即k 2≤1.∴-1≤k ≤1.又当k =0时,直线过原点,与两坐标轴构不成三角形,故应舍去. ∴实数k 的取值范围是[-1,0)∪(0,1].16.已知直线l 与直线y =1,x -y -7=0分别相交于P ,Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________. 考点 中点坐标公式 题点 求过中点的直线方程 答案 -23解析 设P (x,1),则Q (2-x ,-3),将点Q 的坐标代入x -y -7=0,得2-x +3-7=0. ∴x =-2,∴P (-2,1),∴k l =-23.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得直线l ′的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0).∵直线l 的斜率k =3,∴其倾斜角θ=60°. 若直线l 绕点M 逆时针方向旋转30°, 则直线l ′的倾斜角为60°+30°=90°, 此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan 30°=33, 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.18.(12分)已知直线l 经过点(0,-2),其倾斜角的大小是60°. (1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积.解 (1)由直线的点斜式方程得直线l 的方程为y +2=tan 60°·x ,即3x -y -2=0. (2)设直线l 与x 轴、y 轴的交点分别为A ,B , 令y =0得x =233;令x =0得y =-2.所以S △AOB =12|OA |·|OB |=12×233×2=233,故所求三角形的面积为233.19.(12分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解 (1)设l 2的方程为2x -y +m =0, 因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3, 即l 2:2x -y -3=0.联立⎩⎪⎨⎪⎧ x +2y -4=0,2x -y -3=0得⎩⎪⎨⎪⎧x =2,y =1.直线l 1与l 2的交点坐标为(2,1). (2)当l 3过原点时,l 3的方程为y =12x .当l 3不过原点时,设l 3的方程为x a +y2a =1(a ≠0),又直线l 3经过l 1与l 2的交点, 所以2a +12a =1,得a =52,l 3的方程为2x +y -5=0.综上,l 3的方程为x -2y =0或2x +y -5=0.20.(12分)已知点A (5,1)关于x 轴的对称点为B (x 1,y 1),关于原点的对称点为C (x 2,y 2). (1)求△ABC 中过AB ,BC 边上中点的直线方程; (2)求△ABC 的面积. 考点 中点坐标公式 题点 与中位线有关的问题解 (1)∵点A (5,1)关于x 轴的对称点为B (x 1,y 1),∴B (5,-1), 又∵点A (5,1)关于原点的对称点为C (x 2,y 2), ∴C (-5,-1),∴AB 的中点坐标是(5,0),BC 的中点坐标是(0,-1).过(5,0),(0,-1)的直线方程是y -0-1-0=x -50-5, 整理得x -5y -5=0.(2)易知|AB |=|-1-1|=2,|BC |=|-5-5|=10,AB ⊥BC , ∴△ABC 的面积S =12|AB |·|BC |=12×2×10=10.21.(12分)已知直线l 1:y =-k (x -a )和直线l 2在x 轴上的截距相等,且它们的倾斜角互补,又知直线l 1过点P (-3,3).如果点Q (2,2)到直线l 2的距离为1,求l 2的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 由题意,可设直线l 2的方程为y =k (x -a ), 即kx -y -ak =0,∵点Q (2,2)到直线l 2的距离为1,∴|2k -2-ak |k 2+1=1,①又∵直线l 1的方程为y =-k (x -a ), 且直线l 1过点P (-3,3),∴ak =3-3k .② 由①②得|5k -5|k 2+1=1,两边平方整理得12k 2-25k +12=0,解得k =43或k =34.∴当k =43时,代入②得a =-34,此时直线l 2的方程为4x -3y +3=0;当k =34时,代入②得a =1,此时直线l 2的方程为3x -4y -3=0.综上所述,直线l 2的方程为4x -3y +3=0或3x -4y -3=0.22.(12分)已知直线l :y =4x 和点P (6,4),点A 为第一象限内的点且在直线l 上,直线P A 交x 轴的正半轴于点B ,(1)当OP ⊥AB 时,求AB 所在直线的方程;(2)求△OAB 面积的最小值,并求当△OAB 面积取最小值时点B 的坐标. 考点 点到直线的距离题点 与点到直线的距离有关的最值问题解 (1)∵点P (6,4),∴k OP =23.又∵OP ⊥AB ,∴k AB =-32.∵AB 过点P (6,4),∴直线AB 的方程为y -4=-32(x -6),化为一般式可得3x +2y -26=0.(2)设点A (a,4a ),a >0,点B 的坐标为(b,0),b >0,当直线AB 的斜率不存在时,a =b =6,此时△OAB 的面积S =12×6×24=72.当直线AB 的斜率存在时,有4a -4a -6=0-4b -6,解得b =5aa -1, 故点B 的坐标为⎝⎛⎭⎫5a a -1,0,故△OAB 的面积S =12·5a a -1·4a =10a 2a -1,即10a 2-Sa +S =0.①由题意可得方程10a 2-Sa +S =0有解, 故判别式Δ=S 2-40S ≥0,∴S ≥40,故S 的最小值为40,此时①为a 2-4a +4=0,解得a =2. 综上可得,△OAB 面积的最小值为40, 当△OAB 面积取最小值时,点B 的坐标为(10,0).。

高中数学必修2:第四章-圆与方程测试(含解析)

高中数学必修2:第四章-圆与方程测试(含解析)

第四章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切解析将圆x2+y2-6x-8y+9=0,化为标准方程得(x-3)2+(y-4)2=16.∴两圆的圆心距(0-3)2+(0-4)2=5,又r1+r2=5,∴两圆外切.答案 C2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为()A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=0解析依题意知所求直线通过圆心(1,-2),由直线的两点式方程,得y+2 1+2=x-12-1,即3x-y-5=0.答案 A3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为() A.1,-1 B.2,-2C .1D .-1解析 圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|(1+a )2+1=1,即|a +2|=(a +1)2+1,平方整理得a =-1.答案 D4.经过圆x 2+y 2=10上一点M (2,6)的切线方程是( ) A .x +6y -10=0 B.6x -2y +10=0 C .x -6y +10=0D .2x +6y -10=0解析 ∵点M (2,6)在圆x 2+y 2=10上,k OM =62, ∴过点M 的切线的斜率为k =-63. 故切线方程为y -6=-63(x -2). 即2x +6y -10=0. 答案 D5.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( ) A .x +y -2=0 B .x +y +1=0 C .x +y -1=0D .x +y +2=0解析 由题意可设所求的直线方程为y =-x +k ,则由|k |2=1,得k =±2.由切点在第一象限知,k = 2.故所求的直线方程y =-x +2,即x +y -2=0.答案 A6.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①点P 到坐标原点的距离为13; ②OP 的中点坐标为⎝⎛⎭⎪⎫12,1,32;③与点P关于x轴对称的点的坐标为(-1,-2,-3);④与点P关于坐标原点对称的点的坐标为(1,2,-3);⑤与点P关于坐标平面xOy对称的点的坐标为(1,2,-3).其中正确的个数是()A.2 B.3C.4 D.5解析点P到坐标原点的距离为12+22+32=14,故①错;②正确;点P关于x轴对称的点的坐标为(1,-2,-3),故③错;点P关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确.答案 A7.已知点M(a,b)在圆O:x2+y2=1处,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定解析∵点M(a,b)在圆x2+y2=1外,∴a2+b2>1,又圆心(0,0)到直线ax+by=1的距离d=1a2+b2<1=r,∴直线与圆相交.答案 B8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A.4 B.3C.2 D.1解析两圆的方程配方得,O1:(x+2)2+(y-2)2=1,O2:(x-2)2+(y-5)2=16,圆心O1(-2,2),O2(2,5),半径r1=1,r2=4,∴|O1O2|=(2+2)2+(5-2)2=5,r1+r2=5.∴|O1O2|=r1+r2,∴两圆外切,故有3条公切线.答案 B9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是()A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=0解析依题意知直线l过圆心(1,2),斜率k=2,∴l的方程为y-2=2(x-1),即2x-y=0.答案 A10.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为()A.9π B.πC.2π D.由m的值而定解析∵x2+y2-(4m+2)x-2my+4m2+4m+1=0,∴[x-(2m+1)]2+(y-m)2=m2.∴圆心(2m+1,m),半径r=|m|.依题意知2m+1+m-4=0,∴m=1.∴圆的面积S=π×12=π.答案 B11.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=1解析 设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ), 则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y . 又点P (x 1,y 1)在圆x 2+y 2=1上, ∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1. 答案 C12.曲线y =1+4-x 2与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( )A .(0,512) B .(512,+∞) C .(13,34]D .(512,34] 解析 如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1), 直线y =k (x -2)+4过定点(2,4), 当直线l 与半圆相切时,有 |-2k +4-1|k 2+1=2,解得k =512. 当直线l 过点(-2,1)时,k =34. 因此,k 的取值范围是512<k ≤34. 答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________.解析 圆心(0,0)到直线3x +4y -25=0的距离为5, ∴所求的最小值为4. 答案 414.圆心为(1,1)且与直线x +y =4相切的圆的方程是________. 解析 r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2.答案 (x -1)2+(y -1)2=215.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.解析 已知方程配方,得(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.答案 ②16.直线x -2y -3=0与圆(x -2)2+(y +3)2=9相交于A ,B 两点,则△AOB (O 为坐标原点)的面积为________.解析 圆心坐标(2,-3),半径r =3,圆心到直线x -2y -3=0的距离d =5,弦长|AB |=2r 2-d 2=4.又原点(0,0)到AB 所在直线的距离h =35,所以△AOB 的面积为S =12×4×35=655.答案 655三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程. 解 解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·yx -4=-1.即x2+y2-4x=0.①当x=0时,P点坐标为(0,0)是方程①的解,∴BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内).解法2:由解法1知OP⊥AP,取OA中点M,则M(2,0),|PM|=12|OA|=2,由圆的定义,知P点轨迹方程是以M(2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x-2)2+y2=4(在已知圆内).18.(12分)已知圆M:x2+y2-2mx+4y+m2-1=0与圆N:x2+y2+2x+2y-2=0相交于A,B两点,且这两点平分圆N的圆周,求圆M的圆心坐标.解由圆M与圆N的方程易知两圆的圆心分别为M(m,-2),N(-1,-1).两圆的方程相减得直线AB的方程为2(m+1)x-2y-m2-1=0.∵A,B两点平分圆N的圆周,∴AB为圆N的直径,∴AB过点N(-1,-1).∴2(m+1)×(-1)-2×(-1)-m2-1=0.解得m=-1.故圆M的圆心M(-1,-2).19.(12分)点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.解把圆的方程都化成标准形式,得(x+3)2+(y-1)2=9,(x+1)2+(y+2)2=4.如图所示,C 1的坐标是(-3,1),半径长是3;C 2的坐标是(-1,-2),半径长是2.所以,|C 1C 2|=(-3+1)2+(1+2)2=13.因此,|MN |的最大值是13+5.20.(12分)已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P 向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求|PM |的最小值.解 如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2.设P (x ,y ),C (-1,2),|MC |= 2. ∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2.化简得点P 的轨迹方程为2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510.21.(12分)已知圆C :x 2+y 2-4x -14y +45=0及点Q (-2,3), (1)若点P (m ,m +1)在圆C 上,求PQ 的斜率;(2)若点M 是圆C 上任意一点,求|MQ |的最大值、最小值;(3)若N (a ,b )满足关系:a 2+b 2-4a -14b +45=0,求出t =b -3a +2的最大值.解 圆C :x 2+y 2-4x -14y +45=0可化为(x -2)2+(y -7)2=8. (1)点P (m ,m +1)在圆C 上,所以m 2+(m +1)2-4m -14(m +1)+45=0,解得m =4,故点P (4,5).所以PQ 的斜率是k PQ =5-34+2=13;(2)如图,点M 是圆C 上任意一点,Q (-2,3)在圆外, 所以|MQ |的最大值、最小值分别是 |QC |+r ,|QC |-r . 易求|QC |=42,r =22, 所以|MQ |max =62,|MQ |min =2 2.(3)点N 在圆C :x 2+y 2-4x -14y +45=0上,t =b -3a +2表示的是定点Q (-2,3)与圆上的动点N 连线l 的斜率. 设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 当直线和圆相切时,d =r ,即|2k -7+2k +3|k 2+1=22,解得k =2±3.所以t =b -3a +2的最大值为2+ 3.22.(12分)已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1. (1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上; (2)证明曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值.解 (1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2. ∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎨⎧x =-k ,y =-2k -5.消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上. (2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0, ∵上式对于任意k ≠-1恒成立,∴⎩⎨⎧2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎨⎧x =1,y =-3.∴曲线C 过定点(1,-3). (3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径. 即|-2k -5|=5|k +1|.两边平方,得(2k +5)2=5(k +1)2. ∴k =5±3 5.。

高中数学人教a版(2019)必修第二册《空间直线平面的垂直》测试卷

高中数学人教a版(2019)必修第二册《空间直线平面的垂直》测试卷

空间直线、平面的垂直同步题一.选择题(共15小题)1.三棱锥P﹣ABC的三个侧面两两垂直,则顶点P在底面ABC的射影为△ABC的()A.内心B.外心C.重心D.垂心2.设m,n是两条不同的直线,α,β是两个不同的平面,下列条件中能推出m⊥n的是()A.m⊥α,n∥β,α⊥βB.m⊥α,n⊥β,α∥βC.m⊂α,n⊥β,α∥βD.m⊂α,n∥β,α⊥β3.如图是一几何体的平面展开图,其中四边形ABCD为矩形,E,F分别为P A,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的结论个数为()A.4个B.3个C.2个D.1个4.已知在矩形ABCD中,AB=2BC=4,E为AB的中点,沿着DE将△ADE翻折到△PDE,使平面PDE ⊥平面EBCD,则PC的长为()A.2B.2C.4D.65.在如图,在以下四个正方体中,直线AB与平面CDE垂直的有()A.1个B.2个C.3个D.4个6.在长方体ABCD﹣A1B1C1D1中,,E为棱CD的中点,则()A.A1E⊥DD1B.A1E⊥DB C.A1E⊥D1C1D.A1E⊥DB17.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SB B.AD⊥SCC.平面SAC⊥平面SBD D.BD⊥SA8.如图,正方体ABCD﹣A1B1C1D1的棱长为2,点O为底面ABCD的中心,点P在侧面BB1C1C的边界及其内部运动.若D1O⊥OP,则△D1C1P面积的最大值为()A.B.C.D.9.三棱锥V﹣ABC中,侧面VBC⊥底面ABC,∠ABC=45°,VA=VB,AC=AB.则()A.AC⊥BC B.VB⊥AC C.VA⊥BC D.VC⊥AB10.如图,P A垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,AE⊥PC垂足为E,点F是PB上一点,则下列判断中不正确的是()A.BC⊥平面P AC B.AE⊥EF C.AC⊥PB D.平面AEF⊥平面PBC11.在三棱锥A﹣BCD中,若AD⊥BC,AD⊥BD,那么必有()A.平面ADC⊥平面BCD B.平面ABC⊥平面BCDC.平面ABD⊥平面ADC D.平面ABD⊥平面ABC12.在正四面体ABCD中,已知E,F分别是AB,CD上的点(不含端点),则()A.不存在E,F,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF13.已知AB是圆柱上底面的一条直径,C是上底面圆周上异于A,B的一点,D为下底面圆周上一点,且AD⊥圆柱的底面,则必有()A.平面ABC⊥平面BCD B.平面BCD⊥平面ACDC.平面ABD⊥平面ACD D.平面BCD⊥平面ABD14.如图1,已知P ABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△P AD沿AD折起,使平面P AD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面P AB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN15.四面体ABCD中,AB=CD=3,其余棱长均为4,E、F分别为AB、CD上的点(不含端点),则()A.不存在E,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF二.填空题(共10小题)16.平行四边形ABCD中,AB>AD,将三角形ABD沿着BD翻折至三角形A'BD,则下列直线中有可能与直线A'B垂直的是(填所有符合条件的序号).①直线BC;②直线CD;③直线BD;④直线A'C.17.如图,平面ABC⊥平面α,平面ABC∩平面α=AB,∠ACB=,AC=1,AB=2,D为线段AB的中点.现将△ACD绕CD旋转至△A′CD,设直线A′C∩平面α=P,则在旋转过程中,下列说法正确的是(1)三棱锥A′﹣BCD的体积有最大值;(2)点P的轨迹为椭圆;(3)直线CB与平面CDP所成角的最大值为30°;(4)若二面角P﹣CD﹣B的平面角为α,则∠PDB≥α.18.在四棱锥S﹣ABCD中,底面四边形ABCD为矩形,SA⊥平面ABCD,P,Q别是线段BS,AD的中点,点R在线段SD上.若AS=4,AD=2,AR⊥PQ,则AR=.19.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P﹣ABC中,P A⊥平面ABC,AB⊥BC,且AP=AC=1,过点A分别作AE⊥PB于点E,AF⊥PC于点F,连结EF,当△AEF的面积最大时,tan∠BPC=.20.如图所示的平行六面体ABCD﹣A1B1C1D1中,已知AB=AA1=AD,∠BAD=∠DAA1=60°,∠BAA1=30°,N为AA1D1上一点,且A1N=λA1D1.若BD⊥AN,则λ的值为;若M为棱DD1的中点,BM∥平面AB1N,则λ的值为.21.已知平面α,β和直线m,给出条件:①m∥α;②m⊥α:③m⊂α;④α∥β;⑤α⊥β.当满足条件时,m⊥β.22.已知四边长均为2的空间四边形ABCD的顶点都在同一个球面上,若∠BAD=,平面ABD⊥平面CBD,则该球的体积为.23.在三棱锥P﹣ABC中,AB=AC=4,∠BAC=120°,PB=PC=4,平面PBC⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为.24.已知P,A,B,C,D是球O的球面上的五个点,四边形ABCD为梯形,AD∥BC,AB=DC=AD=2,BC=4,△P AD为等边三角形且平面P AD⊥平面ABCD,则球O的表面积为.25.如图所示,在四棱锥P﹣ABCD中,底面ABCD是菱形,侧面P AD是等边三角形,且平面P AD⊥平面ABCD,E为棱PC上一点,若平面EBD⊥平面ABCD,则=.三.解答题(共5小题)26.如图,在四棱锥P﹣ABCD中,已知P A⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD =,AD=2,AB=BC=1.(1)当四棱锥P﹣ABCD的体积为1时,求异面直线AC与PD所成角的大小;(2)求证:CD⊥平面P AC.27.如图,在四棱锥P﹣ABCD中,AD∥BC,AD⊥AB,并且BC=2AD=2AB,点P在平面ABCD内的投影恰为BD的中点M.(Ⅰ)证明:CD⊥平面PBD;(Ⅱ)若PM=AD,求直线P A与CD所成角的余弦值.28.已知正方体ABCD﹣A1B1C1D1中,O为AC与BD的交点,G为CC1的中点,求证:A1O⊥平面GBD.29.如图,在矩形ABCD中,将△ACD沿对角线AC折起,使点D到达点E的位置,且AE⊥BE.(1)求证:平面ABE⊥平面ABC;(2)若BC=3,三棱锥B﹣AEC的体积为,求点E到平面ABC的距离.30.如图所示,在三棱锥A﹣BCD中,AB=BC=BD=2,AD=2,∠CBA=∠CBD=,点E,F分别为AD,BD的中点.(Ⅰ)求证:平面ACD⊥平面BCE;(Ⅱ)求四面体CDEF的体积.人教A版(2019)必修第二册《8.6 空间直线、平面的垂直》2022年最热同步卷参考答案与试题解析一.选择题(共15小题)1.三棱锥P﹣ABC的三个侧面两两垂直,则顶点P在底面ABC的射影为△ABC的()A.内心B.外心C.重心D.垂心【分析】三个侧面两两垂直,可得三条侧棱两两垂直,根据线面垂直、线线垂直的转化,可得结论.【解答】解:由三棱锥P﹣ABC的三个侧面两两垂直,可得三条侧棱两两垂直,由P A⊥PB,P A⊥PC,PB、PC⊂平面PBC,PB∩PC=P,∴P A⊥平面PBC,又BC⊂平面PBC.∴P A⊥BC.设点P在底面ABC的射影是O,则PO⊥平面ABC,∵BC⊂平面ABC,∴PO⊥BC.又P A、PO为平面P AO内两条相交直线,∴BC⊥平面P AO,AO在平面P AO内,则BC⊥OA;同理可证AB⊥OC,AC⊥OB,故O为△ABC的垂心.故选:D.【点评】本题主要考查了平面与平面垂直的性质,线面垂直、线线垂直的判定,以及棱锥的结构特征,属于中档题.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列条件中能推出m⊥n的是()A.m⊥α,n∥β,α⊥βB.m⊥α,n⊥β,α∥βC.m⊂α,n⊥β,α∥βD.m⊂α,n∥β,α⊥β【分析】根据空间中线面平行或垂直的判定定理与性质定理逐一判断每个选项即可.【解答】解:对于A,m⊥α,n∥β,α⊥β,可得m与n平行,无法得出m⊥n,因此错误;对于B,m⊥α,n⊥β,α∥β,可得m∥n,因此无法得出m⊥n,因此错误;对于C,m⊂α,n⊥β,α∥β,可得n⊥α,由线面垂直的性质定理可知,可得m⊥n,因此正确;对于D,m⊂α,n∥β,α⊥β,可得m与n相交或为异面直线,无法得出m⊥n,因此错误;故选:C.【点评】本题考查了空间中线面的位置关系,熟练运用线面平行或垂直的判定定理、性质定理是解题关键,考查了学生的空间立体感和论证推理能力,属于基础题.3.如图是一几何体的平面展开图,其中四边形ABCD为矩形,E,F分别为P A,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的结论个数为()A.4个B.3个C.2个D.1个【分析】几何体的展开图,复原出几何体,利用异面直线的定义判断①,②的正误;利用直线与平面平行的判定定理判断③的正误;利用直线与平面垂直的判定定理判断④的正误;【解答】解:画出几何体的图形,如图,由题意可知,①直线BE与直线CF异面,不正确,因为E,F是P A与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;②直线BE与直线AF异面;满足异面直线的定义,正确.③直线EF∥平面PBC;由E,F是P A与PD的中点,可知EF∥AD,所以EF∥BC,∵EF⊄平面PBC,BC⊂平面PBC,所以判断是正确的.④因为△P AB与底面ABCD的关系不是垂直关系,BC与平面P AB的关系不能确定,所以平面BCE⊥平面P AD,不正确.故选:C.【点评】本题是基础题,考查空间图形中直线与直线、平面的位置关系,考查异面直线的判断,基本知识与定理的灵活运用.4.已知在矩形ABCD中,AB=2BC=4,E为AB的中点,沿着DE将△ADE翻折到△PDE,使平面PDE ⊥平面EBCD,则PC的长为()A.2B.2C.4D.6【分析】取DE的中点M,连接PM,易知PM⊥DE,由面面垂直的性质可得PM⊥平面BCDE,可得PM ⊥MC,求得PM的长和CM的长,由勾股定理可得PC的长.【解答】解:(1)如图所示,取DE的中点M,连接PM,MC,由题意知,PD=PE,∴PM⊥DE,又平面PDE⊥平面BCDE,平面PDE∩平面BCDE=DE,PM⊂平面PDE,∴PM⊥平面BCDE,即有PM⊥MC,在等腰Rt△PDE中,PE=PD=AD=2,∴PM=DE=,在三角形CDM中,可得CM2=DM2+CD2﹣2CD•MD•cos∠CDM=()2+42﹣2××4×=10,则PC===2,故选:A.【点评】本题考查空间中线与面的垂直关系,熟练运用空间中线面、面面垂直的判定定理与性质定理是解题的关键,考查逻辑推理能力和运算能力,属于中档题.5.在如图,在以下四个正方体中,直线AB与平面CDE垂直的有()A.1个B.2个C.3个D.4个【分析】对四个图,分别运用异面直线所成角的定义和线面垂直的性质定理和判定定理,即可得到结论.【解答】解:对于①,由AD∥CE,且AB与CE成45°的角,不垂直,则直线AB与平面CDE不垂直;对于②,由于AB⊥DE,AB⊥CE,由线面垂直的判定定理可得AB⊥平面CDE;对于③,AB与CE成60°的角,不垂直,则直线AB与平面CDE不垂直;对于④,连接BF,由正方形的性质可得DE⊥BF,而AF⊥平面EFDB,可得AF⊥DE,则DE⊥平面ABF,即有DE⊥AB,同理可得AB⊥CE,所以AB⊥平面CDE.综上,②④满足题意.故选:B.【点评】本题考查空间线线、线面的位置关系,主要是线面垂直的判定,考查逻辑推理能力,属于基础题.6.在长方体ABCD﹣A1B1C1D1中,,E为棱CD的中点,则()A.A1E⊥DD1B.A1E⊥DB C.A1E⊥D1C1D.A1E⊥DB1【分析】连结AE,BD,则==,△ABD∽△DAE,从而∠DAE=∠ABD,进而AE⊥BD,BD ⊥平面A1AE,由此得到A1E⊥DB.【解答】解:连结AE,BD,因为AB=,所以==,所以△ABD∽△DAE,所以∠DAE=∠ABD,所以∠EAB+∠ABD=90°,即AE⊥BD,所以BD⊥平面A1AE,所以A1E⊥DB.故选:B.【点评】本题考查线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SB B.AD⊥SCC.平面SAC⊥平面SBD D.BD⊥SA【分析】在A中,推导出AC⊥SD,AC⊥BD,从而AC⊥平面SBD,由此得到AC⊥SB;在B中,推导出AD⊥CD,AD⊥SD,从而AD⊥平面SDC,由此得到AD⊥SC;在C中,推导出AC⊥平面SBD,从而平面SAC⊥平面SBD;在D中,以D为原点,DA为x轴,DC为y轴,DS为z轴,建立空间直角坐标系,利用向量法摔倒导出BD与SA不垂直,【解答】解:由四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,知:在A中,∵SD⊥底面ABCD,∴AC⊥SD,∵四棱锥S﹣ABCD的底面为正方形,∴AC⊥BD,∵SD∩BD=D,∴AC⊥平面SBD,∵SB⊂平面SBD,∴AC⊥SB,故A正确;在B中,∵四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,∴AD⊥CD,AD⊥SD,∵SD∩CD=D,∴AD⊥平面SDC,∵SC⊂平面SCD,∴AD⊥SC,故B正确;在C中,∵SD⊥底面ABCD,∴AC⊥SD,∵四棱锥S﹣ABCD的底面为正方形,∴AC⊥BD,∵SD∩BD=D,∴AC⊥平面SBD,∵AC⊂平面SAC,∴平面SAC⊥平面SBD,故C正确;在D中,以D为原点,DA为x轴,DC为y轴,DS为z轴,建立空间直角坐标系,设AB=a,DS=b,则D(0,0,0),B(a,a,0),A(a,0,0),S(0,0,b),=(a,a,0),=(a,0,﹣b),∵=a2≠0,∴BD与SA不垂直,故D错误.故选:D.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.8.如图,正方体ABCD﹣A1B1C1D1的棱长为2,点O为底面ABCD的中心,点P在侧面BB1C1C的边界及其内部运动.若D1O⊥OP,则△D1C1P面积的最大值为()A.B.C.D.【分析】由题意画出图形,由直线与平面垂直的判定可得P的轨迹,求出P到棱C1D1的最大值,代入三角形面积公式求解.【解答】解:如图,由正方体性质知,当P位于C点时,D1O⊥OC,当P位于BB1的中点P1时,由已知得,DD1=2,DO=BO=,BP 1=B1P1=1,,求得,OP 1=,.∴,得OD1⊥OP1.又OP1∩OC=O,∴D1O⊥平面OP1C,得到P的轨迹在线段P1C上.由C1P1=CP1=,可知∠C1CP1为锐角,而CC1=2,知P到棱C1D1的最大值为.则△D1C1P面积的最大值为.故选:C.【点评】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9.三棱锥V﹣ABC中,侧面VBC⊥底面ABC,∠ABC=45°,VA=VB,AC=AB.则()A.AC⊥BC B.VB⊥AC C.VA⊥BC D.VC⊥AB【分析】由题易知,△ABC为等腰直角三角形,且∠ACB=∠ABC=45°,即选项A错误;过点V作VO⊥BC于O,连接OA,由面面垂直的性质定理可证得VO⊥平面ABC,即V在底面ABC上的投影为点O,从而得VO⊥BC;由VA=VB和VO⊥平面ABC可推出OA=OB,∠OAB=∠OBA=45°,即OA⊥BC,结合线面垂直的判定定理得BC⊥平面VOA,从而得VA⊥BC,即选项C正确;由三垂线定理可知选项B和D均错误.【解答】解:∵∠ABC=45°,AC=AB,∴△ABC为等腰直角三角形,且∠ACB=∠ABC=45°,∴AC与BC不垂直,即选项A错误;过点V作VO⊥BC于O,连接OA,∵侧面VBC⊥底面ABC,面VBC∩面ABC=BC,∴VO⊥面ABC,即V在底面ABC上的投影为点O,∵BC⊂面ABC,∴VO⊥BC.∵VA=VB,∴OA=OB,∠OAB=∠OBA=45°,∴OA⊥BC,∵VO、OA⊂面VOA,VO∩OA=O,∴BC⊥面VOA,∵VA⊂面VOA,∴VA⊥BC,即选项C正确;由三垂线定理知,若VB⊥AC,VC⊥AB,则BC⊥AC,BC⊥AB,这与∠ACB=∠ABC=45°相矛盾,即选项B和D均错误.故选:C.【点评】本题考查空间中线面的位置关系,熟练运用线面垂直的判定定理与性质定理,以及理解三垂线定理是解题的关键,考查学生的空间立体感和逻辑推理能力,属于中档题.10.如图,P A垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,AE⊥PC垂足为E,点F是PB上一点,则下列判断中不正确的是()A.BC⊥平面P AC B.AE⊥EFC.AC⊥PB D.平面AEF⊥平面PBC【分析】在A中,推导出BC⊥AC,P A⊥BC,从而BC⊥平面P AC,可得正确;在B中,由BC⊥平面P AC,可证BC⊥AE,又AE⊥PC,可证AE⊥平面PBC,即可证明AE⊥EF,可得正确;在C中,由AC⊥BC,得若AC⊥PB,则AC⊥平面PBC,与AC⊥P A矛盾,可得错误;在D中,由AE⊥平面PBC,AE⊂面AEF,即可证明平面AEF⊥平面PBC,可得正确.【解答】解:在A中,∵C为圆上异于A,B的任意一点,∴BC⊥AC,∵P A⊥BC,P A∩AC=A,∴BC⊥平面P AC,故A正确;在B中,∵BC⊥平面P AC,AE⊂平面P AC,∴BC⊥AE,∵AE⊥PC,PC∩BC=C,∴AE⊥平面PBC,∵EF⊂平面PBC,∴AE⊥EF,故B正确;在C中∴若AC⊥PB,则AC⊥平面PBC,则AC⊥PC,与AC⊥P A矛盾,故AC与PB不垂直,故C错误;在D中,∵AE⊥平面PBC,AE⊂面AEF,∴平面AEF⊥平面PBC,故D正确.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.11.在三棱锥A﹣BCD中,若AD⊥BC,AD⊥BD,那么必有()A.平面ADC⊥平面BCD B.平面ABC⊥平面BCDC.平面ABD⊥平面ADC D.平面ABD⊥平面ABC【分析】运用线面垂直的判定定理和面面垂直的判定定理,结合条件和三角形的性质,可得结论.【解答】解:在三棱锥A﹣BCD中,若AD⊥BC,AD⊥BD,且BC∩BD=B,可得AD⊥平面BCD,由AD⊂平面ABD,可得平面ABD⊥平面BCD,由AD⊂平面ACD,可得平面ACD⊥平面BCD,故A正确;若平面ABC⊥平面BCD,又平面ACD⊥平面BCD,AC=平面ABC∩平面ACD,可得AC⊥平面BCD,AC⊥CD,与AD⊥CD矛盾,故B错误;若平面ACD⊥平面ABD,又平面ABD⊥平面BCD,可得CD⊥平面ABD,CD⊥BD,不一定成立,故C 错误;若平面ABD⊥平面ABC,又平面ABD⊥平面BCD,可得BC⊥平面ABD,则BC⊥BD,不一定成立,故D错误.故选:A.【点评】本题考查空间面面的位置关系,考查转化思想和推理能力,属于中档题.12.在正四面体ABCD中,已知E,F分别是AB,CD上的点(不含端点),则()A.不存在E,F,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF【分析】对于A,D两项:当E,F分别是AB,CD的中点时,易证EF⊥CD,且平面CDE⊥平面ABF.对于B:可利用E在AB上移动时,∠CDE的范围判断.对于C:可将D看成三棱锥的顶点,则过D做底面的垂线只有一条,即高线,从而否定C.【解答】解:(1)对于A,D选项,取E,F分别为AB,CD的中点如图:因为A﹣BCD是正四面体,所以它的各个面是全等的等边三角形.所以CE=DE,所以EF⊥CD,同理可证EF⊥AB.故A错误;又因为AB⊥CE,AB⊥DE,且CE∩DE=E,故AB⊥平面CED,又AB⊂平面ABF,所以平面ABF⊥平面CED.故D正确.(2)对于B选项,将C看成正三棱锥的顶点,易知当E在AB上移动时,∠CDE的最小值为直线CD 与平面ABD所成的角,即(1)中的∠CDE,显然为锐角,最大角为∠CDB=∠CDA=60°,故当E在AB上移动时,不存在E,使得DE⊥CD.故B错误.(3)对于C选项,将D看成顶点,则由D向底面作垂线,垂足为底面正三角形ABC的中心,不落在AB上,又因为过空间中一点有且只有一条直线与已知平面垂直,故不存在E,使得DE⊥平面ABC,故C错误.故选:D.【点评】本题考查了空间线线垂直、线面垂直以及面面垂直之间的相互转化.同时也考查了正四面体的性质,以及学生的空间想象能力以及逻辑推理能力.属于中档题.13.已知AB是圆柱上底面的一条直径,C是上底面圆周上异于A,B的一点,D为下底面圆周上一点,且AD⊥圆柱的底面,则必有()A.平面ABC⊥平面BCD B.平面BCD⊥平面ACDC.平面ABD⊥平面ACD D.平面BCD⊥平面ABD【分析】画出图形,结合直线与平面垂直的判断定理,转化证明平面与平面垂直,推出结果即可.【解答】解:因为AB是圆柱上底面的一条直径,所以AC⊥BC,又AD垂直圆柱的底面,所以AD⊥BC,因为AC∩AD=A,所以BC⊥平面ACD,因为BC⊂平面BCD,所以平面BCD⊥平面ACD.故选:B.【点评】本题考查平面与平面垂直的判断定理的应用,几何体的结构特征的应用,考查空间想象能力以及逻辑推理能力.14.如图1,已知P ABC是直角梯形,AB∥PC,AB⊥BC,D在线段PC上,AD⊥PC.将△P AD沿AD折起,使平面P AD⊥平面ABCD,连接PB,PC,设PB的中点为N,如图2.对于图2,下列选项错误的是()A.平面P AB⊥平面PBC B.BC⊥平面PDCC.PD⊥AC D.PB=2AN【分析】由已知利用平面与平面垂直的性质得到PD⊥平面ABCD,判定C正确;进一步得到平面PCD ⊥平面ABCD,结合BC⊥CD判定B正确;再证明AB⊥平面P AD,得到△P AB为直角三角形,判定D 正确;由错误的选项存在可知A错误.【解答】解:如图,图1中AD⊥PC,则图2中PD⊥AD,又∵平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,∴PD⊥平面ABCD,则PD⊥AC,故选项C正确;由PD⊥平面ABCD,PD⊂平面PDC,得平面PDC⊥平面ABCD,而平面PDC∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PDC,故选项B正确;∵AB⊥AD,平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,∴AB⊥平面P AD,则AB⊥P A,即△P AB是以PB为斜边的直角三角形,而N为PB的中点,则PB=2AN,故选项D正确.因此错误的只能是A.故选:A.【点评】本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,是中档题.15.四面体ABCD中,AB=CD=3,其余棱长均为4,E、F分别为AB、CD上的点(不含端点),则()A.不存在E,使得EF⊥CDB.存在E,使得DE⊥CDC.存在E,使得DE⊥平面ABCD.存在E,F,使得平面CDE⊥平面ABF【分析】若E,F分别为AB,CD的中点,由三角形的全等和等腰三角形的性质可判断A;由线面垂直的判定和性质,可判断B;由线面垂直的性质和勾股定理的逆定理可判断C;由线面垂直的判定和面面垂直的判定定理,可判断D.【解答】解:若E,F分别为AB,CD的中点,由△ABC和△ABD全等,可得CE=DE,则EF⊥CD,故A错误;由等腰三角形的性质可得AB⊥DE,AB⊥CE,则AB⊥平面CDE,可得CD⊥AB,又若CD⊥DE,则CD⊥平面ABD,即CD⊥BD,不成立,故B错误;若DE⊥平面ABC,则DE⊥AB,可得E为AB的中点,且DE⊥CE,而△CDE中,CD=3,CE=DE==,不满足CE2+DE2=CD2,故C错误;当E为AB的中点时,由等腰三角形的性质可得AB⊥DE,AB⊥CE,则AB⊥平面CDE,而AB⊂平面ABF,可得平面CDE⊥平面ABF,故D正确.故选:D.【点评】本题考查空间线线、线面和面面的位置关系,主要是垂直的判定和性质,考查运算能力和推理能力,属于基础题.二.填空题(共10小题)16.平行四边形ABCD中,AB>AD,将三角形ABD沿着BD翻折至三角形A'BD,则下列直线中有可能与直线A'B垂直的是①②(填所有符合条件的序号).①直线BC;②直线CD;③直线BD;④直线A'C.【分析】若BC⊥BD,则可能垂直,可判断①;若∠ABD>45°,∠A′BA为超过90°,故存在∠A′BA=90°,可判断②,∠A′BD,∠BA′C始终为锐角可判断③④.【解答】解:对于①,若BC⊥BD,当平面ABD⊥平面BCD时,BC⊥平面A′BD,则此时BC⊥A'B,故①成立;对于②若∠ABD>45°,则在翻折的过程中,∠A′BA为超过90°,故存在∠A′BA=90°,∵AB∥CD,∴CD⊥A'B,故②成立;对于③,在△ABD中,∵AB>AD,∴∠ABD为锐角,即∠A′BD为锐角,故直线BD不可能和直线A'B垂直,故③不成立;对于④,∵AB>AD,∴△A′BC中,A′B>BC,∴∠BA′C始终为锐角,故直线A′C不可能和直线A'B垂直,故④不成立.故答案为:①②.【点评】本题考查了线线垂直的判断,解题的关键是找到特殊情况,以及根据∠A′BD,∠BA′C始终为锐角进行判断,属于中档题.17.如图,平面ABC⊥平面α,平面ABC∩平面α=AB,∠ACB=,AC=1,AB=2,D为线段AB的中点.现将△ACD绕CD旋转至△A′CD,设直线A′C∩平面α=P,则在旋转过程中,下列说法正确的是(1)(2)(3)(1)三棱锥A′﹣BCD的体积有最大值;(2)点P的轨迹为椭圆;(3)直线CB与平面CDP所成角的最大值为30°;(4)若二面角P﹣CD﹣B的平面角为α,则∠PDB≥α.【分析】当△A′DC所在平面与平面ABC垂直时,A′到平面BCD的距离最大,故A正确;由椭圆定义判断(2)正确;由线面角的定义及∠BCD=30°判断(3)正确;由角在平面上的射影与已知角的大小关系判断(4)错误.【解答】解:由题意,△BDC的面积为定值,△ADC是边长为1的正三角形,在旋转过程中,△A′DC形状不变,当△A′DC所在平面与平面ABC垂直时,三棱锥A′﹣BCD的体积有最大值,故(1)正确;在旋转过程中,射线CA′可看作是以CD为旋转轴的圆锥的母线,平面α是所得圆锥的斜截面,则P点的轨迹为椭圆,故(2)正确;CB是平面CPD的一条斜线,当CB在平面CPD上的射影与CD重合时,直线CB与平面CDP所成角的最大值为∠BCD=30°,故(3)正确;当△ACD旋转时,首先是∠PDB>α,当旋转到满足∠CDP为钝角时,一定有∠PDB<α,故(4)错误.∴正确的结论是(1)(2)(3).故答案为:(1)(2)(3).【点评】本题考查空间中直线与平面、平面与平面位置关系的判定及应用,考查空间想象能力与思维能力,是中档题.18.在四棱锥S﹣ABCD中,底面四边形ABCD为矩形,SA⊥平面ABCD,P,Q别是线段BS,AD的中点,点R在线段SD上.若AS=4,AD=2,AR⊥PQ,则AR=.【分析】取SA的中点E,连接PE,QE.由已知证明PE⊥AR,结合已知AR⊥PQ,可得AR⊥平面PEQ,得到AR⊥EQ,进一步得到AR⊥SD,在直角三角形SAD中,由等面积法求解AR.【解答】解:取SA的中点E,连接PE,QE.∵SA⊥平面ABCD,AB⊂平面ABCD,∴SA⊥AB,而AB⊥AD,AD∩SA=A,∴AB⊥平面SAD,故PE⊥平面SAD,又AR⊂平面SAD,∴PE⊥AR.又∵AR⊥PQ,PE∩PQ=P,∴AR⊥平面PEQ,∵EQ⊂平面PEQ,∴AR⊥EQ.∵E,Q分别为SA,AD的中点,∴EQ∥SD,则AR⊥SD,在直角三角形ASD中,AS=4,AD=2,可求得.由等面积法可得.故答案为:.【点评】本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,考查运算能力,是中档题.19.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.如图,在鳖臑P﹣ABC中,P A⊥平面ABC,AB⊥BC,且AP=AC=1,过点A分别作AE⊥PB于点E,AF⊥PC于点F,连结EF,当△AEF的面积最大时,tan∠BPC=.【分析】由已知可证AE⊥平面PBC,PC⊥平面AEF,可得△AEF、△PEF均为直角三角形,由已知得AF=,从而S△AEF=AE•EF≤(AE2+EF2)=(AF)2=,当且仅当AE=EF时,取“=”,解得当AE=EF=时,△AEF的面积最大,即可求得tan∠BPC的值【解答】解:显然BC⊥平面P AB,则BC⊥AE,又PB⊥AE,则AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC得PC⊥平面AEF,所以△AEF、△PEF均为直角三角形,由已知得AF=,而S△AEF=AE•EF≤(AE2+EF2)=(AF)2=,当且仅当AE=EF时,取“=”,所以,当AE=EF=时,△AEF的面积最大,此时tan∠BPC===,【点评】本题主要考查了直线与平面垂直的判定,不等式的解法及应用,同时考查了空间想象能力、计算能力和逻辑推理能力,属于中档题20.如图所示的平行六面体ABCD﹣A1B1C1D1中,已知AB=AA1=AD,∠BAD=∠DAA1=60°,∠BAA1=30°,N为AA1D1上一点,且A1N=λA1D1.若BD⊥AN,则λ的值为;若M为棱DD1的中点,BM∥平面AB1N,则λ的值为.【分析】①⊥,不妨取AB=AA1=AD=1,利用•=(﹣)•(+λ)=•+λ﹣•﹣λ•=0,即可得出λ.②连接A1B,与AB1交于点E.连接A1M,交AN于点F,连接EF.BM∥平面AB1N,可得BM∥EF.根据E点为A1B的中点,可得F点为A1M的中点.延长AN交线段DD1的延长线于点P.利用平行线的性质即可得出.【解答】解:①⊥,不妨取AB=AA1=AD=1,∴•=(﹣)•(+λ)=•+λ﹣•﹣λ•=cos60°+λ﹣cos30°﹣λcos60°=﹣+λ=0.∴λ=.②连接A1B,与AB1交于点E.连接A1M,交AN于点F,连接EF.∵BM∥平面AB1N,∴BM∥EF.∵E点为A1B的中点,∴F点为A1M的中点.延长AN交线段DD1的延长线于点P.∵AA1∥DD1,A1F=FM.∴AA1=MP=2D1P.∴==2,∴=.则λ=.故答案为:﹣1,.【点评】本题考查了向量三角形法则、数量积运算性质、平行线的性质、线面平行的性质定理,考查了推理能力与计算能力,属于中档题.21.已知平面α,β和直线m,给出条件:①m∥α;②m⊥α:③m⊂α;④α∥β;⑤α⊥β.当满足条件②④时,m⊥β.【分析】由于当一条直线垂直于两个平行平面中的一个时,此直线也垂直于另一个平面,结合所给的选项可得m⊥β时,应满足的条件.【解答】解:由于当一条直线垂直于两个平行平面中的一个时,此直线也垂直于另一个平面,结合所给的选项,故由②④可推出m⊥β.即②④是m⊥β的充分条件,故当m⊥β时,应满足的条件是②④,故答案是:②④.【点评】本题主要考查直线和平面之间的位置关系,直线和平面垂直的判定方法,属于中档题.22.已知四边长均为2的空间四边形ABCD的顶点都在同一个球面上,若∠BAD=,平面ABD⊥平面CBD,则该球的体积为.【分析】根据题意画出图形,结合图形得出△ABD与△BCD均为等边三角形,求出四面体ABCD外接球的半径,再计算外接球的体积.【解答】解:如图所示,设E是△ABD的外心,F是△BCD的外心,过E,F分别作平面ABD与平面BCD的垂线OE、OF,相交于O;由空间四边形ABCD的边长为2,∠BAD=,所以△ABD与△BCD均为等边三角形;又平面ABD⊥平面CBD,所以O为四面体ABCD外接球的球心;又AE==2,OE=1,所以外接球的半径为R==;所以外接球的体积为V==×=.故答案为:.【点评】本题考查了多面体外接球体积的计算问题,也考查了数形结合的解题方法,是中档题.23.在三棱锥P﹣ABC中,AB=AC=4,∠BAC=120°,PB=PC=4,平面PBC⊥平面ABC,则三棱锥P﹣ABC外接球的表面积为80π.【分析】设△ABC的外接圆的圆心为O1,连接O1C,O1A,BC∩O1A=H,连接PH.推导出AH⊥BC,PH⊥平面ABC,设O为三棱锥P﹣ABC外接球的球心,连接OO1,OP,OC,过O作OD⊥PH,垂足为D,外接球半径R满足,由此能求出三棱锥P﹣ABC外接球的表面积.【解答】解:如图,设△ABC的外接圆的圆心为O1连接O1C,O1A,BC∩O1A=H,连接PH.由题意可得AH⊥BC,且,.因为平面PBC⊥平面ABC,且PB=PC,所以PH⊥平面ABC,且.设O为三棱锥P﹣ABC外接球的球心,连接OO1,OP,OC,过O作OD⊥PH,垂足为D,则外接球的半径R满足,即,解得OO1=2,从而R2=20,故三棱锥P﹣ABC外接球的表面积为4πR2=80π.故答案为:80π.【点评】本题考查三棱锥外接球的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.24.已知P,A,B,C,D是球O的球面上的五个点,四边形ABCD为梯形,AD∥BC,AB=DC=AD=2,BC=4,△P AD为等边三角形且平面P AD⊥平面ABCD,则球O的表面积为π.【分析】通过平面垂直,结合空间几何体的位置关系,判断外接球的球心求值,求出外接球的半径即可推出结果.【解答】解:由题意可知,几何体的图形,如图:△P AD为等边三角形,F为AD的中点,底面ABCD是等腰梯形,侧面P AD是正三角形与底面ABCD垂直,所以四棱锥的外接球的球心是O,在底面ABCD的外心E的垂直直线与侧面P AD的外心G的垂直直线的交点,因为AD∥BC,AB=DC=AD=2,BC=4,△P AD为等边三角形且平面P AD⊥平面ABCD,所以E是底面ABCD的外心,半径为2,OE=GF,G是正三角形的外心,OE=,EA=2,所以外接球的半径为R==,则球O的表面积为:4π×=.故答案为:.。

高中数学必修2立体几何部分试卷及答案

高中数学必修2立体几何部分试卷及答案

高中数学必修2立体几何部分试卷试卷满分100分。

时间70分钟考号 班级 姓名第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 2、过直线l 外两点作与直线l 平行的平面,可以作( )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个 3、正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为 ( )A .41 B .21 C .43 D .49 4、右图是一个实物图形,则它的左视图大致为 ( )5、已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是 ( )A .2B .25C .3D .27 6、已知α、β是平面,m 、n 是直线,则下列命题不正确...的是 ( ) A .若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβ C .若,//,m m n n αβ⊥⊂,则αβ⊥ D .若//,m n ααβ=I,则//m n7、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是 ( )A .4πa 2 B.5 πa 2 C. 8πa 2 D.10πa 28、如右下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=o,如图所示。

若将ABC ∆绕BC 旋转一周,则所形成的旋转体的体积是( ) (A )92π (B )72π (C )52π (D )32π(第8题图)9、如左上图是由单位立方体构成的积木垛的三视图,据此三视图可知,构成这堆积木垛的单 位正方体共有 ( ) A .6块 B .7块 C .8块 D .9块10、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个第Ⅱ卷(非选择题 共60分)二、填空题(每小题4分,共16分)11、已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集。

高中数学必修2测试题附答案

高中数学必修2测试题附答案

高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。

2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。

3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。

4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。

5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。

6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。

7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。

8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。

因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。

9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。

高中数学必修二 期末考测试(提升)(含答案)

高中数学必修二   期末考测试(提升)(含答案)

期末考测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·浙江)如图,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .2+B .8C .6D .2+【答案】B【解析】由题意O B ''OABC 中,1OA BC ==,OB =OB OA ⊥,所以3OC AB ==, 所以四边形的周长为:2(13)8⨯+=. 故选:B .2.(2021·全国· 专题练习 )复数21i-(i 为虚数单位)的共轭复数是( ) A .1i + B .1i -C .1i -+D .1i --【答案】B【解析】化简可得21z i =-()()()21111i i i i +==+-+,∴21i-的共轭复数1z i =-,故选:B . 3.(2021·黑龙江·哈尔滨三中高一月考)如图,向量AB a =,AC b =,CD c =,则向量BD 可以表示为( )A .a b c +-B .a b c -+C .b a c -+D .b a c --【答案】C【解析】依题意BD AD AB AC CD AB =-=+-,即BD b a c =-+,故选:C.4.(2021·全国·专题练习)我国古代数学著作《九章算术》有如下问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,始与岸齐,问水深、葭长各几何?”意思是说:“有一个边长为1丈的正方形水池,在池的正中央长着一根芦苇,芦苇露出水面1尺.若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面.问水有多深?芦苇多长?”该题所求的水深为( ) A .12尺 B .10尺 C .9尺 D .14尺【答案】A【解析】设水深为x 尺,依题意得()22215x x +-=,解得12x =.因此,水深为12尺.故选:A.5.(2021·内蒙古·集宁一中)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,cC =A .π12 B .π6C .π4D .π3【答案】B【解析】sinB=sin(A+C)=sinAcosC+cosAsinC ,∵sinB+sinA(sinC ﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0, ∵sinC ≠0,∴cosA=﹣sinA ,∴tanA=﹣1, ∵π2<A <π,∴A= 3π4,由正弦定理可得c sin sin aC A=,∵a=2,sinC=sin c A a=12=22 , ∵a >c ,∴C=π6,故选B .6.(2021·浙江·高一期末)设非零向量a ,b 满足a b a b +=-,则 A .a ⊥bB .=a bC .a ∥bD .a b >【答案】A【解析】由a b a b +=-平方得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=,则a b ⊥,故选A.7.(2021·上海市金山中学高一期末)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==则2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9] D .(7,9]【答案】D 【解析】因为,3A a π==由正弦定理可得22sin sin sin 3ab c AB B π===⎛⎫- ⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭, 由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+ 28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3BB B =++ 22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.8.(2021·北京·清华附中 )如图,正四棱柱1111ABCD A B C D -满足12AB AA =,点E 在线段1DD 上移动,F 点在线段1BB 上移动,并且满足1DE FB =.则下列结论中正确的是( )A .直线1AC 与直线EF 可能异面B .直线EF 与直线AC 所成角随着E 点位置的变化而变化 C .三角形AEF 可能是钝角三角形D .四棱锥A CEF -的体积保持不变 【答案】D【解析】如图所示,连接有关线段.设M ,N 为AC ,A 1C 1的中点,即为上下底面的中心,MN 的中点为O ,则AC 1的中点也是O ,又∵DE =B 1F ,由对称性可得O 也是EF 的中点,所以AC 1与EF 交于点O ,故不是异面直线,故A 错误;由正四棱柱的性质结合线面垂直的判定定理易得AC ⊥平面11BB D D , 因为EF ⊂平面11BB D D ,∴,AC EF ⊥故B 错误; 设AB a ,则12AA a =,设1,02DE B F x x a ==<<, 易得()22222222,254,AE a x AF a a x a ax x =+=+-=-+ ()22222222684,EF a a x a ax x =+-=-+因为()222242220,AE AF EF ax x x a x +-=-=->EAF ∴∠为锐角;因为()22222224220,AE EF AF a ax x a x +-=-+=->AEF ∴∠为锐角,因为2222210124,AF EF AE a ax x +-=-+ 当3x 2a =时取得最小值为2222101890,a a a a -+=> AFE ∴∠为锐角,故△AEF 为锐角三角形,故C 错误; 三棱锥A -EFC 也可以看做F -AOC 和E -AOC 的组合体, 由于△AOB 是固定的,E ,F 到平面AOC 的距离是不变的 (∵易知BB 1,DD 1平行与平面ACC 1A 1),故体积不变, 故D 正确. 故选:D.二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·湖南·临澧县第一中学高一期末)设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件D .若||5()z z x i x R +=+∈,则实数a 的值为2 【答案】ACD【解析】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD10.(2021·江苏南京·高一期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =3c =,3A C π+=,则下列结论正确的是( )A .cos C =B .sin B =C .3a =D .ABCS=【答案】AD【解析】3A C π+=,故2B C =,根据正弦定理:sin sin b cB C=,即32sin cos C C C =⨯,sin 0C ≠,故cos C =,sin C =sin sin 22sin cos 3B C C C ===2222cos c a b ab C =+-,化简得到2430a a -+=,解得3a =或1a =,若3a =,故4A C π==,故2B π=,不满足,故1a =.11sin 122ABC S ab C ==⨯⨯△故选:AD .11.(2021·安徽黄山·高一期末)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续7天,每天新增疑似病例不超过5人”.过去7日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是( ) 甲地:总体平均数3x ≤,且中位数为0; 乙地:总体平均数为2,且标准差2s ≤; 丙地:总体平均数3x ≤,且极差2≤c ; 丁地:众数为1,且极差4c ≤. A .甲地 B .乙地C .丙地D .丁地【答案】CD【解析】甲地:满足总体平均数3x ≤,且中位数为0,举例7天的新增疑似病例为0,0,0,0,5,6,7,则不符合该标志;乙地:若7天新增疑似病例为1,1,1,1,2,2,6,满足平均数为2,标准差2s =,但不符合该标志;丙地:由极差2≤c 可知,若新增疑似病例最多超过5人,比如6人,那么最小值不低于4人, 那么总体平均数3x ≤就不正确,故每天新增疑似病例低于5人,故丙地符合该标志; 丁地:因为众数为1,且极差4c ≤,所以新增疑似病例的最大值5≤,所以丁地符合该标志. 故选:CD12.(2021·河北易县中学高一月考)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则以下四个命题正确的有( ) A .当5,7,60a b A ===︒时,满足条件的三角形共有1个B.若sin :sin :sin 3:5:7A B C =则这个三角形的最大角是120 C .若222a b c +>,则ABC 为锐角三角形 D .若4Cπ,22a c bc -=,则ABC 为等腰直角三角形【答案】BD【解析】对于A,7sin 2sin 15b AB a===>,无解,故A 错误; 对于B,根据已知条件,由正弦定理得:::3:5:7a b c =,不妨令3a =,则5,7b c ==,最大角C 的余弦值为:222925491cos 2302a b c C ab +-+-===-,∴120C =︒,故B 正确;对于C ,由条件,结合余弦定理只能得到cos 0C >,即角C 为锐角,无法保证其它角也为锐角,故C 错误;对于D,2222 cos cos 2224a b c b bc b c C ab ab a π+-++=====,得到b c+=, 又()2222,,a c bc a bc c c b c -=∴=+=+=a∴=,sin 1,42A C A ππ∴===∴=,ABC ∴为等腰直角三角形,故D 正确.故选:BD.三、填空题(每题5分,4题共20分)13.(2021·甘肃省会宁县第一中学高一期末)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.【答案】1.6【解析】依题意,得22212520x x x +++=.设1x ,2x ,3x ,4x ,5x 的平均数为x , 根据方差的计算公式有()()()2221251 1.445x x x x x x ⎡⎤-+-++-=⎢⎥⎣⎦.()()2222125125257.2x x x x x x x x ∴+++-++++=,即22201057.2x x -+=, 1.6x ∴=.故答案为:1.614.(2021·江苏省海头高级中学高二月考)设复数z 满足341z i --=,则z 的最大值是_______. 【答案】6【解析】设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=,所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为615.(2021·全国·高一单元测试)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________. ①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P C E =;⑤()()P B P C =.【答案】①④【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A = “取出的两球同色”, B = “取出的2球中至少有一个黄球”,C = “取出的2球至少有一个白球”,D “取出的两球不同色”,E = “取出的2球中至多有一个白球”,①,由对立事件定义得A 与D 为对立事件,故①正确;②,B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③,C 与E 有可能同时发生,不是对立事件,故③错误; ④,P (C)631=155=-,P (E)1415=,8()15P CE =,从而()P C E P =(C)P +(E)()1P CE -=,故④正确; ⑤,C B ≠,从而P (B)P ≠(C),故⑤错误. 故答案为:①④.16.(2021·江苏省如皋中学高一月考)已知三棱锥O ABC -中,,,A B C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ︒∠=,且三棱锥O ABC -O 的表面积为________.【答案】52π【解析】ABC 的面积122sin12032ABCS=⨯⨯= 设球心O 到平面ABC 的距离为h ,则1133O ABC ABCV Sh -===3h =, 在ABC 中,由余弦定理2222cos1208412AC AB BC AB BC =+-⋅=+=,∴=AC 设ABC 的外接圆半径为r ,由正弦定理 则2sin120ACr =,解得2r,设球的半径为R ,则22213R r h =+=, 所以球O 的表面积为2452S R ππ==. 故答案为:52π四、解答题(17题10分,其余每题12分,共70分)17.(2021·山西·长治市潞城区第一中学校高一月考)已知复数z 使得2z i R +∈,2zR i∈-,其中i 是虚数单位.(1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围.【答案】(1)42i +;(2)()2,2-.【解析】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++ ∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--,∴4x =综上,有42z i =-∴42z i =+ (2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<<故,实数m 的取值范围是()2,2-18.(2021·江西省靖安中学)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.【解析】(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯ 1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 19.(2021·河南·辉县市第一高级中学高一月考)已知三棱柱111ABC A B C -(如图所示),底面ABC 是边长为2的正三角形,侧棱1CC ⊥底面ABC ,14CC =,E 为11B C 的中点.(1)若G 为11A B 的中点,求证:1C G ⊥平面11A B BA ;(2)证明:1//AC 平面1A EB ;(3)求三棱锥1A EBA -的体积.【答案】(1)证明见解析;(2)证明见解析;【解析】(1)连接1C G ,由1CC ⊥底面ABC ,且11//CC BB ,可得1BB ⊥底面111A B C , 又由1C G ⊂底面111A B C ,所以11C G B B ⊥,又因为G 为正111A B C △边11A B 的中点,所以111C G A B ⊥,因为1111A B BB B =,且111,A B BB ⊂平面11A B BA ,所以1C G ⊥平面11A B BA .(2)连接1B A 交1A B 与G ,则O 为1A B 的中点,连接EO ,则1//EO AC .因为EO ⊂平面1EA B ,1AC ⊄平面1EA B ,所以1//AC 平面1EA B .(2)因为11A A BE E ABA V V --=,11142ABA S AB AA =⨯⨯=△.取1GB 的中点F ,连接EF ,则1//EF C G ,可得EF ⊥平面11A B BA ,即EF 为三棱锥1E ABA -的高,112EF C G ===,三棱锥1A EBA -的体积11111433A A BE E ABA ABA V V S EF --==⨯=⨯=△20.(2021·重庆第二外国语学校高一月考)已知1e ,2e 是平面内两个不共线的非零向量,122AB e e =+,12e e BE λ=-+,122EC e e =-+,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若()12,1e =,()22,2e =-,求BC 的坐标;(3)已知()3,5D ,在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.【答案】(1)32λ=-(2)(7,2)--(3)()10,7. 【解析】(1)()()()12121221AE AB BE e e e e e e λλ=+=++-+=++.因为A ,E ,C 三点共线,所以存在实数k ,使得AE k EC =,即()()121212e e k e e λ++=-+,得()1212(1)k e k e λ+=--.因为1e ,2e 是平面内两个不共线的非零向量, 所以12010k k λ+=⎧⎨--=⎩解得12k =-,32λ=-. (2)()()()121212136,31,17222,32B e BE EC e C e e e e ++=--=-+=--=--=---. (3)因为A ,B ,C ,D 四点按逆时针顺序构成平行四边形,所以AD BC =.设(),A x y ,则()3,5AD x y =--,因为()7,2BC =--,所以3752x x -=-⎧⎨-=-⎩解得107x y =⎧⎨=⎩ 即点A 的坐标为()10,7.21.(2021·安徽师大附属外国语学校高一月考)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==c ;(2)求cos cos a C c A b-的取值范围. 【答案】(1)2c =;(2)()1,1-.【解析】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=, 由余弦定理2222cos b c a ac B =+-, 得27923cos 3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍),故2c =符合.(2)由(1)得3B π=, 所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===- ⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫-< ⎪⎝⎭, cos cos 11a C c A b-∴-<<,故cos cos a C c A b-的取值范围是()1,1-. 22.(2021·全国·高一课时练习)如图在四棱锥P ABCD -中,底面ABCD 为菱形,PAD △为正三角形,平面PAD ⊥平面ABCD E F ,、分别是AD CD 、的中点.(1)证明:BD PF ⊥;(2)若M 是棱PB 上一点,三棱锥M PAD -与三棱锥P DEF -的体积相等,求M 点的位置.【答案】(1)证明见解析;(2)M 点在PB 上靠近P 点的四等分点处.【解析】(1)连接AC PA PD =,且E 是AD 的中点,PE AD ⊥∴.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD PE =⊂,平面PAD .PE ∴⊥平面ABCD BD ⊂,平面ABCD BD PE ∴⊥,. 又ABCD 为菱形,且E F 、分别为棱AD CD 、的中点,//EF AC ∴.BD AC BD EF ⊥∴⊥,,又BD PE PE EF E BD ⊥⋂=∴⊥,,平面PEF ;PF ∴⊂平面PEF BD PF ∴⊥,. (2)如图,连接MA MD 、, 设PM MBλ=,则1PM PB λλ=+, 11M PAD B PAD P ABD V V V λλλλ---∴==++, 14DEF DAC S S =△△,则1144P DEF P ACD P ABD V V V ---==,又M PAD P DEF V V --=. 114λλ∴=+. 解得13λ=,即M 点在PB 上靠近P 点的四等分点处.。

(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)

(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)

高中数学必修二期末测试题一1、下图(1)所示的圆锥的俯视图为2、直线l :-、3x y 3 0的倾斜角D 、 150 o3、边长为a 正四面体的表面积是D 、 、,3a 2。

4、对于直线l:3x y 6 0的截距,下列说法正确的是距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截、选择题(本大题共2道小题,每小题5分,共60分。

)A 、30;;60:; 120 ;B 、込 a 3 ;12C 、刍;4A 、在y 轴上的截距是6;B 、在x 轴上的截距是35、已知a// ,b ,则直线a与直线b的位置关系是()A、平行;B、相交或异面;C、异面;D、平行或异面。

6、已知两条直线|「x 2ay 1 0,l2:x 4y 0,且W,则满足条件a的值为()1 1A、;B、;C、2 ;2 2D、2。

7、在空间四边形ABCD中,E,F,G,H分别是AB, BC, CD, DA的中点。

若AC BD a,且AC与BD所成的角为60:,贝卩四边形EFGH的面积为()3 2 3 2 3 2A、 a ;B、 a ;C、 a ;8 4 2D、■-/3a。

8已知圆C:x2 y2 2x 6y 0 ,则圆心P及半径r分别为()A、圆心P 1,3,半径r 10 ;B、圆心P 1,3 ,半径r ;C、圆心P 1, 3,半径r 10 ;D、圆心P 1, 3 ,半径r J0。

9、下列叙述中错误的是()A、若P 口且口l,则PI ;B、三点A,B,C确定一个平面;C、若直线ap|b A,则直线a与b能够确定一个平面;D、若 A I,B I 且 A ,B ,贝卩I 。

10、两条不平行的直线,其平行投影不可能是( )A、两条平行直线;B、一点和一条直线;C、两条相交直线;D、两个点。

11、长方体的一个顶点上的三条棱长分别为4、5,且它的8个顶3、点都在同一个球面上,则这个球的表面积是( )C 、125A、25 ;B、50 ;;D、都不对。

高中数学必修2测试试卷

高中数学必修2测试试卷

高中数学测试试卷(4)1)0(0=+≠=++y x abc c by ax 与圆|b|,|c|的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在 2. a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件3.点M (x 0,y 0)是圆x 2+y 2=a 2 (a>0)内不为圆心的一点,则直线x 0x+y 0y=a 2与该 圆的位置关系是( )A .相切B .相交C .相离D .相切或相交 4.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个5.命题“∀x >0,都有x 2-x ≤0”的否定是 ( ).A .∃x 0>0,使得x 02-x 0≤0B .∃x 0>0,使得x 02-x 0>0C .∀x >0,都有x 2-x >0D .∀x ≤0,都有x 2-x >06.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球面的表面积为( )A .27π B .56π C .14π D .64π7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 28.如图8-24,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是( )9.如图8-25,在三棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q ,且满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1B .2∶1C .4∶1D .3∶110.图8-23中多面体是过正四棱柱的底面正方形ABCD 的顶点A 作截面AB 1C 1D 1而截得的,且B 1B=D 1D 。

人教A版(2019)高中数学必修第二册第六章、第七章检测试题及参考答案

人教A版(2019)高中数学必修第二册第六章、第七章检测试题及参考答案

高中数学必修第2册第六章、第七章综合测试一、单选题(共8小题)1. 在△ABC中,角A,B,C所对边分别为a,b,c,则下列结论正确的是( )A. a2=b2+c2+2bc cos AB. a2=b2+c2+bc cos AC. a2=b2+c2-2bc cos AD. a2=b2+c2-bc cos A2. 如果将直角三角形的三边分别增加同样的长度,那么新三角形的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 由增加的长度确定3. 已知复数z=-i,则复平面内对应的点Z的坐标为( )A. (0,-1)B. (-1,0)C. (0,0)D. (-1,-1)4. 设复数z1=,z2=6,则z1z2为( )A. 3iB. 3C. -3iD. 35. “复数z=(a∈R)在复平面内对应的点位于第三象限”是“a≥0”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 若(1+i)=1-i,则z=( )A. 1-iB. 1+iC. -iD. i7. 在四边形ABCD中,AB∥CD,AB=3DC,E为BC的中点,则等于()A. B. C. D.8. 已知三个力F1=(-2,-1),F2=(-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力F4,则F4等于( )A. (-1,-2)B. (1,-2)C. (-1,2)D. (1,2)二、多选题(共4小题)9. 如图所示,四边形ABCD,CEFG,CGHD是全等的菱形,则下列结论中一定成立的是( )A. ||=||B. 与共线C. 与共线D. =10. 已知△ABC是边长为2a(a>0)的等边三角形,P为△ABC所在平面内一点,则·(+)的值可能是( )A. -2a2B. -a2C. -a2D. -a211. 下列各式中结果为零向量的是( )A. +++B. ++C. +++D. -+-12. △ABC的内角A,B,C所对的边分别为a,b,c,对于△ABC,有如下命题,其中正确的有( )A. sin(B+C)=sin AB. cos(B+C)=cos AC. 若a2+b2=c2,则△ABC为直角三角形D. 若a2+b2<c2,则△ABC为锐角三角形三、填空题(共4小题)13. 已知|a|=|b|=1,且a⊥b,若|a+b+m|≤1恒成立,则|m|的取值范围是________.14. 方程x2-2x+5的复数根为________.15. 设复数z=a+b i(a,b∈R),1≤|z|≤2,则|z+1|的取值范围是________.16. 小顾同学在用向量法研究解三角形面积问题时有如下研究成果:若=(x1,y1),=(x2,y2),则S△OAB=|x1y2-x2y1|.试用上述成果解决问题:已知A(1,1),B(2,3),C(4,5),则S△ABC=______.四、解答题(共6小题)17. 如图所示,在正方形ABCD中,E,F分别是AB,BC的中点,求证:AF⊥DE.18. 已知△ABC的三个内角A,B,C所对的边分别为a,b,c,(a+b+c)(b+c-a)=3bc.(1)求A的大小;(2)若b+c=2a=2,试判断△ABC的形状.19. 在△ABC中,已知A=15°,B=45°,c=3+,解这个三角形.20. 如图所示,四边形ABCD是矩形,点A和B对应的复数分别为-1+2i,1+i,并且|BA|∶|DA|=1∶,求点C和点D分别对应的复数.21. 设复数z=(a2+a-2)+(a2-7a+6)i,其中a∈R,当a取何值时,(1)z∈R;(2)z 是纯虚数;(3)z是零.22. 如图,E,F,G,H分别是梯形ABCD的边AB,BC,CD,DA的中点,化简下列各式:(1)++;(2)+++.参考答案1. 【答案】C【解析】由余弦定理的结构特征易知选C.2. 【答案】A【解析】设直角三角形的三条边长分别为a,b,c,且a2+b2=c2,三条边均增加同样的长度m,三边长度变为a+m,b+m,c+m,此时最长边为c+m,设该边所对角为θ,则由余弦定理,得cosθ==.因为m2>0,a+b-c>0,所以cosθ>0,所以θ为锐角,其他各角必为锐角,故新三角形是锐角三角形.3. 【答案】A【解析】由z=-i可知,复平面内对应的点Z的坐标为(0,-1).4. 【答案】A【解析】z1z2=×6=3=3i.5. 【答案】A【解析】易得z==-a-3i,则z在复平面内对应的点位于第三象限⇔a>0.又a>0⇒a≥0,a≥0D⇒/a>0,所以“a>0”是“a≥0”的充分不必要条件,即“z在复平面内对应的点位于第三象限”是“a≥0”的充分不必要条件.6. 【答案】D【解析】由(1+i)=1-i,得===-i,故z=i.7. 【答案】A【解析】=-=8. 【答案】D【解析】为使物体平衡,则合力为零,即F4=(0-(-2)-(-3)-4,0-(-1)-2-(-3))=(1,2).9. 【答案】ABD【解析】由向量相等及共线的概念,由∠EDB与∠HED不一定相等可知C选项不一定正确.10. 【答案】BCD【解析】建立如图所示的平面直角坐标系.设P(x,y),因为A(0,a),B(-a,0),C(a,0),则=(-x,a-y),=(-a-x,-y),=(a-x,-y).所以·(+)=(-x,a-y)·[(-a-x,-y)+(a-x,-y)]=(-x,a-y)·(-2x,-2y)=2x2+2y2-2ay=2x2+22-a2≥-a2,当且仅当x=0,y=a时取等.故选项B,C,D满足,故选BCD.11. 【答案】BD【解析】由向量加法的法则得A:+++=++=,故结果不为零向量;B:++=+=0,结果为零向量;C:+++=+=,结果不为零向量;D:-+-=+-(+)=-=0,结果为零向量.12. 【答案】AC【解析】依题意,在△ABC中,B+C=π-A,sin(B+C)=sin(π-A)=sin A,A正确;cos(B+C)=cos(π-A)=-cos A,B不正确;因为a2+b2=c2,则由余弦定理的推论得cos C==0,而0<C<π,即有C=,则△ABC为直角三角形,C正确;因为a2+b2<c2,则cos C=<0,而0<C<π,即有<C<π,则△ABC为钝角三角形,D不正确.13. 【答案】[-1,+1]【解析】建立平面直角坐标系(图略),设a=(1,0),b=(0,1),a+b=(1,1),m=(x,y),a+b+m=(x+1,y+1).由题意可知(x+1)2+(y+1)2≤1,|m|表示以点(-1,-1)为圆心,1为半径的圆面(包括边界)上的动点与原点连线段的长度,易知|m|的最大值为+1,最小值为-1.14. 【答案】1±2i【解析】由求根公式得x===1±2i.15. 【答案】[0,3]【解析】由复数的模及复数加减运算的几何意义可知,1≤|z|≤2表示如图所示的圆环,而|z+1|表示复数z的对应点A(a,b)与复数z1=-1的对应点B(-1,0)之间的距离,即圆环内的点到点B的距离d.由图易知当A与B重合时,d min=0,当点A与点C(2,0)重合时,d max=3,所以0≤|z+1|≤3.16. 【答案】1【解析】因为A(1,1),B(2,3),C(4,5),所以=(1,2),=(3,4),又当=(x1,y1),=(x2,y2)时,S△OAB=|x1y2-x2y1|,所以S△ABC=×|1×4-3×2|=1.17. 【答案】证明方法一设=a,=b,则|a|=|b|,a·b=0.又=+=-a+,=+=b+,所以·=·=-a2-a·b+=-|a|2+|b|2=0.故⊥,即AF⊥DE.方法二如图所示,建立平面直角坐标系,设正方形的边长为2,则A(0,0),D(0,2),E(1,0),F(2,1),则=(2,1),=(1,-2).因为·=(2,1)·(1,-2)=2-2=0.所以⊥,即AF⊥DE.18. 【答案】解(1)∵(a+b+c)(b+c-a)=3bc,∴a2=b2+c2-bc,由余弦定理得a2=b2+c2-2bc cos A,∴cos A=.∵A∈(0,π),∴A=.(2)∵在△ABC中,a2=b2+c2-2bc cos A,且a=,∴()2=b2+c2-2bc·=b2+c2-bc.①又∵b+c=2,与①联立,解得bc=3,∴∴b=c=,又∵a=,∴△ABC为等边三角形.19. 【答案】解由三角形内角和定理,得C=180°-(A+B)=180°-(15°+45°)=120°.由正弦定理,得a=====,b======+.20. 【答案】解要求出点C对应的复数,即求出向量对应的复数,结合图形并注意到=+,可以先求向量对应的复数.向量可以看成向量的长度扩大为原来的倍,并绕点B按顺时针方向旋转90°后得到,又向量对应的复数为(-1+2i)-(1+i)=-2+i,故向量对应的复数为(-2+i)··[cos(-90°)+isin(-90°)]=+2i.于是点C对应的复数为(+2i)+(1+i)=(+1)+(2+1)i.同理可得点D对应的复数是(-1)+(2+2)i.21. 【答案】解(1)z∈R,只需a2-7a+6=0,所以a=1或a=6.(2)z是纯虚数,只需所以a=-2.(3)因为z=0,所以所以a=1.22. 【答案】解(1)++=++=++=+=;(2)+++=+++=++=+=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x y O x y O x y O x
y
O
高中数学必修2测试试卷
一、选择题
1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )
A.3
B.-2
C. 2
D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )
A .072=+-y x
B .012=-+y x
C .250x y --=
D .052=-+y x 3. 下列说法不正确的....
是( ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形;
B .同一平面的两条垂线一定共面;
C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D. 过一条直线有且只有一个平面与已知平面垂直.
4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( )
A .524=+y x
B .524=-y x
C .52=+y x
D .52=-y x
5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )
A .
B .
C .
D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( )
A.一定是异面
B.一定是相交
C.不可能平行
D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:
①若m ⊥α,n //α,则mn ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n
// ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( )(A )①和② (B )②和③ (C )③和④ (D )①和④ 8. 圆2
2
(1)1x y -+=
与直线3
y x =
的位置关系是( ) A .相交 B. 相切 C.相离 D.直线过圆心
9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( ) A .-1
B .2
C .3
D .0
10. 在空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 、GH 相交于点P ,那么( ) A .点P 必在直线AC 上 B.点P 必在直线BD 上 C .点P 必在平面DBC 内 D.点P 必在平面ABC 外 11. 若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β的位置关系是( ) A.MN ∥β B.MN 与β相交或MN ⊂≠β
C. MN ∥β或MN ⊂≠β
D. MN ∥β或MN 与β相交或MN ⊂≠β
12. 已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( ) A.垂直 B.平行 C.相交 D.位置关系不确定 二 填空题
13.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ; 14.已知正方形ABCD 的边长为1,AP ⊥平面ABCD ,且AP=2,则PC = ; 15. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __;
16.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,圆C 的方程为 . 三 解答题
17(12分) 已知△ABC 三边所在直线方程为AB :3x +4y +12=0,BC :4x -3y +16=0,CA :2x +y -2=0,求AC 边上的高所在的直线方程.
18(12分) 如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE 的中点,求证:(1) FD∥平面ABC; (2) AF⊥平面EDB.
19.(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,
(1)求证:平面A B1D1∥平面EFG; (2)求证:平面AA1C⊥面EFG.
20.(12分) 已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为27;③圆心在直线x-3y=0上. 求圆C的方程.
21.(12分) 设有半径为3km的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
22.(14分)已知圆C :()2
2
19x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.
(1) 当l 经过圆心C 时,求直线l 的方程;
(2) 当弦AB 被点P 平分时,写出直线l 的方程; (3) 当直线l 的倾斜角为45º时,求弦AB 的长.
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
B
A
D
B
C
C
A
A
C
A
C
A
二、填空题:(4’×4=16’)
13. (0,0,3) 14. 6 15 y=2x 或x+y-3=0 16. (x-2)2
+(y+3)2
=5
三 解答题 .
17.由⎩⎨
⎧=+-=++0
16364012463x x 解得交点B (-4,0),211,=-=∴⊥AC BD k k AC BD Θ. ∴AC 边上的高线BD 的方程
为042),4(2
1=+-+=y x x y 即.
18 ∵ F 、M 分别是BE 、BA 的中点 ∴ FM ∥EA, FM=12
EA ∵ EA 、CD 都垂直于平面ABC ∴ CD ∥EA ∴ CD ∥FM 又 DC=a, ∴ FM=DC ∴四边形FMCD 是平行四边形 ∴ FD ∥MC FD ∥平面ABC
(2) 因M 是AB 的中点,△ABC 是正三角形,所以CM ⊥AB 又 CM ⊥AE,所以CM ⊥面EAB, CM ⊥AF, FD ⊥AF, 因F 是BE 的中点, EA=AB 所以AF ⊥EB.
19(12分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,
(2) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.
20设所求的圆C 与y 轴相切,又与直线交于AB ,
∵圆心C 在直线03=-y x 上,∴圆心C (3a ,a ),又
圆 与y 轴相切,∴R=3|a |. 又圆心C 到直线y -x =0的距

7||,72||.||22
|
3|||===-=BD AB a a a CD Θ
在Rt △CBD 中,33,1,1.729,)7(||2
22222±=±===-∴=-a a a a a CD R .
∴圆心的坐标C 分别为(3,1)和(-3,-1),故所求圆的方程为9)1()3(22=-+-y x 或9)1()3(22=+++y x .
21解:如图建立平面直角坐标系,由题意
可设A 、B 两人速度分别为3v 千米/小时 , v 千米/小时,再设出发x 0小时,在点P 改变 方向,又经过y 0小时,在点Q 处与B 相遇.
F
G
E
C1D1A1
B1
D
C
A
B
F E
D C
B
A
M
则P 、Q 两点坐标为(3vx 0, 0),(0,vx 0+vy 0).
由|OP|2+|OQ|2=|PQ|2
知,………………3分
(3vx 0)2+(vx 0+vy 0)2=(3vy 0)2
, 即0)45)((0000=-+y x y x .
000045,
0y x y x =∴>+Θ……①………………6分
将①代入.4
3
,3000-=+-
=PQ PQ k x y x k 得……………8分 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两个相遇的位置.
设直线9:43
22=++-
=y x O b x y 与圆相切, 则有
.415
,343|4|2
2=∴=+b b ……………………11分 答:A 、B 相遇点在离村中心正北4
3
3千米处………………12分 22.
(1) 已知圆C :()2
2
19x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2,
直线l 的方程为y=2(x-1),即 2x-y-20.
(2) 当弦AB 被点P 平分时,l ⊥PC, 直线l 的方程为1
2(2)2
y x -=-
-, 即 x+2y-6=0 (3) 当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0
圆心C 到直线l
,圆的半径为3,
弦AB。

相关文档
最新文档