华师版第23章一元二次方程学案[1].doc新
九年级数学上册 第23章、一元二次方程全章教学设计 华东师大版
22.1 一元二次方程教学目标:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式02=++c bx ax (a ≠0)2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
3、会用试验的方法估计一元二次方程的解。
重点难点:1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。
2.理解用试验的方法估计一元二次方程的解的合理性。
教学过程: 一 做一做:1.问题一 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少? 分 析:设长方形绿地的宽为x 米,不难列出方程 x(x +10)=900整理可得 x 2+10x -900=0. (1) 2.问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x ,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x )万册;同样,明年年底的图书数又是今年年底的(1+x )倍,即5(1+x )(1+x)=5(1+x)25(1+x )2=7.2,整理可得 5x 2+10x -2.2=0. (2) 3.思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?(学生分组讨论,然后各组交流)共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2 二、 一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:ax 2+bx +c =0(a 、b 、c 是已知数,a ≠0)。
其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数,c 叫做常数项。
华师大版-数学-九年级上册-一元二次方程 教案
一元二次方程教学内容本章主要内容包括:一元二次方程的概念、一元二次方程的一般形式、一元二次方程的解法(直接开平方法,因式分解法、配方法、公式法)、应用一元二次方程解决简单的实际问题等.在一元二次方程的解法中,综合应用了因式分解和整式的乘法公式等知识,是整式乘法知识的应用和提升,同时也为今后学习二次函数打下基础,一元二次方程是解决实际问题的一个重要工具.本章学习中体现了应用方程解决实际问题的重要思想.知识结构:三维目标1.知识与技能.(1)了解一元二次方程的概念,会写出一元二次方程的一般形式.(2)理解配方法,会用直接开平方法、因式分解法、公式法、•配方法解一元二次方程.(3)会根据具体问题中的数量关系,列出一元二次方程解决简单实际问题.(4)能根据具体问题的实际意义,检验解方程的结果是否合理.2.过程与方法.(1)通过认识一元二次方程,体会方程概念的发展.(2)经历探索一元二次方程的解法过程.•体验从不同角度寻求解决问题策略的多样性,培养学生的实践能力和创新精神.(3)经历探索列一元二次方程解应用题的过程,•体会方程是刻画现实世界的一个有效数学模型和重要方法.3.情感、态度与价值观.(1)激发学生积极参与数学探索的热情,•并有独立克服困难和运用知识求解一元二次方程的体验.(2)在独立思考的基础上,形成积极参与对数学问题的讨论,•敢于发表自己的见解的学习习惯,并能从交流中获益.(3)从列一元二次方程解应用题的过程中,•体验和认识到数学是解决实际问题与进行交流的重要工具.体会数学的应用价值.教学重点一元二次方程的解法及其应用.教学难点1.配方法的理解.2.列一元二次方程解应用题.教学关键1.理解解一元二次方程中的降次思想.2.熟悉解一元二次方程的各种方法的具体过程和步骤.3.熟悉列一元二次方程解应用题的过程与方法.课时划分一元二次方程 1课时一元二次方程的解法 6课时实践与探索 3课时复习与小结 1课时一元二次方程教学内容本节主要了解一元二次方程的概念及其一般形式.教学目标1.知识与技能.(1)了解一元二次方程的概念.(2)会将一元二次方程化成一般形式,•并能根据一元二次方程的一般形式写出二次项系数、一次项系数、常数项.(3)能根据简单具体问题的数量关系列出一元二次方程.2.过程与方法.(1)经历从实际问题中抽象出一元二次方程概念的过程.(2)参与将一元二次方程化为一般形式的过程,•体会一元二次方程一般形式的结构与特征.(3)发现二次项系数、一次项系数、常数项与一元二次方程一般形式的关系.3.情感、态度与价值观.(1)了解数学知识源于实际,又反过来服务于实际的道理.(2)树立学好数学的自信心.(3)体验探索活动中获得成功的感受.重难点、关键1.重点:一元二次方程的概念及其一般形式.2.难点:从实际问题中抽象出一元二次方程概念.3.关键:认识二次项系数、一次项系数、•常数项与一元二次方程一般形式的关系.教学准备1.教师准备:三角板、小黑板.(本节课的总结图表)2.学生准备:预习提纲.教学过程一、创设情境,导入新知试一试.根据题意,列出方程.(不必求解)1.已知正方形的边长为2cm,求它的对角线长.2.绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?3.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册,•求这两年的年平均增长率.二、合作交流,探索新知1.从实际问题抽象出一元二次方程的概念点拨:(1)设正方形的对角线为xcm,由勾股定理可得:22+22=x2,整理得:x2=8.(2)设长方形绿地的宽为x米,依题意可得:x(x+10)=900,整理得:x2+10x-900=0.(3)设这两年的年平均增长率为x,去年年底有图书5万册,则今年年底可达5(•1+x)万册;明年年底可达5(1+x)·(1+x)=5(1+x)2万册.依题意可得:5(1+x)2=7.2,整理得:5x2+10x-2.2=0.2.思考:(1)上述得到的方程叫做什么方程,它们有什么共同的特征?(2)上述整理后所得方程具有怎样的结构形式?(3)看书P19内容,讨论并理解下列问题:①什么叫做一元二次方程?(强调二次项系数不为0的限制条件)②什么叫做一元二次方程的一般形式?③什么叫做一元二次方程的二次项系数、一次项系数、常数项;它们与一元二次方程的一般形式有什么联系?三、范例学习,加深理解例:将下列一元二次方程化为一般形式,并写出它们的二次项系数,一次项系数和常数项.1.2x-5x2=1 2.6-2x=x23.(x-8)x=36 4.(x+3)(x-7)=48解:1.一般形式为:-5x2+2x-1=0二次项系数是-5,一次项系数是2,常数项是-1.2.一般形式为:-x2-2x+6=0二次项系数是-1,一次项系数是-2,常数项是6.3.一般形式为:x2-8x-36=0二次项系数是1,一次项系数是-8,常数项是-36.4.一般形式为:x2-4x-48=0二次项系数是1,一次项系数是-4,常数项是-48.点拨:本例中的一般形式可以有不同的表达形式,而二次项系数,•一次项系数和常数项应该随一般形式的确定而确定.四、随堂练习,巩固深化1.基础训练.课本P19练习题第(1)、(2)、(3)、(4)题2.探研时空.你能猜出上述P19练习题第(1)、(2)两题的解吗?五、归纳总结,提高认识1.综述本节课的主要内容.2.谈谈本节课的收获与体会.3.展示本节课的总结图形.六、布置作业,专题突破1.课本P19习题23.1第1、2、3题.2.选用课时作业设计七、课后反思(略)课时作业设计1.下列方程中,哪些是一元二次方程?(1)x+32=6-x (2)5-2x 2=1(3)21x +2=6 (4)(x-6)(x+3)=300 2.将下列一元二次方程化为一般形式,并写出它们的二次项系数、•一次项系数和常数项.(1)8x-5=x 2 (2)2-7x 2=x(3)(x-3)(x+12)=100 (4)4x=3x 23.根据题意,列出方程.(不必求解)(1)在一块长为12cm ,宽为8cm 的长方形的四周各剪去一个同样大小的小正方形,再折合成一个无盖的长方体盒子,如果长方体的底面积为50cm 2,•求剪去的小正方形的边长.(2)某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长的百分率.(3)某公司成立3周年以来,•积极向国家上交利税,•由第一年的200•万元增长到800万元,求平均每年增长的百分率.答案:1.方程(2)、(4)是一元二次方程2.(1)x 2-8x+5=0,二次项系数为1,•一次项系数为-8,常数项为5(2)-7x 2-x+2=0,二次项系数为-7,一次项系数为-1,常数项为2 •(3)x 2+9x-136=0,二次项系数为1,一次项系数为9,常数项为-136(4)3x 2-4x=0,•二次项系数为3,一次项系数为-4,常数项为03.(1)•设剪去的小正方形的边长为x,•则(12-2x)·(8-2x)=50 (2)设平均每年增长的百分率为x,则1000(1+x)2=1210 (3)•设平均每年增长的百分率为x,则200(1+x)2=800.。
【华师大版】-九年级数学小复习:第23单元 一元二次方程复习课件
第23章复习 ┃ 考点攻略 ► 考点五 一元二次方程的实际应用 例5 如图23-1所示,某幼儿园有一道长为16米的墙,计 划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪 ABCD.求该矩形草坪BC边的长.
数学·新课标(HS)
第23章复习 ┃ 考点攻略
[解析] 设该矩形草坪 BC 边的长为 x 米,那么 CD=322-x米, 再由矩形面积公式得方程,解之后需检验所求 x 的值是否满足题 意.
┃考点攻略┃
► 考点一 一元二次方程根的定义 例1 已知x=2是一元二次方程(m-2)x2+4x-m2=0的一
个根,则m的值是__0_或__4___.
数学·新课标(HS)
第23章复习 ┃ 考点攻略 [解析] 利用方程根的定义,将2代入方程(m-2)x2+4x-
m2=0,得4(m-2)+4×2-m2=0,整理,得m(m-4)=0,所 以m=0或4.
数学·新课标(HS)
第23章复习 ┃ 知识归类
(3)公式法:一般地,对于一元二次方程 ax2+bx+c=0(a≠0),
当 b2-4ac≥0
时,它的根是
x=
-b± b2-4ac 2a
,这个式子叫
做一元二次方程的求根公式.用求根公式解一元二次方程的方法叫做
公式法.
(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:
第23章复习 ┃ 知识归类
(3)当 b2-4ac<0 时,一元二次方程 ax2+bx+c=0(a≠0)没
有实数根.
4.一元二次方程根与系数的关系
设一元二次方程 ax2+bx+c=0(a≠0)的两个根分别为 x1、x2,则
x1+x2=-ba
,x1x2=
配方法解一元二次方程教案
配方法解一元二次方程授课人:薛晓波一、教材分析方程是刻画现实世界中数量关系的一个有效数学模型,应用比较广泛,而从实际问题中抽象出方程,并求出方程的解是解决问题的关键。
配方法既是解一元二次方程的一种重要方法,同时也是推导公式法的基础。
配方法又是初中数学的重要内容,在二次根式、代数式的变形及二次函数中都有广泛应用。
二、目标分析1.知识与技能:理解配方法的意义,会用配方法解二次项系数为1的一元二次方程;2.过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法;3.情感态度价值观:学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣。
教学重点:运用配方法解二次项系数为1的一元二次方程。
教学难点:发现并理解配方的方法。
三、教学过程设计环节一:创设情境,引出新知在知识引入阶段,创设了一个实际问题的情境,将学生放置在实际问题的背景下,既让学生感受到生活中处处有数学,又有利于激发学生的主动性和求知欲。
环节二:对比研究,探索新知本节课力求在学生已有知识和经验的基础之上,让学生通过观察、比较、转化、探究,自主发现解决问题的方法和规律,理解并掌握配方法。
因此,我以问题为引导,由浅入深,层层递进地设置了4个问题:问题1:我们会解什么样的一元二次方程?举例说明用问题唤起学生的回忆,明确我们现在会解的方程的特点是:等号左边是一个完全平方式,右边是一个非负常数,即)0nm+nx,运用直接开平方法可以解。
这是(=)(2≥后面配方转化的目标,也是对比研究的基础。
问题2:你会用直接开平方法解下列方程吗?设置四道方程:032324124)1(2222=-+⇒=+⇒=++⇒=+x x x x x x x ,启发学生逆向思考问题的思维方式,将方程0322=-+x x 转化成4)1(2=+x 的形式,从而求得方程的解。
通过这一过程,学生发现能用直接开平方法求解的方程都可以转化成一般形式,一般形式的方程也能逆向转化为可以直接开平方的形式,所以总结出解一元二次方程的基本思路是将02=++q px x 形式转化为)0()(2≥=+n n m x 的形式,而怎样转化就成为探索的方向,如何进行合理的转化则是下一步探究活动的核心。
华师大版数学九年级上册22.2 一元二次方程的解法 教案1
【知识与技能】1.会用直接开平方法解形如a(x-k)2=b〔a≠0,ab≥0〕的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.【过程与方法】创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进展教学.【情感态度】鼓励学生积极主动的参与“教〞与“学〞的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-17方法2:原方程可变形为:〔x+1〕2-256=0,方程左边分解因式,得〔x+1+16〕〔x+1-16〕=0即〔x+17〕〔x-15〕=0所以x+17=0或x-15=0原方程的解x1=15,x2=-17【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解以下方程〔1〕〔3x+1〕2=7;〔2〕y2+2y+1=24;〔3〕9n2-24n+16=11.【教学说明】运用开平方法解形如〔x+m〕2=n〔n≥0〕的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解以下方程:〔1〕5x2-4x=0〔2〕3x〔2x+1〕=4x+2〔3〕〔x+5〕2=3x+15【教学说明】解这里的〔2〕〔3〕题时,注意整体划归的思想.三、运用新知,深化理解〔1〕3〔x-1〕2-6=0〔2〕x2-4x+4=5〔3〕〔x+5〕2=25〔4〕x2+2x+1=42.用因式分解法解以下方程:3.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为xm.那么可列方程2πx2=π〔x+5〕2.解得x1=5+52,x2=5-52〔舍去〕.答:小圆形场地的半径为〔5+52〕m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评.四、师生互动,课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a〔x-k〕2=b〔a≠0,b≥0〕的方程,只要把〔x-k〕看作一个整体,就可转化为x2=n〔n≥0〕的形式用直接开平方法解.3.当方程出现一样因式〔单项式或多项式〕时,切不可约去一样因式,而应用因式分解法解.五、教学反思本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握根本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体划归的思想.2. 配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.“转化〞的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,那么长为〔x+6〕m,根据矩形面积为16m2,得到方程x〔x+6〕=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即〔x+m〕2=n〔n≥0〕,运用直接开平方法可求解.问题2 你会用直接开平方法解以下方程吗?〔1〕〔x+3〕2=25〔2〕x2+6x+9=25〔3〕x 2+6x=16〔4〕x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为〔x+3〕2=25的形式,从而求得方程的解.解:移项得:x2+6x=16, 两边都加上9即〔26〕2,使左边配成x 2+bx+〔b2〕2的形式,得: x 2+6x+9=16+9,左边写成完全平方形式,得:〔x+3〕2=25,开平方,得:x+3=±5,〔降次〕即x+3=5或x+3=-5解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:〔1〕x 2+8x+16=〔x+4〕2 〔2〕x 2-x+41=〔x-21〕2 〔3〕4x 2+4x+1=〔2x+1〕2例2 列方程:〔1〕x 2+6x+5=0 〔2〕2x 2+6x+2=0 〔3〕〔1+x 〕2+2〔1+x 〕-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:〔1〕把方程化为一般形式ax 2+bx+c=0;〔2〕把常数项移到方程的右边;〔3〕方程两边同时除以二次项系数a ;〔4〕方程两边同时加上一次项系数一半的平方;〔5〕此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.三、运用新知,深化理解1.用配方法解以下方程:〔1〕2x 2-4x-8=0〔2〕x 2-4x+2=0〔3〕x 2-21x-1=0 2.如果x 2-4x+y2+6y+2 z +13=0,求〔xy 〕z 的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的考前须知.五、教学反思本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.3. 公式法【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.【过程与方法】通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.【情感态度】经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.一、情境导入,初步认识用配方法解方程:〔1〕x2+3x+2=0 〔2〕2x2-3x+5=0解:〔1〕x1=-1,x2=-2 〔2〕无解二、思考探究,获取新知如果这个一元二次方程是一般形式ax2+bx+c=0〔a≠0〕,你能否用上面配方法的步骤求出它们的两根?问题 ax2+bx+c=0〔a≠0〕,试推导它的两个根【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去.探究一元二次方程ax2+bx+c=0〔a≠0〕的根由方程的系数a,b,c而定,因此:〔1〕解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子a acbbx24 2-±-=就得到方程的根,当b2-4ac<0时,方程没有实数根.〔2〕aac b b x 242-±-=叫做一元二次方程ax 2+bx+c=0〔a ≠0〕的求根公式. 〔3〕利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示.例1 用公式法解以下方程:①2x 2-4x-1=0 ②5x+2=3x2 ③〔x-2〕〔3x-5〕=0 ④4x 2-3x+1=0解:①x 1=1+26,x 2=1-26 ②x 1=2,x 2=-31 ③x 1=2,x 2=35 ④无解【教学说明】〔1〕对②、③要先化成一般形式;〔2〕强调确定a,b,c 的值,注意它们的符号;〔3〕先计算b 2-4ac 的值,再代入公式.三、运用新知,深化理解1.用公式法解以下方程:〔1〕x 2+x-12=0〔2〕x 2-2x-41=0 〔3〕x 2+4x+8=2x+11〔4〕x 〔x-4〕=2-8x〔5〕x 2+2x=0〔6〕x 2+25x+10=0 解:〔1〕x 1=3,x 2=-4;〔2〕x 1=232+,x 2=232-; 〔3〕x 1=1,x 2=-3;〔4〕x 1=-2+6,x 2=-2-6;〔5〕x1=0,x2=-2;〔6〕无解.【教学说明】用公式法解方程关键是要先将方程化为一般形式.四、师生互动,课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.五、教学反思在学习活动中,要求学生主动参与,认真思考,比拟观察,交流与表述,体验知识的获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率.4. 一元二次方程根的判别式【知识与技能】1.能运用根的判别式,判断方程根的情况和进展有关的推理论证;2.会运用根的判别式求一元二次方程中字母系数的取值范围.【过程与方法】1.经历一元二次方程根的判别式的产生过程;2.向学生渗透分类讨论的数学思想;3.培养学生的逻辑思维能力以及推理论证能力.【情感态度】1.体验数学的简洁美;2.培养学生的探索、创新精神和协作精神.【教学重点】根的判别式的正确理解与运用.【教学难点】含字母系数的一元二次方程根的判别式的应用.一、情境导入,初步认识用公式法解以下一元二次方程〔1〕x2+5x+6=0〔2〕9x2-6x+1=0〔3〕x2-2x+3=0解:〔1〕x1=-2,x2=-31〔2〕x1=x2=3〔3〕无解【教学说明】让学生亲身感知一元二次方程根的情况,回忆已有知识.二、思考探究,获取新知观察解题过程,可以发现:在把系数代入求根公式之前,需先确定a,b,c的值,然后求出b2-4ac的值,它能决定方程是否有解,我们把b2-4ac叫做一元二次方程根的判别式,通常用符号“Δ〞来表示,即Δ=b2-4ac.我们回忆一元二次方程求根公式的推导过程发现:【归纳结论】〔1〕当Δ>0时,方程有两个不相等的实数根:a acbbx24 21-+-=,aacbbx2422---=;〔2〕当Δ=0时,方程有两个相等的实数根,x1=x2=-ab2; 〔3〕当Δ<0时,方程没有实数根.例1利用根的判别式判定以下方程的根的情况:解:〔1〕有两个不相等的实数根;〔2〕有两个相等的实数根;〔3〕无实数根;〔4〕有两个不相等的实数根.例2 当m为何值时,方程〔m+1〕x2-〔2m-3〕x+m+1=0, 〔1〕有两个不相等的实数根?〔2〕有两个相等的实数根?〔3〕没有实数根?解:〔1〕m<41且m≠-1;〔2〕m=41;〔3〕m>41.【教学说明】注意〔1〕中的m+1≠0这一条件.三、运用新知,深化理解2-4x+4=0的根的情况是〔〕2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根.2.证明:∵x2+2x-m+1=0没有实数根,∴4-4〔1-m〕<0,∴2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.【教学说明】引导学生灵活运用知识.四、师生互动,课堂小结〔1〕Δ>0时,一元二次方程有两个不相等的实数根;〔2〕Δ=0时,一元二次方程有两个相等的实数根.〔3〕Δ<0时,一元二次方程无实数根.2.运用根的判别式解决具体问题时,要注意二次项系数不为0这一隐含条件.【教学说明】可让学生分组讨论,回忆整理,再由小组代表陈述.五、教学反思本课时创设情境,启发引导,让学生充分感受理解知识的产生和开展过程,在教师适时点拨下,学生在发现归纳的过程中积极主动地去探索,发现数学规律,培养了学生的创新意识、创新精神及思维能力.5.一元二次方程的根与系数的关系【知识与技能】1.引导学生在已有的一元二次方程解法的根底上,探索出一元二次方程根与系数的关系,及其关系的运用.2.通过观察、实践、讨论等活动,经历从观察判断到发现关系的过程.【过程与方法】通过探究一元二次方程的根与系数的关系,培养学生观察分析和综合判断的能力,激发学生发现规律的积极性,鼓励学生勇于探索的精神.【情感态度】在积极参与数学活动的同时,初步体验发现问题,总结规律的态度及养成质疑和独立思考的习惯.【教学重点】一元二次方程根与系数之间的关系的运用.【教学难点】一元二次方程根与系数之间的关系的运用.一、情境导入,初步认识问题你发现了什么规律?①用语言表达你发现的规律:〔两根之和为一次项系数的相反数;两根之积为常数项〕②设方程x2+px+q=0的两根为x1,x2,用式子表示你发现的规律.〔x1+x2=-p,x1·x2=q〕问题 上面发现的结论在这里成立吗?〔不成立〕请完善规律:①用语言表达发现的规律:〔两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比〕②设方程ax 2+bx+c=0的两根为x 1,x 2,用式子表示你发现的规律.〔x 1+x 2=-a b ,x 1·x 2=ac 〕 二、思考探究,获取新知通过以上活动你发现了什么规律?对一般的一元二次方程ax 2+bx+c=0〔a ≠0〕这一规律是否成立?试通过求根公式加以说明. ax 2+bx+c=0的两根a ac b b x 2421-+-=,a ac b b x 2422---=,x1+x2=-a b , x 1·x 2=ac . 【教学说明】教师可引导学生根据求根公式推导出根与系数之间的关系,体会知识形成的过程,加深对知识的理解.例1 不解方程,求以下方程的两根之和与两根之积:〔1〕x 2-6x-15=0;〔2〕3x 2+7x-9=0;〔3〕5x-1=4x 2.解:〔1〕x1+x2=6,x1·x2=-15; 〔2〕x1+x2=-37,x1·x2=-3; 〔3〕x1+x2=45,x1·x2=41. 【教学说明】先将方程化为一般形式,找出对应的系数.例2 方程2x 2+kx-9=0的一个根是-3,求另一根及k 的值. 解:另一根为23,k=3.【教学说明】此题有两种解法,一种是根据根的定义,将x=-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.例3 α,β是方程x2-3x-5=0的两根,不解方程,求以下代数式的值.三、运用新知,深化理解1.不解方程,求以下方程的两根之和与两根之积:〔1〕x 2-3x=15〔2〕5x 2-1=4x 2〔3〕x 2-3x+2=10〔4〕4x 2-144=0〔5〕3x 〔x-1〕=2〔x-1〕〔6〕〔2x-1〕2=〔3-x 〕22.两根均为负数的一元二次方程是〔 〕2-12x+5=02-13x-5=02+21x+5=02+15x-8=0 【教学说明】两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.【答案】1.〔1〕x 1+x 2=3,x 1x 2=-15〔2〕x 1+x 2=0,x 1x 2=-1〔3〕x 1+x 2=3,x 1x 2=-8〔4〕x 1+x 2=0,x 1x 2=-36〔5〕x 1+x 2=35,x 1x 2=32 〔6〕x 1+x 2=-32,x 1x 2=-38【教学说明】可由学生自主完成抢答,教师点评.四、师生互动,课堂小结1.一元二次方程的根与系数的关系.2.一元二次方程根与系数的关系成立的前提条件.五、教学反思本节课先由学生探究特殊一元二次方程的根与系数的关系,再猜测一般一元二次方程的根与系数的关系,并从理论上加以推导证明,加深学生对知识的理解,培养学生严密的逻辑思维能力.。
第二十三章 一元二次方程导学案华师
第二十三章一元二次方程23.1 一元二次方程(1课时)学习目标:1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
重点:由实际问题列出一元二次方程和一元二次方程的概念。
难点:由实际问题列出一元二次方程。
准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。
学习过程:自学课本导图,走进一元二次方程分析:现设长方形绿地的宽为x米,则长为米,可列方程x()= ,去括号得①.提出问题1.你知道这是一个什么方程吗?你能求出它的解吗?想一想你以前学过什么方程,它的特点是什么?2.一元二次方程的定义是什么?一般形式是什么?自主学习【做一做】根据题意列出方程:1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?观察上述三个方程以及①②两个方程的结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义。
展示反馈【挑战自我】判断下列方程是否为一元二次方程。
【我学会了】1、只含有 个未知数,并且未知数的最高次数是 ,这样的 方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中 二次项, 是一次项, 是常数项, 二次项系数 , 一次项系数。
【例2】 将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。
(1)8142=x (2))2(5)1(3+=-x x x【巩固练习】教材第19页练习归纳小结1、本节课我们学习了哪些知识?2、学习过程中用了哪些数学方法?3、确定一元二次方程的项及系数时要注意什么?达标测评(A )1、判断下列方程是否是一元二次方程;(1)0233122=--x x ( )(2)0522=+-y x ( ) (3) 02=++c bx ax ( ) (4)07142=+-xx ( ) 2、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x 2-x =2; (2)7x -3=2x 2;(3)(2x -1)-3x (x -2)=0 (4)2x (x -1)=3(x +5)-4.3、判断下列方程后面所给出的数,那些是方程的解;(1))()(1412+=+x x x ±1 ±2;(2)0822=-+x x ±2, ±4(B )1、把方程p q nx mx nx mx -=++-22 ()0≠+n m 化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项。
华师版九年级数学(上)教案(全册)
第22章二次根式22.1 二次根式教学目标1、了解二次根式的概念、2、掌握二次根式的基本性质、教学过程一、提出问题上一节我们学习了平方根和算术平方根的意义,引进了一个新的记号错误!,现在请同学们思考并回答下面两个问题:1、错误!表示什么?2、a需要满足什么条件?为什么?二、合作交流,解决问题让学生合作交流,然后回答问题(可以补充),归纳为;1、当a是正数时,错误!表示a的算术平方根,即正数a的两个平方根中的一个正数;2、当a是零时,错误!表示零,也叫零的算术平方根;3、a≥0,因为任何一个有理数的平方都大于或等于零、三、归纳特点,引入二次根式概念1、基本性质、问题1 你能用一句话概括以上3个结论吗?让一个学生回答、其他学生补充,概括为:错误!(a≥0)表示非负数a的算术平方根,也就是说,错误!(a≥0)是一个非负数,即错误!≥0(a≥0)。
问题2 (a)2(a≥0)等于什么?说说你的理由并举例验证.让学生小组讨论或自主探索得出结论:( a )2=a(a≥0),如(错误!)2=4,(错误!)2=2等、以上两个问题的结论就是基本性质,特别是(错误!)2=a(a≥0)可以当公式使用,直接应用于计算。
反过来,把(错误!)2=a(a≥0)写成a=(错误!)2(a≥0)的形式,这说明:任何一个非负数a都可以写成一个数的平方的形式、例如:3=(错误!)2,0。
3= (错误!)2提问:(1)0=(错误!)2对不对?(2)-5=(-5 )2对不对?如果不对,错在哪里?2、二次根式概念形如错误!(a≥0)的式子叫做二次根式、说明:二次根式必须具备以下特点;(1)有二次根号;(2)被开方数不能小于0.让学生举出二次根式的几个例子,并判断错误!,错误!(a<0)、错误!、错误!(a<o)是不是二次根式。
四、范例例1、要使式子错误!有意义,字母x的取值必须满足什么条件?提问:若将式子错误!改为错误!,则字母x的取值必须满足什么条件?五、课堂练习Pl0页练习1、2、六、思考提高我们已经研究了(错误!)2(a≥0)等于a,现在研究错误!等于什么、提问:1、对于抽象问题的研究,常常采用什么策略?2、在错误!中,a的取值有没有限制?3、取一些数值来验证。
一元二次方程教学设计(精选6篇)
一元二次方程教学设计(精选6篇)一元二次方程教学设计1一、教学内容分析华师版九年级(上)23章《一元二次方程的根的判别式》一节,教材中作为阅读材料。
从推导到应用都比较简单。
但是它在整个中学数学中占有重要的地位。
从知识的发展来看,学生通过对一元二次方程的根的判别式的学习,可以巩固已学过实数、整式、二次根式、一元一次不等式、一元二次方程的相关概念、一元二次方程的解法等知识,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究二次函数的图像与x轴交点情况,二次三项式以及二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。
通过这一节的学习,使学生会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,感受数学的简洁美。
教学重点:根的判别式的正确理解和运用教学难点:含字母系数的一元二次方程根的判别式的运用。
二、学情分析学生已经学过一元二次方程的四种解法,并对的作用已经有所了解,在此基础上来进一步研究作用,它是前面知识的深化与总结。
九年级学生的认识水平渐渐由具体直觉占优势过渡到抽象思维占优势。
教师的指导方法应适应他们的认知特点和相应规律。
从数学思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。
所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。
三、教学目标知识和技能目标:1、能运用根的判别式,判别方程根的情况和进行有关的推理论证;2、会运用根的判别式求一元二次方程中字母系数的取值范围;过程和方法目标:1、经历一元二次方程的根的判别式的产生的过程;2、向学生渗透分类的数学思想;3、培养学生的逻辑思维能力以及推理论证能力。
情感态度价值观目标:1、体验数学的简洁美;2、培养学生的探索、创新精神和协作精神。
四、教法、学法:教法:1、探索发现:本着“以学生发展为本”的教育理念,教师启发、诱导,学生探索发现新知识;2、观察演示:通过典型例题的分析、研究,引发学生的思考、质疑、解疑;3、归纳总结:通过课堂小结,完善认知结构,提高认识能力;4、讲练结合:通过变式训练、拓展训练,让学生学会分类、类比、转化等数学思想,培养学生分析问题和解决问题的能力。
九年级数学上册 第23章 一元二次方程 §23.2 一元二次方程的解法名师教案6 华东师大版【精品教案】
一元二次方程的解法(6)教学目标:知识技能目标1.使学生辨清数字、数位、数三者之间的区别与联系,会用含未知数的代数式表示关系式;2.会根据所设的不同意义的未知数,列出相应的方程,会从多个角度考虑一题多解有关数字的应用问题;3.进一步体会列方程解应用题的要点.过程性目标1.使学生用列一元二次方程的方法解有关数与数字之关系的应用题;2.通过列方程解应用题,进一步提高学生分析问题、解决问题的能力.情感态度目标1.培养学生分析问题、解决问题的能力,提高数学应用的意识;2.通过列方程解应用题,获得成功的体验和克服困难的经历,增进应用数学的自信心.重点和难点:同上节课一样,认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列方程既是重点也是难点.教学过程:一、创设情境1.提问:列方程解应用题的一般步骤是什么?(1)审题:分析题意,弄清哪些是已知量,哪些是未知量,它们之间的数量关系;(2)设未知数:未知数有直接与间接两种,恰当的设元有利于列方程和解方程,以直接设未知数居多;(3)根据已知条件找出等量关系列方程;(4)解方程;(5)检验并写出答案.2.在三位数345中,3、4、5是这个三位数的什么?(3是百位数字, 4是十位数字,5是个位数字)3.如果a,b,c分别表示百位数字、十位数字、个位数字,这个三位数能不能写成abc形式?为什么?(在数学里“abc”表示连乘积.数字连同它所在的数位结合在一起,才表示一个数.例如同一个数字 5,当它在百位上时,这个5表示500;当它在十位上时,这个5表示50;当它在个位上时,这个5表示5.所以如果a=3,b=6,c=5那么abc等于3×4×5=60,而不是345.所以这个以a为百位数字,b为十位数字,c为个位数字的三位数应该写成100a+10b+c)二、探究归纳例1两个连续奇数的积是323,求这两个数.分析考虑本题有三点值得注意:1.有两个连续奇数:(1)什么是奇数?不能被2整除的整数叫做奇数,例如±1,±3,±5…,一般地,设n为整数,则2n-1(或2n+1)表示一个奇数;(2) -1,-3,-5…;1,3,5…是连续奇数,它们之间相差2(或-2).2n-1与 2n+1是连续奇数,2n+1与 2n+3也是连续奇数(其中n是任意整数).如果规定了x是奇数,那么x-2与x是连续奇数,x+2与x也是连续奇数.2.本题里,表示应用题全部含义的相等关系是:(1)两个连续奇数的乘积=323;(2)两个连续奇数之差=±2.3.要求这两个数:显然,从相等关系入手由1.得:(1)设较小奇数为x,则另一奇数为x+2;(2)设较小奇数为x-1,则另一奇数为x+1;(3)设较小奇数为2x-1,则另一奇数为2x+1.从而得出本题的以下三种解法.解法1用相等关系(1)写出关系式,用相等关系(1)列方程.设较小的一个奇数为x,那么较大的一个奇数为x+2,根据相等关系:两个连续奇数的乘积=323,列出方程x(x+2)=323.整理,得x2+2x-323=0,解方程,得x1=17,x2=-19.当x=17时,x+2=19.当x=-19时,x+2=-17.检验:17×19=323;(-19)×(-17)= 323.都符合题意答这两个连续奇数是17,19或-19,-17.注检验这一步在解题时可不写出,但不要忽略这一步.指导学生讨论:(1)不同的设“元”所产生的解法的优劣;(2)为什么有些应用题会有两组解?解法2设两个连续奇数为x-1,x+1.根据题意,得(x+1)(x-1)=323,即x2=324,所以x1=18,x2=-18.由x=18,得x-1=17,x+1=19;由x=-18,得x-1=-19,x+1=-17.经过检验,这两组答数都符合题意.答这两个连续奇数是17,19或-19,-17.解法3 设x是任意整数,则两个连续奇数为2x-1,2x+1.根据相等关系列出方程(2x-1)(2x+1)= 323.整理,得4x2-1=323,x2=81.解得x1=9,x2=-9;当x1=9时,2x-1=17,2x+1=19;当x2=-9时,2x-1=-19,2x+1=-17.经过检验,这两组答数都符合题意.答这两个连续奇数是17,19或-19,-17.解法4 用相等关系(2)写出关系式,用相等关系(2)列方程.设较大的一个奇数为x ,那么较小的一个奇数为x 323, 根据相等关系列出方程2323=-x x ,解这个方程,得x 1=19,x 2=-17..时,当.时,当191732332317171932332319-=-=-====x x x x经过检验,这两组答数都符合题意.答 这两个连续奇数是17,19或-19,-17.现在从上面的四种解法来分析列方程,解应用题要注意的地方.第一步:弄清题意.本题需要先弄清什么是奇数,什么是连续奇数,用x 表示哪个未知数?解法1与解法2、3是用x 直接表示其中的一个奇数,而解法3所设的x 表示的是任意整数,然后,间接地用2x -1,2x +1表示连续奇数;第二步:找相等关系.因为方程是含有未知数的等式,所以必须有相等关系.本题中的“两个连续奇数的乘积等于323”是相等关系,可是还有一个比较隐蔽的相等关系是“两个连续奇数之差等于2或-2”;第三步:根据相等关系,写出需要的代数式,从而列出方程.三、实践应用例2 有一个两位数,它的两个数字之和是8,把这个两位数的数字交换位置后所得的数乘以原来的数就得到1855,求原来的两位数.解 设个位数字为x ,则(注意:引导学生填写这些表示量的代数式,这是解应用题的关键,加强训练) 十位数字是______. (8-x )原来的两位数是______. (10(8-x )+x )交换位置后的两位数是______. (10x +(8-x ))列方程[10x +(8-x )][10(8-x )+x ]=1855.化简,得(9x +8)(80-9x )= 1855,720x +640-81x 2-72x =1855,解方程x 2-8x +15=0,得x 1=3,x 2=5.检验:(1)若个位数字取3,则十位数字取5,原来的两位数是53,交换位置后的两位数是35,35×53=1855,符合应用题题意.(2)若个位数字取5,则十位数字取3,原来的两位数是35,交换位置后的两位数是53,53×35=1855,符合应用题题意.答 原来的两位数是53或35.说明 本题也可设十位数字为x .例3 有一个两位数,个位数字比十位数字大1,把它的个位数字与十位数字对调,得到一个新数,已知新数与原数的积为252,求原数.分析 此题可从十位数字与个位数字的关系入手,考虑设十位数字为x 得一种解法;而设个位数字为x,则得另一种解法.解法1设十位数字为x,则其个位数字为x+1.则原数为10x+(x+1)=11x+1,新数为10(x+1)+x=11x十10.根据题意,得(11x+1)(11x+10)=252,即121x2+121x-242=0,所以x2+x-2=0,即x1=1,x2=-2.本题中数字不能取负值,故x=1.因此,所求两位数为12.解法2 设个位数字为x,则其十位数字为x-1.依题意,得(11x-1)(11x-10)=252,即x2-x-2=0,所以x1=2,x2=-1(舍去).因此,所求两位数为12.例4 有两个数,一个是两位数,另一个是一位数,其中两位数是这个一位数的平方,如果把这个一位数放在这个两位数的左边所成的三位数,比把这个一位数放在这个两位数的右边所成的三位数大252,求这个一位数与两位数.解设一位数为x,则两位数为______.(x2)把一位数x放在两位数x2的左边,就是把数字x放在百位而十位和个位数字不变,它所成的三位数为______.(100x+x2)把一位数x放在两位数x2的右边,就是把数字x放在个位上,两位数x2顺序放在百位和十位上,它所成的三位数为______.(10x2+x)列方程100x+x2=10x2+x+252.化简得9x2-99x+252=0.解得x1=4,x2=7检验:(1)取一位数为4,则两位数为16,把一位数放在两位数的左边,所成的三位数是416.把一位数放在两位数的右边,所成的三位数是164.而416=164+252成立.(2)取一位数是7,则两位数是49.把一位数放在两位数的左边,所成的三位数是749,把一位数放在两位数的右边,所成的三位数是497.而749=497+252成立.答所求的两个数是4,16或7,49.四、交流反思1.灵活设元可直接影响方程与解法的难易,故应寻求正确的、合理的设元列方程方法;2.解一元二次方程可能得出两个解,其适合方程但不一定适合应用题.因此,必须检验其是否符合实际要求.五、检测反馈1.已知两个连续奇数的积是255,求这两个奇数.2.已知三个连续奇数的平方和是371,求这三个奇数.3.有一个两位数,十位数字比个位数字大3,而此两位数比这两个数字之积的二倍多5,求这个两位数.六、布置作业习题23.2的8,9.。
(华师版初中数学教案全)第二十三章-一元二次方程(1)
第二十三章一元二次方程第一课时教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+b x+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.态度、情感、价值观4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,•两隅相去适一丈,问户高、广各几何?”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,•那么门的高和宽各是多少?如果假设门的高为x•尺,•那么,•这个门的宽为_______•尺,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成a x2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成a x2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材P32练习1、2四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0∴不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式a x2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材P34习题22.1 1、2.2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②a x2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个 B.2个 C.3个 D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为(). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,•是这样做的:设铁片的长为x ,列出的方程为x (x-3)=1,整理得:x 2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:所以,________<x<__________第二步:所以, (1)请你帮小明填完空格,完成他未完成的部分;(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.答案:一、1.A 2.B 3.C 二、1.3,-2,-42.ax+bx+c=0(a ≠0) 3.a ≠1三、1.化为:ax 2+()x+1=0,所以,当a ≠0时是一元二次方程. 2.可能,因为当21220m m m +=⎧⎨+≠⎩,∴当m=1时,该方程是一元二次方程.3.(1)-1,3,3,4,-0.01,0.36,3.3,3.4 (2)3,323.1 一元二次方程第二课时教学内容1.一元二次方程根的概念;2.•根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点关键1.重点:判定一个数是否是方程的根;2.•难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?108设梯子底端距墙为xm,那么,根据题意,可得方程为___________.整理,得_________.列表:问题2.一个面积为120m的矩形苗圃,它的长比宽多2m,•苗圃的长和宽各是多少?设苗圃的宽为xm,则长为_______m.根据题意,得________.整理,得________.列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解.(3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解.为了与以前所学的一元一次方程等只有一个解的区别,我们称:一元二次方程的解叫做一元二次方程的根.回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:(1)移项得x2=64根据平方根的意义,得:x=±8即x1=8,x2=-8(2)移项、整理,得x2=2根据平方根的意义,得x=即x1x2=(3)因为x2-3x=x(x-3)所以x2-3x=0,就是x(x-3)=0所以x=0或x-3=0即x1=0,x2=3三、巩固练习教材P33思考题练习1、2.四、应用拓展例3.要剪一块面积为150c m2的长方形铁片,使它的长比宽多5cm,•这块铁片应该怎样剪?设长为xcm,则宽为(x-5)cm列方程x(x-5)=150,即x2-5x-150=0请根据列方程回答以下问题:(1)x可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:(3)你知道铁片的长x是多少吗?分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,•但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.(2)(3)铁片长x=15cm五、归纳小结(学生归纳,老师点评)本节课应掌握:(1)一元二次方程根的概念及它与以前的解的相同处与不同处;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.六、布置作业1.教材P34复习巩固3、4 综合运用5、6、7 拓广探索8、9.2.选用课时作业设计.作业设计一、选择题1.方程x(x-1)=2的两根为().A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2 2.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=a B.x1=b,x2=1aC.x1=a,x2=1aD.x1=a2,x2=b23.已知x=-1是方程a x2+bx+c=0的根(b≠0)().A.1 B.-1 C.0 D.2二、填空题1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.3.方程(x+1)2(x+1)=0,那么方程的根x1=______;x2=________.三、综合提高题1.如果x=1是方程a x2+bx+3=0的一个根,求(a-b)2+4ab的值.2.如果关于x的一元二次方程a x2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.3.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在(21 xx-)2-2x21xx-+1=0,•令21xx-=y,则有y2-2y+1=0,根据上述变形数学思想(换元法),解决小明给出的问题:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根.答案:一、1.D 2.B 3.A二、1.9,-9 2.-13 3.-1,三、1.由已知,得a+b=-3,原式=(a+b)2=(-3)2=9.2.a+c=b,a-b+c=0,把x=-1代入得ax2+bx+c=a×(-1)2+b×(-1)+c=a-b+c=0,∴-1必是该方程的一根.3.设y=x2-1,则y2+y=0,y1=0,y2=-1,即当x2-1=0,x1=1,x2=-1;当y2=-1时,x2-1=-1,x2=0,∴x3=x4=0,∴x1=1,x2=-1,x3=x4=0是原方程的根.23.2 直接开平方法(直接开方法)教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点关键1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点与关键:通过根据平方根的意义解形如x 2=n ,知识迁移到根据平方根的意义解形如(x+m )2=n (n ≥0)的方程. 教学过程一、复习引入学生活动:请同学们完成下列各题 问题1.填空(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2;(3)x 2+px+_____=(x+______)2.问题2.如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s•的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8c m 2?BCAQP老师点评:问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )2 2p . 问题2:设x 秒后△PBQ 的面积等于8cm 2则PB=x ,BQ=2x 依题意,得:12x ·2x=8 x 2=8根据平方根的意义,得x=±即x 1x 2=可以验证,12x ·2x=8的两根,但是移动时间不能是负值. 所以PBQ 的面积等于8c m 2. 二、探索新知上面我们已经讲了x 2=8,根据平方根的意义,直接开平方得x=±x 换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x ,那么2t+1=±即方程的两根为t 112,t 2=-12例1:解方程:x 2+4x+4=1分析:很清楚,x 2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 解:由已知,得:(x+2)2=1 直接开平方,得:x+2=±1 即x+2=1,x+2=-1所以,方程的两根x 1=-1,x 2=-3例2.市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x .•一年后人均住房面积就应该是10+•10x=10(1+x );二年后人均住房面积就应该是10(1+x )+10(1+x )x=10(1+x )2解:设每年人均住房面积增长率为x , 则:10(1+x )2=14.4 (1+x )2=1.44直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么? 共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”. 三、巩固练习 教材P 36 练习. 四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是(1+x ),三月份的营业额是在二月份的基础上再增长的,应是(1+x )2. 解:设该公司二、三月份营业额平均增长率为x . 那么1+(1+x )+(1+x )2=3.31 把(1+x )当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=形如(mx+n)2=p(p≥0),那么mx+n=六、布置作业1.教材P45复习巩固1、2.2.选用作业设计:一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为().A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-23x+1=0正确的解法是().A.(x-13)2=89,x=13B.(x-13)2=-89,原方程无解C.(x-23)2=59,x1=23x2D.(x-23)2=1,x1=53,x2=-13二、填空题1.若8x2-16=0,则x的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.3.如果a、b b2-12b+36=0,那么ab的值是_______.三、综合提高题1.解关于x的方程(x+m)2=n.2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?答案:一、1.B 2.D 3.B二、1.9或-3 3.-8三、1.当n≥0时,x+m=x1,x2.当n<0时,无解2.(1)都能达到.设宽为x,则长为40-2x,依题意,得:x(40-2x)=180整理,•得:•x2-20x+90=0,x1=x2同理x(40-2x)=200,x1=x2=10,长为40-20=20.(2)不能达到.同理x(40-2x)=210,x2-20x+105=0,b2-4ac=400-410=-10<0,无解,即不能达到.3.因要制矩形方框,面积尽可能大,所以,应是正方形,即每边长为1米的正方形.23.2解一元二次方程判别一元二次方程根的情况教学内容用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.教学目标掌握b2-4ac>0,a x2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,a x2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,•分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目.重难点关键1.重点:b2-4ac>0↔一元二次方程有两个不相等的实根;b2-4ac=0↔一元二次方程有两个相等的实数;b2-4ac<0↔一元二次方程没有实根.2.难点与关键从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.教具、学具准备小黑板教学过程一、复习引入(学生活动)用公式法解下列方程.(1)2x2-3x=0 (2)3x2(3)4x2+x+1=0老师点评,(三位同学到黑板上作)老师只要点评(1)b2-4ac=9>0,•有两个不相等的实根;(2)b2-4ac=12-12=0,有两个相等的实根;(3)b2-4ac=│-4×4×1│=<0,•方程没有实根二、探索新知从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:求根公式:b2-4ac>0于一个具体数,所以一元一次方程的x1x1个不相等的实根.当b2-4ac=0时,•,所以x1=x2=2b a-,即有两个相等的实根;当b2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.因此,(结论)(1)当b2-4ac>0时,一元二次方程a x2+bx+c=0(a≠0)•有两个不相等实数根即x 1=2b a -,x 2=2b a-. (2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根.例1.不解方程,判定方程根的情况(1)16x 2+8x=-3 (2)9x 2+6x+1=0(3)2x 2-9x+8=0 (4)x 2-7x-18=0分析:不解方程,判定根的情况,只需用b-4ac 的值大于0、小于0、等于0•的情况进行分析即可.解:(1)化为16x 2+8x+3=0这里a=16,b=8,c=3,b 2-4ac=64-4×16×3=-128<0所以,方程没有实数根.(2)a=9,b=6,c=1,b 2-4ac=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8b 2-4ac=(-9)2-4×2×8=81-64=17>0∴方程有两个不相等的实根.(4)a=1,b=-7,c=-18b 2-4ac=(-7)2-4×1×(-18)=121>0∴方程有两个不相等的实根.三、巩固练习不解方程判定下列方程根的情况:(1)x 2+10x+26=0 (2)x 2-x-34=0 (3)3x 2+6x-5=0 (4)4x 2-x+116=0(5)x 214=0 (6)4x 2-6x=0 (7)x (2x-4)=5-8x四、应用拓展例2.若关于x 的一元二次方程(a-2)x 2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a 的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a 的值是正、负或0.因为一元二次方程(a-2)x 2-2ax+a+1=0没有实数根,即(-2a )2-4(a-2)(a+1)<0就可求出a 的取值范围.解:∵关于x 的一元二次方程(a-2)x 2-2ax+a+1=0没有实数根.∴(-2a )2-4(a-2)(a+1)=4a 2-4a 2+4a+8<0a<-2∵ax+3>0即ax>-3∴x<-3 a∴所求不等式的解集为x<-3 a五、归纳小结本节课应掌握:b2-4ac>0↔一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0 ↔一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0↔一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用.六、布置作业1.教材P46复习巩固6 综合运用9 拓广探索1、2.2.选用课时作业设计.第五课时作业设计一、选择题1.以下是方程3x2-2x=-1的解的情况,其中正确的有().A.∵b2-4ac=-8,∴方程有解B.∵b2-4ac=-8,∴方程无解C.∵b2-4ac=8,∴方程有解D.∵b2-4ac=8,∴方程无解2.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2C.a=2 D.a=2或a=03.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数二、填空题1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.2.不解方程,判定2x2-3=4x的根的情况是______(•填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.三、综合提高题1.不解方程,试判定下列方程根的情况.(1)2+5x=3x2(2)x2-(2.当c<0时,判别方程x2+bx+c=0的根的情况.3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.答案:一、1.B 2.B 3.D二、1.p2-4q=0 2.有两个不等实根 3.有两个不等实根三、1.(1)化为3x2-5x-2=0 b2-4ac=(-5)2-4×3×(-2)=49>0,有两个不等实根.(2)b2,没有实根.2.∵c<0 ∴b2-4×1×c>0,方程有两个不等的实根.3.b2-4ac=4k2-4(2k-1)=4k2-8k+4=4(k-1)2≥0,•∴方程有两个不相等的实根或相等的实根.4.设平均增长率为x,400000008%(1+x)2=720000000,即50(1+x)2=72 解得x=20%,∴年销售总额的平均增长率是20%.23.2解一元二次方程(公式法)教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导.教学过程一、复习引入(学生活动)用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52(老师点评)(1)移项,得:6x2-7x=-1二次项系数化为1,得:x2-76x=-16配方,得:x 2-76x+(712)2=-16+(712)2 (x-712)2=25144x-712=±512 x 1=512+712=7512+=1 x 2=-512+712=7512-=16 (2)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知如果这个一元二次方程是一般形式a x 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:a x 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a )2=2244b ac a- ∵b 2-4ac ≥0且4a 2>0∴2244b ac a -≥0直接开平方,得:x+2b a =±2a即x=2b a-∴x 1x 2 由上可知,一元二次方程a x 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,•将a 、b 、c 代入式子 (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.例1.用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1b 2-4ac=(-4)2-4×2×(-1)=24>0x=(4)422242--±==⨯∴x 1x 2 (2)将方程化为一般形式3x 2-5x-2=0a=3,b=-5,c=-2b 2-4ac=(-5)2-4×3×(-2)=49>0x=(5)57236--±±=⨯ x 1=2,x 2=-13 (3)将方程化为一般形式3x 2-11x+9=0a=3,b=-11,c=9b 2-4ac=(-11)2-4×3×9=13>0∴=∴x 1=116+x 2=116 (3)a=4,b=-3,c=1b 2-4ac=(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.三、巩固练习教材P 42 练习1.(1)、(3)、(5)四、应用拓展例2.某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.(2)若使方程为一元二次方程m 是否存在?若存在,请求出.你能解决这个问题吗?分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0.(2)要使它为一元一次方程,必须满足:①211(1)(2)0m m m ⎧+=⎨++-≠⎩或②21020m m ⎧+=⎨-≠⎩或③1020m m +=⎧⎨-≠⎩解:(1)存在.根据题意,得:m 2+1=2m 2=1 m=±1当m=1时,m+1=1+1=2≠0当m=-1时,m+1=-1+1=0(不合题意,舍去)∴当m=1时,方程为2x 2-1-x=0a=2,b=-1,c=-1b 2-4ac=(-1)2-4×2×(-1)=1+8=9134±= x 1=,x 2=-12因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=-12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0所以m=0满足题意.②当m2+1=0,m不存在.③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意.当m=0时,一元一次方程是x-2x-1=0,解得:x=-1当m=-1时,一元一次方程是-3x-1=0解得x=-1 3因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-13.五、归纳小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程根的情况.六、布置作业1.教材P45复习巩固4.2.选用作业设计:一、选择题1.用公式法解方程4x2-12x=3,得到().A..C. D.22+4的根是().A.x1x2.x1=6,x2C.x1x2.x1=x23.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().A.4 B.-2 C.4或-2 D.-4或2二、填空题1.一元二次方程a x2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x 2-8x+12的值是-4.3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.三、综合提高题1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.2.设x 1,x 2是一元二次方程a x 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c a;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)(2)下表是这户居民3月、4月的用电情况和交费情况答案:一、1.D 2.D 3.C二、1.b 2-4ac ≥0 2.4 3.-3三、1.=a ±│b │ 2.(1)∵x 1、x 2是a x 2+bx+c=0(a ≠0)的两根,∴x 1=2b a -x 2=2b a-∴x 1+x 2b a ,x 1·x 2=c a (2)∵x 1,x 2是ax 2+bx+c=0的两根,∴ax 12+bx 1+c=0,ax 22+bx 2+c=0原式=ax 13+bx 12+c 1x 1+ax 23+bx 22+cx 2=x 1(ax 12+bx 1+c )+x 2(ax 22+bx 2+c )=03.(1)超过部分电费=(90-A )·100A =-1100A 2+910A (2)依题意,得:(80-A )·100A =15,A 1=30(舍去),A 2=50 23.2 解一元二次方程(配方法)第1课时教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x 2=p (p≥0)或(mx+n )2=p (p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x 2+6x-16=0的一元二次方程的解题步骤.2.•难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x 2-1=5 (2)4(x-1)2-9=0 (3)4x 2+16x+16=9老师点评:上面的方程都能化成x 2=p 或(mx+n )2=p (p ≥0)的形式,那么可得x=mx+n=p ≥0). 如:4x 2+16x+16=(2x+4)2二、探索新知列出下面二个问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,•八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.大意是说:一群猴子分成两队,一队猴子数是猴子总数的18的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m ,长为32m 的矩形地面上,•修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m 2,道路的宽为多少? 老师点评:问题1:设总共有x只猴子,根据题意,得:x=(18x)2+12整理得:x2-64x+768=0问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500整理,得:x2-36x+70=0(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2-64x+768=0 移项→ x=2-64x=-768两边加(642)2使左边配成x2+2bx+b2的形式→ x2-64x+322=-768+1024左边写成平方形式→(x-32)2=•256 •降次→x-32=±16 即 x-32=16或x-32=-16 解一次方程→x1=48,x2=16可以验证:x1=48,x2=16都是方程的根,所以共有16只或48只猴子.学生活动:例1.按以上的方程完成x2-36x+70=0的解题.老师点评:x2-36x=-70,x2-36x+182=-70+324,(x-18)2=254,x-18=±,,x1≈34,x2≈2.可以验证x1≈34,x2≈2都是原方程的根,但x≈34不合题意,所以道路的宽应为2.例2.解下列关于x的方程(1)x2+2x-35=0 (2)2x2-4x-1=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:(1)x2-2x=35 x2-2x+12=35+1 (x-1)2=36 x-1=±6x-1=6,x-1=-6x1=7,x2=-5可以,验证x1=7,x2=-5都是x2+2x-35=0的两根.。
第23章 一元二次方程 单元综合与测试 课件(华师大版九年级上册) (1)
(2) x ( 3 2 ) x 6 0
2
解:整理原方程,得 解:原方程变形为
( x 3 )( x 2 ) 0
x 3 0或x 2 0,
x1
3 , x2 2 .
1 2
x x px q 0 的两根是x , x x p x1 x 2 q
2
1
2
练习2:不解方程,检验下列方程的解是否正确?
(1) x 2 2 x 10
( x 2 1, x 2 1)
1 2
2
(2)2 x 3 x 80
7 73 5 73 (x , x ) 4 4
第23章 一元二次方程复习
zxxkw 学科网 学科网
知识概括
实 际 问 题
分析数量关系
一 元 二 次 方 程
一元二次方程的解法 直接开平 方法 公 式 法
配方
因式分解法
检 验
一元二次方程的解
主要内容
• • • • 一元二次方程 一元二次方程的解法 一元二次方程的根的判别式 实践与探索
一、一元二次方程的概念
下列方程中,是关于x的一元二次方程的是(A). A.3(x+1)2=2(x+1) B. 1 1 -2=0 x2 x C.x2+xy+y2=0 D.x2+2x=x2-1 等号两边都是整式, 只含有一个未知数(一元), 并且未知数的最高次数是2(二次)的方程叫做一元二 次方程.
特点:
①都是整式方程; ②只含一个未知数;
一元二次方程的根的情况
第23章《一元二次方程》教学案(华东师大版初三上)(全套)第12课时实践3doc初中数学
第23章《一元二次方程》教学案(华东师大版初三上)(全套)第12课时实践3doc初中数学初三数学备课组第12课时:实践与探究〔3〕课型:新授一、学习目标:⒈能够探究出一元二次方程根与系数的关系;⒉能够运用一元二次方程根与系数的关系解决有关咨询题。
二、学习重难点:⒈重点:根与系数的关系⒉难点:明白得根与系数关系的应用的前提是:〔1〕二次项系数不等于0;〔2〕根的判不式必须大于或等于0。
三、学习过程:㈠创设情境⒈方程ax2+bx+c=0(a 0)的根的个数与b2-4ac的值紧密相关,假设一元二次方程ax2+bx+c=0有两个根x1,x2,那么x1, x2与系数a,b,c之间有什么关系呢?通过本节的学习你就会明白答案的。
㈡自主学习1、阅读并完成书第41页的咨询题3,并写出你所得出的结论。
2、关于一样形式的一元二次方程呢?㈢点拨矫正⒈写出以下方程的两根和与两根积及两根的平方和与倒数和〔1〕3x2+5x=1 (2)2x2+x+1=0 (3)x22x=02、方程x2=0的一个根是-1,求k的值及另一个根。
3、x 1,x 2是方程x 2-x-9=0的两个实数根,求代数式321227366x x x ++-的值4、关于x 的一元二次方程222(1)(1)0x m x m --+-=有两个实数根12,x x ,且22124x x +=,求m 的值㈣规律总结⒈一元二次方程的根与系数的关系是以一元二次方程有实数根为前提故一定要判定根的判不式至关重要⒉方程的一根求另一根和字母参数的值或明白方程的两根求字母参数的值,通常可用根与系数的关系或根的定义求解,一样用根与系数的关系求解较为简单。
㈤尝试练习⒈不解方程,检验以下方程的解是否正确:〔1〕210x -+= 12(1,1)x x =〔2〕22380x x --= 12(x x ==⒉方程230x x m -+=的一个根是1,求它的另一个根和m 的值。
九年级数学上册 第23章 一元二次方程 §23.2 一元二次方程的解法名师教案5 华东师大版
一元二次方程的解法(5)教学目标:知识技能目标“关系式”及找相等关系列方程方法;2.使学生理解列方程实质在于会用含未知数的代数式表示题目里的关系式;3.采用对面积的割补、移动的方法,培养学生灵活运用的能力.过程性目标1.使学生会列方程解有关面积问题的应用题;2.进一步掌握解应用题的步骤和关键.情感态度目标1.通过例题使学生体会列方程的实质,培养灵活处理问题的能力;2.培养学生应用数学的意识.重点和难点:认真审题,分析题中数量关系,适当设未知数,寻找等量关系,列方程是重点也是难点.教学过程:一、创设情境1.写出本节课的课题:一元二次方程的应用.2.请同学们回忆并回答解一元一次方程应用题的一般步骤:第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;第二步:找出能够表示应用题全部含义的相等关系;第三步:根据这些相等关系列出需要的代数式,从而列出方程;第四步:解这个方程,求出未知数的值;第五步:检查求得的答数是否符合应用题的实际意义,写出答案(包括单位名称).3.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.我们先来解决§,然后总结一些规律或应注意事项.二、探究归纳例1绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?分析我们已经知道可以运用方程解决实际问题.现设长方形绿地宽为x米,不难列出方程:x (x +10)=9000900102=-+x x.375,375.37521+-=--=±-=x x x这两个都是所列方程的解,但负数1x 不符合题意,应舍去.所以符合题意的解是,4.3510,4.25375≈+≈+-=x x因此绿地的宽和长应分别为米和米.三、实践应用 例2 如图1,在宽为20米、长为32米的矩形地面上,修筑同样宽的两条互相垂直的道路,余下部分作为耕地,要使耕地面积为540米2,道路的宽应为多少?分析此题的相等关系是矩形面积减去道路面积等于540米2.解法1如图2,设道路的宽为x 米,则横向的路面面积为______.(32x 米2)纵向的路面面积为______.(20x 米2)所列的方程是不是 32×20-(32x +20x )=540?启发学生思考,务必把这一点弄明白!这两个面积的重叠部分是x 2米2.图中的道路面积不是(32x +20x )米2,而是从其中减去重叠部分,即应是(32x +20x -x 2)米2.所以正确的方程是32×20-(32x +20x -x 2)=540.化简得,x 2-52x +100=0,解得x 1=50,x 2=2,其中的x=50超出了原矩形的长和宽,不符合实际,应舍去.取x=2时,道路总面积=(32×2+20×2-22)(米2)=100(米2),耕地面积=(32×20-100)(米2)=540(米2),符合原题意.答所求道路的宽为2米.解法2利用“图形平行移动”的道理,把纵、横两条路移动一下,使列方程容易些,(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)如图3,设路宽为x米,耕地矩形的长(横向)为______.((32-x)米)耕地矩形的宽(纵向)为______.((20-x)米)相等关系是:耕地长×耕地宽=540米2,即(32-x)(20-x)=540.化简得x2-52x+100=0,解得x1=50,x2=2.再往下的计算、格式书写与解法1相同.例3 如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长.分析设截去正方形的边长为x厘米后,关键在于列出底面(图示虚线部分)长和宽的代数式.结合图示和原有长方形的长和宽,不难得出这一代数式.解设截去正方形的边长为x厘米,根据题意,得(60-2x)(40-2x)=800.让同学解一下这个方程,并讨论它的解是否符合题意.学生练习:1.学生会准备举办一次摄影展览,在每X 长和宽分别为18厘米和12厘米的长方形相片周围镶上一圈等宽的彩纸.经试验,彩纸面积为相片面积的三分之二时较美观,求镶上彩纸条的宽(精确到厘米).2.竖直上抛物体的高度h 和时间t 符合关系式2021gt t v h -=,其中重力加速度g 以10米/秒2计算.爆竹点燃后以初速度v 0=20米/秒上升,问经过多少时间爆竹离地15米?四、交流反思1.列方程解应用题的步骤是:(1)仔细了解题意及有关的事物的概念;(2)找题中给出的等量关系和隐含的等量关系;(3)选设未知数,并用含这个未知数的代数式表示其他未知量;(4)利用未曾用过的等量关系列方程;(5)解方程;(6)检验得数是否符合题意,然后做答.2.面积问题常要用到割、补、运动等技法.例2中,纵、横两条路有一块重叠的面积最容易忽略,解法2采用了运动的办法,是一种灵活解题的能力.3.例题中的代数式都用填空形式,这一步是列方程解应用题的关键.总之:在应用一元二次方程解实际问题时,也像以前学习一元一次方程一样,要注意分析题意,抓住主要的数量关系,列出方程的解之后,要注意检验是否符合题意,然后得到原问题的解答.五、检测反馈1.学校课外生物小组的试验园地是一块长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽(精确到米).2.学校准备在图书馆后面的场地边建一个面积为50平方米的长方形自行车棚.一边利用图书馆的后墙,并利用已有总长为25米的铁围栏.请你设计,如何搭建较适合?4米的绿化带,使余下部分面积为100平方米,求原正方形广场的边长(精确到米).4.村里要修一条灌溉渠,其横截面是面积为平方米的等腰梯形,它的上底比渠深多2米,下底比渠深多米,求灌溉渠横截面的上下底长和灌溉渠的深度.六、布置作业习题23.2的5,6,7.。
2022年华师大版《一元二次方程》公开课教案
22.1 一元二次方程教学目标1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识. 教学重难点【教学重点】一元二次方程及其相关概念,把一元二次方程化为一般形式.【教学难点】应用一元二次方程的解的定义解决有关问题.课前准备无教学过程一、情境导入参加一次集会,如果有x 个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念 【类型一】一元二次方程的识别例1:以下选项中,是关于x 的一元二次方程的是( )A .x 2+1x2=1 B .3x 2-2xy -5y 2=0 C .(x -1)(x -2)=3 D .ax 2+bx +c =0解析:选项A 中的方程分母含有未知数,所以它不是一元二次方程;选项B 中的方程含有2个未知数,所以它不是一元二次方程;当a =0时,选项D 中的方程不含二次项,所以它不是一元二次方程,排除A 、B 、D ,应选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可. 【类型二】利用一元二次方程的概念确定字母系数例2:关于x 的方程(k +1)x +kx +1=0是一元二次方程,那么k 的值为________.解析:由题意得⎩⎪⎨⎪⎧|k -1|=2,k +1≠0,∴⎩⎪⎨⎪⎧k =3或k =-1,k ≠-1.∴k =3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值. 探究点二:一元二次方程的一般形式例3:将以下方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x 2-2=5x ;(2)9x 2=16;(3)2x (3x +1)=17;(4)(3x -5)(x +1)=7x -2.解析:先分别将各方程化为一般形式,再指出它们的各局部的名称.解:(1)方程化为一般形式为3x 2-5x -2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x 2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x 2+2x -17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x 2-9x -3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程例4:2.床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m ,那么由图可知剩下局部的长为(2-2x )m ,剩下局部的宽为(1.4-2x )m.∵2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解例5:方程x -2x =0的解为( )A .x 1=1,x 2=2B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2 解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x 2-2x =0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.: 【类型二】利用一元二次方程的解的意义求字母或代数式的值例6:1是关于x 的一元二次方程(m -1)x +x +1=0的一个根,那么m 的值是( )A .1B .-1C .0D .无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m -1)+1+1=0,解得m =-1,此时m -1=-2≠0,∴m=-1.应选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计四、教学反思教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.第2课时百分率和配套问题教学目标1.学会运用二元一次方程组解决百分率和配套问题;2.进一步经历和体验方程组解决实际问题的过程。
九年级数学上册 第23章 一元二次方程 §23.3 实践与探索名师教案3 华东师大版【精品教案】
实践与探索(3)教学目标:知识技能目标1.能说出根与系数的关系;2.会利用根与系数的关系解有关的问题.过程性目标在经历观察、归纳、猜想、验证的这个探索发现过程中,通过尝试与交流,开拓思路,体会应用自己探索成果的喜悦.情感态度目标1.通过观察、实践、讨论等活动,经历从发现问题,发现关系的过程,养成独立思考的习惯;2.通过交流互动,逐步养成合作的意识及严谨的治学精神.重点和难点:重点:一元二次方程两根之和,及两根之积与原方程系数之间的关系;难点:对根与系数这一性质进行应用.教学过程:一、创设情境1.请说出解一元二次方程的四种解法.2.解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什么联系?(1)x2-2x=0;(2)x2+3x-4=0;(3)x2-5x+6=0.证明.一般地,对于关于x的方程x2+px+q=0(p,q为已知常数,p2-4q一般地,对于关于x的方程x2+px+q=0(p,q为已知常数,p2-4q≥0),试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1•x2的值,你能得出什么结果?与上面发现的现象是否一致.(此探索过程让学生分组进行交流、协作完成)探索过程qqp p q p p x x pqp p q p p x x qp p x q p p x q p p a ac b b x q p ac b q c p b a q px x =---∙-+-=∙-=---+-+-=+---=-+-=-±-=-±-=≥-=-====++24242424242424240441022212221222122222,,,结论:两根之和等于一次项系数的相反数,两根之积等于常数项,这与上面的发现是一致的.三、实践应用例 1 已知关于x 的方程x 2-px +q =0的两个根是0和-3,求p 和 q 的值.解法一:因为关于x 的方程x 2-px +q =0的两个根是0和-3,所以有.q p q p q p q p 03030)3()3(00022=-=⎩⎨⎧=-=⎪⎩⎪⎨⎧=+-⨯--=+⨯-,所以解这个方程组得解法二:由q x x p x x =∙-=+2121,,方程x 2-px +q =0的两个根是0和-3,可得.q p q p 03)3(0)3(0=-==-⨯,即得=--+例2 写出下列方程的两根和与两根积:05)4(032)3(02114)2(017)1(2222=-+-=-+=-+=+-n nx x x x x x x x5)4(2321)3(2114)2(17)1(2121212121212121-=∙=+=∙-=+=∙-=+=∙=+n x x n x x x x x x x x x x x x x x ,-,-,,解课堂练习1.写出下列方程的两根和与两根积:3)4(0532)3(04411)2(025)1(2222=-+-=-+=-+=+-m mx x x x x x x x2.已知关于x 的方程x 2-6x +p 2-2p +5=0的一个根是2,求方程的另一个根和p 的值. 四、交流反思1.通过这节课的学习,掌握探索的步骤:观察——归纳——猜想——证明;2.通过本节课探索出一元二次方程的根与系数的关系. 五、检测反馈1.已知关于x 的方程x 2-2x +m 2+m -2=0的一个根是2,求方程的另一个根和m 的值. 2.写出下列方程的两根和与两根积:3)4(0152)3(0)2(047)1(2222=+-=+-=-+=+-m x x x x n mx x x x3.已知关于x 的方程2x 2-mx -m 2=0有一个根是1,求m 的值. 五、布置作业 习题23.3的5.6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.1一元二次方程的概念教学目标:1、知道一元二次方程的定义,熟练地把一元二次方程整理成一般形式。
2、能把实际问题转化为数学模型(一元二次方程)。
重点难点:一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。
教学过程: 一、温故知新:问题1:绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?问题2:学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?二、新知自学:上述两个整式方程中都只含有______未知数,并且未知数的最高次数是____,这样的方程叫做一元二次方程。
通常可写成如下的一般形式:_________________ (a 、b 、c 是已知数,且a ≠0)。
其中2ax 叫做________,a 叫做_______________;bx 叫做_______,b 叫做__________,c 叫做_________。
三、探究合作:例1、下列方程中哪些是一元二次方程?试说明理由。
(1)3523-=+x x (2)42=x (3)2112x x x =-+- (4)22)2(4+=-x x例2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)y y =26 (2)(x-2)(x+3)=8 (3)2)2()43)(3(+=-+x x x说明:一元二次方程的一般形式02=++c bx ax (a ≠0)具有两个特征:一:方程的右边为0; 二:二次项系数不能为0。
例3、方程(2a —4)x 2 —2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?例4 、已知关于x 的一元二次方程(m-1)x 2+3x-5m+4=0有一根为2,求m 。
练习一、 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.x x 3222-= 2x(x-1)=3(x-5)-4 ()()()()2311222-+=+--y y y y练习二 、关于x 的方程0)3(2=++-m nx x m ,在什么条件下是一元二次方程?在什么条件下是一元一次方程?四、巩固训练:一、判断题(下列方程中,是一元二次方程的在括号内划“√”,不是的,在括号内划“×”)1、5x 2+1=0( )2、3x 2+x 1+1=0 ( ) 3、05112=-+x x ( )4、4 x 2+y 2=0( ) 5、5132+x =2x ( ) 6、22)(x x + =2 ( )二、填空题1、将方程(x +1)2=2x 化成一般形式为__________.2、方程5(x 2-2x +1)=-32x +2的一般形式是__________,其二次项是_________, 一次项是__________,常数项是__________.3、关于x 的方程(m -4)x 2+(m +4)x +2m +3=0,当m __________时,是一元二次方程,当m ______时,是一元一次方程. 三、选择题1、方程x 2-3=(3-2)x 化为一般形式,它的各项系数之和是( ) A.2 B.-2 C.32- D.3221-+2、若关于x 的方程(ax +b )(d -cx )=m (ac ≠0)的二次项系数是ac ,则常数项为( )A.mB.-bdC.bd -mD.-(bd -m )3、若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是( ) A.2 B.-2 C.0 D.不等于24、若x =1是方程ax 2+bx +c =0的解,则( )A.a +b +c =1B.a -b +c =0C.a +b +c =0D.a -b -c =0 5、关于x 2=-2的说法,正确的是( )A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C.x 2=-2是一个一元二次方程D.x 2=-2是一个一元二次方程,但不能解23.2一元二次方程的解法(1)直接开平方法、因式分解法教学目标:1、会用直接开平方法解形如b k x a =-2)((a ≠0,ab ≥0)的方程; 2、灵活应用因式分解法解一元二次方程。
3、合理选择直接开平方法和因式分解法较熟练地解一元二次方程。
一、温故知新:1、怎样解方程x 2=4的?2、因式分解:x x +23 ()()252-+-x x x ()()5452+-+x x442+-x x 962++y y 92-x1452--x x 782++x x二、新知自学:例1、解下列方程:(1)(x +1)2-4=0; (2)12(2-x )2-9=0.例二、解下列方程:(1)49122=+-x x (2)(x -1)2-18=0三、探究合作:解下列方程(1)()057257=-+-x x x (2)0)1(922=--t t (3)0872=--x x四、小结:1、直接开平方法:如果方程能化成2x p =或2()mx n p +=(0)p ≥的形式,那么可得x =mx n +=2、因式分解法是解一元二次方程最简单的方法,但只适用于左边易因式分解而右边是0的一元二次方程。
因式分解法的根据是:如果0a b ⋅=,那么0a =或0b =。
3、用直接开平方法或者因式分解法解一元二次方程实质上是把一个一元二次方程降次..,转化为两个一元一次方程来解。
五、巩固训练:1、方程23x =的根是( ) A. 123x x ==B. 12x x ==C. 12x x ==12x ==2、用直接开平方法解方程(x +h )2=k ,方程必须满足的条件是( )A .k≥o B.h≥o C.hk >o D .k <o3、已知一元二次方程)0(02≠=+m n mx ,若方程有解,则必须( ) A 、n=0 B 、n=0或m ,n 异号 C 、n 是m 的整数倍 D 、n=0或m ,n 同号4、用因式分解法解方程,下列方法中正确的是( )A.(2x -2)(3x -4)=0 ∴2-2x =0或3x -4=0B.(x +3)(x -1)=1 ∴x +3=0或x -1=1C.(x -2)(x -3)=2×3 ∴x -2=2或x -3=3D.x (x +2)=0 ∴x +2=0 5、方程(x+1)2=x+1的正确解法是( )A.化为x+1=1B.化为(x+1)(x+1-1)=0C.化为x 2+3x+2=0D.化为x+1=06、用因式分解法解方程5(x+3)-2x (x+3)=0,可把其化为两个一元一次方程 、 求解。
7、如果方程x 2-3x+c=0有一个根为1,那么c= ,该方程的另一根为 , 该方程可化为(x-1)(x )=0。
8、解下列方程:(1)(x -1)2-18=0 (2) (2x +3)2-25=0. (3) 2114y y -+=(4) x (x-3)+x-3=0 (5) x 2-6x-16=0; (6) 4x 2-3x=09、右图是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,求x 的值(列出方程).A931-2(x-2)223.2一元二次方程的解法(2)配方法学习目标:1、掌握用配方法解数字系数的一般一元二次方程;2、理解解方程中的程序化,体会化归思想。
教学过程:一、温故知新:填上适当的数,使下列等式成立:(1)x 2+6x+ =(x+ )2; (2)x 2-2x+ =(x- )2; (3)x 2-5x+ =(x- )2; (4)x 2+x+ =(x+ )2;(5)2x -45x +_____=(x -____)2 (6)x 2+px+ =(x+ )2; 由上面等式的左边可知,常数项和一次项系数的关系是: 二、新知自学: 解下列方程:(1) x 2+2x =5; (2)x 2-4x思考:能否经过适当变形,将它们转化为a 的形式,应用直接开方法求解?解:(1)原方程化为x 2+2x +1=5+1,_____________________, _____________________, _____________________.(2)原方程化为x 2-4x +4=-3+4_____________________, _____________________, _____________________.我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的____________式,右边是一个_______。
这样,就能应用直接开平方的方法求解。
这种解一元二次方程的方法叫做配方法。
三、探究合作:1、用配方法解一元二次方程x 2+8x+7=0,则方程可变形为( ) A.(x-4)2=9 B.(x+4)2=9 C.(x-8)2=16 D.(x+8)2=572、已知方程x 2-5x+q=0可以配方成(x-25 )2=46的形式,则q 的值为( ) A.46B.425C. 419D. -419 3、用配方法解下列方程:(1)2x +3x +1=0. (2)05422=+-x x四、归纳总结:1、通过配成完全平方形式来解一元二次方程的方法,叫做配方法。
2、配方是为了降次..,把一个一元二次方程化为两个一元一次方程来解。
3、方程的二次项系数不是1时,方程的各项除以二次项系数,将方程的二次项系数化为1。
4、用配方法解二次项系数是1的一元二次方程的一般步骤是: ①、移项,把常数项移到方程右边;②、配方,在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方; ③、利用直接开平方法解之。
五、巩固训练:1、已知方程x 2-6x+q=0可以配方成(x-p )2=7的形式,那么q 的值是( ) A.9 B.7 C.2 D.-22、用配方法解方程x 2-32x+1=0,正确的解法是( ). A.(x- 31)2= 98,x= 31±322 B.(x- 31)2=-98,方程无解C.(x- 32)2= 95,x= 352±D.(x- 32)2=1, x 1=35;x 2=-313、下列配方有错误的是( )A 、()5201422=-=--x x x 化为 B 、()1308622=+=++x x x 化为C 、()171601822=-=--x x x 化为D 、()3201422-=-=--x x x 化为4、用配方法解下列方程:(1)x 2+5x -1=0 (2)2x 2-4x -1=0 (3) 41x 2-6x +3=023.2一元二次方程解法(3)公式法教学目标:1、使学生熟练地应用求根公式解一元二次方程。