二次函数与一元二次方程经典教学案+典型例题

合集下载

4二次函数与一元二次方程——教师版

4二次函数与一元二次方程——教师版

4.二次函数与一元二次方程难度:易1.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(72,0)B.(3,0)C.(52,0)D.(2,0)【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.2.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x 的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=5【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴ b2 2,解得:b=﹣4,∴关于x的方程为x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.3.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.1 1.2 1.3 1.4y﹣1﹣0.490.040.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.3【解答】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选:C.4.如图,以(1,﹣4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<6【解答】解:∵二次函数y=ax2+bx+c的顶点为(1,﹣4),∴对称轴为x=1,而对称轴左侧图象与x轴交点横坐标的取值范围是﹣3<x<﹣2,∴右侧交点横坐标的取值范围是4<x<5.故选:C.5.二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象如图所示,则方程ax2+bx+c=m 有实数根的条件是()A.m≥﹣4B.m≥0C.m≥5D.m≥6【解答】解:∵抛物线的顶点坐标为(6,﹣4),即x=6时,二次函数有最小值为﹣4,∴当m≥﹣4时,直线y=m与二次函数y=ax2+bx+c有公共点,∴方程ax2+bx+c=m有实数根的条件是m≥﹣4.故选:A.6.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.难度:中7.下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项中正确的是()x 1.6 1.8 2.0 2.2 2.4y﹣0.80﹣0.54﹣0.200.220.72A.1.6<x1<1.8B.1.8<x1<2.0C.2.0<x1<2.2D.2.2<x1<2.4【解答】解:∵﹣0.20<0<0.22,∴2.0<x1<2.2.故选:C.8.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4【解答】解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx 与直线y=t的交点的横坐标,由题意可知:m=4,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.9.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1B.x1=1,x2=3C.x1=﹣1,x2=3D.x1=﹣3,x2=1【解答】解:∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),∴方程ax2﹣2ax+c=0一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x 2a2a 1,∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为:(3,0),∴方程ax2﹣2ax+c=0的解为:x1=﹣1,x2=3.故选:C.10.若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0<b<1D.b<1【解答】解:∵函数y=x2﹣2x+b的图象与坐标轴有三个交点,如果b=0,那么此二次函数与两坐标轴的其中一个交点重合了,那么就只有2个交点,则于题意不符,∴△ 2 2 4b>0 b 0,解得b<1且b≠0.故选:A.11.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则1x11x2的值为.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2 42 2,x1•x212,∴1x11x2x1 x2x1⋅x24,故答案为:﹣4.12.已知抛物线y=x2﹣2x﹣a.(1)若抛物线与x轴有两个交点,求a的取值范围;(2)当代数式x2﹣2x﹣1的值为负整数时,求x的值;(3)设抛物线与y轴的交点A与顶点B所在直线与x轴交于点C,抛物线与x轴的右交点为D,是否存在C,D两点关于y轴对称的情况?如果不存在,说明理由;如果存在,求此时a的值.【解答】解:(1)∵抛物线与x轴有两个交点,∴Δ>0,∴4+4a>0,∴a>﹣1;(2)设y=x2﹣2x﹣1=(x﹣1)2﹣2,顶点为(1,﹣2),∴当y=﹣2时,x=1,当y=﹣1时,即y=x2﹣2x﹣1=﹣1,解得x=0或2,故x的值为1或0或2;∴x的值为﹣1;(3)∵抛物线解析式为y=x2﹣2x﹣a,∴对称轴为x 22 1,∴顶点坐标为(1,﹣a﹣1),∵x=0时,y=﹣a,∴点A坐标为(0,﹣a),设直线AB解析式为y=kx+b,代入A、B点得:k=﹣1,b=﹣a,∴直线AB解析式为y=﹣x﹣a,∴点C坐标为(﹣a,0),∵C,D两点关于y轴对称,∴点D坐标为(a,0),∵点D在抛物线上,代入点D得:a2﹣2a﹣a=0,解得:a=3,∵a>﹣1,∴a=3符合题意,∴此时a的值为3.难度:难13.若函数y=mx2+(m+2)x 12m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣2【解答】解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x 12m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(12m+1)=0且m≠0,解得:m=±2,②当函数是一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选:D.14.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<2【解答】解:抛物线y=ax2+2ax+m的对称轴为直线x 2a2a 1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当x<﹣4或x>2时,y<0.故选:A.15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C .am 23D .点P 1(t ,y 1),P 2(t +1,y 2)在抛物线上,当实数t >13时,y 1<y 2【解答】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x b2a 1,∴b =﹣2a <0,∴ab <0,所以A 选项的结论正确;∵抛物线的对称轴为直线x =1,抛物线与x 轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x 轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax 2+bx +c =0的正实数根在2和3之间,所以B 选项的结论正确;把B (0,﹣2),A (﹣1,m )代入抛物线得c =﹣2,a ﹣b +c =m ,而b =﹣2a ,∴a +2a ﹣2=m ,∴am 23,所以C 选项的结论正确;∵点P 1(t ,y 1),P 2(t +1,y 2)在抛物线上,∴当点P 1、P 2都在直线x =1的右侧时,y 1<y 2,此时t ≥1;当点P 1在直线x =1的左侧,点P 2在直线x =1的右侧时,y 1<y 2,此时0<t <1且t +1﹣1>1﹣t ,即12<t <1,∴当12<t <1或t ≥1时,y 1<y 2,所以D 选项的结论错误.故选:D .16.已知关于x 的函数y =(m ﹣1)x 2+2x +m 图象与坐标轴只有2个交点,则m =.【解答】解:(1)当m ﹣1=0时,m =1,函数为一次函数,解析式为y =2x +1,与x 轴交点坐标为( 12,0);与y 轴交点坐标(0,1).符合题意.(2)当m ﹣1≠0时,m ≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m 12)2<54,解得m m将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m故答案为:1或0或1 5 2.17.在平面直角坐标系中,将函数y=x2﹣2mx+m(x≤2m,m为常数)的图象记为G,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.【解答】解:如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线x=2m的左侧部分(包括点D),此时最低点P(m,﹣m2+m),当m=0时,显然不符合题意有两个交点,当m<0时,如图2中,图象G是抛物线在直线x=2m的左侧部分(包括点D)与x轴只要一个交点不符合题意,∴当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,△=4m2﹣4m=0,∴m=1或0(舍弃),∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,最低点P(m,﹣m2+m),所以顶点组成抛物线:y=﹣x2+x=﹣(m 12)2 14,且过定点(12,14),第11页(共11页)∴观察图象可知,当图象G 与x 轴有两个交点时,设左边交点的横坐标为x 1,则x 1的取值范围是12<x 1<1,故答案为12<x 1<1.18.如图,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线,若点P (4,0)在该抛物线上,则4a ﹣2b +c 的值为.【解答】解:设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴过点(1,0),与x 轴的一个交点是P (4,0),∴与x 轴的另一个交点Q (﹣2,0),把(﹣2,0)代入解析式得:0=4a ﹣2b +c ,∴4a ﹣2b +c =0,故答案为:0.。

二次函数与一元二次方程学案

二次函数与一元二次方程学案

22.2二次函数与一元二次方程 学习目标:1.探索二次函数与一元二次方程、一元二次不等式之间的关系.2.掌握一元二次方程(组)的图象解法.重点、难点1.重点:探索二次函数与一元二次方程、一元二次不等式之间的关系.2.难点:掌握一元二次方程(组)的图象解法.导学过程:阅读教材P16 — 19 , 完成课前预习【课前预习】1:准备知识(1) 一元二次方程根的情况:(2)一次函数与一元一次方程的关系:2:探究1以40米/秒的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线。

如果不考虑空气阻力,球的飞行高度h 米与飞行时间t 秒之间具有关系2520t t h -=。

考虑以下问题:(1) 球的飞行高度能否达到15米?如能,需要多少飞行时间?(2) 球的飞行高度能否达到20米?如能,需要多少飞行时间?(3) 球的飞行高度能否达到20.5米?为什么?(4) 球从飞出到落地需要用多少时间?探究2给出三个二次函数:(1)232+-=x x y ;(2)12+-=x x y ;(3)122+-=x x y .它们的图象分别为观察图象与x 轴的交点个数,分别是 个、 个、 个.你知道图象与x 轴的交点个数与什么有关吗?另外,能否利用二次函数c bx ax y ++=2的图象寻找方程)0(02≠=++a c bx ax ,不等式)0(02≠>++a c bx ax 或)0(02≠<++a c bx ax 的解?3:结论一般的,从二次函数c bx ax y ++=2的图象可知,(1) 如果抛物线c bx ax y ++=2与x 轴有公共点,公共点的横坐标是x 0,那么当x= 时,函数的值是0,因此x= 就是方程)0(02≠=++a c bx ax 的一个根。

(2) 二次函数的图象与x 轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。

这对应着一元二次方程根的三种情况: 实数根,有 的实数根,有 的实数根。

二次函数与一元二次方程--教学设计

二次函数与一元二次方程--教学设计

二次函数与一元二次方程--教学设计教学设计主题:二次函数与一元二次方程教学目标:1.理解二次函数的定义和性质;2.掌握一元二次方程的求解方法;3.能够将实际问题转化为二次函数或一元二次方程进行求解。

教学重点:1.二次函数的定义和性质;2.一元二次方程的求解。

教学难点:1.实际问题的建模;2.一元二次方程的求解。

教学准备:1.教师准备:教师课件、教学演示;2.学生准备:学生课本、笔记本。

教学过程:一、导入(5分钟)1.教师通过课件展示一张图,引导学生思考二次函数的图像特点;2.教师提问:你们在高中学过哪些与二次函数相关的知识?请举例说明。

二、概念讲解(20分钟)1.教师通过课件讲解二次函数的定义,并给出例题让学生进行分析和讨论;2.教师引导学生总结二次函数的性质,并进行讨论交流。

三、习题练习(15分钟)1.教师布置若干练习题,要求学生互相讨论解题方法和结果。

练习题可以涉及二次函数的图像、顶点坐标、对称轴等内容。

四、实际问题建模(15分钟)1.教师通过课件呈现一些实际问题,并提问学生如何将这些问题转化为二次函数或一元二次方程;2.学生进行小组讨论,寻找问题的解决方法和步骤。

五、一元二次方程的求解(20分钟)1.教师通过课件讲解一元二次方程的定义、一般形式和求解方法,引导学生理解方程解的含义;2.教师给出一些例题,引导学生进行求解过程,并解释每个步骤的含义和思路。

六、总结归纳(10分钟)1.教师带领学生总结二次函数与一元二次方程的相关知识点和求解方法;2.学生进行讨论和补充。

七、拓展与应用(15分钟)1.教师设计一些拓展题目,要求学生运用所学知识解决实际问题;2.学生进行小组讨论和解答,教师给予指导和点评。

八、课堂总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生复习和预习下节课的内容。

教学反思:通过本节课的教学,学生可以对二次函数与一元二次方程的定义、性质和求解方法有更深入的理解。

通过实际问题的建模和解答,学生可以将所学知识应用到实际生活中,提高问题解决能力。

2.3二次函数与一元二次方程、不等式 2.3.1二次函数与一元二次方程、不等式 教案

2.3二次函数与一元二次方程、不等式 2.3.1二次函数与一元二次方程、不等式 教案

2.3二次函数与一元二次方程、不等式【素养目标】1.理解一元二次方程与二次函数的关系.(数学抽象)2.掌握图象法解一元二次不等式.(直观想象)3.会从实际情境中抽象出一元二次不等式模型.(数学抽象)4.会解可化为一元二次不等式(组)的简单分式不等式.(数学运算)5.会用分类讨论思想解含参数的一元二次不等式.(逻辑推理)6.会解一元二次不等式中的恒成立问题.(数学运算)【学法解读】在从函数观点看一元二次方程和一元二次不等式的学习中,可以先以讨论具体的一元二次函数变化情况为情境,使学生发现一元二次函数与一元二次方程的关系,引出一元二次不等式的概念;然后进一步探索一般的一元二次函数与一元二次方程、一元二次不等式的关系,归纳总结出用一元二次函数解一元二次不等式的程序.2.3.1 二次函数与一元二次方程、不等式一、必备知识·探新知基础知识知识点1:一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________________.一元二次不等式的一般形式是:_________________________或_________________________.知识点2:二次函数与一元二次方程、不等式的解的对应关系思考2:如何用图解法解一元二次不等式?提示:图解法解一元二次不等式的一般步骤:(1)将原不等式化为标准形式ax2+bx+c>0或ax2+bx+c<0(a>0);(2)求Δ=b2-4ac;(3)若Δ<0,根据二次函数的图象直接写出解集;(4)若Δ≥0,求出对应方程的根,画出对应二次函数的图象,写出解集.基础自测1.判断正误(对的打“√”,错的打“×”)(1)mx2-5x<0是一元二次不等式.()(2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R.()(3)设二次方程f(x)=0的两解为x1,x2,且x1<x2,则一元二次不等式f(x)>0的解集不可能为{x|x1<x<x2}.()(4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的解集为空集,则方程ax2+bx+c=0无实根.()[解析](1)当m=0时,是一元一次不等式;当m≠0时,它是一元二次不等式.(2)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c>0的解集为∅.(3)当二次项系数小于0时,不等式f(x)>0的解集为{x|x1<x<x2}.(4)当Δ<0时,一元二次不等式的解集为空集,此时方程无实根.2.不等式2x≤x2+1的解集为()A.∅B.RC.{x|x≠1} D.{x|x>1或x<-1}[解析]将不等式2x≤x2+1化为x2-2x+1≥0,∴(x-1)2≥0,∴解集为R,故选B.3.不等式(2x-5)(x+3)<0的解集为_____________________.二、关键能力·攻重难题型探究题型一解一元二次不等式例题1:解下列不等式.(1)2x2-3x-2>0;(2)x2-4x+4>0;(3)-x2+2x-3<0;(4)-3x2+5x-2>0.[分析]根据三个二次之间的关系求解即可.[归纳提升]解一元二次不等式的步骤(1)对不等式变形,使不等号一端二次项系数大于0,另一端为0,即化为ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0)的形式.(2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根.(4)根据对应的二次函数的图象,写出不等式的解集.【对点练习】❶不等式6x2+x-2≤0的解集为______________________.题型二三个“二次”的关系例题2:已知不等式ax2-bx+2<0的解集为{x|1<x<2},求a,b的值.[分析]给出了一元二次不等式的解集,则可知a的符号和方程ax2-bx+2=0的两根,由根与系数的关系可求a,b的值.【对点练习】❷若不等式ax2+bx+c≤0的解集为{x|x≤-3或x≥4},求不等式bx2+2ax-c-3b≥0的解集.题型三解含有参数的一元二次不等式例题3:解关于x的不等式2x2+ax+2>0.[分析]二次项系数为2,Δ=a2-16不是一个完全平方式,故不能确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.②当a=4时,Δ=0,方程有两个相等实根,x1=x2=-1,∴原不等式的解集为{x|x≠-1}.③当a=-4时,Δ=0,方程有两个相等实根,x1=x2=1,∴原不等式的解集为{x|x≠1}.④当-4<a<4时,Δ<0,方程无实根,故原不等式的解集为R.[归纳提升]在解答含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数a>0,a=0,a<0;(2)关于不等式对应方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0);(3)关于不等式对应方程的根的大小的讨论:x1>x2,x1=x2,x1<x2.【对点练习】❸解关于x的不等式ax2-x>0.。

《22.2 二次函数与一元二次方程》教案、教学设计、导学案

《22.2 二次函数与一元二次方程》教案、教学设计、导学案

《22.2 二次函数与一元二次方程》教案【教学目标】1.通过探索,理解二次函数与一元二次方程之间的联系.2.能运用二次函数及其图象确定方程和不等式的解或解集.3.根据函数图象与x轴的交点情况确定未知字母的值或取值范围.【教学过程】一、情境导入如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?二、合作探究探究点一:二次函数与一元二次方程【类型一】二次函数图象与x轴交点情况判断下列函数的图象与x只有一个交点的是( )A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点,故选D.【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x=2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x轴交点情况确定字母取值范围若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0 B.0或2C.2或-2 D.0,2或-2解析:若m≠0,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m=0,原函数是一次函数,图象与x轴也有一个交点.由(m+2)2-4m(12m+1)=0,解得m=2或-2,当m=0时原函数是一次函数,图象与x轴有一个交点,所以当m=0,2或-2时,图象与x轴只有一个交点.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x 轴没有交点.【类型四】利用抛物线与x轴交点坐标确定一元二次方程的解小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax +b=0的解是( )A.无解B.x=1C.x=-4D.x=-1或x=4解析:∵二次函数y=x2+ax+b的图象与x轴交于(-1,0)和(4,0),即当x=-1或4时,x2+ax+b=0,∴关于x的方程x2+ax+b=0的解为x1=-1,x=4,故选D.2方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1解析:观察图象,可知当-3<x<1时,抛物线在x轴上方,此时y>0,即ax2+bx+c>0,∴关于x的不等式ax2+bx+c>0的解集是-3<x<1.故选C.方法总结:抛物线y=ax2+bx+c在x轴上方部分的点的纵坐标都为正,所对应的x的所有值就是一元二次不等式ax2+bx+c>0的解集;在x轴下方部分的点的纵坐标均为负,所对应的x的所有值就是一元二次不等式ax2+bx+c<0的解集.【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x >3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.三、板书设计【教学反思】教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况.体会知识间的相互转化和相互联系.《22.2 二次函数与一元二次方程》教学设计【教学目标】知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.【教学重点和难点】重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.【教学过程设计】(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t—5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2ax bx c++的图像与x轴相交,那么交点的横坐标就是一元二次方程2ax bx c++=0的根.(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x,那么当x=x0时,函数的值是0,因此x=x就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计《22.2 二次函数与一元二次方程(第一课时)》教案【教学目标】:1.知识与技能:通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系.2.方法与过程:使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识.3.情感、态度与价值观:进一步培养学生综合解题能力,渗透数形结合思想.【教学重点】:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点.【教学难点】:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.本节课,请同学们共同研究,尝试解决以下几个问题二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+4 5 .(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?问题2:画出函数y=x2-x-3/4的图象,根据图象回答下列问题.(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y=0?这里x的取值与方程x2-x-34=0有什么关系?(3)你能从中得到什么启发?对于问题(2),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x-34的图象与x轴交点的横坐标,即为方程x2-x-34=0的解;从“数”的方面看,当二次函数y=x2-x-34的函数值为0时,相应的自变量的值即为方程x2-x-34=0的解.更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系.三、课堂练习: P23练习1、2.五、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况.六、作业:《22.2 二次函数与一元二次方程(第二课时)》教案【教学目标】:1.知识与能力:复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.2.方法与过程:让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解.3.情感、态度与价值观:提高学生综合解题能力,渗透数形结合思想.【教学重点】;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点.【教学难点】:提高学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解.(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解.二、探索问题已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m =1所以y1=x+1,P(3,4). 因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k +8 解得 k =2 所以y 1=2x 2-8x +10(2)依题意,得⎩⎪⎨⎪⎧y =x +1y =2x 2-8x +10 解这个方程组,得⎩⎪⎨⎪⎧x 1=3y 1=4 ,⎩⎪⎨⎪⎧x 2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).五、小结: 如何用画函数图象的方法求方程的解?六、作业:《22.2二次函数与一元二次方程》导学案【学习目标】:1.探索二次函数与一元二次方程、一元二次不等式之间的关系.2.掌握一元二次方程(组)的图象解法.【重点、难点】1.重点:探索二次函数与一元二次方程、一元二次不等式之间的关系.2.难点:掌握一元二次方程(组)的图象解法.【导学过程】:阅读教材P16 — 19 , 完成课前预习【课前预习】1:准备知识(1) 一元二次方程根的情况:(2)一次函数与一元一次方程的关系:2:探究1以40米/秒的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线。

初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计

初中数学初三数学上册《二次函数与一元二次方程》教案、教学设计
二、学情分析
在本章节的教学中,我们需要面对的是初三学生,他们在前两年的数学学习中,已经积累了一定的数学基础,掌握了函数、一元一次方程等基本知识。然而,二次函数与一元二次方程作为数学知识的一个难点,对学生而言,理解和运用上可能存在一定困难。
学生在学习过程中可能出现以下情况:对二次函数图像特征的理解不够深入,对一元二次方程求解方法的掌握不够熟练,以及在解决实际问题时不能灵活运用所学知识。因此,在教学过程中,我们要关注以下几点:
(3)鼓励学生进行合作学习,培养学生的团队协作能力和交流表达能力。
3.教学步骤:
(1)导入新课:通过生活中的实际问题,引出二次函数与一元二次方程的概念。
(2)探究新知:引导学生观察二次函数的图像,总结图像特征;教授一元二次方程的求解方法,并分析各种求解方法的适用条件。
(3)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
(2)一元二次方程的求解方法有哪些?它们之间的优缺点是什么?
2.小组汇报
各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
(1)求解给定二次函数的顶点、开口方向和对称轴。
(2)利用一元二次方程求解实际问题的最优解。
2.教师巡回指导,解答学生在练习过程中遇到的问题。
3.鼓励学生分组讨论和合作学习,培养学生的团队协作能力和交流表达能力。
4.通过一元二次方程的求解过程,让学生体会数学的转化思想,培养学生解决问题的策略和方法。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生积极主动学习的态度。
2.引导学生体会数学在实际生活中的应用价值,增强学生的数学意识。
1.充分了解学生的知识储备,针对学生的薄弱环节进行有针对性的教学。

二次函数与一元二次方程教案

二次函数与一元二次方程教案

二次函数与一元二次方程教案教案标题:探索二次函数与一元二次方程教案目标:1. 了解二次函数与一元二次方程的定义和基本性质;2. 掌握解一元二次方程的方法;3. 掌握二次函数的图像特征和性质;4. 能够应用二次函数和一元二次方程解决实际问题。

教案步骤:一、引入(5分钟)1. 利用实例引出学生对于二次函数和一元二次方程的初步认识。

2. 引导学生思考二次函数与一元二次方程的联系,并提出学习的目标。

二、理论讲解(15分钟)1. 介绍二次函数的定义和一般形式,解释二次函数图像的特征。

2. 讲解一元二次方程的定义和一般形式,介绍解一元二次方程的方法。

三、解题演练(20分钟)1. 给学生提供一些简单的一元二次方程,引导学生运用所学方法解题。

2. 给学生提供一些简单的二次函数图像,要求学生根据图像特征写出函数的表达式。

四、拓展应用(15分钟)1. 提供一些实际问题,引导学生将问题转化为一元二次方程,并解答问题。

2. 提供一些实际问题,引导学生根据问题描述绘制对应的二次函数图像,并分析解决问题的方法。

五、总结归纳(10分钟)1. 学生总结二次函数与一元二次方程的基本性质和解题方法。

2. 教师对本节课的重点内容进行总结,并强调学生在课后的复习重点。

六、作业布置(5分钟)1. 布置一些练习题,要求学生巩固所学的知识和解题方法。

2. 鼓励学生积极思考,提出问题并准备下节课的讨论。

教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度;2. 练习题表现:检查学生对于二次函数和一元二次方程的掌握情况;3. 实际问题解决能力:评估学生运用所学知识解决实际问题的能力。

教案扩展:1. 可以引入二次函数的最值问题,进一步拓展学生对于二次函数的理解;2. 可以引入一元二次方程的根与系数之间的关系,加深学生对于一元二次方程的理解。

教案注意事项:1. 确保学生已经掌握一元一次方程的解法和基本概念,为学习二次函数和一元二次方程打下基础;2. 鼓励学生多做练习,加深对于二次函数和一元二次方程的理解;3. 教师要及时给予学生反馈,帮助他们纠正错误和提高解题能力。

22_2二次函数与一元二次方程(教案)

22_2二次函数与一元二次方程(教案)

22.2 二次函数与一元二次方程【知识与技能】理解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式实行判别,理解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度】进一步增强学生的数形结合思想方法,增强学生的综合解题水平.【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.一、情境导入,初步理解问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.假设不考虑空气阻力,球的飞行高度h(m)与飞行时间t(s)之间具相关系:h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要飞行多长时间?(2)球的飞行高度能否达到20m?如能,需要飞行多长时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?【教学说明】教师可通过教材的引例,引用其递进式的问题链,让学生在相互交流过程中,自不过然地感受到引用方程思想来解决函数问题的思想方法.教师巡视,即时释疑解惑,并尽量予以肯定和鼓励,激发学生的学习兴趣.二、思考探究,获取新知通过对上述问题的思考,能够看出二次函数与一元二次方程之间存有着密切联系.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,能够看作解一元二次方程-x2+4x=3;反过来,解方程x2-4x+3=0又能够看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.问题1画出函数y=x2-4x+3的图象,根据图象回答以下问题:(1)图象与x轴交点的坐标是什么?(2)当x取何值时,y=0?这里x的取值与方程x2-4x+3=0有什么关系?(3)你能从中得到什么启示?问题2以下函数的图象与x轴有公共点吗?假设有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你能得出相对应的一元二次方程的根吗?(1)y=x2+x-2; (2)y=x2-6x+9; (3)y=x2-x+1.问题3一般地,二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?【教学说明】让学生在合作交流过程中完成问题1,2,并对问题3形成一个初步理解,达到从感性理解到理性思考的飞跃,从而理解新知.教师应巡视,对学生的交流成果给予积极评价,最后教师应在黑板上实行归纳总结.【归纳结论】一般地,从二次函数y=ax2+bx+c的图象可知:(1)假设抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标为x0.那么当x=x0时,函数的值为0,所以x=x0就是方程ax2+bx+c=0的一个根;(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不相等的实数根.所以可通过方程的根的判别式Δ<0,Δ=0和Δ>0来判别抛物线与x轴的交点的个数(Δ=b2-4ac,其中a、b、c为抛物线表达式中二次项系数,一次项系数和常数项).【试一试】1.若抛物线y=x2-mx+1与x轴没有公共点,则m的取值范围是.2.求证:抛物线y=x2+ax+a-2与x轴总有两个交点.【教学说明】让学生分组完成两个小题,使他们能体验成功的喜悦,对尚有困难的学生,应给予指导.三、使用新知,深化理解1.画出函数y=x2-2x-3的图象,利用图象回答:(1)方程x2-2x-3=0的解是什么?(2)x取什么值时,函数值大于0?(3)x取什么值时,函数值小于0?2.利用函数图象求方程x2-2x-2=0的实数解.【教学说明】题1可让学生自主完成,教师予以巡视,并作指导;题2的处理建议师生共同完成,这里涉及到逼近求值思想,应作为指导.评讲此题的目的是让学生能进一步体验函数与方程的密切联系,但不要求学生掌握,只要理解即可.【答案】1.图象如下列图:(1)当x1=3,x2=-1.(2)当x<-1或x>3时函数值大于0.(3)当-1<x<3时,函数值小于0.2.解:作y=x2-2x-2的图象,它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.我们还能够通过持续缩小根所在的范围估计一元二次方程的根:观察函数y=x2-2x-2的图象能够发现,当自变量为2时的函数值小于0(点(2,-2)在x轴的下方),当自变量为3时的函数值大于0(点(3,1)在x轴的上方),因为抛物线y=x2-2x-2是一条连续持续的曲线,所以抛物线y=x2-2x-2在2<x<3这个段经过x轴,也就是说当自变量取2,3之间的某个值时,函数的值为0,即方程x2-2x-2=0在2,3之间有根.我们可通过取平均数的方法持续缩小根所在的范围.例如,取2,3的平均数2.5,用计算器算得自变量为2.5时的函数值为-0.75,与自变量为3时的函数值异号,所以这个根在2.5,3之间.再取2.5,3的平均数2.75,用计算器算得自变量为2.75时的函数值为0.0625,与自变量为2.5时的函数值异号,所以这个根在2.5,2.75之间.重复上述步骤,我们逐步得到:这个根在2.625,2.75之间,在2.6875,2.75之间……能够看到:根所在的范围越来越小,根所在范围的两端的值越来越接近根的值,因而能够作为根的近似值.例如,当要求根的近似值与根的准确值的差的绝对值小于0.1时,因为|2.6875-2.75|=0.0625<0.1,我们能够将2.6875作为根的近似值.四、师生互动,课堂小结1.抛物线y=ax2+bx+c与一元二次方程ax2+bx+c=0有何关联?你能不画出抛物线y=ax2+bx+c而理解此抛物线与x轴的交点情况吗?你是怎样做的?2.你能利用抛物线来确定相对应的方程的根的近似值吗?从中你有哪些体会?1.布置作业:教材习题22.2第1、2、3、4、6题.2.完成创优作业中本课时练习的“课时作业”部分.本课时教学首先通过具体情况让学生感受用方程思想方法来解决函数问题的思路,然后通过图象来探究一元二次方程的根和二次函数与x轴交点之间的关联.这样整个教学过程充分利用了学生已形成的方程、函数间的关系来类比引导挖掘、探索二次函数与一元二次方程的关系.此外,通过观察图象直观理解、解答练习以及实际观察分析都是必经的途径与方法,重在让学生自主体会.。

二次函数与一元二次方程、不等式(第二课时)示范教学方案

二次函数与一元二次方程、不等式(第二课时)示范教学方案

《2.3 二次函数与一元二次方程、不等式(第二课时)》教学设计◆教学目标1.通过从实际情境中抽象出一元二次不等式模型的过程,体会一元二次不等式的现实意义,提升数学建模的核心素养.2.能利用一元二次不等式解决一些实际问题,提升数学运算素养.◆教学重难点◆教学重点:实际问题中的一元二次不等式解法.教学难点:从实际问题所蕴含的不等关系中抽象出一元二次不等式.◆课前准备PPT课件◆教学过程一、知识回顾★资源名称:【知识点解析】一元二次不等式的解法★使用说明:本资源为一元二次不等式的解法讲解视频,通过具体例子,引导学生理解并归纳出一元二次不等式求解的一般步骤.注:此图片为微课截图,如需使用资源,请于资源库调用.问题1:二次函数与一元二次方程、一元二次不等式解集的对应关系是怎样的?请你完成下面的表格。

师生活动:学生默写,完成之后教师展示,学生互相检查纠错.预设的答案:Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}{x|x≠-b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅(1)函数的角度:一元二次不等式ax2+bx+c>0表示二次函数y=ax2+bx+c的函数值大于0,图象在x轴的上方;一元二次不等式ax2+bx+c>0的解集即二次函数图象在x 轴上方部分的自变量的取值范围.(2)方程的角度:一元二次不等式ax2+bx+c>0的解集的端点值是一元二次方程ax2+bx+c=0的根.设计意图:复习旧知识,并通过默写的形式让师生都了解是否掌握了,为本节课的学习扫清知识障碍。

问题2:求解一元二次不等式的步骤是怎样的?师生活动:学生写出步骤,教师用如下的程序框图呈现.预设的答案:设计意图:本节课重点依然是一元二次不等式的解法,学生需要借助三个“二次”的联系,获得一元二次不等式的一般性解法,从整体上把握所学内容,让学生明确不等式解法,有助于学生良好认知结构的建立和完善,并为后面知识的学习提供帮助.二、新知探究 利用一元二次不等式解决实际问题例1 一家车辆制造厂引进一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (单位:辆)与创造的价值y (单位:元)之间有如下的关系:x x y 2200202+-=.若这家工厂希望在一个星期内利用这条流水线创收60000元以上,则在一个星期内大约应该生产多少辆摩托车?问题3:这个实际问题中蕴含的不等关系是什么?求解不等式的步骤是什么?对于实际问题还需要注意什么?师生活动:学生分析题目,得出一元二次不等式,并求解。

二次函数与一元二次方程优秀教案

二次函数与一元二次方程优秀教案

例 2:已知抛物线 y x2 6x a 的顶点在 x 轴上,则 a =_________;若抛物线与 x 轴有两
1/3
个交点,则 a 的范围是_________;与 x 轴最多只有一个交点,则 a 的范围是_________ 例 3:已知关于 x 的函数 y ax2 x 1 ( a 为常数)
二次函数与一元二次方程
【教学目标】
1.经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的关系。 2.理解二次函数的图象与 x 轴公共点的个数与相应的一元二次方程根的对应关系。 3.进一步体验数形结合的数学思想。
【教学重点】
体会方程与函数之间的联系。
【教学难点】
数形结合的数学思想。
【教学过程】
一、问题情景: 1.一次函数 y 2x 5 与 x 轴的交点坐标是什么?它与一元一次方程 2x 5 0 有什么关
系? 2.解下列方程: ① x2 2x 3 0
② x2 6x 9 0
③ x2 2x 3 0
3.下列三个二次函数:① y x2 2x 3 ② y x2 6x 9 ③ y x2 2x 3 与上述相应的一
10.已知关于 x 的二次函数 y x2 (2m 1)x m2 3m 4
2/3
(1)探究 m 满足什么条件时,二次函数的图象与 x 轴的交点的个数; (2)设二次函数的图象与 x 轴的交点为 A(x1, 0), B(x2 , 0) ,且 x12 x22 5 , 求二次函数的解析式。 四、课外作业 1.已知一元二次方程 x2 px q 1 0 的一根为 2. (1)求 q 关于 p 的关系式; (2)求证:抛物线 y x2 px q 与 x 轴有两个交点; (3)设抛物线 y x2 px q 的顶点为 M ,且与 x 轴相交于 A(x1, 0)、B(x2, 0) 两点,求使△ AMB 面积最小时的抛物线的解析式。 2.已知抛物线 y x2 kx 3 k 2 ( k 为常数,且 k 0 )。

《二次函数与一元二次方程》优秀教案

《二次函数与一元二次方程》优秀教案

二次函数与一元二次方程导学案1一、学习目标:1、经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的关系。

2、理解二次函数的图象与轴公共点的个数和相应的一元二次方程根的对应关 系。

3、进一步体验数形结合的数学方法。

4、重点:二次函数的图象与轴公共点的个数和相应的一元二次方程根的对应 关系。

5、难点:二次函数与一元二次方程关系的应用。

二、知识准备:1、一元二次方程的一般形式:2、怎样判断一元二次方程根的情况?当Δ=ac b 42->0时,一元二次方程a 2bc=0的根的情况是 。

当Δ=ac b 42-=0时,一元二次方程a 2bc=0的根的情况是 。

当Δ=ac b 4-<0时,一元二次方程a 2bc=0的根的情况是 。

思考:当Δ= ≥0时,一元二次方程a 2bc=0有实根。

3、二次函数的一般形式:4怎样求二次函数=a 2bc 与轴的交点坐标?如: =2-2-3三、学习过程: (一)、思考与探索:二次函数=2-2-3与一元二次方程2-2-3=0有怎样的关系?1、从关系式看二次函数=2-2-3成为一元二次方程2-2-3=0的条件是什么?2、反应在图象上:观察二次函数=2-2-3的图象,你能确定一元二次方程2-2-3=0的根吗?3、结论:二次函数=2-2-3的图象与轴有两个公共点 ,那么一元二次方程2-2-3=0有两个不相等的实数根。

(二)思考与探索:(1)观察函数= 2-69与= 2-23的图象与轴的公共点的个数。

(2)判断一元二次方程2-69=0和2-23=0的根的情况。

(3)你能利用图象解释一元二次方程的根的不同情况吗?(三)、归纳提高:一般地,二次函数=a2bc图象与一元二次方程a2bc=0的根有如下关系:1、如果二次函数=a2bc图象与轴有两个交点(m,0)、n,0,那么一元二次方程a2bc=0有实数根1= ,2= 。

2、如果二次函数=a2bc图象与轴有一个交点(m,0),那么一元二次方程a2bc=0有实数根1=2= 。

二次函数与一元二次方程经典教学案+典型例题

二次函数与一元二次方程经典教学案+典型例题

二次函数与一元二次方程教学案经典例题讲解【例1】已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;【例2】关于x 的一元二次方程22(1)2(2)10m x m x ---+=. (1)当m 为何值时,方程有两个不相等的实数根;(2)点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; (3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.【例3】已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.练习一、选择题1.下列哪一个函数,其图形与x 轴有两个交点? ( )A. y =17(x +83)2+2274B. y =17(x -83)2+2274C. y = -17(x -83)2-2274D. y = -17(x +83)2+2274 2.已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:x… 1- 0 1 3 … y…3-131…则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间3. 向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2+bx+c (a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A .第8秒B .第10秒C .第12秒D .第15秒 4. 如图,从地面竖立向上抛出一个小球,小球的高度h (单位:m )与 小球运动时间t (单位:s )之间的关系式为2530t t h -=,那么小球从抛出至回落到地面所需要的时间是:( )(A )6s (B )4s (C )3s (D )2s(第4题) (第5题)5. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米6.如图,等腰Rt △ABC (∠ACB =90º)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )二.填一填7.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③210a b -+>.其中正确结论的个数是 个.8. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.(第17题) (第18题)9.如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过__________秒,四边形APQC 的面积最小.三、解答题10.某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?11. 已知:如图在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根。

二次函数与一元二次方程、一次函数 知识点+例题+练习 (非常好 分类全面)

二次函数与一元二次方程、一次函数  知识点+例题+练习 (非常好 分类全面)

教学主题二次函数与一元二次方程、一次函数教学目标掌握二次函数与一元二次方程、一次函数重要知识点1.二次函数与一元二次方程2.二次函数与一次函数3.教学过程二次函数与一元二次方程知识点一:一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。

(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根,(3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0.(4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。

抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。

练习1:已知:关于x 的函数772--=x kx y 的图象与x 轴总有交点,求k 的取值范围?练习2:已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.题型二 一次函数图象和二次函数图象的交点问题【例2】已知抛物线C 经过(-5,0),(0,25),(1,6)三点,直线l 的函数表达式为32-=x y ;(1)求抛物线的表达式;(2)证明抛物线C 与直线l 无交点;(3)若与l 平行的直线m x y +=2与抛物线C 只有一个公共点P ,求点P 的坐标;练习1:已知二次函数y=﹣x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(﹣1,0),与y 轴的交点坐标为(0,3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.题型三 关于二次函数图象交点的综合问题【例3】已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.练习1:抛物线2y x bx c =-++的部分图象如图所示,则方程02=++-c bx x 的两根为 .练习1:如图所示,二次函数的图象与x轴相交于A、B两点,与y轴相交于点C,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点的坐标和一次函数、二次函数的解析式;(2)根据图象写出使一次函数值大于二次函数值的x的取值范围.练习2:在同一直角坐标系,开口向上的抛物线与坐标轴分别交于A(-1,0),B(3,0),C(0,-3),一次函数图象与二次函数图象交于B、C两点.(1)求一次函数和二次函数的解析式.(2)当自变量x为何值时,两函数的函数值都随x的增大而增大?(3)当自变量x为何值时,一次函数值大于二次函数值.(4)当自变量x为何值时,两函数的函数值的积小于0.练习3:一次函数y=2x+3与二次函数y=ax 2+bx+c 的图象交于A (m ,5)和B (3,n )两点,且点B 是抛物线的顶点.(1)求一次函数和二次函数的表达式; (2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x 为何值时,两个函数的值都随x 的增大而增大,当x 为何值时,二次函数的值大于一次函数的值?类型三:与一次函数和二次函数的交点有关的面积类问题。

九年级数学上册《 二次函数与一元二次方程》教案

九年级数学上册《 二次函数与一元二次方程》教案

九年级数学上册《二次函数与一元二次方程》教案经典题型教学目标知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.教学重点和难点重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学过程设计(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t —5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t -5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s 时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x +9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2++的图像与x轴相交,ax bx c那么交点的横坐标就是一元二次方程2++=0的根.ax bx c(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计二次函数与一元二次方程抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系例题。

二次函数与一元二次方程 优秀教学设计(教案)

二次函数与一元二次方程  优秀教学设计(教案)

二次函数与一元二次方程【教学目标】1.知识与技能:理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点个数、掌握方程与函数间的转化。

2.过程与方法:逐步探索二次函数与一元二次方程之间的关系,函数图象与x轴的交点情况。

由特殊到一般,提高学生的分析、探索、归纳能力。

3.情感态度:培养合作的良好意识和大胆探索数学知识间联系的好习惯,体会到二次函数广泛意义。

【教学重点】探索一次函数图象与一元二次方程的关系,理解抛物线与x轴交点情况。

【教学难点】函数→方程→x轴交点,三者之间的关系的理解与运用。

【教学过程】一、问题导入。

如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线。

如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系。

考虑以下问题:(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如果能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地需要多少时间?2205h t t=-二、探索新知。

1.从上面的问题可以看出,二次函数与一元二次方程有如下关系:函数,当函数值y为某一确定值m时,对应自变量x的值就是方程的根。

特别是y=0时,对应的自变量x的值就是方程的根。

以上关系,反过来也成立。

利用以上关系,可以解决两个方面问题。

其一,当y为某一确定值时,可通过解方程来求出相应的自变量x值;其二,可以利用函数图象来找出相应方程的根。

2.二次函数的图象与x轴的交点情况同一元二次方程的根的情况之间的关系。

观察图中的抛物线与x轴的交点情况,你能得出相应方程的根吗?方程的根是,。

方程的根是。

方程无实数根。

3.归纳总结。

一般地,从二次函数的图象可得如下结论:如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数值是0,因此是方程的一个根。

二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。

二次函数与一元二次方程经典教学案+典型例题

二次函数与一元二次方程经典教学案+典型例题

二次函数与一元二次方程教学案 二次函数与一元二次方程之间的联系1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b ac AB x x a -=-=. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;例:二次函数y=x2-3x+2与x 轴有无交点?若有,请说出交点坐标;若没有,请说明理由: ⑵ 根据图象的位置判断二次函数中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑶ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.总结:⑴一元二次方程02=++c bx ax 的实数根就是对应的二次函数c bx ax y ++=2与x 轴交点的 .⑵二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为21x x 、)二次函数c bx ax y ++=2 与 一元二次方程02=++c bx ax与x 轴有 个交点 ac b 42- 0,方程有 的实数根是 .与x 轴有 个交点这个交点是 点 ac b 42- 0,方程有 的实数根是 .与x 轴有 个交点 ac b 42- 0,方程 实数根.⑶二次函数c bx ax y ++=2与y 轴交点坐标是 .经典例题讲解【例1】已知:关于x 的方程23(1)230mx m x m --+-=.⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称.①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程教学案1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况): 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; 例:二次函数y=x2-3x+2与x 轴有无交点?若有,请说出交点坐标;若没有,请说明理由:⑵ 根据图象的位置判断二次函数中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑶ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑴一元二次方程02=++c bx ax 的实数根就是对应的二次函数c bx ax y ++=2与x 轴交点的 .⑵二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为21x x 、)⑶二次函数c bx ax y ++=2与y 轴交点坐标是 . 【例1】已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。

由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。

第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。

第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。

事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点(1,0)。

根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。

于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果.【解析】解:(1)分两种情况:当0m =时,原方程化为033=-x ,解得1x =, (不要遗漏) ∴当0m =,原方程有实数根.当0≠m 时,原方程为关于x 的一元二次方程,∵()()()222[31]4236930m m m m m m =----=-+=-△≥.∴原方程有两个实数根. (如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了)综上所述,m 取任何实数时,方程总有实数根.(2)①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称,∴0)1(3=-m .(关于Y 轴对称的二次函数一次项系数一定为0) ∴1=m .∴抛物线的解析式为121-=x y .②∵()()221212210y y x x x -=---=-≥,(判断大小直接做差) ∴12y y ≥(当且仅当1x =时,等号成立). (3)由②知,当1x =时,120y y ==.∴1y 、2y 的图象都经过()1,0. (很重要,要对那个等号有敏锐的感觉) ∵对于x 的同一个值,132y y y ≥≥, ∴23y ax bx c =++的图象必经过()1,0. 又∵23y ax bx c =++经过()5,0-,∴()()231545y a x x ax ax a =-+=+-. (巧妙的将表达式化成两点式,避免繁琐计算)设)22(54223---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=.∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立, ∴320y y -≥,图7∴2(42)(25)0y ax a x a =+-+-≥. 又根据1y 、2y 的图象可得 0a >, ∴24(25)(42)04a a a y a---=最小≥.(a>0时,顶点纵坐标就是函数的最小值)∴2(42)4(25)0a a a ---≤. ∴2(31)0a -≤. 而2(31)0a -≥.只有013=-a ,解得13a =. ∴抛物线的解析式为35343123-+=x x y . 【例2】关于x 的一元二次方程22(1)2(2)10m x m x ---+=.(1)当m 为何值时,方程有两个不相等的实数根;(2)点()11A --,是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式;(3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。

第二问给点求解析式,比较简单。

值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b 以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b 的形式并未包括斜率不存在即垂直于x 轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.【解析】:(1)由题意得[]22224(1)0m m ∆=---->()解得54m < 210m -≠解得1m ≠± 当54m <且1m ≠±时,方程有两个不相等的实数根. (2)由题意得212(2)11m m -+-+=-解得31m m =-=,(舍) (始终牢记二次项系数不为0) 28101y x x =++ (3)抛物线的对称轴是58x =由题意得114B ⎛⎫-- ⎪⎝⎭, (关于对称轴对称的点的性质要掌握) 14x =-与抛物线有且只有一个交点B (这种情况考试中容易遗漏)另设过点B 的直线y kx b =+(0k ≠)把114B ⎛⎫-- ⎪⎝⎭,代入y kx b =+,得14k b -+=-,114b k =- 114y kx k =+-28101114y x x y kx k ⎧=++⎪⎨=+-⎪⎩ 整理得218(10)204x k x k +--+=有且只有一个交点,21(10)48(2)04k k ∆=--⨯⨯-+=解得6k = 162y x =+综上,与抛物线有且只有一个交点B 的直线的解析式有14x =-,162y x =+【例3】已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值. 【例4】已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围. 【思路分析】去年中考原题,相信有些同学已经做过了.第一问自不必说,判别式大于0加上k 为正整数的条件求k 很简单.第二问要分情况讨论当k 取何值时方程有整数根,一个个代进去看就是了,平移倒是不难,向下平移就是整个表达式减去8.但是注意第三问,函数关于对称轴的翻折,旋转问题也是比较容易在中考中出现的问题,一定要熟练掌握关于对称轴翻折之后函数哪些地方发生了变化,哪些地方没有变.然后利用画图解决问题.解:(1)由题意得,168(1)0k ∆=--≥. ∴3k ≤. ∵k 为正整数, ∴123k =,,.(2)当1k =时,方程22410x x k ++-=有一个根为零; 当2k =时,方程22410x x k ++-=无整数根;当3k =时,方程22410x x k ++-=有两个非零的整数根. 综上所述,1k =和2k =不合题意,舍去;3k =符合题意.当3k =时,二次函数为2242y x x =++,把它的图象向下平移8个单位得到的图象的解析式为2246y x x =+-.(3)设二次函数2246y x x =+-的图象与x 轴交于A B 、两点,则(30)A -,,(10)B ,. 依题意翻折后的图象如图所示.当直线12y x b =+经过A 点时,可得32b =;当直线12y x b =+经过B 点时,可得12b =-.由图象可知,符合题意的(3)b b <的取值范围为1322b -<<。

相关文档
最新文档