一元二次方程复习导学案教案|学案|教学设计[人教版初三九年级]

合集下载

_一元二次方程复习学案

_一元二次方程复习学案

《一元二次方程》复习导学案》考点分析:必考点:一元二次方程的解法及应用常考点:一元二次方程的概念及根的情况 本节重难点知识及体系构建3.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负. 【基础知识提前整理】---------课前预习1、只含 未知数,并且未知数的最高次数是 的整式方程叫一元二次方程。

2、一元二次方程的常见解法有 、 、配方法、 。

3、一元二次方程的求根公式是 。

4、一元二次方程)0(02≠=++a c bx ax ,Δ= ,Δ>0,方程 , Δ=0,方程 ,Δ<0,方程 ,Δ≥0,方程 。

5、一元二次方程)0(02≠=++a c bx ax ,x 1 、x 2是方程的两个实数根,则x 1 +x 2= , x 1 x 2= 。

应用问题中常用的数量关系及题型: 6、数字问题: (1)设个位数字为c ,十位数字为b ,百位数字为a ,则这个三位数为 ; (2)日历中前后两日差 ,上下两日差 。

7、体积变化问题: 8、打折销售问题(1)利润= -成本;(2)利润率=利润×100%. 9、行程问题10、教育储蓄问题(1)利息= ;(2)本息和= =本金х(1+利率х期数);(3)利息税= ;(4)贷款利息=贷款数额х利率х期数考点、易错点探究:二、课内探究探究一:一元二次方程的基本概念典例1:已知方程24(2)(3)50m m m x m x --++++=是一元二次方程,求你M 的值。

变式训练:关于x 的方程是一元二次方程,则a=__________典例2:已知关于X 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( ) A .1 B .-1 C .2 D .-2变式训练:若0是关于x 的方程(m-2)x 2+3x+ m 2+2m-8=0的解,求实数m 的值,并讨论方程解的情况。

人教版九年级数学上册(RJ)第21章 一元二次方程 导学案 一元二次方程的根与系数的关系

人教版九年级数学上册(RJ)第21章 一元二次方程 导学案 一元二次方程的根与系数的关系

第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x xx x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相1232课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a ,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+-= 22ba-=.b a =- 1222b b x x a a•-+-⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1. ;-3.2. 1 ; -2.1161.3c x a 116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。

人教版九年级数学上册22.2 二次函数与一元二次方程 导学案

人教版九年级数学上册22.2 二次函数与一元二次方程 导学案

人教版九年级数学上册22.2二次函数与一元二次方程导学案1、教学目标1.理解二次函数与一元二次方程的关系.2.会判断抛物线与x轴的交点个数.3.掌握方程与函数间的转化.4.会利用二次函数的图象求相应一元二次方程的近似解.2、预习反馈阅读教材P43~46,完成下列问题.1.画出二次函数y=x2-3x+2的图象如图,利用图象回答:(1)当x=0时,y=2;当y=0时,x=1或2.(2)当y>0时,二次函数y=x2-3x+2的图象在x轴的上方,此时对应的自变量x的取值范围是x<1或x>2;(3)当y<0时,二次函数y=x2-3x+2的图象在x轴的下方,此时对应的自变量x的取值范围是1<x<2.2.心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13 min时,学生对概念的接受力最大,为59.9;当提出概念30 min时,学生对概念的接受能力就剩下31.(1)根据题意,可知y与x满足的二次函数关系式为y=-0.1x2+2.6x+43;(2)当提出概念20 min时,学生对概念的接受能力为55.3、例题讲解例1如图,以40 m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.请解答以下问题:(1)小球的飞行高度能否达到15 m?如果能,需要多少飞行时间?【思路点拨】求小球的飞行高度达到15 m,就是求当h=15时,相对应的t的值.【解答】解方程15=20t-5t2,t2-4t+3=0,t1=1,t2=3.当小球飞行1 s和3 s时,它的飞行高度为15 m.【点拨】小球在某一时间达到15 m,然后继续上升,达到最大高度后开始下落,经过一段时间,小球高度又回落到15 m.所以在两个时间球的高度为15 m.(2)小球的飞行高度能否达到20 m?如果能,需要多少飞行时间?【思路点拨】求小球的飞行高度达到20 m,就是求当h=20时,相对应的t的值.【解答】解方程20=20t-5t2,t2-4t+4=0,t1=t2=2.当小球飞行2 s时,它的飞行高度为20 m.【点拨】小球在某一时间达到最大高度,所以只在一个时间球的高度为20 m.(3)小球的飞行高度能否达到20.5 m?为什么?【思路点拨】求小球能否达到某一高度,就是将h的值代入函数解析式,得到关于t 的一元二次方程.如果方程有合乎实际的解,则说明小球的飞行高度可以达到问题中h的值;否则,说明小球的飞行高度不能达到问题中h的值.【解答】解方程20.5=20t-5t2,t2-4t+4.1=0.因为(-4)2-4×4.1<0,所以方程无实数根.这就是说,小球的飞行高度达不到20.5 m.(4)小球从飞出到落地要用多少时间?【思路点拨】求小球从飞出到落地要用多少时间,就是求当h=0时,t的值.【解答】小球飞出时和落地时的高度都是0 m,解方程0=20t-5t2,t2-4t=0,t1=0,t2=4.当小球飞行0 s和4 s时,它的高度为0 m.这表明小球从飞出到落地要用4 s.从图来看,0 s时小球从地面飞出,4s时小球落回地面.【点拨】二次函数y=ax2+bx+c(a≠0)与一元二次方程之间的关系,当y为某一确定值m时,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反过来,解方程ax2+bx+c=0又可以看作已知二次函数y=ax2+bx+c的值为0,求自变量x的值.例2(1)已知下列三个二次函数:①y=x2+x-2;②y=x2-6x+9;③y=x2-x+1,这些函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数值是多少?由此,你能得出相应的一元二次方程的根吗?【思路点拨】先画出相应地二次函数的图象,再根据函数图象即可得出结论.【解答】(1)这些函数的图象如图所示.①抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数值是0.由此得出方程x2+x-2=0的根是-2,1.②抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数值是0.由此得出方程x2-6x+9=0有两个相等的实数根是3.③抛物线y=x2-x+1与x轴没有公共点.由此可知,方程x2-x+1=0没有实数根.【点拨】如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0是方程ax2+bx+c=0的一个根.(2)二次函数y=ax2+bx+c的图象与x轴的位置关系与一元二次方程ax2+bx+c=0的根的情况有何联系?【思路点拨】如果一元二次方程有两个不等的实数根,那么相应的二次函数的图象与x轴有两个公共点;如果一元二次方程有两个相等的实数根,那么相应的二次函数的图象与x轴有一个公共点;如果一元二次方程没有实数根,那么相应的二次函数的图象与x轴没有公共点.【解答】二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点,这对应着一元二次方程ax2+bx+c=0的根的三种情况;没有实数根,有两个相等的实数根,有两个不等的实数根.【跟踪训练】已知抛物线y=2x2+8x+m.(1)若抛物线与x轴有两个公共点,则m的取值范围是m<8;(2)若抛物线与x轴只有一个公共点,则m的取值范围是m=8;(3)若抛物线与x轴没有公共点,则m的取值范围是m>8.例3利用函数图象求方程x2-2x-2=0的实数根(结果保留小数点后一位).【解答】画出函数y=x2-2x-2的图象如图所示,它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.【点拨】根据二次函数的图象来求一元二次方程的根时,我们可以通过取平均数的方法不断缩小根所在的范围来估计一元二次方程的根.4、巩固训练1.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是(D)A.无解B.x=1C.x=-4 D.x=-1或x=42.二次函数y=x2-2x+1与x轴的交点个数是(C)A .1个或2个B .2个C .1个D .0个3.抛物线y =ax 2+bx +c (a <0)如图所示,则关于x 的不等式ax 2+bx +c >0的解集是(C)A .x <2B .x >-3C .-3<x <1D .x <-3或x >14.已知抛物线y =kx 2-4x -3与x 轴有交点,则k 的取值范围是k ≥-43且k ≠0.5.如图所示,你能直观看出哪些方程的根?解:-x 2+2x +3=0的根为x 1=-1,x 2=3;-x 2+2x +3=4的根为x 1=x 2=1;-x 2+2x 2+3=3的根为x 1=0,x 2=2.【点拨】 此题充分体现二次函数与一元二次方程之间的关系,即函数y =-x 2+2x +3中,y 为某一确定值m(如4、3、0)时,相应的x 值是方程-x 2+2x +3=m(m =4、3、0)的根.5、课堂小结1.二次函数y =ax 2+bx +c(a ≠0)与二次方程之间的关系,当y 为某一确定值m 时,相应的自变量x 的值就是方程ax 2+bx +c =m 的根.2.若抛物线y =ax 2+bx +c 与x 轴交点为(x 0,0),则x 0是方程ax 2+bx +c =0的根.3.有下列对应关系:。

一元二次方程复习课教案

一元二次方程复习课教案

九年级一元二次方程复习课教案一、教学目标:1.通过知识结构图,完成对一元二次方程的知识点的梳理,建构知识体系;2.通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法;3.通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决问题中的作用。

二、教学重点:理解并掌握一元二次方程的概念及解法,会运用方程解决实际问题。

三、教学难点:灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法。

四、教学过程:(一)导入:本章知识结构图1.一元二次方程的定义:方程两边都是整式,只含有一个未知数,未知数的最高次数是22.一元二次方程的解法:(1)直接开平方法(2 )因式分解法(3 )配方法(4 )求根公式法3.一元二次方程的应用(二)基础训练1.判断下列方程是不是一元二次方程,若不是一元二次方程,请说明理由。

x 1 1) (x -1)2=4 2)x ²-2x=8 3)x ²+ =1 4)x ²=y+1 5) x 3-2x ²=1 6)ax ² + bx + c =12.把下列方程化为一元二次方程式,指出二次项系数,一次项系数和常数项 3x ²=1 2y(y-3)= -43.填一填1)若()()02222=-+++x m x m 是关于x 的一元二次方程则m 。

2)若方程02)1()2(22=--++-x m x m m 是关于x 的一元二次方程,则m 的值为 。

3)若x=2是方程x ²+ax-8=0的解,则a= 。

4.选一选1)已知一元二次方程(x+1)(2x -1)=0的解是( )(A )-1 (B )21 (C )-1或-2 (D )-1或212)已知一元二次方程x ²=2x 的解是( )(A )0 (B )2 (C )0或-2 (D )0或25.用适当的方法解下列方程()2130x x -=()22(21)90x --=()2341x x -=()24310x x -+= 6.反败为胜选一选(略)7.一元二次方程应用(略)8.中考链接(2018、2017年广东中考试题)(三)课堂小结:通过今天的学习你有什么收获?(四)课后作业:练习册相应习题。

人教版九年级数学上册第二十一章《一元二次方程全章复习》学习任务单(公开课导学案)及作业设计

人教版九年级数学上册第二十一章《一元二次方程全章复习》学习任务单(公开课导学案)及作业设计

人教版九年级数学上册第二十一章《一元二次方程全章复习》学习任务单及作业设计【学习目标】对本章内容进行梳理总结并建立知识体系,综合应用本章知识解决问题. 【课前学习任务】复习《一元二次方程》一章相关知识点.【课上学习任务】学习任务一:例 1:已知关于 x 的方程是一元二次方程,则m 的值为 .学习任务二:例 2:关于 x 的一元二次方程.(1)若方程有两个不相等的实数根,求 m 的取值范围;(2)若方程的一个实数根为-1,求 m 的值及方程的另一个实数根.学习任务三:例 3:关于 x 的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根小于 1,求 k 的取值范围.学习任务四:例 4:随着经济建设的发展,某省正加速布局以 5G 等为代表的战略性新兴产业. 据统计,2019年全省5G基站的数量约3.6万座. 若计划到2020年底,全省5G基站的数量是2019年的5/3倍;到2022 底,全省5G基站的数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底至2022年底,全省5G基站数量的年平均增长率.【作业设计】请同学们在作业本上完成下面三道课后作业:1.若关于x的一元二次方程 (m-1)x2+x+m2-1=0 有一根为0,则m= .2. 已知关于x的一元二次方程 x2-6x+2k-1=0 有两个相等的实数根,求k的值及方程的根.3. 用一条长40cm 的绳子怎样围成一个面积为75cm2的矩形?能围成一个面积为101cm2的矩形吗?如能,说明围法;如不能,说明理由.【参考答案】1. m=-1;2. k=5;x1=x2=3;3. 能围成一个面积为75cm2的矩形,长15cm,宽5cm.不能围成一个面积为101cm2的矩形,因为方程 x2-20x+101=0 无实根.。

新人教版九年级数学上册:21章一元二次方程导学案

新人教版九年级数学上册:21章一元二次方程导学案

x新人教版九年级数学上册:21.1 一元二次方程(1)导学案学习内容: 学习目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其相关的概念;应用一元二次方程概念解决一些简单题目.学习重点:一元二次方程的概念及其一般形式,并用这些概念解决问题.学习难点:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念. 学习过程:(阅读教材第2 至3页,并完成预习内容。

)问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高? 分析:设雕像下部高x m ,则上部高________,得方程_____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为_____________.得方程 _____________________________整理得_____________________________ ②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛? 分析:全部比赛的场数为___________设应邀请x 个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。

列方程____________________________化简整理得 ____________________________ ③请口答下面问题:(1)方程①②③中未知数的个数各是多少?___________ (2)它们最高次数分别是几次?___________方程①②③的共同特点是: 这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____的方程.这样的方程叫做一元二次方程 小结:一元二次方程的一般形式:____________________________ 一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式ax 2+bx+c=0(a ≠0).这种形式叫做一元二次方程的一般形式.其中ax 2是____________,_____是二次项系数;bx 是__________,_____是一次项系数;_____是常数项。

最新人教版九年级数学上册全册导学案

最新人教版九年级数学上册全册导学案

第二十一章一元二次方程21.1一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.(2)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的平方的长方形?解:设长方形的长为x m,则宽为(0.5-x)m.根据题意,得x(0.5-x)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2-4=0.解得x=±2.即方程的另一个根为-2.21.2解一元二次方程21.2.1配方法第1课时直接开平方法一、导学1.导入课题:情景:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,求盒子的棱长.问题1:本题的等量关系是什么?问题2:设正方体的棱长为x dm,请列出方程并化简.问题3:根据平方根的意义解方程x2=25.由此导入并板书课题直接开平方法.2.学习目标:(1)能根据平方根的意义解形如x2=p及a x2+c=0的一元二次方程.(2)能运用开平方法解形如(m x+n)2=p(p≥0)的方程.(3)体会“降次”的数学思想.3.学习重、难点:重点:运用开平方法解形如(m x+n)2=p(p≥0)的方程.难点:降次的数学思想.4.自学指导:(1)自学内容:教材第5页到第6页“练习”之前的内容.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①根据平方根的意义,解方程:x2=36;2x2-4=0;3x2-4=8.x=±6,x2=2,x2=4,x1=6,x2= -6. x=±2,x2=±2,x1=,x2= -. x1=2,x2= -2.②当p>0时,方程x2=p有两个不等的实数根x1= -x2=.当p=0时,方程x2=p有两个相等的实数根x1=x2=0.当p<0时,方程x2=p无实数根.③探究方程(x+3)2=5的根:因为(x+3)2=5,所以x+3是5的平方根,所以x+3等于5或-5.即x+3=,或x+3= -.解x+3=,得x1=-3;解x+3=-,得x2= --3.于是,方程(x+3)2=5的根为x1=-3, x2= --3.解方程(x+3)2=5的过程实质上是把一个一元二次方程降次,转化为两个一元一次方程,再解两个一元一次方程即得原方程的解.二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:看学生能否顺利解决所给问题,注意书写格式方面存在的问题.(2)差异指导:注意帮助学困生复习平方根等知识,紧扣平方根讨论p的符号与方程的解的个数的关系.2.生助生:同桌之间互相批改,相互讨论改正错误.四、强化1.教师示范:解方程x2+4x+4=1.分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1或x+2=-1所以,方程的两根为x1= -1,x2= -3.2.练习:解下列方程:3.上面的方程都能化成x2=p或(m x+n)2=p(p≥0)的形式,那么可由“降次”得到x=±或m x+n=±p≥0)求解.4.以师生对话的形式讨论(m x+n)2=p的解的个数问题.五、评价1.学生的自我评价(围绕三维目标):你会解哪些形式的一元二次方程?怎样解?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、积极性及存在的不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时通过创设问题情景,激发学生探究新知的欲望.(2)本课时还通过回忆旧知识为新知学习作好铺垫.(3)教师引导学生自主、合作、探究、验证,培养学生分析问题、解决问题的能力.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A. x-6= -4B. x-6=4C. x+6=4D. x+6= -42.(10分)方程3x2+9=0的根为(D)A. 3B. -3C. ±3D. 无实数根3.(10分)若8x2-16=0,则x的值是±2.4.(10分)已知方程2(x-3)2=72,那么这个一元二次方程的两根是x1=9,x2= -3.5.(40分)解下列方程:(1) 4x2=81;(2) (x+6)2-9=0;解:由已知,得:x2=,解:由已知,得:(x+6)2=9,直接开平方,得x=±,直接开平方,得x+6=±3,所以方程的两根为x1=,x2= -. 所以方程的两根为x1= -3, x2= -9.(3) x2+2x+1=4;(4) 9x2+6x+1=4.解:由已知,得:(x+1)2=4,解:由已知,得:(3x+1)2=4,直接开平方,得x+1=±2,直接开平方,得3x+1=±2,所以方程的两根为x1=1, x2= -3. 所以方程的两根为x1= -1, x2=.二、综合应用(10分)6.(10分)如果x=3是一元二次方程a x2=c的一个根,则方程的另一根是(B)A. 3B. -3C. 0D. 1三、拓展延伸(10分)7.(10分)解关于x的方程(x+m)2=n.解:①当n>0时,此时方程两边直接开方.得x+m=±,方程的两根为x1=-m,x2= --m.②当n=0时,此时(x+m)2=0,直接开方得x+m=0,方程的两根为x1=x2= -m.③当n<0时,因为对任意实数x,都有(x+m)2≥0,所以方程无实数根.21.2.1配方法第2课时配方法一、新课导入1.导入课题:情景:请把方程(x+3)2=5化成一般形式,并由一名学生口答.问题:(追问)那么你能将方程x2+6x+4=0转化为(x+3)2=5的形式吗?由此导入课题.(板书课题)2.学习目标:(1)知道用配方法解一元二次方程的一般步骤,会用配方法解一元二次方程.(2)通过配方进一步体会“降次”的转化思想.3.学习重、难点:重点:用配方法解一元二次方程.难点:配方的方法.二、分层学习1.自学指导:(1)自学内容:教材第6页“探究”到第7页例1上面的部分.(2)自学时间:6分钟.(3)自学方法:完成下面的探究提纲,如果觉得有困难就先完成②,③,再完成①.(4)探究提纲:①解方程x2+6x+4=0.移项:把常数项移到方程的右边,得x2+6x= -4;配方:两边都加9,使得左边配成x2+2b x+b2的形式,得x2+6x+9=;变形:把左边写成完全平方形式,得(x+3)2=5;降次:运用平方根的定义把方程转化为两个一元一次方程,得x+3=±;求解:解两个一元一次方程,得x1=-3, x2= --3.②回忆完全平方公式填空:a2+2ab+b2=(a+b )2,x2+6x+9=(x+3)2.③为什么要在x2+6x=-4两边加9而不是其他数?因为两边加9,式子左边可以恰好凑成完全平方式.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方时的难点和易错点.②差异指导:根据具体情况指导学生配方.(2)生助生:小组内相互交流研讨,订正错误.4.强化:(1)配方的依据和步骤.(2)试一试:对下列各式进行配方:1.自学指导:(1)自学内容:教材第7页到第9页的例1.(2)自学时间:10分钟.(3)自学方法:认真阅读分析和解答过程,注意把方程转化为你能解的形式.(4)自学参考提纲:①仿照方程x2+6x+4=0的解法解方程(1),然后对照课本纠错.②方程(2)、(3)中是怎样化二次项系数为1的?方程两边同除以原二次项的系数③方程(3)没有实数根的依据是什么?实数的平方是非负数.④用配方法解一元二次方程时,移项时要注意些什么?移项时需注意改变符号.⑤请小结用配方法解一元二次方程的一般步骤.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.⑥解方程(x+n)2=p.①当p>0时,则x+n=±,方程的两个根为x1=-n, x2= --n.②当p=0时,则(x+n)2=0,开平方得x+n=0,方程的两个根为x1=x2= -n.③当p<0时,则方程(x+n)2= p无实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:主要了解学生解方程配方时是否存在困难,计算是否错误,书写格式是否规范.②差异指导:针对学生在学习中出现的问题予以指导.(2)生助生:生生互动,交流研讨.4.强化:(1)用配方法解一元二次方程的一般步骤.(2)用配方法解方程:三、评价1.学生的自我评价(围绕三维目标):你会用配方法解一元二次方程吗?本节课你学习了哪些知识?2教师对学生的评价:(1)表现性评价:点评学生的学习参与情况、小组交流协作状况、学习效果及不足等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课,重在让学生自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认知冲突,激发兴趣,建立自信心.(2)在练习内容上,有所改进,加强了核心知识的理解与巩固,提高了自己解决问题的能力,感受数学创造的乐趣,提高教学效果.(3)用配方法解一元二次方程是学习解一元二次方程的基本方法,后面的求根公式是在配方法的基础上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的巩固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种基本的数学解题方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)用配方法解方程-x2+6x+7=0时,配方后得的方程为(B)A. (x+3)2=16B. (x-3)2=16C. (x+3)2=2D. (x-3)2=22.(20分)填空.(1) 4x2+4x+1=(2x+1)2(2) x2-x+=(x-)23.(40分)用配方法解下列方程.(1)x2+10x+9=0;(2)4x2-12x-7=0;解:移项,x2+10x=-9, 解:移项,4x2-12x=7,配方,x2+10x+25=16, 系数化为1,x2-3x=,(x+5)2=16, 配方,x2-3x+=4,x+5=±4, ( x-2=4,方程的两个根为x1=-1,x2= -9. x-=±2,方程的两个根为x1=72,x2= -12.(3) x2+4x-9=2x-11; (4) x(x+4)=8x+12解:移项,x2+2x= -2, 解:化简移项,x2-4x=12,配方,x2+2x+1= -1, 配方,x2-4x+4=16,(x+1)2= -1, (x-2)2=16,方程没有实数根. x-2=±4,方程的两个根为x1=6,x2= -2.二、综合应用(10分)4.(10分)用配方法解方程4x2-x-9=0.三、拓展延伸(20分)5.(20分) 当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值. 解:对原式进行配方,则原式=(a+1)2+17∵(a+1)2≥0,∴当a= -1时,原式有最小值为17.21.2.2公式法——根的判别式及求根公式一、新课导入1.导入课题:(1)用配方法解一元二次方程的步骤是什么?(2)你能用配方法解一般形式的一元二次方程a x2+b x+c=0(a≠0)吗?我们继续学习另一种解一元二次方程的方法——公式法.2.学习目标:(1)知道一元二次方程根的判别式,能运用根的判别式直接判断一元二次方程的根的情况.(2)会用公式法解一元二次方程.3.学习重、难点:重点:用求根公式解一元二次方程.难点:计算时的符号处理.二、分层学习1.自学指导:(1)自学内容:教材第9页到11页例2之前的内容.(2)自学时间:15分钟.(3)自学方法:认真阅读书上的内容,并动手推导出求根公式.(4)自学参考提纲:②Δ=b2-4ac叫做一元二次方程a x2+b x+c=0(a≠0)的根的判别式.当b2-4ac>0时,方程a x2+b x+c=0(a≠0)有两个不等的实数根;当b2-4ac=0时,方程a x2+b x+c=0(a≠0)有两个相等的实数根;当b2-4ac<0时,方程a x2+b x+c=0(a≠0)无实数根.注意:上述的叙述,反过来也成立.③当Δ≥0时,一元二次方程a x2+b x+c=0(a≠0)的实数根可写为的形式,这个式子叫做一元二次方程a x2+b x+c=0(a≠0)的求根公式.④不解方程,利用判别式判断下列方程的根的情况.x2+5x+6=0;9x2+12x+4=0;Δ=b2-4ac=52-4×1×6=1>0 Δ=b2-4ac=122-4×9×4=0方程有两个不等的实数根. 方程有两个相等的实数根.2x2+4x-3=2x-4;x(x+4)=8x+12.方程化为2x2+2x+1=0 方程化为x2-4x-12=0Δ=b2-4ac=22-4×2×1=-4<0 Δ=b2-4ac=(-4)2-4×(-12)=64>0方程无实数根. 方程有两个不等的实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方的过程以及配方后是否讨论.②差异指导:指导学生配方变形;指导学生对b2-4ac的符号进行讨论.(2)生助生:小组内相互交流、研讨.4.强化:(1)公式的推导,判别式定义解读;(2)练习:不解方程,利用判别式判断下列方程的根的情况.1.自学指导:(1)自学内容:教材第11页到第12页的例2.(2)自学时间:8分钟.(3)自学方法:阅读解答过程,注意解题步骤和格式.(4)自学参考提纲:①先独立运用公式法解所给方程,然后对照课本找错误、分析错因.x2-4x-7=0;2x2-22x+1=0;5x2-3x=x+1;x2+17=8x.x1=2+x1=x2=x1=1 无实数根x2=2-x2= -②说说运用公式法解一元二次方程的一般步骤,有哪些易错点?先将方程化为一般形式,确定a,b,c的值;计算判别式Δ=b2-4ac的值,判断方程是否有解;若Δ≥0,利用求根公式计算方程的根,若Δ<0,方程无实数根.计算Δ时,注意a,b,c符号的问题.③解答本章引言中的问题.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否从例2的学习中总结出用公式法解方程的一般步骤及注意事项.②差异指导:注意强调运用公式法解方程的前提条件.(2)生助生:同桌之间互相找错,分析错因.4.强化:(1)用公式法解一元二次方程的一般解题步骤及注意事项.(2)解下列方程:三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何收获或不足?你知道一元二次方程a x2+b x+c=0(a≠0)的根的判别式与其根的个数有什么关系吗?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、积极性、学习效果、方法及不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时容量较大,难度较大,计算的要求较高,因此教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计、课堂学习有利于学生强化运算能力、掌握基本技能,也有利于教师发现教学中存在的问题.(2)在教学设计中,引导学生自主探究一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式法解一元二次方程.(3)整个课堂都以学生动手训练为主,让学生积极介入探究活动,体验到成功的喜悦.(4)公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程a x2+b x+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是(B)A. b2-4ac=0B. b2-4ac>0C. b2-4ac<0D. b2-4ac≥02.(10分)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是(B)A. ①②都有实数解B. ①无实数解,②有实数解C. ①有实数解,②无实数解D. ①②都无实数解3.(10分)利用求根公式求5x2+=6x的根时,a,b,c的值分别是(C)A. 5,,6B. 5,6,C. 5,-6,D. 5,-6,-4.(20分)不解方程,利用判别式判断下列方程的根的情况:(1)x2-3x-32=0;(2) 16x2-24x+9=0;方程有两个不等的实数根. 方程有两个相等的实数根.(3)x2-42x+9=0;(4)3x2+10=2x2+8x.解:Δ=b2-4ac=(-4)2-4×1×9= -4<0, 解:方程化为x2-8x+10=0方程无实数根. Δ=b2-4ac=(-8)2-4×1×10=24>0方程有两个不等的实数根.5.(30分)用公式法解下列方程:二、综合应用(10分)6.(10分)解方程x2=3x+2时,有一位同学解答如下:请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.解:有错误,方程化为标准形式x2-3x-2=0, ∴a=1,b= -3,c= -2, b2-4ac=17.三、拓展延伸(10分)7.(10分)无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出你的答案并说明理由.解:方程化简为x2-5x+6-p2=0.∴b2-4ac=(-5)2-4×1×(6-p2)=4p2+1≥1,∴Δ>0.∴无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根.21.2.3 因式分解法一、新课导入1.导入课题:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s后物体离地面的高度(单位:m)为:10x-4.9x2.问题1:你能根据上述规律求出物体经过多少秒落回地面吗?问题2:设物体经过x s落回地面,请说说你列出的方程.问题3:你能用配方法或公式法解这个方程吗?是否还有更简单的方法呢?(板书课题)2.学习目标:(1)会用因式分解法解一元二次方程.(2)能选用合适的方法解一元二次方程.3.学习重、难点:重点:用因式分解法解一元二次方程.难点:选择合适的方法解一元二次方程.二、分层学习1.自学指导:(1)自学内容:教材第12页到第13页的内容.(2)自学时间:5分钟.(3)自学方法:可先解答②,再解答①.(4)自学参考提纲:①解方程10x-4.9x2=0.分解因式:左边提公因式,得x(10-4.9x)=0,降次:把方程化为两个一次方程,得x=0或10-4.9x=0,求解:解这两个一次方程,得x1=0, x2=.②将一个多项式进行因式分解,通常有哪几种方法?提公因式法,公式法,十字相乘法用因式分解法解一元二次方程的依据是:如果ab=0,则a=0或u.③请小结因式分解法解一元二次方程的步骤:移项,合并同类项,因式分解,写出一元二次方程的根.④解下列方程:(x-2)·(x-3)=0;4x2-11x=0.x1=2, x2=3 x1=0, x2=2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:是否理解用因式分解法解一元二次方程的依据,是否掌握用因式分解法解方程的步骤.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内互相交流、研讨.4.强化:(1)用因式分解法解方程的一般步骤:第一步,把方程变形为x2+p x+q=0的形式;第二步,把方程变形为(x-x1)(x-x2)=0的形式;第三步,把方程降次为两个一次方程x-x1=0或x-x2=0的形式;第四步,解两个一次方程,求出方程的根.(2)点两名学生板演第④题,并点评.1.自学指导:(1)自学内容:教材第14页例3及“归纳”.(2)自学时间:5分钟.(3)自学方法:先独立作业,然后小组互相改正.(4)自学参考提纲:①方程x(x-2)+x-2=0左边可用提公因式法进行因式分解,分解为(x+1)(x-2).②方程5x2-2x-=x2-2x+左右两边都有含未知数的项,无法因式分解,因此,可先将其化为一般形式4x2-1=0,再用平方差公式法对左边进行因式分解.③说说运用因式分解法解一元二次方程要注意哪些问题.④解下列方程:2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对运用因式分解法解一元二次方程的方法是否掌握.②差异指导:指导学生观察题目特点,选用适当的方法分解因式.(2)生助生:同桌之间互相改错、分析错因.4.强化:(1)点6名学生板演自学参考提纲第④题,并点评.(2)说说运用因式分解法解一元二次方程要注意的问题.1.自学指导:(1)自学内容:选择合适的方法解一元二次方程.(2)自学时间:15分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①直接开平方法适用于哪种形式的方程?x2=p;配方法适用于哪种形式的方程?(m x+n)2=p;公式法适用于哪种形式的方程?a x2+b x+c=0(a≠0);因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0.②前面这些解法各有什么优缺点?③解一元二次方程的基本思想是什么?④选择适当的方法解下列方程:。

人教版九年级数学上第21章《一元二次方程》导学案

人教版九年级数学上第21章《一元二次方程》导学案

21.1 一元二次方程(第 1 课时)一、学习目标1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。

2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

二、学习重点、难点重点:建立一元二次方程的概念,认识一元二次方程的一般形式。

难点:在一元二次方程化成一般形式后,如何确定一次项和常数项。

三、学习过程1.回答以下问题。

( 1)一元二次方程的定义:等号两边都是,只含有个求知数(一元),并且求知数的最高次数是(二次)的方程,叫做一元二次方程。

( 2)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:(a≠0),这种形式叫做一元二次方程的一般形式。

其中是二次项,是二次项系数,是一次项,是一次项系数,是常数项。

2.新课应用 :1、下列方程是一元二次方程的是有:( 1),(2) (x+1)(x-1)=0,2x2110,(5),( 6)2x2 3 y 5 0( 3),( 4)x2、一元二次方程4x 2x25x 1 化为一般形式是:;其二次项是:;一次项是:;常数项是:.3、若(m3)x n23nx30 是关于x的一元二次方程,则() .A m≠0, n=3B m≠3, n=4C m≠0, n=4D m≠3, n≠04、已知:关于 x 的方程k2 1 x2k 1 x20 .( 1)当 k 取何值时,此方程为一元一次方程.( 2)当 k 取何值时,此方程为一元二次方程.四、达标过关测试1. 下列方程中,是关于x 的一元二次方程的是() .A . 3 x 12 2 x 1B .11 2 0 C. ax2bx c 0 D. x22x x 21x 2x2.一元二次方程(13x)( x3) 2 x21化为一般形式为:,二次项系数为:___,一次项系数为:____,常数项为:_____.3.关于 x 的方程(m1)x 2(m1)x3m20 ,当 m________时为一元一次方程;当m ___________时为一元二次方程 .4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16 元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为 x ,则根据题意可列方程为.21.1 一元二次方程(第2 课时) ----一元二次方程的根一、学习目标1、会进行简单的一元二次方程的试解;理解方程解的概念。

九年级数学上册(一元二次方程)教案 新人教版 教案

九年级数学上册(一元二次方程)教案 新人教版 教案

《一元二次方程》教案第一课时教学内容:一元二次方程概念及一元二次方程的一般形式及有关概念.教学目标:1. 通过设置问题,建立数学模型,•模仿一元一次方程的概念给一元二次方程下定义。

2.了解一元二次方程的概念;能熟练地把一元二次方程整理成一般形式:ax2+bx+c=0(a、b、c是常数,a≠0)。

3.通过教学,让生分清一般形式中的二次项及其系数,一次项及其系数以及常数项各是什么。

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键:1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程:一、复习引入学生活动:列方程.问题(1)绿苑小区规划设计时,准备在每两幢楼房之间,安排面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?如果假设长方形的宽为x•米,•那么,•这个的长为_______•米,•根据题意,•得________.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=______,根据题意,得:________.整理得:_________.问题(3)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册。

求这两年的年平均增长率。

如果假设这两年的年平均增长率为x。

则今年年底的图书数是__________万册。

同样,明年年底的图书数又是今年的_________倍,即____________万册。

由此可得方程____________________________,整理得:________________________。

老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材P19练习题:(1)、(2)、(3)、(4).四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材P19习题23.1 : 1、2、3.2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个 B.2个 C.3个 D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为(). A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值X围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,•是这样做的:设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:所以,________<x<__________第二步:所以,________<x<__________(1)请你帮小明填完空格,完成他未完成的部分;(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.。

人教版九年级数学上册《一元二次方程》导学案:21.2.3因式分解法

人教版九年级数学上册《一元二次方程》导学案:21.2.3因式分解法

人教版九年级数学上册《一元二次方程》导学案21.2.3 因式分解法【学习目标】1.会用因式分解法解一元二次方程,体会“降次”化归的思想方法;2.通过因式分解法解一元二次方程的学习,树立转化的思想.【知识梳理】 用因式分解法来解一元二次方程必须要先化成ab=0的形式. 那么a=0 或 b=0(a 、b 为因式)。

用因式分解法解一元二次方程的步骤(1)方程右边化为 。

(2)将方程左边分解成两个 的乘积。

(3) 至少 个 因式为零,得到两个一元一次方程。

(4) 两个 一元一次方程的解 就是原方程的解。

【典型例题】知识点 因式分解法解一元二次方程1.解方程()()153152-=-x x x 的最适当的方法是 ( )A.直接开平方法B.配方法C.公式法D.因式分解法2.已知方程(x-2)(3x+1)=0,则x-2的值为( ) A.37- B.0 C.-2 D.37-或0 3.用因式分解法解下列方程.(1)062=-x x (2)2(x ﹣3)2=x 2﹣9(3)()()x x -=-52532 (4)()01222=-+x x【巩固训练】1.已知方程4x 2-3x=0,下列说法正确的是( )A.只有一个根x=43B.只有一个根x=0C.有两个根x 1=0,x 2=43 D.有两个根x 1=0,x 2=-43 2.如果(x-1)(x+2)=0,那么以下结论正确的是( )A.x=1或x=-2B.必须x=1C.x=2或x=-1D.必须x=1且x=-2 3.已知实数x 满足(x 2﹣x )2﹣4(x 2﹣x )﹣12=0,则代数式x 2﹣x +1的值是( )A .7B .﹣1C .7或﹣1D .﹣5或34.下列方程适合用因式分解法的是( )A.210x x ++=B.0132=+-x xC.2230x x ++=D.2(1)1x x -=-5.已知方程20x px q ++=的两根分别为3和4-,则q px x +-2可分解为( )A .()()34x x -+ B. ()()34x x +- C. ()()34x x ++ D. ()()34x x --6.若三角形三边的长均能使代数式29180x x -+=的值为零,则此三角形的周长是( )A .9或18B .12或15C .9或15或18D .9或12或15或187.若实数a 、b 满足(4a+4b )(4a+4b ﹣2)﹣8=0,则a+b =8.用因式分解法解下列方程:(1) 2x = ; (2)()2331x x +=+(3)02222=+-x x (4)()()229241x x -=+。

一元二次方程复习导学案

一元二次方程复习导学案

一元二次方程复习导学案【考点透视】1、了解一元二次方程的有关概念,并能化一般形式和寻求各项的系数。

2、灵活运用适当的方法解一元二次方程(特别注意配方法和十字相乘法)。

3、能用b 2-4ac 求一元二次方程中字母的取值和判断方程解的情况4、理解一元二次方程根与系数的关系,并能灵活运用解决问题(特别是求值问题的式子变形及等量代换)。

5、能够根据具体问题中的数量关系,列出方程,解决实际问题,并检验结果是否合理。

一元二次方程是中考命题的热点和重点,其中对方程概念和基础知识的考查,多以选择题、填空题的形式出现,而解答题多考查方程知识的综合应用,一元二次方程在实际问题中的应用,也是必考内容。

【课前热身】1、将方程1)1)(32(=+-x x 化为一般形式后为 ,其中a = ,b = ,c = ,ac b 42-= 。

2、把方程0622=-+x x 配方得:(x + )2= 。

3、若关于x 的方程02)3(72=+---x xm m 是一元二次方程,则m = 。

4、若关于x 的方程x 2+mx -6=0有一个根是2,则m 的值为 。

5、关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足 ( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠56、若a 、b 是方程0201122=-+x x 的两个不相等的实数根,则b a a ++32的值是( )A .-2011; B.2009; C.2010; D20117、已知x 1,x 2是方程2560x x --=的两个根,则代数式2212x x +的值是( )A. 37B. 26C. 13D. 108、某商品原价200元,连续两次降价x 后售价为148元,下列所列方程正确的是( )A. 200(1+x)2=148B. 200(1-x)2=148C. 200(1-2x)=148D. 200(1-x 2)=1489、已知关于x 的方程2x -px +q =0的两个根是1和-2,则p = ,q = 。

九年级一元二次方程求根公式的推导 人教版教学设计导学案

九年级一元二次方程求根公式的推导 人教版教学设计导学案
(注:确定根的判别式时,需先将方程化为_______,确定______后再计算)
2、一元二次方程根的情况与根的判别式的关系:
(1)Δ〉0⟺方程_______________________________
(2)Δ=0⟺方程_______________________________
(3)Δ<0⟺方程_______________________________
年级
九年级
科目
数学
备课人
课题
21.2.2.1一元二次方程的根的判别式
学习
目标
(1分钟)
1、能记住一元二次方程的根的判别式,掌握求根公式的推导过程(重点)
2、能运用根的判别式进行相关的计算和推理(难点)
学法
指导
分析法、转化法、类比法的学习方法





(9分钟)
自主复习
请每位同学编写一道一元二次方程,由同桌用配方法求方程的解,并填写步骤和每步的依据
题组2:(组内共同完成后交流展示,做好记录,总结归纳,做好笔记)
1、若方程x2+mx+2=0的根的判别式的值为4,则m=_____
2、关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根, 则k的取值范围是___________
方法归纳:在已知含字母系数的一元二次方程根的情况下,用逆向思维来解决问题:
1.根据判别式建立2. 一元二次方程的二次项系数0





题组3:(课堂检测:针对性检测,独立完成后展示)
1、一元二次方程x2-2x=0根的判别式的值为( )
A 4 B 2 C 0 D -4

部编人教版九年级数学上册 第21章一元二次方程复习课 教案

部编人教版九年级数学上册 第21章一元二次方程复习课 教案

一元二次方程单元复习教案复习目标1.知识与技能.(1)了解一元二次方程的有关概念.(2)能运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程.(3)会根据根的判别式判断一元二次方程的根的情况.(4)知道一元二次方程根与系数的关系,并会运用它解决有问题.(5)能运用一元二次方程解决简单的实际问题.(6)了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.2.过程与方法.(1)经历运用知识、技能解决问题的过程.(2)发展学生的独立思考能力和创新精神.3.情感、态度与价值观.(1)初步了解数学与人类生活的密切联系.(2)培养学生对数学的好奇心与求知欲.(3)养成质疑和独立思考的学习习惯.重难点、关键1.重点:运用知识、技能解决问题.2.难点:解题分析能力的提高.3.关键:引导学生参与解题的讨论与交流.复习过程一、复习联想,温故知新基础训练.1.方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.例如:一元二次方程7x-3=2x2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.2.解一元二次方程的一般解法有(1)_________;(2)________;(•3)•_________;•(•4)•求根公式法,•求根公式是______________.3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.例如:不解方程,判断下列方程根的情况:(1)x(5x+21)=20 (2)x2+9=6x (3)x2-3x=-54.设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1·x2=______.例如:方程x2+3x-11=0的两个根分别为x1,x2,则x1+x2=________;x1·x2=_______.5.设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则x1+x2=•_______,•x1·x2=________.二、范例学习,加深理解例:解下列方程.(1)2(x+3)2=x(x+3)(2)x2-2 x+2=0(3)x2-8x=0 (4)x2+12x+32=0点拨:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法.三、合作交流,探索新知1.已知关于x的方程x2-mx-3=0的两实根为x1,x2,若x1+x2=2,求x1,x2的值.2.将一块正方形铁皮的四角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,已知盒子的容积是400cm3,求原铁皮的边长.3.如图,某海关缉私艇在点O处发现在正北方向30海里的A•处有一艘可疑船只,测得它正以60海里/小时的速度向正东方向航行,随即调整方向,以75海里/•小时的速度准备在B处迎头拦截,问经过多少时间能赶上?4.某工厂一月份生产零件2万个,一季度共生产零件7.98万个,•若每月的增长率相同,求每月产量的平均增长率.5.已知x=1是一元二次方程(a-2)x2+(a2-3)x-a+1=0的一个根,求a的值.四、归纳总结,提高认识1.综述本节课的主要内容.2.谈谈本节课的收获与体会.五、布置作业,专题突破1.课本P38复习题第1.(1)、(3)、(5)、(6),2.(1),3.5.6.9.(4),10.(1)题.2.选用课时作业设计.3.预习作业:本章复习提纲.六、课后反思(略)课时作业设计1.一元二次方程3x2+x=0的根是________.2.一元二次方程(1+3x)(x-3)=2x2+1化为一般形式为:________,•二次项系数为:________,一次项系数为:________,常数项为:________.3.方程2x2=4x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.以上都不对4.某商品连续两次降价,每次都降20%后的价格为m元,则原价是()A.D.0.8m2元5.解下列方程.(1)3x2-x=4 (2)(x+3)(x-4)=6(3)(x+3)2=(1-2x)2 (4)3x2+5x-2=0(5)x2+2 x-4=06.已知直角三角形三边长为连续整数,则它的三边长是_________.7.用22cm长的铁丝,折成一个面积是30cm2的矩形,求这个矩形的长和宽.又问:能否折成面积是32cm2的矩形呢?为什么?8.某科技公司研制成功一种产品,决定向银行贷款200万元资金用于生产这种产品,贷款的合同上约定两年到期时,一次性还本付息,利息为本金的8%.该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本息外,还盈余72万余.若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.。

初中数学九年级《一元二次方程复习课》公开课教学设计

初中数学九年级《一元二次方程复习课》公开课教学设计

教师概括:本章重点学习 4114 ,其中 “四个一”是一个概念:一
元二次方程; 一种思想: 降次;一个应用 : 列一元二次方程解应用题; 一种关系: 一元二次方程根与系数的关系; “一个四” 是一元二次方
程的四种解法(略)。注意:( 1)一元二次方程与一元一次方程、
一元一次不等式、一次函数、反比例函数之间的联系。(
( 2 )结合问题 1(3 ) 解答强调配方法的 关键——系数化为 1 后给方程两边同 加上一次项系数一 般的平方。
( 3 )结合 1 ( 4 ) 解答, 追问:什么叫 一元二次方程根的 判别式?如何运用 其判别根的情况? 结合学生回答以表 格形式呈现根的判 别式判别根的情况
重难点突
破 设计
练习设计
作业布置 板书设计
(5) 若直角三角形的两条直角边长分别是方程 根,则此直角三角形的周长是 _________.
x 2 -7x+12=0 的两
(6 )尧柏水泥厂今年的一季度生产水泥 a 吨, 以后每季度比上一季 度增产 x% ,则第三季度生产水泥的吨数是 _____________.
集体备课
活动四 全课小结,提炼升华
个性备课
1 、针对前面复习提 纲,提问检查, 结用 实物展台展示评价 学生建构的知识结 构图。
2 、随机强调注意事 项: 1 )一元二次方 程概念中的必须加 以体会三个条件缺 一不可合检查情况, 板书知识结构图,; 2 )降次是解一元二
【 学生 活动 】
1 、一名学生 朗读复习要 求
2 、结合要求 反思回顾
2 、举例说明什么叫一元二次方程 ? 一元二次方程的解法思想是什 么?常用解法有哪些?各种解法的适应范围分别是怎样的?
3 、怎样利用一元二次方程根的判别式判别根的情况? 4 、一元二次方程根与系数又怎样的关系?在应用时应注意什么? (二)你认为本章知识之间有怎样的关系?请用你喜欢的方式构建本 章知识结构图,并与同伴交流。 活动二: 知识梳理,建构体系

新人教版九年级数学第21章一元二次方程教案导学案(全章)

新人教版九年级数学第21章一元二次方程教案导学案(全章)

第21章一元二次方程教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.教学关键1.分析实际问题如何建立一元二次方程的数学模型.2.用配方法解一元二次方程的步骤.3.解一元二次方程公式法的推导.课时划分本单元教学时间约需18课时,具体分配如下:21.1 一元二次方程2课时21.2 降次──解一元二次方程9课时21.3 实际问题与一元二次方程3课时教学活动、习题课、小结 4课时第1课时一元二次方程(1)第2课时一元二次方程(2)第3课时解一元二次方程——配方法(1)第4课时解一元二次方程——配方法(2)第5课时解一元二次方程——配方法(3)第6课时解一元二次方程——公式法(1)第7课时解一元二次方程——公式法(2)第8课时解一元二次方程—因式分解法(1)第9课时解一元二次方程—因式分解法(2)第10课时一元二次方程的解法复习课的数学思想。

人教版九年级数学上册 21.1一元二次方程 导学案

人教版九年级数学上册   21.1一元二次方程 导学案
一、如图,有一块长方形铁皮,长 100 cm,宽 50 cm,在它的四角各切去一个同样的正方形,然后 将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为 3 600 cm2, 那么铁皮各角应切去多大的正方形?
分析:设切去的正方形的边长为 x cm,则盒底的长为 100-2x,宽为 50-2x. 得方程(100-2x)·(50-2x)=3 600, 整理得 4x2-300x+1 400=0.化简,得 x2-75x+350=0.
A.9
B.3
C.0
D.﹣3
4.方程 4x2=81-9x 化成一般形式后,二次项的系数为 4,它的一次项是( )
A.9
B.-9x
C.9x
D.-9
5.把一元二次方程 (x + 3)2 = x (3x −1) 化成一般形式,正确的是( )
A. 2x2 − 7x − 9 = 0 B. 2x2 − 5x − 9 = 0 C. 4x2 + 7x + 9 = 0 D. 2x2 − 6x −10 = 0
15.已知 a 是一元二次方程 x2 − 2x − 5 = 0 的一个解,则 2a2 − 4a +1 = _____.
【课前预习】
【参考答案】
1.D 2.C 3.D 4.C 5.A 6.B 7.C 8.D 9.D 10.B
【课后练习】
1.C 2.B 3.C 4.C 5.D 6.C 7.B 8.C 9.C 10.D
D.10
4.若 a 是方程 x2 − x −1 = 0 的一个根,则 −a3 + 2a + 2020 的值为( )
A.2020
B. −2020
C.2019
D. −2019

新人教版九年级数学上册 第21章 第1课时 一元二次方程导学案

新人教版九年级数学上册 第21章 第1课时 一元二次方程导学案

新人教版九年级数学上册第1课时一元二次方程学案一、学习目标1.理解一元二次方程的概念;2.知道一元二次方程的一般形式,会把一个一元二次方程化为一般形式;3.会判断一元二次方程的二次项系数、一次项系数和常数项;4.理解一元二次方程根的概念.二、知识回顾1.多项式3x2y-2x-1是三次二项式,其中最高次项是3x2y ,二次项系数为0 ,一次项系数为-2 ,常数项是-1 .2.含有未知数的等式叫方程,我们学过的方程类型有:一元一次方程、二元一次方程、分式方程等.三、新知讲解1.一元二次方程的概念等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程.概念解读:(1)等号两边都是整式;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成ax2+bx+c=0(a≠0)的形式,这种形式叫做一元二次方程的一般形式.其中ax2是二次项, a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项.概念解读:(1)“a≠0”是一元二次方程一般形式的重要组成部分. 如果明确了ax2+bx+c=0是一元二次方程,就隐含了a≠0这个条件;(2)二次项系数、一次项系数和常数项都是在一般形式下定义的,各项的系数包括它前面的符号.3.一元二次方程的根的概念使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根..概念解读:(1)一元二次方程可能无解,但是有解就一定有两个解;(2)可用代入法检验一个数是否是一元二次方程的解.四、典例探究1.根据定义判断一个方程是否是一元二次方程【例1】(2015•浠水县校级模拟)下列方程是一元二次方程的是()A.x2+2x﹣y=3 B. C.(3x2﹣1)2﹣3=0 D.x2﹣8=x总结:一元二次方程必须满足四个条件:是整式方程;含有一个未知数;未知数的最高次数是2;二次项系数不为0.练1(2015•科左中旗校级一模)关于x的方程:(a﹣1)+x+a2﹣1=0,求当a= 时,方程是一元二次方程;当a= 时,方程是一元一次方程.2.把一元二次方程化成一般形式(写出其二次项系数、一次项系数和常数项)【例2】(2014秋•忠县校级期末)一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是;它的二次项系数是,一次项系数是,常数项是.总结:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)(2)在一般形式中,ax2叫二次项,bx叫一次项,c是常数项,其中a,b,c分别叫二次项系数、一次项系数和常数项.练2将方程x(x-1)=5(x-2)化为一元二次方程的一般形式,并写出二次项系数、一次项系数和常数.练3(2014•东西湖区校级模拟)将一元二次方程4x2+5x=81化成一般式后,如果二次项系数是4,则一次项系数和常数项分别是()A.5,81 B.5,﹣81 C.﹣5,81 D.5x,﹣813.根据一元二次方程的根求参数【例3】(2015•临淄区校级模拟)若0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,则m的值为()A.1 B.0 C.1或2 D.2总结:使一元二次方程两边相等的未知数的值叫一元二次方程的解,也叫做一元二次方程的根.一元二次方程可能无解,但是有解就一定有两个解.可用代入法检验一个数是否是一元二次方程的解.已知一元二次方程的一个解,将这个解直接代入原方程,原方程仍然成立,由此可求解原方程中的字母参数.若二次项系数含有字母参数,求出的字母参数值要保证二次项系数不为0.这一步容易被忽略,谨记.练4(2014•绵阳模拟)若关于x的一元二次方程(a+1)x2+4x+a2﹣1=0的一根是0,则a= .练5(2015•绵阳)关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2= .五、课后小测一、选择题1.(2015春•莒县期中)下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x+y=2 C.x2+3y﹣5=0 D.x2﹣1=02.(2014•泗县校级模拟)方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个 B.2个 C.3个 D.4个3.(2014秋•沈丘县校级期末)要使方程(a﹣3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠1且b≠﹣1 D.a≠3且b≠﹣1且c≠04.(2015•石河子校级模拟)把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,25.(2015•石河子校级模拟)关于x的方程(3m2+1)x2+2mx﹣1=0的一个根是1,则m的值是()A.0 B.﹣ C. D.0或,6.(2014•祁阳县校级模拟)已知x=3是关于方程3x2+2ax﹣3a=0的一个根,则关于y的方程y2﹣12=a的解是()A. B.﹣C.± D.以上答案都不对7.(2014秋•南昌期末)关于x的方程(k+2)x2﹣kx﹣2=0必有一个根为()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2二、填空题8.(2015•东西湖区校级模拟)已知(m﹣2)x2﹣3x+1=0是关于x的一元二次方程,则m的取值范围是.9.(2014秋•西昌市校级期中)方程2x2﹣1=的二次项系数是,一次项系数是,常数项是.10.(2015•厦门校级质检)若m是方程x2﹣2x=2的一个根,则2m2﹣4m+2010的值是.三、解答题11.把方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.(1)5x2=3x;(2)(﹣1)x+x2﹣3=0;(3)(7x﹣1)2﹣3=0;(4)(﹣1)(+1)=0;(5)(6m﹣5)(2m+1)=m2.12.(2015春•亳州校级期中)已知关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,(1)求m的值;(2)求方程的解.13.(2015春•嵊州市校级月考)已知,下列关于x的一元二次方程(1)x2﹣1=0 (2)x2+x﹣2=0 (3)x2+2x﹣3=0 …(n)x2+(n﹣1)x﹣n=0(1)求出方程(1)、方程(2)、方程(3)的根,并猜测方程(n)的根.(2)请指出上述几个方程的根有什么共同特点,写出一条即可.14.关于y的方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为多少.典例探究答案:【例1】【解析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解:A、方程含有两个未知数,故选项错误;B、不是整式方程,故选项错误;C、含未知数的项的最高次数是4,故选项错误;D、符合一元二次方程的定义,故选项正确.故选:D.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否只含有一个未知数且未知数的最高次数是2.练1.【解析】根据一元二次方程和一元一次方程的定义进行解答.解:依题意得,a2+1=2且a﹣1≠0,解得 a=﹣1.即当a=﹣1时,方程是一元二次方程.当a2+1=0或a﹣1=0即a=1时,方程是一元一次方程.故答案是:﹣1;1.点评:本题考查了一元二次方程和一元一次方程的定义.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.【例2】【解析】将方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.解:一元二次方程(1﹣3x)(x+3)=2x2+1的一般形式是5x2+8x﹣2=0;它的二次项系数是5,一次项系数是8,常数项是﹣2.故答案为:5x2+8x﹣2=0,5,8,﹣2点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在解题过程中容易忽视的地方.在一般形式中ax2叫二次项,bx叫一次项,c 是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.练2.【解析】将一元二次方程化为一般形式,主要包括几个步骤:去括号、移项、合并同类项.去括号,得x2-x=5x-10.移项、合并同类项,得x2-6x+10=0.其中二次项系数是1,一次项系数为-6,常数项为10.练3.【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件,其中a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.解:一元二次方程4x2+5x=81化成一般式为4x2+5x﹣81=0,二次项系数,一次项系数,常数项分别为4,5,﹣81,故选:B.点评:本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【例3】【解析】把方程的一个根0直接代入方程即可求出m的值.解:∵0是关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的一根,∴(m﹣1)×0+5×0+m2﹣3m+2=0,即m2﹣3m+2=0,解方程得:m1=1(舍去),m2=2,∴m=2,故选:D.点评:本题考查了一元二次方程的解,解题的关键是直接把方程的一根代入方程,此题比较简单,易于掌握.练4.【解析】将一根0代入方程,再依据一元二次方程的二次项系数不为零,问题可求.解:∵一根是0,∴(a+1)×(0)2+4×0+a2﹣1=0∴a2﹣1=0,即a=±1;∵a+1≠0,∴a≠﹣1;∴a=1.练5.【解析】先根据一元二次方程的解的定义得到4n﹣2n2﹣2=0,两边除以2n得n+=2,再利用完全平方公式变形得到原式=(n+)2﹣2,然后利用整体代入的方法计算.解:把m=2代入nm2﹣n2m﹣2=0得4n﹣2n2﹣2=0,所以n+=2,所以原式=(n+)2﹣2=(2)2﹣2=26.故答案为:26.点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式的变形能力.课后小测答案:一、选择题1.【解析】根据一元二次方程的定义进行判断.解:A、当a=0时,该方程不是关于x的一元二次方程,故本选项错误;B、该方程中含有2个未知数,且未知数的最高次数是1,它属于二元一次方程,故本选项错误;C、该方程中含有2个未知数,且未知数的最高次数是2,它属于二元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选:D.点评:本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【解析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选:B.点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.3.【解析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.解:根据一元二次方程的定义中二次项系数不为0得,a﹣3≠0,a≠3.故选:B.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.当a=0时,上面的方程就不是一元二次方程了,当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.4.【解析】a、b、c分别指的是一元二次方程的一般式中的二次项系数、一次项系数、常数项.解:由方程x(x+2)=5(x﹣2),得x2﹣3x+10=0,∴a、b、c的值分别是1、﹣3、10;故选A.点评:本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5.【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.解:把1代入方程得3m2+1+2m﹣1=0,解得m=0或,故选:D.点评:本题的关键是把x的值代入原方程,得到一个关于待定系数的一元二次方程,然后求解.6.【解析】由于x=3是关于x的方程3x2+2ax﹣3a=0的一个根,根据方程解的含义,把x=3代入原方程,即可解出a的值,然后再解出关于y的方程的解.解:∵x=3是关于x的方程3x2+2ax﹣3a=0的一个根,∴3×32+2a×3﹣3a=0,解得:a=﹣9,则关于y的方程是y2﹣12=﹣9,解得y=.故选:C.点评:本题考查一元二次方程解的含义,解题的关键是确定方程中待定系数的值.7.【解析】分别把x=1、﹣2、﹣2代入(k+2)x2﹣kx﹣2=0中,利用一元二次方程的解,当k为任意值时,则对应的x的值一定为方程的解.解:A、当x=1时,k+2﹣k﹣2=0,所以方程(k+2)x2﹣kx﹣2=0必有一个根为1,所以A选项正确;B、当x=﹣1时,k+2+k﹣2=0,所以当k=0时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣1,所以B选项错误;C、当x=2时,4k+8﹣2k﹣2=0,所以当k=﹣3时,方程(k+2)x2﹣kx﹣2=0有一个根为2,所以C选项错误;D、当x=﹣2时,4k+8+2k﹣2=0,所以当k=﹣1时,方程(k+2)x2﹣kx﹣2=0有一个根为﹣2,所以D选项错误.故选A.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.二、填空题8.【解析】根据一元二次方程的定义得到m﹣2≠0,然后解不等式即可.解:根据题意得m﹣2≠0,所以m≠2.故答案为:m≠2.点评:本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.9.【解析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.解:方程2x2﹣1=化成一般形式是2x2﹣﹣1=0,二次项系数是2,一次项系数是﹣,常数项是﹣1.点评:要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号10.【解析】根据一元二次方程的解的定义得到m2﹣2m=2,再变形2m2﹣4m+2010得到2(m2﹣m)+2010,然后利用整体代入的方法计算.解:根据题意得m2﹣2m=2,所以2m2﹣4m+2010=2(m2﹣m)+2010=2×2+2010=2014.故答案为2014.点评:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.三、解答题11.【解析】各项方程整理后,找出二次项系数,一次项系数,以及常数项即可.解:(1)方程整理得:5x2﹣3x=0,二次项系数为5,一次项系数为﹣3,常数项为0;(2)x2+(﹣1)x﹣3=0,二次项系数为1,一次项系数为﹣1,常数项为﹣3;(3)方程整理得:49x2﹣14x﹣2=0,二次项系数为49,一次项为﹣14,常数项为﹣2;(4)方程整理得:x2﹣1=0,二次项系数为,一次项系数为0,常数项为﹣1;(5)方程整理得:11m2﹣4m﹣5=0,二次项系数为11,一次项系数为﹣4,常数项为﹣5.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12.【解析】(1)首先利用关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0得出m2﹣3m+2=0,进而得出即可;(2)分别将m的值代入原式求出即可.解:(1)∵关于x的方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,∴m2﹣3m+2=0,解得:m1=1,m2=2,∴m的值为1或2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0得出:x2+5x=0x(x+5)=0,解得:x1=0,x2=﹣5.当m=1时,5x=0,解得x=0.点评:此题主要考查了一元二次方程的解法,正确解一元二次方程是解题关键.13.【解析】(1)利用因式分解法分别求出方程(1)、方程(2)、方程(3)的根,根据以上3个方程的根,可猜测方程(n)的根;(2)观察即可得出上述几个方程都有一个公共根是1.解:(1)(1)x2﹣1=0,(x+1)(x﹣1)=0,x+1=0,或x﹣1=0,解得x1=﹣1,x2=1;(2)x2+x﹣2=0,(x+2)(x﹣1)=0,x+2=0,或x﹣1=0,解得x1=﹣2,x2=1;(3)x2+2x﹣3=0,(x+3)(x﹣1)=0,x+3=0,或x﹣1=0,解得x1=﹣3,x2=1;…猜测方程(n)x2+(n﹣1)x﹣n=0的根为x1=﹣n,x2=1;(2)上述几个方程都有一个公共根是1.点评:本题考查了一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的解法.14.【解析】令y=1,即可确定出方程的二次项的系数,一次项的系数与常数项的和.解:令y=1,得到m﹣n﹣p=0,则方程my2﹣ny﹣p=0(m≠0)中的二次项的系数,一次项的系数与常数项的和为0.点评:此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元二次方程复习》导学案
5. 一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下
一、填空题:
1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④ +x2=1中,是一元一次方程的是_____。

2、已知x=1是一元二次方程x2-2mx+1=0的一个解,则m=______。

3、若关于x 的一元二次方程(m-1)x2+5x+m2-3m+2=0的常项为0,则m=________。

4、关于x 的一元二次方程x2-mx+m-2=0的根的情况是__________。

5、写出两个一元二次方程,使每个方程都有一根为0,并且二次项系数都为1:________;______________。

6、三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是___________。

7、解方程5(x- )2=2(x- )最适当的方法是_____________。

二、填空题:(每题3分,共24分)
8.一元二次方程02=-x x 的二次项系数为 ,一次项系数为 ,常数项为 ;
9. 方程042=-x x 的解为
10.已知关于x 一元二次方程02=++c bx ax 有一个根为1,则
=++c b a
11.当代数式532++x x 的值等于7时,代数式2932-+x x 的值是 ;
12.关于0132=+-x x 实数根(注:填“有”或“没有”)。

13.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两
位数为 ;
14.已知一元二次方程032=++px x 的一个根为3-,则_____=p . 15. 阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下
关系:12b
x x a +=-,a
c x x =⋅21.根据该材料填空:已知1x ,
2x 是方程2630x x ++=的两
二、选择题:(每题3分,共30分)
1、关于x 的方程0232=+-x ax 是一元二次方程,则( ) A 、a >0 B 、a ≠0 C 、a =0
D 、a ≥0
2.用配方法解下列方程,其中应在左右两边同时加上4的是
( )
A 、522=-x x
B 、5422=-x x
C 、542=+x x
D 、522=+x x
3.方程x x x =-)1(的根是( )
A 、2=x
B 、2-=x
C 、
0,221=-=x x D 、0,221==x x
4.下列方程中,关于x 的一元二次方程的是( ) A 、2210x y --= B 、2230x x --= C 、0)7(2=+-x x x D 、
02=++c bx ax
5.关于x 的一元二次方程x 2+kx -1=0的根的情况是( ) A 、有两个不相等实数根 B 、没有实数根 C 、有两个相等的实数根 D 、不能确定 6.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( )
A 、1
B 、0
C 、0或1
D 、
0或-1
7.为执行“两免一补”政策,某地区2008年投入教育经费2500万元,预计2010年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A、225003600x = B、22500(1)3600x += C、
22500(1%)3600x +=
D、
22500(1)2500(1)3600x x +++=
8. 已知1x 、2x 是方程2560x x --=的两个根,则代数式2212x x +的值
( )
A 、37
B 、26
C 、13
D 、
10
9.等腰三角形的底和腰是方程2680x x -+=的两个根,则这个三角形的周长是( )
A 、8
B 、10
C 、8或10
D 、不能确定
10.一元二次方程22(32)(1)0x x x --++=化为一般形式为( ) A 、2550x x -+= B 、2550x x +-= C 、2550x x ++= D 、
250x +=
三、解答题:(共46分)
19、解方程(每题4分,共16分)
(1)0342=--x x (2)062=--x x
(3)0)3(2)3(2=-+-x x x (4)220x x -=
22、已知a 、b 、c
21(3)0b c +++=,求方程
02=++c bx ax 的根。

(8分)
23.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,
每件盈利40元。

为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。

经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。

要想平均每天在销售吉祥物上盈利
1200元,那么每套应降价多少?(10分)
24.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几来,通过拆迁旧房,植草。

栽树,修公园等措施,使城区绿地面积不断增加(如图)(12分)
(1)根据图中所提供的信息,回答下列的问题:2003年的绿地面积为______公顷,比2002年增加了________
公顷。

在2001年,2002年,2003年这三年中,绿地面积增加最多的是___________年。

(2)为了满足城市发展的需要,计划到2005年使城区绿地总面
积达到72.6公顷,试求这两年(2003~2005
年)
绿地面积的年平均增长率.
X-k-b-1.-c-o-m。

相关文档
最新文档