数控车床主轴箱设计
数控机床主轴箱设计
数控机床主轴箱设计毕业设计(论文)任务书摘要主轴箱为数控机床的主要传动系统,它包括电动机、传动系统和主轴部件,它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。
本设计采用北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。
通过给定的技术参数来初步设定部分轴、齿轮等单元的结构尺寸,对传动系统进行理论力学分析,精确计算选定尺寸及材料,由电机转速传动至进给系统的参数反馈,校核所选定主轴和转动轴尺寸的合理性完成整体结构设计,最后对齿轮进行了验算以及V型带的、离合器的选择与计算。
通过本次设计,使数控机床结构更加紧凑,性能更加优越,生产加工更加精密,有利于改善数控机床的性能,使得产品的加工更加高效。
关键词:数控机床;主轴箱;交流调速电动机;BESK-8AbstractFor the spindle box of NC machine tool main transmission system which comprises a motor, the transmission system and the spindle, it with ordinary lathe spindle box is relatively simple, only two or three stage gear transmission system, it is mainly used to expand the range of stepless speed regulation of motor, to meet a certain constant power, and speed problems.This design uses the Beijing CNC equipment factory of type BESK-8 AC spindle motor, maximum speed is 4500r / min. Through the given technical parameter to set an initial portion of the shaft, gear unit size, the transmission system of theoretical mechanics analysis, accurate calculation of the selected size and material, the motor speed drive to the feed system parameters feedback, check the selected spindle and rotary shaft size is reasonable to complete the overall structure design, assembly drawing and parts graph.Through the design of the NC machine tool, compact structure, superior performance, production and processing of more sophisticated, is helpful for improving the performance of CNC machine tools, making the product processing more efficient.Key words: NC machine tool; spindle box; AC motor; BESK-8东北大学继续教育学院毕业设计(论文)用纸目录摘要 (Ⅰ)Abstract (Ⅱ)1.绪论 (1)1.1研究的目的和意义 (1)2.主轴驱动源的选择 (2)2.1直流主轴驱动系统的特点 (2)2.2 交流主轴驱动系统的特点 (3)2.3主轴驱动电机的确定 (4)3.主传动设计 (5)3.1转速图的拟定 (5)3.2主轴转速的确定 (6)3.3传动级数的确定 (7)3.3.1主传动系数的参数 (7)3.3.2主传动级数的确定 (8)3.3.3分级变速箱的设计计算 (11)4.传动系统零件的设计 (17)4.1齿轮的验算 (17)4.2 V型带的选择 (19)4.3离合器的选择与计算 (21)总结 (24)参考文献 (25)1.绪论1.1研究的目的和意义数控机床主传动系统主要包括电动机、传动系统和主轴部件,它与普通机床的主传动系统相比在结构上比较简单,这是因为变速功能全部或大部分由主轴电动机的无级调速来承担,剩去了复杂的齿轮变速机构,有些只有二级或三级齿轮变速系统用以扩大电动机无级调速的范围。
(完整版)数控车床主轴设计
绪论随着市场上产品更新换代的加快和对零件精度提出更高的要求,传统机床已不能满足要求。
数控机床由于众多的优点已成为现代机床发展的主流方向。
它的发展代表了一个国家设计、制造的水平,在国内外都受到高度重视。
现代数控机床是信息集成和系统自动化的基础设备,它集高效率、高精度、高柔性于一身,具有加工精度高、生产效率高、自动化程度高、对加工对象的适应强等优点。
实现加工机床及生产过程的数控化,已经成为当今制造业的发展方向。
可以说,机械制造竞争的实质就是数控技术的竞争。
本课题的目的和意义在于通过设计中运用所学的基础课、技术基础课和专业课的理论知识,生产实习和实验等实践知识,达到巩固、加深和扩大所学知识的目的。
通过设计分析比较机床的某些典型机构,进行选择和改进,学习构造设计,进行设计、计算和编写技术文件,达到学习设计步骤和方法的目的。
通过设计学习查阅有关设计手册、设计标准和资料,达到积累设计知识和提高设计能力的目的。
通过设计获得设计工作的基本技能的训练,提高分析和解决工程技术问题的能力,并为进行一般机械的设计创造一定的条件。
一、设计题目及参数1.1 题目本设计的题目是数控车床的主轴组件的设计。
它主要由主轴箱,主轴,电动机,主轴脉冲发生器等组成。
我主要设计的是主轴部分。
主轴是加工中心的关键部位,其结构优劣对加工中心的性能有很大的影响,因此,在设计的过程中要多加注意。
主轴前后的受力不同,故要选用不同的轴承。
1.2参数床身回转空间400mm尾架顶尖与主轴端面距离1000mm主轴卡盘外径Φ200mm最大加工直径Φ600mm棒料作业能力50~63mm主轴前轴承内和110~130mm最大扭矩480N·m二、主轴的要求及结构2.1主轴的要求2.1.1旋转精度主轴的旋转精度是指装配后,在无载荷,低转速的条件下,主轴前端工件或刀具部位的径向跳动和轴向跳动。
主轴组件的旋转精度主要取决于各主要件,如主轴、轴承、箱体孔的的制造,装配和调整精度。
CA6150车床主轴箱设计(有全套图纸)(可编辑)
CA6150车床主轴箱设计(有全套图纸)全套图纸或资料,联系q 174320523目录概述主运动的方案选择与主运动的设计确定齿轮齿数选择电动机皮带轮的设计计算传动装置的运动和运动参数的计算主轴调速系统的选择计算主轴刚度的校核一、概述主传动系统是用来实现机床主运动的传动系统,它应具有一定的转速(速度)和一定的变速范围,以便采用不同材料的刀具,加工不同的材料,不同尺寸,不同要求的工件,并能方便的实现运动的开停,变速,换向和制动等。
数控机床主传动系统主要包括电动机、传动系统和主轴部件,它与普通机床的主传动系统相比在结构上比较简单,这是因为变速功能全部或大部分由主轴电动机的无级调速来承担,剩去了复杂的齿轮变速机构,有些只有二级或三级齿轮变速系统用以扩大电动机无级调速的范围。
1.1数控机床主传动系统的特点与普通机床比较,数控机床主传动系统具有下列特点。
转速高、功率大。
它能使数控机床进行大功率切削和高速切削,实现高效率加工。
变速范围宽。
数控机床的主传动系统有较宽的调速范围,一般Ra100,以保证加工时能选用合理的切削用量,从而获得最佳的生产率、加工精度和表面质量。
主轴变速迅速可靠,数控机床的变速是按照控制指令自动进行的,因此变速机构必须适应自动操作的要求。
由于直流和交流主轴电动机的调速系统日趋完善,所以不仅能够方便地实现宽范围无级变速,而且减少了中间传递环节,提高了变速控制的可靠性。
主轴组件的耐磨性高,使传动系统具有良好的精度保持性。
凡有机械摩擦的部位,如轴承、锥孔等都有足够的硬度,轴承处还有良好的润滑。
1.2 主传动系统的设计要求①主轴具有一定的转速和足够的转速范围、转速级数,能够实现运动的开停、变速、换向和制动,以满足机床的运动要求。
②主电机具有足够的功率,全部机构和元件具有足够的强度和刚度,以满足机床的动力要求。
③主传动的有关结构,特别是主轴组件要有足够高的精度、抗震性,热变形和噪声要小,传动效率高,以满足机床的工作性能要求。
高速精密数控车床主轴箱多目标优化设计
2} } } j
段驯德等 : f 岛遮 柑 密 数 控 味 主轴 箱 多 同怀 优 化 设 计
( a ) 方案 1
( b ) 方案 2
( C ) 方案 3 图 4 主 轴 箱 结构 方 案 表 2 主 轴 前 端 跳 动 值
( d ) 方案 4
统综合 性 能 的影 响 程度 , 综合 利用 多种 方 法从 多个 非 劣解 中找 到优 化参 数 的最优 组合 , 达 到主轴 系统综
合 性 能更 优 。本文 以 A D G M1 5高 速精 密数 控 车床 主轴 系统 为 例 , 探 索 把 有 限元 法 和模 糊 综合 评 判法 相 结合 , 在非 劣解 的基 础上 进一 步对 多 目标 进行模 糊 排序 , 最 终得 到 主轴箱 最优 方 案 。实现 了 主轴箱 的多 目标优 化 , 提高 了其 综合 性能 。
1 / 3
的功率 为 1 2 . 5 k W, 并假 设 电机 损 失 的 功率 全 部 转 化 为 热 , 其 中 电机 定 子 占 2 / 3 , 电机 转 子 占 。该 主 轴单 元 前 端 支 承 均 为 角 接 触 球 轴 承 , 型号分别 为 X C 7 0 1 8和 X C 7 0 1 5 , 预 紧 力 分 别 为 2 4 5 0 N、 1 0 8 0 N。前 轴 承还 通 过环 绕 轴 承 座 外 表 面 的冷 却 水 冷 却 , 冷却 水 流 量 为 7 . 2×1 0 I 4 I l l / s ,
第 3 5卷 第 2期
2 0 1 4 年 4 川
河 南 科 技 大 学 学 报 :自 然 科 学 版
J o u r na l o f He na n Un i v e r s i t y o f S c i e nc e a n d Te c hn o l o g y: Na t u r a l S c i e n c e
数控车床主传动机构设计方案
数控车床主传动机构设计方案数控车床的主传动机构是数控车床最基本的组成部分之一,它的设计方案的合理与否直接影响着数控车床的性能和加工精度。
主传动机构一般由主轴、主轴箱、主动轮、变速箱等组成,下面将详细介绍数控车床主传动机构设计方案。
数控车床主轴是主传动机构中最重要的部分之一,它的设计关系到车床的加工能力和可靠性。
主轴的设计应考虑以下几个方面:首先是选用合适的轴材料,一般情况下,主轴选用优质合金钢,以保证其高强度和刚性;其次是确定主轴的强度和刚度,主轴的强度应能满足车削加工的要求,同时要保证主轴的刚度,使得车床在高速运转时不产生振动;再次是确定主轴箱的布置形式和主轴箱的结构形式,主轴箱的布置形式应符合数控车床的空间布局要求,主轴箱的结构形式应具有较好的刚度和阻尼特性;最后是确定主轴的传动方式,一般情况下,数控车床采用直接驱动主轴的方式,以提高传动效率和传动精度。
主动轮是数控车床主传动机构中的重要部分之一,它的设计方案应考虑主动轮的直径、厚度和材料等因素。
主动轮的直径和厚度决定了主轴的传动比和转矩传递能力,一般情况下,主动轮的直径应根据车床的加工要求确定,直径较小时适用于高速车削,直径较大时适用于低速车削;主动轮的厚度应适当选取,以保证传动的可靠性和稳定性;主动轮的材料一般选用强度高、刚度好的合金钢,以满足高速转动和大转矩传递的要求。
变速箱是数控车床主传动机构中的重要部分之一,它的设计方案应考虑变速箱的传动形式和传动比等因素。
变速箱的传动形式一般分为齿轮传动和皮带传动两种,齿轮传动具有传动效率高、灵活性好的特点,适用于大功率和高精度的车床;皮带传动具有结构简单、噪音低的特点,适用于小功率和低精度的车床;变速箱的传动比应根据车床的车削范围和精度要求确定,一般情况下,变速箱应具有大的传动比范围和细微的传动调整。
总之,数控车床主传动机构的设计方案应综合考虑主轴、主动轮、变速箱等部分的结构设计和传动形式,以保证数控车床的加工能力和加工精度。
车床主轴箱设计毕业设计
编号潍坊学院毕业设计技术报告课题名称:车床主轴箱设计学生姓名:学号:专业:机械设计制造及其自动化班级:机制本二指导教师:2015 年06月摘要CA6140作为主要的车削加工车床,被广泛的应用于机械加工行业。
随着经济的发展以及对国外先机技术的学习和引进,我国的车床行业在世界上起到了举足轻重的作用。
主轴箱是车床中重要的组成部分,整个车床的动力传动就是由它控制的。
主轴箱直接影响着车床的工作效率,由此可知主轴箱的重要程度。
本设计是主要针对CA6140车床主轴箱的设计,车床主轴箱是一个比较复杂的传动部件。
根据当前实际情况,考虑到经济性和效率性等相关因素,对车床主轴箱进行合理构思构想, 最终完成对车床主轴箱的设计。
设计的内容主要有参数的确定,拟定传动与变速的结构方案和传动系统图,传动设计,传动件的估算和校核,各部件结构设计和主轴组件的校核几个部分部分来进行设计的。
以齿轮、带轮、皮带轮、轴承、等的参数设计为重点,并利用制图软件进行了零件的设计和处理。
关键词:CA6140车床主轴箱传动零件AbstractCA6140 as the main turning lathe, CA6140 is widely used in mechanical processing industry. With the development of economy as well as to the learning and introducing foreign advantage technology, lathe industry in China has played a pivotal role in the world.Spindle box is the important part of the lathe and it controlled the power transmission of the whole lathe.Spindle box directly affects the work efficiency of machine tool, thus the importance of the spindle box is goes without saying.This design is mainly for CA6140 lathe spindle box design,and lathe spindle box is a more complicated driving part.According to the current actual situation,considering the factors related to economy and efficiency, to reasonable design idea of lathe spindle box, finally completed the design of lathe spindle box.The major design content including the determination of the parameters, formulate transmission and variable structure scheme and system diagram,transmission design,the estimate and check of transmission parts, the design of the components structure and the check the spindle component. Focus on the parameter design of gear, belt pulley, bearing and so on, and use the graphics software for designing and processing of the parts.Key words: CA6140lathe; spindle box; transmission; parts目录摘要 (I)Abstract (II)第一章绪论 (1)1.1车床的发展及主轴箱的作用 (1)1.1.1车床的发展历史 (1)1.1.2主轴箱的作用 (2)1.2主传动系统的设计要求 (3)第二章传动设计 (4)2.1主传动方案设计 (4)2.2选择传动结构式和结构网 (4)2.2.1确定传动组及传动副的数目 (4)2.2.2传动式的拟定 (4)2.2.3结构式的拟定 (4)2.3转速图的拟定 (5)2.4传动轴的设计 (5)2.5主轴箱的箱体 (6)第三章动力设计 (7)3.1确定各轴转速及检查 (7)3.2带传动设计 (8)3.3齿轮模数的确定以及模数的校核 (10)3.4齿轮强度校核 (12)3.5主轴挠度的计算和校核 (15)第四章离合器的选择及其计算 (17)第五章传动件验算 (19)5.1轴的强度校核 (19)5.2验算花键键挤压应力 (19)5.3滚动轴承校核 (20)5.4齿轮的强度计算 (21)5.5计算跨距 (22)第六章结论 (24)参考文献 (25)致谢 (26)第一章绪论1.1车床的发展及主轴箱的作用1.1.1车床的发展历史车床行业是装备制造业的基础,是制造业使用最广的一类机床,同样也是一个具有战略性意义的产业,始终在国民经济中占有非常重要的位置。
JCK6136数控车床主轴箱和床身部件设计
JCK6136数控车床主轴箱和床身部件设计数控车床是一种精密加工设备,主要用于加工各种复杂形状的零件。
数控车床主轴箱和床身部件的设计是数控车床整体性能和精度的重要组成部分。
在进行主轴箱和床身部件设计时,需考虑工作负荷、材料选择、结构布局等因素。
本文将对主轴箱和床身部件设计进行探讨,以达到提高数控车床加工精度和效率的目的。
首先,主轴箱的设计是数控车床关键部件之一、主轴箱的主要功能是提供主轴旋转和传动动力。
在进行主轴箱设计时,需要考虑的主要因素包括承载能力、刚性和传动精度。
主轴箱的承载能力直接影响到数控车床可加工的工件大小和重量。
通过合理布局和优化设计,可以提高主轴箱的刚性,降低振动和噪音,提高加工精度。
此外,传动装置的选择也是主轴箱设计的关键,可以选择齿轮传动、带传动或直接驱动等形式,根据具体需求选择合适的传动方式。
其次,床身部件的设计是数控车床整体结构的基础。
床身部件主要负责支撑和稳定主轴箱、刀架和工件,承载工作负荷和副轴的运动。
床身部件的设计需要考虑床身材料的选择、结构布局的合理性和刚性优化。
通常情况下,数控车床床身采用铸铁或整体钢板焊接结构。
铸铁具有良好的刚性和稳定性,能够有效降低振动和噪音;整体钢板焊接结构则具有较高的强度和刚性,适用于大型数控车床。
在床身部件设计中,还需要考虑导轨的选择和布局,以保证刀架和工件的平稳运动和高精度加工。
此外,数控车床主轴箱和床身部件设计中还需考虑工作环境和加工要求。
在特殊工作环境下,如高温、潮湿或腐蚀性气体环境,需要选用耐热、防腐性能良好的材料,并进行相应的密封和防护措施。
同时,根据不同的加工要求,还需考虑加工刚度、吸振性能和刀具更换方便性等方面的设计。
此外,还需要结合数控系统要求,进行安装和布线的设计,以保证数控车床的正常工作和数据传输。
综上所述,数控车床主轴箱和床身部件设计是数控车床整体性能和精度的关键因素。
在进行设计时,需考虑工作负荷、材料选择、结构布局等因素,并兼顾工作环境和加工要求。
ck6150数控车床主轴箱设计(含全套cad图纸) .
毕业设计(论文)任务书系部:专业:学生姓名:学号:设计(论文)题目:CK6150数控车床主轴箱设计起迄日期: 20**年3月9日~ 6月14日设计(论文)地点:指导教师:专业负责人:发任务书日期:20** 年2月26日毕业设计(论文)任务书1.本毕业设计(论文)课题应达到的目的:通过这次毕业设计使学生初步掌握机床设计和机械零件设计的一般方法,学会查阅技术文献。
掌握技术文件编写的格式。
2.本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):1、课题任务的内容:进行CK6150数控车床主轴箱设计。
2、课题任务的要求:该主轴箱设计完成以后能够实现主轴12档转速,最低转速70 rpm、最高转速1400rpm,半自动换档变速。
机床主轴中心高为250mm。
5.本毕业设计(论文)课题工作进度计划:起迄日期工作内容20**年3月9日~ 3月15日3月16日~ 3月22日3月23日~ 4月5日4月6日~ 4月19日4月20日~ 4月30日5月1日~5月17日5月17日~ 5月30日6月1日~ 6月7日6月8日~ 6月14日熟悉课题,调研,确定设计方案,完成开题报告。
完成外文翻译。
总体设计,方案论证。
完成部件设计初稿。
部件设计定稿。
完成零件设计初稿。
零件设计定稿。
完成说明书初稿毕业设计定稿,论文答辩所在专业审查意见:负责人:20**年月日系部意见:系部主任:20**年月日毕业设计(论文)开题报告学生姓名:学号:专业:设计(论文)题目:CK6150数控车床主轴箱设计指导教师:毕业设计(论文)开题报告1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述:文献综述摘要本文主要介绍了数控机床的特点、组成、分类、应用范围及其对ck6150数控车床主轴箱进行的研究分析,论述了我国数控机床发展的过去、现状,对数控机床的发展趋势进行了探讨, 提出了我国数控机床发展的对策。
数控车床主轴设计
数控车床主轴系统分析报告学院:机械工程学院班级:09创新一班姓名:学号:*******xxxMJ-50数控车床主轴结构下图为MJ-50数控车床主轴结构。
交流主轴电动机通过带轮15把运动传给主轴7 。
主轴前支承由一个双列圆柱滚子轴承1 1和一对角接触球轴承1 0组成,轴承11用来承受径向载荷,两个角接触球轴承分别承受两个方向的轴向载荷,另外还承受径向载荷。
松开螺母8的锁紧螺钉,就可用螺母来调整前支承轴承的间隙。
主轴的后支承为双列圆柱滚子轴承14,轴承间隙由螺母1和螺母6来调整。
主轴的支承形式为前端定位,主轴受热膨胀向后伸长,前后支承所用双列圆柱滚子轴承的支承刚性好,允许的极限转速高。
前支承中的角接触轴承能承受较大的轴向载荷,且允许的极限转速高。
主轴所采用的支承结构适宜高速大载荷的需要。
主轴的运动经过同步带轮16、同步带轮3以及同步带2带动脉冲编码器4,使其与主轴同速运转。
脉冲编码器用螺钉5固定在主轴箱体9上。
1、主传动系统的传动方式:机床主传动系统可分为无极变速传动和有级变速变速传动。
与普通机床相比,数控车床的主传动采用交、直流主轴调速电动机,电动机调速范围大,并可无级调速,使主轴箱结构大为简化。
为了适应不同的加工需要,数控车床的主传动系统有一下三种传动方式:1.1由电机直接驱动:主轴电机与主轴通过联轴器直接连接,或采用内装式主轴电动机直接驱动,如下图a所示。
采用直接驱动大大简化了主轴箱结构,能有效提高主轴刚度。
这种传动的特点是主轴转速的变化、出去转矩与电机的特性完全一致。
但由于主轴的输出功率和转矩特性直接决定于主轴电动机的性能,因而使这种变速传动的应用受到了一定的限制。
1.2采用定比传动:主轴电动机经定比传动传递给主轴,如下图b所示。
定比传动可采用带传动或齿轮传动,带传动具有传动噪声小、振动小的有点,一般应用在中小型数控车床上。
采用定比传动扩大了直接驱动的应用范围,即在一定程度上能满足主轴功率与转矩的要求,但其变速范围仍与电动机的调速范围相同。
数控车床主轴箱设计
数控车床主轴箱设计数控车床主轴箱设计数控车床是现代机械加工的重要工具之一,其主要工作原理是利用控制器控制各轴运动,实现零件的加工。
而数控车床主轴箱则是数控车床的关键部件之一,其设计的优劣直接影响着数控车床的精度和稳定性。
本文将详细介绍数控车床主轴箱的设计要点。
1.主轴箱结构设计数控车床主轴箱是由主轴、轴承、气动元件、传动系统、冷却系统等组成。
主轴箱的设计最重要的是结构设计,其结构应该具有高强度、低振动、高刚度和较好的密封性,以确保数控车床的高精度加工。
主轴的轴承应使用高精度的进口轴承,以保证数控车床的高速、高精度运行。
传动系统应采用齿轮蜗杆传动或齿轮传动,并配以足够的冷却系统,以保证传动系统的稳定性和寿命。
气动元件选择优质的气缸、气动阀等,以确保气动系统的可靠性和精度。
同时,主轴箱中的气路设计要合理,以实现气路的快速响应和准确控制。
2.润滑系统设计数控车床主轴箱中的润滑系统是关键的部件之一。
优秀的润滑系统应具有高效的冷却和润滑功能,以确保主轴和轴承的寿命和稳定性。
在润滑系统中,应选用高精度噴雾量的润滑泵,以确保油膜的均匀分布。
同时,润滑泵的位置和管路的设计要合理,以实现润滑油的流速和压力的稳定性。
对于数控车床主轴箱的高速加工,应使用高速润滑油,以防止润滑油的泡沫化和变质。
3.冷却系统设计数控车床主轴箱中的冷却系统同样是关键的部件之一。
冷却系统既可起到冷却主轴箱并维持其温度均衡的作用,也可以起到冷却砂轮并保持其工作性能的作用。
在冷却系统中,应选用高效的冷却器和过滤器,以保证冷却液的干净和清新。
管路设计应合理,管径大小要适当,以确保冷却液的畅通和流量的稳定性。
在使用过程中,应根据冷却液的性质和使用情况进行定期更换和清洗,以保证冷却液的质量和使用寿命。
4.加工精度设计对于数控车床主轴箱的加工精度设计,应考虑数控系统的实际需求和主轴箱结构的特点,以达到最优的精度、效率和稳定性。
在加工精度设计中,应严格控制主轴箱的几何尺寸和位置精度,以保证主轴箱与刀具的精确定位。
SSCK20A数控车床主轴和箱体加工编程
SSCK20A数控车床主轴和箱体加工编程随着社会的进步,制造业的发展越来越迅速,数控技术和数控装备是制造工业现代化的重要基础。
这个基础是否牢固直接影响到一个国家的经济发展和综合国力,关系到一个国家的战略地位。
因此,世界上各工业发达国家均采取重大措施来发展自己的数控技术及其产业。
在我国,数控技术与装备的发展亦得到了高度重视,近年来取得了相当大的进步。
数控机床发展很快,作为数控机床的重要部分,主轴箱的设计更新也越来越快。
我设计的是SSCK20A数控机床主轴和主轴箱箱体加工工艺以及数控编程,其中涉及了主轴和箱体加工中刀具、量具、毛坯、定位基准等的选择。
设计图为两张零号图纸,一张一号图纸,两张二号图纸。
第一章绪论随着社会的进步,制造业的发展越来越迅速,数控技术和数控装备是制造工业现代化的重要基础。
这个基础是否牢固直接影响到一个国家的经济发展和综合国力,关系到一个国家的战略地位。
因此,世界上各工业发达国家均采取重大措施来发展自己的数控技术及其产业。
在我国,数控技术与装备的发展亦得到了高度重视,近年来取得了相当大的进步。
现在不仅能够生产车、钻、镗、铣类及磨削和其它类型的数控机床,而且还可以生产各种加工中心、车削中心、柔性制造单元、组合柔性制造单元等高性能、高自动化的数控机床和柔性制造系统。
我国数控机床的品种已有200多个,产量已达到年产10000台的水平。
特别是在通用微机数控领域,以PC平台为基础的国产数控系统,已经走在了世界前列。
但是,我国在数控技术研究和产业发展方面亦存在不少问题,特别是在技术创新能力、商品化进程、市场占有率等方面情况尤为突出。
我的设计题目为SSCK20A数控机床主轴和主轴箱箱体数控加工工艺分析及数控加工程序编制,通过对数控机床的箱体设计来加深自己对数控机床的了解,为以后自己进入机械厂这样的工作单位打下基础。
由于我所了解的知识有限,所以我的设计难免有缺陷。
在本次设计中,有导师,同学的很大帮助,对此非常感谢。
CK7815型数控车床主轴部件结构图
可能是主轴轴承磨损或主轴轴向间隙过大。应更换磨损的轴承,调整主轴的轴向间隙。
主轴重复定位误差大
可能是传动系统磨损或电气控制系统故障。应检查传动系统和电气控制系统,进行必要的维修和调整 。
其他常见故障与排除方法
主轴无法启动
可能是电源故障或主轴电机损坏。应检查电 源和电机,修复或更换损坏的部件。
如果主轴精度超差,需要进行修复或 更换相关部件,以确保加工精度。
根据检测结果,调整主轴轴承和传动 系统的间隙,以减小误差。
05 常见故障与排除方法
主轴轴承故障与排除方法
轴承过热
可能是轴承润滑不足或轴承座配合过 紧导致。应检查轴承润滑情况,确保 润滑良好,同时检查轴承座配合是否 合适。
轴承噪声过大
行。
更换后,检查主轴的旋转精度和 平衡性,确保满足加工要求。
主轴传动系统的定期检查
定期检查主轴传动带、齿轮和 链条的磨损情况,及时更换损 坏的部件。
检查主轴电机与主轴之间的连 接是否紧固,确保无松动现象。
检查主轴传动箱内的润滑油是 否充足,必要时进行补充或更 换。
主轴精度的定期检测与调整
使用专业的检测工具,定期检测主轴 的径向和轴向跳动误差。
和维护。
主轴轴承结构
主轴轴承是数控车床主轴部件 的核心部分,其作用是支撑主
轴并承受切削力。
主轴轴承通常采用滚动轴承或 滑动轴承,具有高精度和低摩 擦的特性,以确保主轴的高速
回转和精确控制。
滚动轴承由内圈、外圈和滚动 体组成,滑动轴承则由轴承座 和轴瓦组成。
主轴轴承的润滑和冷却对于保 持轴承性能和延长使用寿命至 关重要。
可能是轴承损坏或轴承座固定螺栓松 动。应更换损坏的轴承,并拧紧轴承 座固定螺栓。
QKA1219数控管螺纹车床主轴箱传动毕业设计
第一章绪论1.1课题背景及意义1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。
它与人类在农业、工业社会中创造的那些只是增强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。
6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。
我国目前机床总量380余万台,而其中数控机床总数只有11.34万台,即我国机床数控化率不到3%。
近10年来,我国数控机床年产量约为0.6~0.8万台,年产值约为18亿元。
机床的年产量数控化率为6%。
我国机床役龄10年以上的占60%以上;10年以下的机床中,自动/半自动机床不到20%,FMC/FMS等自动化生产线更屈指可数(美国和日本自动和半自动机床占60%以上)。
可见我们的大多数制造行业和企业的生产、加工装备绝大数是传统的机床,而且半数以上是役龄在10年以上的旧机床。
用这种装备加工出来的产品普遍存在质量差、品种少、档次低、成本高、供货期长,从而在国际、国内市场上缺乏竞争力,直接影响一个企业的产品、市场、效益,影响企业的生存和发展。
所以必须大力提高机床的数控化率。
在美国、日本和德国等发达国家,它们的机床改造作为新的经济增长行业,生意盎然,正处在黄金时代。
由于机床以及技术的不断进步,机床改造是个"永恒"的课题。
我国的机床改造业,也从老的行业进入到以数控技术为主的新的行业。
在美国、日本、德国,用数控技术改造机床和生产线具有广阔的市场,已形成了机床和生产线数控改造的新的行业。
在美国,机床改造业称为机床再生(Remanufacturing)业。
从事再生业的著名公司有:Bertsche工程公司、ayton机床公司、Devlieg-Bullavd(得宝)服务集团、US设备公司等。
美国得宝公司已在中国开办公司。
在日本,机床改造业称为机床改装(Retrofitting)业。
从事改装业的著名公司有:大隈工程集团、岗三机械公司、千代田工机公司、野崎工程公司、滨田工程公司、山本工程公司等。
数控车床主轴组件设计
数控车床主轴组件设计数控车床主轴组件是数控机床中最基本、最重要的部件之一。
其主要作用是将旋转电机的动力转化为刀具的相对运动。
主轴组件的设计质量直接影响到机床的加工精度、切削效率和使用寿命。
因此,在数控车床的设计中,主轴组件的设计显得尤为重要。
本文将从设计要求、主要结构、材料选用、加工工艺等方面详细阐述数控车床主轴组件的设计。
一、设计要求在数控车床主轴组件设计过程中,需要考虑以下一些因素:1. 总体尺寸:根据数控车床的使用场景,确定主轴组件的长度、直径等尺寸,并保证其能够安装到机床上并协调运动。
2. 刚性要求:数控车床需要进行高精度的加工,因此主轴组件的刚性需要足够高,能够承受切削力和切削热等负载,保证刀具的精度和寿命。
3. 精度要求:主轴组件的精度取决于各个部件的加工质量和装配精度。
不同的加工要求对主轴组件精度的要求不尽相同,因此在设计过程中需要根据实际需求设定相应的精度标准。
4. 特殊要求:根据数控车床的特殊加工要求,主轴组件可能还需要具备高温抗性、低噪音、低振动、耐腐蚀等特殊性能,因此需要针对实际需求进行定制化设计。
二、主要结构数控车床主轴组件主要由主轴箱、主轴、轴承、传动装置、调速装置和夹具等组成。
1. 主轴箱:主要承载整个主轴组件,并连接到车床上。
主轴箱需要具备足够的刚性和稳定性,防止在高速运转时产生振动和因热膨胀引起的变形。
2. 主轴:作为主轴组件的核心部件,需要具备高强度、高精度和高刚性。
通常采用高强度钢材或工程塑料材料制造,以确保其能承受高速运转和不同方向向心力的作用。
3. 轴承:轴承承受主轴的径向和轴向力,并保证主轴组件的转动平稳和精度稳定。
常用的轴承有滚动轴承和滑动轴承两种,选择时需要根据应用场景和对精度的要求进行综合考虑。
4. 传动装置:传动装置将电动机的旋转动力传递到主轴上,通常采用皮带传动、齿轮传动和磁力传动三种方式。
5. 调速装置:调速装置是保证数控车床能够满足不同加工需要的关键部分。
车床主轴箱课程设计综述
燕山大学课程设计说明书题目:CK6140数控车床主传动系统设计学院(系):机械工程学院机制系年级专业: 08级机制2学号: 080101010127学生姓名:吕伟彪指导教师:王敏婷李宇鹏目录第1章概述.................................................... (1)1.1 设计要求 (1)第2章主传动的设计 (2)2.1计算转速的确定 (2)2.2变频调速电机的选择 (2)2.3转速图的拟定 (2)2.3.1传动比的计算.......................................... (2)2.3.2参数确定…………………………………………. ..22.3.3 主轴箱传动机构简图 (3)2.3.4 转速图拟定 (3)2.4传动轴的估算 (3)2.5主轴轴颈的确定 (5)2.6主轴最佳跨距的选择 (5)2.7齿轮模数的估算 (6)2.8 同步带传动的设计 (8)2.9 滚动轴承的选择 (10)2.10 主要传动件的验算.............................. .. (10)2.10.1齿轮模数的验算 (10)2.10.2传动轴刚度的验算 (14)2.10.3 滚动轴承的验算 (15)总结 (16)参考文献 (17)第一章概述1.1 设计要求机床类型:数控车床主传动设计要求:满载功率7.5KW,最高转速4000rpm,最低转速41.5rpm 变速要求:无级变速进给传动系统设计要求:伺服控制,行程1200mm,最低速度0.001mm/r,最高速度0.5mm/r,最大载荷4500N,精度±3μm第二章主传动的设计2.1 计算转速的确定机床主轴的变速范围:=,且:=4000rpm,=41.5rpm所以:=400041.5=96.38根据机床的主轴计算转速计算公式:=得:=41.5х0.396.38=163.4rpm2.2变频调速电机的选择为了简化变速箱及其自动操纵机构,希望用双速变速箱,现取Z=2。
车床主轴箱设计说明书
要完整的说明书和图纸请联系QQ778672454四、基本参数确定1、基本参数主参数D ——床身上最大加工直径(mm )刀架上最大工件回转直径 831.0326.1D d ⨯=(D ≤800mm 时) 或Dd 21=通过主轴孔最大奉料直径D d 101=床身宽度 82.041.2D B = 通用机床主轴短部结构形状2、尺寸参数机床主轴端部结构形状:主轴中心孔前段锥度,摩氏3-6度。
为装配方便,车床主轴直径通常是从前向后逐段递减。
一般车、铣床主轴后轴颈的直径d d )9.07.0(2-=,1d 为前轴颈尺寸。
主轴前轴颈尺寸应按所传递的功率确定,初选时可参照下表初定。
高主轴组件的刚度与抗振性有明显效果。
主轴悬伸量的选择,可参照下表确定。
主轴悬申量与前轴颈直径之比主轴最佳跨距可据下列经验公式初定 a L )53(0-=式中 L 0——最佳跨距 a ——悬伸量(悬伸量大的机床 ))21(0a L -=图表 2若实际跨距L 实与最佳跨距L 0不能相等时,可取合理跨距0)5.175.0(L L -=合。
若L 实〉L 0时,应适当加强主轴刚度;反之,L 实<L 0时,应适当加强轴承刚度。
其他传动轴的径向尺寸,可按该轴所传递的扭矩初定,轴向尺寸必须保证各轴间齿轮不相干涉。
滑移齿轮在一对齿轮彻底脱开后,下一对才能进行啮合,并且留有1-2mm 间隙的实际需要的基础上,据结构要求确定。
3、运动参数可通过类比、试验和计算等方法综合确定,课程设计中可参照下列经验公式及数据初定。
maxminmin 1000d v n π=, n =minmax1000d v π式中,v min 、v max 、d max 、d min 为经济加工切削速度和经济合理的工件或刀具直径。
n min 、n max ——机床的最低、最高转速其中常用经济加工切削速度。
硬质合金刀具精车中碳钢min /220200m v -=;或min /150m v =。
CK6136数控车床主轴部分机械设计
CK6136数控车床主轴部分机械设计1.主轴箱设计:主轴箱是支撑主轴的机床基础部件,它需要具备足够的刚性和稳定性。
主轴箱通常采用铸铁材料,采用箱形结构设计,以确保足够的强度和刚性。
主轴箱内部需要进行润滑油的循环,以降低摩擦和热量,提高主轴的使用寿命和稳定性。
2.主轴轴承设计:主轴轴承是支撑和固定主轴的关键部件,它需要满足高速旋转的要求,并具备足够的刚性和稳定性。
根据车床的使用要求和主轴的转速范围,可以选择不同类型的主轴轴承,如滚动轴承、滑动轴承或德国Schneeberger线性导轨轴承。
为了提高主轴的刚性和稳定性,还可以在主轴轴承上采用预拉力调节装置,以减少轴承的磨损和提高主轴的精度。
3.主轴驱动系统设计:主轴驱动系统是将动力传递给主轴的部件,常见的主轴驱动方式有皮带传动和直接驱动。
皮带传动方式可以通过调整皮带紧张度来调节主轴转速,适用于一些变速主轴车床。
直接驱动方式更加简单可靠,能够提供更高的主轴转速和更精确的加工效果。
直接驱动方式常见的有电机和主轴同轴分装,以及电机和主轴同轴集成在一起的设计。
为了确保主轴驱动的稳定性和准确性,需要采用高精度的联轴器和齿轮传动装置,以减少传动误差和振动。
此外,为了保证主轴的使用寿命和精度,还需要对主轴进行冷却和清洁。
冷却包括内部冷却和外部冷却,可以采用冷却液进行内部冷却,通过风扇或冷却器对外部进行冷却。
清洁方面可以采用集尘装置和冷却液过滤器,以确保主轴的清洁和润滑。
总之,CK6136数控车床的主轴部分机械设计是一个综合性工作,需要考虑刚性、稳定性、精度、耐用性等多方面因素。
只有通过精心的设计和优化选择,才能实现主轴的高效工作和长期可靠运行。
数控车床主轴箱设计
数控车床主轴箱设计一、设计题目Φ400 毫米数控车床主轴箱设计。
主轴最高转速4000r/min ,最低转速30r/min ,计算转速 150r/min ,最大切削功率。
采用交流调频主轴电机,其额定转速 1500r/min ,最高转速 4500r/min 。
二、主轴箱的结构及作用主轴箱是机床的重要的部件,是用于部署机床工作主轴及其传动部件和相应的附加机构的。
主轴箱采用多级齿轮传动,经过必然的传动系统,经主轴箱内各个地址上的传动齿轮和传动轴,最后把运动传到主轴上,使主轴获得规定的转速和方向。
主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与一般车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主若是用以扩大电动机无级调速的范围,以满足必然恒功率、和转速的问题。
三、主传动系设计机床主传动系因机床的种类,性能,规格尺寸等基本因素的不一样,应满足的要求也不一样样。
再设计时结合详尽机床进行详尽解析,一般应满足手下基本要求:1)满足机床使用性能要求。
第一应满足机床的运动性能能,如机床的主轴有足够的转速范围和转速级数。
传动系设计合理,控制方便灵便、迅速、安全可靠等。
2)满足机床传达动力要求。
主电动机和传动机构能供应和传达足够的功率和转矩,拥有较高的传动效率。
3)满足机床工作性能要求。
主传动中全部零部件要有足够的刚度、精度、和抗振性,热变形特点牢固。
4)满足产品设计经济性的要求。
传动链尽可能简短,部件数目要少,以节约资料,降低成本。
5)调整维修方便,结构简单、合理、便于加工和装置。
防范性能好,使用寿命长。
四、主传动系传动方式由题目知,我们设计的主轴箱传动方式为交流电动机驱动、机械传动装置的无级变速传动。
再者,本题目中对精度要求一般,因此采用集中传动方式。
别的主轴箱结构设计只需达到结构紧凑,便于集中操作,安装调整方便即可。
五、电动机的选择按驱动主传动的电动机种类可分为交流电动机驱动和直流电动机驱动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章概述1.1设计目的 (2)1.2主轴箱的概述 (2)第2章主传动的设计 (2)2.1驱动源的选择 (2)2.2转速图的拟定 (2)2.3传动轴的估算 (4)2.4齿轮模数的估算 (3)2.5V带的选择 (4)第3章主轴箱展开图的设计 (7)3.1各零件结构尺寸的设计 (7)3.1.1 设计内容和步骤 (7)3.1.2有关零件结构和尺寸的设计 (7)3.1.3各轴结构的设计 (9)3.1.4主轴组件的刚度和刚度损失的计算 (10)3.1.5轴承的校核 (13)3.2装配图的设计的概述 (13)总结 (19)参考文献 (20)第一章概述1-1设计目的数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。
其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。
1-2 主轴箱的概述主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来手比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。
第二章2主传动设计2-1驱动源的选择机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。
由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。
根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。
2-2 转速图的拟定根据交流主轴电动机的最高转速和基本转速可以求得交流主轴电动机的恒功率转速范围Rdp=nmax/nd=3而主轴要求的恒功率转速范围Rnp=3,远大于交流主轴电动机所能提供的恒功率转速范围,所以必须串联变速机构的方法来扩大其恒功率转速范围。
涉及变速箱时,考虑到机床结构的复杂程度,运转的平稳性等因素,取变速箱的公比Φf等于交流主轴电动机的恒功率调速范围Rdp,即Φ=Rdp=3,功率特性图是连续的,无缺口和无重合的。
变速箱的变速级数Z =2.99.取Z=3 确定各齿轮齿副的齿数:取S=116由U=1.955 得Z1= 24 Z1’=68由U=1.54 得Z2=75 Z2’=30由U=4.6 得Z3=48 Z3’=57由此拟定主传动系统图,转速图以及主轴功率特性图分别如图2-1,2-2,2-3图2-1图2-2 图2-32.3 传动轴的估算传动轴除应满足强度要求外,还应满足刚度要求。
强度要求保证轴在反复载荷和扭转载荷作用下不发生疲劳破坏。
机床主传动系统精度要求较高,不允许有较大的变形。
因此疲劳强度一般不是主要矛盾。
除了载荷较大的情况外,可以不必验算轴的强度。
刚度要求轴在载荷下不至于产生过大的变形。
如果刚度不够,轴上的零件由于轴的变形过大而不能正常工作,或者产生振动和噪音,发热,过早磨损而失效,因此,必须保证传动轴有足够的刚度。
计算转速nj是传动件传递全部功率时的最低转速,各个传动轴上的计算转速可以从转速图是直接得出,如表2-1所示。
表2-1 各轴的计算转速各轴功率和扭矩计算:已知一级齿轮传动效率为0.97(包括轴承),同步带传动效率为0.98,则I 轴:P1=Pd x 0.98=7.5 x 0.98=7.35KW II 轴 p2=p1 x 0.97=7.5 x 0.97=7.28KW III 轴 P3=P2 x 0.97=7.28 x 0.97=7.06KWII 轴扭矩:T2=9550P2/n2=9550 x x7.28/530=1.31x 510III 轴扭矩:T3=9550 P3/N3=9550 x 7.06/140=4.82x 510 [Φ]是每米长度上允许的扭转角(deg/m ),可根据传动轴的要求选取,其选择的原则如表2-2所示。
表2-2 许用扭转角选取原则最后所确定各轴所允许的扭转角如表2-3所示把以上确定的各轴的输入功率N=7.5KW ,计算转速nj ,允许扭转角[Φ]代入扭转刚度的估算公式d=91,可得传动轴的估算直径:29d === 40mm 395d ===52.06mm 1d ==31.39mm.最后取值如下表所示:主轴轴径尺寸的确定:已知车床最大加工直径为Dmax=400mm,则 主轴前轴颈直径 D1=0.25Dmax +15=85-115mm后颈直径D2=(0.7-0.85)D1=67-81mm内孔直径d=0.1Dmax+10=35-55mm2.4 齿轮模数的估算按接触疲劳强度和弯曲疲劳强度计算齿轮模数比较复杂,而且有些系数只有在齿轮的各参数都已知方可确定,故只有在装配草图画完后校验用。
在画草图时用经验公式估算,根据估算的结果然后选用标准齿轮的模数。
齿轮模数的估算方法有两种,一是按齿轮的弯曲疲劳进行估算,二是按齿轮的齿面点蚀进行估算。
这两种方法的前提条件是各个齿轮的齿数必须已知。
根据齿轮不产生跟切的基本条件:齿轮数不小于17。
由于Z3,Z3’这对齿轮有较大的传动比,各个齿轮中最小齿数的齿轮必然是Z3. 取Z4=22,S=105,则Z4’=83从转速图上直接看出Z3的计算转速是530r/min.根据齿轮弯曲疲劳估算公式mω≥=2.7根据齿轮接触疲劳强度估算公式计算得m=2.7由于受传动轴轴径尺寸大小限制,选取齿轮模数为m=3 mm,对比上面的结果,可知这样设计的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,故取同一变速组中的所以齿轮的模数都为m=3mm.可得两轴中心距为a=157.5mm.圆整为a=158mm..则各齿轮齿数和模数列表如下:2-5 V型带的选择;V带选择spz型带,取小带轮的大小72mm,大带轮的大小为204mm;L2-5-1确定中心距a和带的基准长d如果中心距未给出,可根据传动的结构需要初定长度中心距a0,取0.7(12d d dd +)<a0<2(12d d d d +),193.2<a0<552后确定a0=200,根据带传动的几何关系,按下式计算所需代的基准长度'dL:'dL=2a0+2π(12d d d d +)+222)4(d d d d a -得到'd L =855.4,取d L =900mma=a0+'2ddL L -=200+(900-855.4)/2=222mm 。
验算主动轮上的包角1α:0021118057.5d d d d aα-=-⨯=0145.8>=0120; 确定带的根数z :00 2.7()caa Lp z p p k k +∆==根,圆整为3根。
V 带速度的验算:11116.73/601000d d d n V m s π==⨯22216.96/601000d d d n V m s π==⨯max 2530/V m s =--12max d d V V V << 故带符合要求。
第三章主轴箱展开图的设计主轴箱展开图是反应各个零件的相互关系,结构形状以及尺寸的图纸,并以此为依据绘制零件工作图。
3.1 各零件结构和尺寸设计 3.1.1 设计内容和步骤通过绘图设计轴的结构尺寸以及选出轴承的型号,确定轴的支点距离和轴上零件力的作用点,计算轴的强度和轴承的寿命。
3.1.2 有关零件结构和尺寸的确定传动零件,轴,轴承是主轴部件的主要零件,其他零件的结构尺寸是根据主要零件的位置和结构而定。
1)传动轴的估算 见前一节2)齿轮相关尺寸的计算齿宽影响齿的强度。
轮齿越宽承载能力越高。
但如果太宽,由于齿轮的制造误差和轴的变形,可能接触不均,反而容易引起振动和噪声,一般取齿宽系数m Φ=(6-10)m.这里取齿宽系数m Φ=10,则齿宽B=m ΦX m=10x3=30mm.各个齿轮的齿厚确定如表3-1.表3-1 各齿轮的齿厚由计算公式;齿顶:1221(2)(1);(2)a d z m h d z h d **=+==+ 齿根:11(22)(0.25)f z h c m c d***=--=得到下列尺寸表齿轮的直径决定了各轴之间的尺寸。
各主轴部件中各个齿轮的尺寸计算如下表3-2表3-2 各齿轮的直径由表3-2可以计算出各轴之间的距离,现将它们列出如表3-3所示 表3-3 各轴的中心距3)确定齿轮的轴向布置为避免同一滑移齿轮变速组内的两对齿轮同时啮合,两个固定齿轮的间距应大于滑移齿轮的宽度。
一般留有间隙1-2mm,所以首先设计滑移齿轮。
II轴上的滑移齿轮的两个齿轮轮齿之间必须留有用于齿轮加工的间隙,插齿时,当模数在1-2mm范围内时,间隙必须不小于5mm,当模数在2.5-4mm范围内时,间隙必须不小于6 mm,且应留有足够的空间滑移,据此选出三片齿轮间的间隙分别为d1=17.5mm,d2=15mm.由滑移齿轮的厚度以及滑移齿轮上的间隙可以得出主轴上的两个齿轮间的距离至少是60mm,现取齿轮间的间距为64mm和70mm.4)轴承的选择及其配置主轴组件的滚动轴承既要有承受径向载荷的径向轴承,又要有承受两个方向轴向载荷的推力轴承。
轴承类型及型号选用主要根据主轴的刚度,承载能力,转速,抗振性及结构要求合理的进行选定。
同样尺寸的轴承,线接触的磙子轴承比点接触的球轴承的刚度要高,但极限转速要低,多个轴承的承载能力比单个轴承的承载能力要大,不同轴承承受载荷类型及大小不同。
为了提高主轴组件的刚度,通常采用轻型或特轻型系列轴承。
通常情况下,中速重载采用双列圆柱滚子轴承配双向推力角接触球轴承,或者成对圆锥滚子轴承,其结构简单,但是极限转速较低。
高速轻载采用成组角接触球轴承,根据轴向载荷的大小分别选用25度或15度的接触角。
轴向载荷为主且精度要求不高时,选用推力轴承配深沟球轴承,精度要求较高时,选用向心推力轴承。
本设计的主轴不仅有刚度高的要求,而且有转速高的要求,所以在选择主轴轴承时,刚度和速度这两各方面必须考虑。
3.1-3 各轴结构的设计Ⅰ轴的一端与带轮相连,将Ⅰ轴的结构草图绘制如图3-2图3-2Ⅱ轴其结构完全按标准确定,根据其周详的尺寸可将结构简图绘制如图3-3所示:图3-33.1.4主轴组件的刚度和刚度损失的计算: 最佳跨距的确定:取弹性模量E=52.110⨯N/2mm , D=(90+65)/2=77.5mm ; 主轴截面惯距:4464()1.64102D d I mm π-==⨯截面面积;A=3459.92mm 主轴最大输出转矩:59550000 5.1210.n PM N mm n==⨯ /2002560450/2nzn M F M N == 0.51280Y z F F N ==故总切削力为:2862.17F N =估算时,暂取0/3,L a =即取270mm前后支承支反力3816.22a R N =954.06b R N =取a k =1033000N/mm53.6710/b k N m m=⨯ 30.338a EI K aη==⨯ 则0/ 2.5L a =则0L =225mm因在上式计算中,忽略了ys 的影响,故0L =225mm主轴端部挠度的计算:已知齿轮最少齿数为30,模数为3,则分度圆直径为90mm ‘则齿轮的圆周力:2max 2/2911p T d N ==径向力:0.51455.5r t p p N ==则传动力在水平面和垂直面内有分力为:水平面:2735.45H Q N =垂直面:2451.12v Q N =去计算齿轮与前支承的距离为66mm ,其与后支承的距离为384mm 。