高产高效矿井的瓦斯综合防治技术
应对高瓦斯矿井的瓦斯综合防治技术范本(2篇)
应对高瓦斯矿井的瓦斯综合防治技术范本瓦斯是矿井中的一种危险气体,对矿工的生命和财产安全构成严重威胁。
针对高瓦斯矿井,采取瓦斯综合防治技术是非常必要的。
本文将就应对高瓦斯矿井的瓦斯综合防治技术进行详细介绍。
1. 瓦斯监测技术高瓦斯矿井中,对瓦斯浓度进行监测是非常重要的一项工作。
监测瓦斯浓度可以及时发现矿井中瓦斯积聚的情况,及时采取相应的防治措施。
目前常用的瓦斯监测技术主要包括瓦斯抽放技术和瓦斯传感器技术。
2. 瓦斯抽放技术瓦斯抽放技术是通过抽放矿井中的瓦斯来减少矿井的瓦斯浓度,从而降低矿井的瓦斯爆炸风险。
常用的瓦斯抽放技术包括风机抽放法和水封抽放法。
3. 瓦斯防治技术针对高瓦斯矿井,采取瓦斯防治技术是非常重要的。
常见的瓦斯防治技术包括风切阻断法、水泥凝固法和瓦斯抑制剂法。
4.安全生产管理安全生产是瓦斯综合防治工作的基础和核心。
要加强矿井安全管理,建立完善的安全生产管理制度,落实瓦斯防治责任,加强瓦斯防治工作的组织领导和监督检查。
5.矿工安全教育培训加强矿工安全教育培训,提高矿工的安全意识和防护意识,学习瓦斯综合防治知识和技能,合理使用防护装备,提高自我防护能力。
6. 救援装备和应急处理建立健全矿井瓦斯事故的应急救援体系,配备齐全的应急救援设备和救援队伍。
在发生瓦斯事故时,要能迅速启动应急预案,采取有效措施进行救援,最大限度地减少伤亡和财产损失。
7. 瓦斯安全监控系统建立瓦斯安全监控系统,通过实时监测矿井中的瓦斯浓度、气温、风速等参数,及时预警和报警,确保矿井安全运行。
8. 瓦斯处理技术对于矿井中产生的瓦斯,需要进行处理。
常见的瓦斯处理技术包括瓦斯利用和瓦斯排放净化两种方式,可以根据实际情况选择合适的瓦斯处理技术。
9. 瓦斯防爆设备和装置为了防止矿井中的瓦斯爆炸,需要采用瓦斯防爆设备和装置。
常见的瓦斯防爆设备包括防爆电器、防爆仪表、防爆终端箱等。
10. 瓦斯防炸施工技术在进行矿井建设和施工时,要采取瓦斯防炸施工技术,防止瓦斯积聚和引发瓦斯爆炸。
附《煤矿瓦斯防治工作“十二条红线”》实施细则文库
附:《煤矿瓦斯防治工作“十二条红线”》实施细则第一条:为贯彻落实省政府《关于进一步加强煤矿瓦斯防治工作的若干规定》和山西省《煤矿瓦斯防治工作“十二条红线”》的要求,进一步加强瓦斯防治工作,落实源头治理为主,治标与治本有机结合。
以治本为主,实现抽、掘、采平衡,安全生产与高产高效的有机统一。
在瓦斯治理理念、技术措施、管理方式上进行根本性转变和强化,经公司研究决定,在继续执行现有瓦斯防治有关规定的基础上,严格执行本实施细则。
一、高瓦斯矿井高标准管理,低瓦斯矿井高瓦斯管理第二条:矿长是“一通三防”工作的第一责任者,矿总工程师对“一通三防”负技术管理责任,其他同级副职对分管范围内“一通三防”工作负责。
各矿通风部门必须认真履行“一通三防”各项管理职能,接受矿长和总工程师的垂直领导,其他副职不能以影响生产或施工为由,干涉“一通三防”管理工作。
本矿范围内,除安全矿长、总工程师和矿长外,其它部门和人员均不准对通风部门“一通三防”工作业务进行考核处罚,确保通风人员严格依照规定履行职责。
公司通防管理部对各矿“一通三防”工作进行监督指导,公司安全管理部对“一通三防”管理和落实情况进行检查、监督。
第三条:高瓦斯矿井要严格执行如下规定:1、矿井通风抽采能力富余。
矿井通风能力不小于所需能力的1.2倍,抽采能力不小于所需能力的2倍。
2、高瓦斯矿井按规定进行本煤层、邻近层、采空区瓦斯抽采,矿井和工作面抽采率必须达到AQ1026-2006行业标准。
3、局部通风机全部实行“三专”、“两闭锁”和“双风机双电源”、“自动切换”,并逐步配备智能引排装置。
4、在《煤矿安全规程》规定的基础上,采掘工作面所有瓦斯监控地点,甲烷传感器的报警值、断电值、复电值均下调20%,要坚持巡回检查,发现损坏,及时维修,保证监控有效,运行可靠。
5、高瓦斯矿井每月瓦斯超限最多不得超过1次,低瓦斯矿井实现零超限。
6、通风管理机构健全,“一通三防”管理及从业人员满足要求,素质考试、考核合格。
矿井高瓦斯工作面瓦斯涌出规律及防治措施探讨
矿井高瓦斯工作面瓦斯涌出规律及防治措施探讨[摘要]煤与瓦斯突出是煤矿开采过程中的严重自然灾害之一,因其具有突发性,对生产人员的安全危害极大。
为了掌握回采工作面瓦斯涌出规律,确保工作面安全生产,通过对某矿高瓦斯工作面的瓦斯来源及构成的研究分析,得出了回采工作面瓦斯涌出的分布规律。
有针对性地提出了工作面瓦斯治理的几套措施,从而保证了该高产高效工作面的正常生产。
[关键词]高瓦斯工作面;瓦斯涌出;瓦斯防治中图分类号:td712+.623 文献标识码:a 文章编号:1009-914x (2013)23-0301-01引言根据以往经验分析,瓦斯事故大多发生在采煤工作面,所以总结分析工作面瓦斯涌出的来源,并用于预测未采区的瓦斯涌出,是煤矿安全生产的关键,同时对瓦斯防治工作起到积极的指导作用。
而对煤层瓦斯基本参数测定工作是开展工作面瓦斯涌出量预测和瓦斯治理的基础。
近几年来,随着矿井开采深度的增大及人们对瓦斯认识的不断提高,工作面瓦斯涌出越来越在高、突矿井受到重视,特别是工作面瓦斯涌出的不均衡性使得上隅角瓦斯和回风巷瓦斯屡次超限,此问题已成为影响安全生产关键因素之一。
1 高瓦斯掘进工作面瓦斯涌出规律掘进工作面,在实施掘进工程过程中,其回风流瓦斯涌出量达到0.4m3/min时,该面即为高瓦斯掘进工作面。
鉴于高瓦斯掘进工作面的施工工艺,煤层瓦斯赋存条件,地质条件等诸多因素及通风方法不一样等原因,经现场测试、观察、分析,基本掌握高瓦斯掘进工作面的瓦斯涌出规律。
1.1 影响瓦斯涌出的因素1.1.1 开采强度和产量矿井的绝对瓦斯涌出量与开采速度或矿井产量成正比,而相对瓦斯涌出量变化较小。
当回采速度较高时,相对瓦斯涌出量中开采煤层涌出的量和邻近煤层涌出的量反而相对减少,使得相对瓦斯涌出量降低。
实测结果表明,如从两方面考虑,则高瓦斯的综采工作面快采必须快运才能减少瓦斯的涌出。
1.1.2 风量的变化风量发生变化时,瓦斯涌出量和风流中的瓦斯浓度由原来的稳定状态,逐渐过渡为另一稳定状态。
高瓦斯矿井的瓦斯综合防治技术范本
高瓦斯矿井的瓦斯综合防治技术范本瓦斯是煤矿生产中常见的有害气体之一,高瓦斯矿井是指瓦斯含量超过规定标准的煤矿。
为了安全生产,必须采取有效的瓦斯综合防治技术措施。
本文将结合国内外相关实践经验,探讨高瓦斯矿井的瓦斯综合防治技术范本。
一、瓦斯抽放技术
瓦斯抽放是瓦斯综合防治的首要措施之一。
通过合理设置瓦斯抽放孔,采用抽放机械设备,及时将瓦斯排放到安全区域,减少瓦斯对矿井的影响。
在高瓦斯矿井中,应结合瓦斯抽放效果及矿井实际情况进行调整,确保瓦斯抽放工作的效率和安全性。
二、瓦斯抑制技术
瓦斯抑制是指通过降低煤与空气的接触面积,减少煤矿火灾爆炸事故的发生。
在高瓦斯矿井中,应采用适当的瓦斯抑制剂,如泡沫剂等,对矿井进行处理,有效控制瓦斯的释放,降低瓦斯浓度,提高矿井的安全性。
三、瓦斯抑爆技术
瓦斯抑爆技术是指通过控制矿井内氧气浓度,减少瓦斯与空气混合的可能性。
在高瓦斯矿井中,应采用有效的氧气管理系统,监测矿井内氧气浓度,控制氧气含量,防止瓦斯爆炸的发生。
同时,应加强瓦斯监测工作,及时采取措施应对瓦斯浓度异常情况,确保矿井的安全生产。
四、瓦斯防治装备技术
瓦斯防治装备技术是指采用高效、稳定的瓦斯防治设备,加强矿井内部瓦斯管理。
在高瓦斯矿井中,应定期检查瓦斯防治设备,确保
其正常运行,及时更换损坏部件,提高装备的使用效率,保障矿井的安全生产。
综上所述,高瓦斯矿井的瓦斯综合防治技术范本包括瓦斯抽放技术、瓦斯抑制技术、瓦斯抑爆技术和瓦斯防治装备技术等方面。
只有全面、系统的应用这些技术,才能有效降低高瓦斯矿井的瓦斯爆炸和其他事故的发生率,确保矿工的生命安全和矿井的安全生产。
高瓦斯矿井的瓦斯综合防治技术
高瓦斯矿井的瓦斯综合防治技术高瓦斯矿井是指煤层中瓦斯含量在10%以上的矿井。
由于高瓦斯矿井存在较高的瓦斯压力和瓦斯浓度,一旦发生瓦斯事故,后果将十分严重。
因此,对高瓦斯矿井的瓦斯综合防治技术进行研究和应用至关重要。
本文将对高瓦斯矿井的瓦斯综合防治技术进行详细介绍。
1. 提高瓦斯抽采效果提高瓦斯抽采效果是高瓦斯矿井瓦斯综合防治的关键。
主要包括以下措施:(1)合理布置瓦斯抽采井:根据矿井地质条件和瓦斯分布规律,对矿井进行合理布置瓦斯抽采井,提高瓦斯采集效率。
(2)采用高效提升管道:采用直径较大、摩擦阻力较小的管道,提高瓦斯采集效率。
(3)优化抽采参数:根据实际情况,合理确定瓦斯抽采压力、抽采量等参数,提高瓦斯抽采效果。
2. 改进瓦斯抽采设备瓦斯抽采设备的改进也是高瓦斯矿井瓦斯综合防治的关键。
主要包括以下措施:(1)采用高效瓦斯抽采泵:使用高效的瓦斯抽采泵,提高抽采效率。
(2)采用瓦斯抽采电机调速技术:通过电机调速,根据矿井实时瓦斯产量进行自动调节,提高瓦斯抽采效果。
(3)引进国外先进的瓦斯抽采设备:借鉴和引进国外先进的瓦斯抽采设备,提高瓦斯抽采技术水平。
3. 提高瓦斯抽采安全性提高瓦斯抽采安全性是高瓦斯矿井瓦斯综合防治的重要方面。
主要包括以下措施:(1)建立瓦斯抽采安全管理制度:建立科学的瓦斯抽采安全管理制度,严格执行,确保瓦斯抽采作业安全进行。
(2)加强瓦斯抽采设备的维护和检修:定期对瓦斯抽采设备进行检修和维护,确保设备的可靠性和安全性。
(3)提高瓦斯抽采操作人员素质:对瓦斯抽采操作人员进行培训和考核,提高其安全操作意识和技术水平。
4. 加强瓦斯检测和预警技术加强瓦斯检测和预警技术对于及时发现和预防瓦斯事故具有重要意义。
主要包括以下措施:(1)布置瓦斯检测点:根据矿井地质条件和瓦斯分布规律,合理布置瓦斯检测点,确保对矿井各个区域的瓦斯浓度进行实时监测。
(2)使用高精度瓦斯检测仪器:选择精度高、响应快的瓦斯检测仪器,提高瓦斯检测的准确性和及时性。
应对高瓦斯矿井的瓦斯综合防治技术(三篇)
应对高瓦斯矿井的瓦斯综合防治技术高瓦斯矿井是指矿井瓦斯含量较高的井眼,瓦斯主要由甲烷组成。
高瓦斯矿井对矿工的安全构成很大威胁,因此需要采取瓦斯综合防治技术来有效降低瓦斯浓度,保障矿工的安全。
一、瓦斯综合防治技术的基本原理和方法瓦斯综合防治技术主要包括措施、装备和管理三个方面。
(一)措施1. 通风措施:通过增加通风量,保持井下空气流通,将瓦斯向外排出,达到降低瓦斯浓度的目的。
可以采取机械通风、气流通风等方式。
2.水力措施:通过注水形成水及泡沫屏障,减少瓦斯扩散。
可以采取水封检查、水幕、水雾、水雾泡沫等方式。
3、抽采措施:通过设置抽采装置抽取井底瓦斯,使其不进入工作面。
可以采用抽放瓦斯机、风机、风力机等方式。
4.防爆措施:采用防爆电气设备,避免火星或者静电引发瓦斯爆炸事故。
(二)装备1.传感器:通过安装瓦斯传感器监测矿井瓦斯浓度,及时发现瓦斯超标情况。
2.检测装置:瓦斯检测仪、毒气检测仪等,用于检测瓦斯及其他有害气体的含量。
3.通风设备:风机、风力机等,用于增加井下通风量。
4.抽瓦斯装置:抽采瓦斯机、风机等,用于抽取底板瓦斯。
(三)管理1.制定安全生产制度和操作规程,确保矿工遵守安全操作规程。
2.加强安全教育和培训,提高矿工的防范意识和应急能力。
3.定期检查和维修设备,确保装备和设施的安全性和可靠性。
4.建立瓦斯预警和应急预案,及时处理瓦斯超标和突发状况。
5.加强瓦斯监测和管理,定期检查矿井的通风情况和瓦斯浓度,做好记录和分析。
二、瓦斯综合防治技术的具体措施(一)通风措施1.合理配置通风系统,增加通风量。
可以采用多路供风和多路回风方式增加通风量。
2.设置风流阻挡和控制装置,避免瓦斯扩散。
可以采用风门、风闸等控制装置。
3.定期检查通风系统,确保通风设备正常工作。
4.瓦斯超标时采取局部通风措施,将瓦斯排到矿井外部。
(二)水力措施1.注水形成水及泡沫屏障,阻止瓦斯扩散。
2.设置堰水,将井底积水及时排除,避免产生瓦斯。
高瓦斯复杂地质条件掘进工作面瓦斯综合防治技术
高瓦斯矿井的瓦斯综合防治技术
高瓦斯矿井的瓦斯综合防治技术高瓦斯矿井中的瓦斯问题一直是矿井安全生产中的重要隐患之一。
为了解决这一问题,矿业工程界不断探索研究高瓦斯矿井的瓦斯综合防治技术,以提高矿井的安全性和生产效率。
下面将介绍一些瓦斯综合防治技术,并介绍其原理和应用。
一、瓦斯自动抽放技术瓦斯自动抽放是指通过设置抽放孔或井眼,利用地质构造或井巷通风辅助等方式,将矿井中的瓦斯抽放至独立瓦斯抽放区进行处理。
该技术的原理是通过机械设备或天然的气压差,将矿井中积聚的瓦斯抽放出矿井,以减少瓦斯爆炸的风险。
瓦斯自动抽放技术可以降低矿井中瓦斯浓度,提高矿井的安全性。
该技术已成功应用于一些高瓦斯矿井中,取得了显著的效果。
二、瓦斯抑制技术瓦斯抑制技术是指通过添加一定的草酸铵等化学添加剂,减少矿井中瓦斯的生成量。
该技术的原理是通过将瓦斯生成的化学反应进行抑制,减少瓦斯在矿井中的积聚。
瓦斯抑制技术可以有效地降低矿井中的瓦斯浓度,减少矿井事故的发生概率。
该技术已成功应用于一些高瓦斯矿井中,取得了良好的效果。
三、瓦斯爆破技术瓦斯爆破技术是指通过控制瓦斯的爆炸发生时机和地点,将瓦斯的爆炸能量引导到矿井的安全区域。
该技术的原理是通过合理设置瓦斯爆破装置,将瓦斯的爆炸能量引导至安全区域,减少矿井事故的发生。
瓦斯爆破技术可以有效地控制瓦斯爆炸的危害范围,减少人员伤亡和财产损失。
该技术已成功应用于一些高瓦斯矿井中,取得了卓越的效果。
四、瓦斯灭火技术瓦斯灭火技术是指通过使用灭火器材和灭火剂,将瓦斯火灾的燃烧进行抑制和扑灭。
该技术的原理是通过将氧气排出,使瓦斯火焰无法继续燃烧,从而扑灭火灾。
瓦斯灭火技术可以有效地控制瓦斯火灾的蔓延,减少人员伤亡和财产损失。
该技术已成功应用于一些高瓦斯矿井中,取得了良好的效果。
五、瓦斯浓度监测技术瓦斯浓度监测技术是指通过安装瓦斯检测仪器,实时监测矿井中的瓦斯浓度变化,并及时发出警报。
该技术的原理是通过测量矿井中的瓦斯浓度,判断是否存在瓦斯超标的风险。
高产高效矿井的瓦斯综合防治技术
高产高效矿井的瓦斯综合防治技术Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT高产高效矿井的瓦斯综合防治技术????作者:王春光????摘要:随着煤炭企业的发展,部分矿井已经进入深部开采,加上大型矿井的不断建设,瓦斯灾害已经成为矿井开采发展的主要障碍,文章分析了高产高效工作面涌出瓦斯的来源及涌出规律从不同的方面介绍现代化高产高效矿井的瓦斯综合防治技术。
????关键词:高产高效;瓦斯;上隅角;采空区;综合防治????高产高效工作面通常指煤层瓦斯含量不大,但由于机械化程度高,开采强度大、产量集中,在生产过程中,瓦斯涌出量较大,经常造成上隅角和回风瓦斯超限的工作面。
????在全国51个高产高效工作面矿井中,有17个属于高瓦斯或瓦斯突出矿井,占总数的33%,有68%的高产高效工作面存在着严重的瓦斯超限问题。
在低瓦斯矿井,高产高效工作面由于瓦斯超限影响生产的时间约为正常时间的1/8~1/12,而在高瓦斯矿井或突出矿井,则高达1/3~1/4。
瓦斯问题成为制约高产高效的主要障碍。
掌握高产高效工作面瓦斯来源构成、瓦斯涌出特征、时空分布的规律以及瓦斯涌出与开采技术条件和地质因素的关系,可为研究高产高效工作面瓦斯综合治理方案提供可靠依据。
????1 高产高效工作面瓦斯涌出规律????与其他采掘工作面相比,高产高效工作面有以下基本特点:采用综合机械采煤,机组割煤比较连续、工作面推进速度快、采落煤块较小、粉煤较多、工作面长度大、走向长度长、采用胶带运输机运煤速度快。
例如平顶山矿区煤层瓦斯含量不是很高,但由于开采强度大,产量集中,加之厚煤层分层开采或邻近层太近,使瓦斯涌出量急剧增加,造成回风巷和局部瓦斯集聚(尤其是上隅角)。
???? 高产高效工作面的瓦斯来源????研究工作面瓦斯的来源,查明各个来源的涌出比例,然后分源进行治理,对瓦斯防治工作很有意义。
研究表明,含瓦斯煤层在开采时,受采掘作业影响,煤层及围岩中的瓦斯赋存平衡条件遭到破坏,受采动影响区域内的煤层、围岩中的瓦斯将涌入工作面,构成采掘工作面瓦斯涌出的组成部分。
2024年高瓦斯矿井的瓦斯综合防治技术(3篇)
2024年高瓦斯矿井的瓦斯综合防治技术高瓦斯矿井是指瓦斯含量高于0.6%(以甲烷计)的煤矿,在采掘中瓦斯突出和瓦斯爆炸是常见的危险性现象。
为了安全高效地开采煤矿,瓦斯综合防治技术是至关重要的。
本文将详细介绍____年高瓦斯矿井的瓦斯综合防治技术。
瓦斯综合防治技术包括瓦斯抽放、瓦斯抽采、瓦斯抑制、瓦斯检测和瓦斯监控等多个方面,下面将对每个方面进行详细阐述。
1.瓦斯抽放技术瓦斯抽放是指通过钻孔、井筒等方法将瓦斯排放到安全区域。
____年的高瓦斯矿井使用先进的瓦斯抽放技术,如全自动瓦斯管道抽放系统和无人机瓦斯抽放技术。
全自动瓦斯管道抽放系统通过布置在矿井中的抽放管道将瓦斯抽放到地面,实现了矿井瓦斯的自动化抽放。
无人机瓦斯抽放技术是指使用无人机将瓦斯抽放至安全区域,通过无人机的灵活性可以将瓦斯抽放到矿井中的每个角落,提高了瓦斯抽放的效率和安全性。
2.瓦斯抽采技术瓦斯抽采是指通过抽采设备将瓦斯抽取出来,并对其进行处理。
____年的高瓦斯矿井使用的瓦斯抽采技术包括真空抽采技术和瓦斯压力回采技术。
真空抽采技术是指通过真空泵将瓦斯抽取出来,可以有效地将瓦斯从煤层中抽采出来。
瓦斯压力回采技术是指利用地下水或其他介质的压力将瓦斯推向井口,然后通过抽采设备将其抽取出来,该技术具有高效、安全、环保的特点。
3.瓦斯抑制技术瓦斯抑制技术是指通过化学、物理等手段减少或消除矿井中的瓦斯生成和积聚。
____年的高瓦斯矿井使用的瓦斯抑制技术包括瓦斯抑制剂喷洒技术和活性炭吸附技术。
瓦斯抑制剂喷洒技术是指将瓦斯抑制剂喷洒到矿井中,通过抑制剂的作用减少瓦斯的生成和积聚。
活性炭吸附技术是指将活性炭放置在矿井中,通过活性炭的吸附作用将瓦斯吸附并转化为无害气体。
4.瓦斯检测技术瓦斯检测技术是指通过瓦斯检测设备对矿井中的瓦斯浓度进行实时监测。
____年的高瓦斯矿井使用的瓦斯检测技术包括红外线瓦斯检测技术和超声波瓦斯检测技术。
红外线瓦斯检测技术是指通过红外线传感器对矿井中的瓦斯进行快速、准确的检测,该技术具有高灵敏度、高准确性的优点。
应对高瓦斯矿井的瓦斯综合防治技术(2篇)
应对高瓦斯矿井的瓦斯综合防治技术1、建立合理可靠的通风系统1.1改造通风系统,提高通风能力,坚持以风定产xx年该矿东西两回风井分别改造使用了BDK轴流式节能通风机,增加矿井总进风量2880m³/min,减少矿井漏风311m³/min,增加矿井通风生产能力66万t/a,电机功率降低150kW,年平均节省电费50万元。
解决矿井通风能力不足问题,使矿井通风系统的能力和可靠程度有了明显提高。
1.2优化矿井通风网络,降低通风阻力针对矿井主要巷道失修,断面小,风阻增大,通风能力难以提高,该矿专门成立巷修队将主要通风巷道全部扩修为10.5m²断面U型钢支架巷道,共计3800m,同时,各下山采区实现专用回风巷,共计新掘专用回风巷3000m,通风网络缩短860m,实现了矿井降阻增风、减耗目标。
1.3完善通风设施,优化通风系统,提前升级改造机电设施22下山煤巷掘进工作面出现瓦斯动力现象后,该矿不等突出矿井鉴定结果,就严格按照突出矿井标准对通风、监测、机电等系统进行升级改造,用锚杆等加固加厚风门墙体,临时通风设施一律取消,安装防逆风装置,主要巷道及掘进巷道每隔50m安设一组压风自救装置,所有机电设施全部按照高突矿井井下电器要求进行升级改造。
1.4进行矿井通风系统可靠性评价每年进行一次反风演习和矿井通风系统优化设计及可靠性评价,测算反风率及矿井通风阻力,实现系统、设施可靠,风流稳定,具有较强的抗灾能力,发生灾变时风流易于控制,便于抢险救灾,保证通风系统合理、稳定、可靠。
2、加强瓦斯综合防治2.1建立瓦斯防治专业队伍成立专门机构和瓦斯抽放、预测专业队,负责瓦斯抽放、防突、监测及安全装备的管理。
2.2实施矿井瓦斯抽放严格落实瓦斯治理“十二字”方针,井下、地面各建立一个瓦斯抽放泵站,井下炮采放顶煤工作面、高瓦斯掘进工作面和综采放顶煤工作面分别实施顶板岩石钻孔抽放、高位巷道抽放、超前浅孔与巷帮钻孔抽放、采空区抽放、上隅角埋管抽放等,杜绝了采掘面瓦斯经常超限现象,产量与进尺提高了40%。
煤矿瓦斯治理关键技术探讨
煤矿瓦斯治理关键技术探讨摘要:本文基于笔者多年从事瓦斯治理的相关工作经验,以煤矿瓦斯治理的关键技术为研究对象,探讨了建立完善的通风系统、瓦斯抽采、监测监控系统及管理系统四项关键技术处理思路,全文是笔者长期工作实践基础上的理论升华,相信对从事相关工作的同行有着重要的参考价值和借鉴意义。
关键词:煤矿瓦斯治理抽采瓦斯伴随于采矿活动始终,既有静态特征,更具有千钧一发的动态特征。
瓦斯、煤与矿工“共处一室”的现状及工人身处“与狼共舞”的险境令人忐忑不安。
纵观近几年,经过治理瓦斯灾害得到了有效控制,安全生产的状况逐日好转;然而,2009年年初,山西屯兰煤矿又一特大型矿难让人痛心疾首,时刻提醒人们瓦斯猛于虎,瓦斯治理一定要到位,依然不能麻痹大意。
只有确定良好的治理瓦斯灾害技术,才能防范瓦斯事故发生于未然。
务必认真贯彻“先抽后采、监测监控、以风定产”的瓦斯治理方针,狠抓落实各项措施,加强通风和防瓦斯、防煤尘、防灭火管理,巩固和扩大瓦斯治理攻坚战成果。
总之,就是提升一个理念,筑好四道防线。
1 提升瓦斯治理理念态度决定成败,安全主动,采矿主动。
“瓦斯不治,矿无宁日”,治理好瓦斯对煤矿就是效益,对职工就是最大的福利,就是隐形奖金。
在治理瓦斯工作中必须做到高素质、严管理、舍投入、强技术、抓思想、重抽采、多利用,切实把实现瓦斯先抽后采、矿井瓦斯全方位监测监控以及采掘工作面“以风定产”有机结合起来,实现对瓦斯的综合防治。
要明确通风是基础,抽采是重点,管理是关键,监测监控是保障;同时技术要先进,装备要配套,布局要合理,管理要到位,执行要有力,人员素质要提高。
正确处理好生产与培训、工程设计与瓦斯治理设计、采掘和抽采、产出和投入之间的关系;要有变抽放为抽采,坚持煤与瓦斯共采,治理与利用并重的理念。
以“一通三防”为主导,着力提升全矿员工瓦斯治理理念,切实改变瓦斯猛于虎的局面,保证在动态生产条件下有安全可靠的生产环境。
2 建立完善的通风系统通风事关矿井安全生产的命脉,完善的通风系统是实现高产高效的先决条件。
应对高瓦斯矿井的瓦斯综合防治技术(4篇)
应对高瓦斯矿井的瓦斯综合防治技术高瓦斯矿井是指煤矿中瓦斯含量较高的矿井。
瓦斯在矿井中积聚,一旦遇到火源,就可能引发瓦斯爆炸事故,严重威胁矿工的生命财产安全。
因此,对高瓦斯矿井进行瓦斯综合防治至关重要。
本文将介绍几种应对高瓦斯矿井的瓦斯综合防治技术。
首先,可以采取瓦斯抽采技术。
瓦斯抽采是指通过管道将瓦斯抽出矿井,以降低矿井中的瓦斯含量。
瓦斯抽采技术包括抽放法、抽采法和抽放兼采法等。
其中,抽放法是指将矿井中的瓦斯通过抽放装置抽出,当瓦斯达到一定浓度时自动抽放;抽采法是指将矿井中的瓦斯通过抽采装置抽出,以减少矿井中的瓦斯含量;抽放兼采法是指将矿井中的瓦斯通过抽放装置和抽采装置同时进行,以达到更好的瓦斯抽采效果。
其次,可以采取瓦斯抑爆技术。
瓦斯抑爆技术是指将矿井中的瓦斯稀释至可燃浓度以下,从而避免瓦斯爆炸的发生。
瓦斯抑爆技术包括稀释法、灭火法和隔离法等。
其中,稀释法是指通过通风系统将矿井中的瓦斯稀释至可燃浓度以下;灭火法是指通过喷雾灭火剂将矿井中的瓦斯灭火;隔离法是指通过设立隔离带将矿井中的瓦斯隔离开来,以防止瓦斯扩散。
另外,可以采取瓦斯检测技术。
瓦斯检测技术是指通过瓦斯检测设备监测矿井中的瓦斯含量,及时发现瓦斯积聚的情况,以便采取相应的预防措施。
瓦斯检测技术包括传感器检测、红外光谱法和质谱法等。
其中,传感器检测是指通过传感器对矿井中的瓦斯含量进行实时检测,并将检测结果传输至控制中心;红外光谱法是指利用红外光谱仪对矿井中的瓦斯进行测定,以判断瓦斯是否达到可燃浓度;质谱法是指利用质谱仪对矿井中的瓦斯进行分析,以确定瓦斯的成分和浓度。
最后,可以采取瓦斯引导排放技术。
瓦斯引导排放技术是指通过管道将矿井中的瓦斯引导至安全地方排放,从而减少矿井中的瓦斯含量。
瓦斯引导排放技术包括导流法、排瓦斯井和瓦斯钻孔等。
其中,导流法是指通过设置导流设备将矿井中的瓦斯引导至外部进行排放;排瓦斯井是指在矿井中开挖一定深度的井口,并通过管道将矿井中的瓦斯排出到地面;瓦斯钻孔是指在矿井中钻孔,并通过钻孔将矿井中的瓦斯引导至地面。
瓦斯防治技术现状及趋势
瓦斯防治技术现状及趋势摘要:能源是人类社会赖以生存和发展的重要物质基础在我国的自然资源中,基本特点是富煤、贫油、少气,这就决定了煤炭在一次能源中的重要地位。
我国煤炭资源总量为5.6万亿吨,其中已探明储量为1万亿吨,占世界总储量的11%。
我国是世界第一产煤大国,也是煤炭消费的大国。
本文简单介绍了我国的能源利用的背景、我国煤炭生产状况、煤炭生产过程中存在的主要问题以及威胁我国煤炭生产的主要因素。
着重从矿井瓦斯涌出量的测定、矿井瓦斯的抽放、煤与瓦斯突出的防治、上隅角瓦斯积聚的防治、瓦斯煤尘爆炸防治和瓦斯检测系统的发展等方面介绍了世界上主要产煤大国在煤矿瓦斯治理上的技术现状、作用效果及其瓦斯治理的前景和趋势。
关键词:煤矿:瓦斯治理:国内外技术现状:趋势1内容背景能源是人类社会赖以生存和发展的重要物质基础。
纵观人类社会发展的历史,人类文明的每一次重大进步都伴随着能源的改进和更替。
能源的开发利用极大地推进了世界经济和人类社会的发展。
中国是当今世界上最大的发展中国家,发展经济,摆脱贫困,是我我国在相当长一段时期内的主要任务。
能源消费增加是经济社会发展的客观必然。
20世纪70年代末以来,中国作为世界上发展最快的发展中国家,经济社会发展取得了举世瞩目的辉煌成就,能源在其中扮演了不可或缺的作用。
能源供应持续增长,为经济社会发展提供了重要的支撑。
在我国的自然资源中,基本特点是富煤、贫油、少气,这就决定了煤炭在一次能源中的重要地位。
我国煤炭资源总量为5.6万亿吨,其中已探明储量为1万亿吨,占世界总储量的11%,而石油仅占2.4%,天然气仅占1.2%。
"十五"期间,我国煤炭产量由2001年的13.8亿吨已增长到2005年的21.9亿吨,年均增长2.02亿吨,保证了经济和社会发展的需要,支撑着国民经济的快速发展。
我国是世界第一产煤大国,也是煤炭消费的大国。
我国已经形成了煤炭为主体、电力为中心、石油天然气和可再生能源全面发展的能源供应格局,建立了较为完善的能源供应体系。
瓦斯防治实施方案
瓦斯防治实施方案瓦斯是一种常见的有毒气体,它在煤矿、地下工程和其他封闭空间中可能会积聚并造成严重危害。
为了有效防治瓦斯,保障工作人员的安全,我们制定了以下瓦斯防治实施方案。
首先,我们需要对可能产生瓦斯的场所进行全面排查和监测。
通过安装瓦斯监测设备,及时发现瓦斯积聚的地点和浓度,为后续的防治工作提供准确的数据支持。
其次,针对瓦斯积聚的地点,我们需要采取相应的防治措施。
例如,在煤矿地下开采作业中,可以采用通风、排放和抽放等方式,将瓦斯及时排除,保持地下空气清新。
在地下工程中,可以采用密闭作业、通风换气等措施,有效减少瓦斯的积聚和危害。
另外,对于瓦斯防治工作人员,我们需要加强培训和安全意识教育。
他们需要了解瓦斯的特性、危害和防治方法,掌握正确的应急处理技能,做到在发生瓦斯事故时能够迅速有效地处置,保障自身和他人的安全。
此外,定期检查和维护瓦斯防治设备也是非常重要的。
只有设备处于良好的工作状态,才能保证瓦斯防治工作的有效性。
因此,我们需要建立健全的检查和维护制度,确保设备的正常运行。
最后,我们需要建立健全的瓦斯防治管理制度。
通过制定相关的规章制度和标准,明确责任部门和责任人,加强对瓦斯防治工作的监督和管理,确保瓦斯防治工作的持续有效进行。
总之,瓦斯防治是一项重要的安全工作,需要全面而系统的进行。
只有通过全面排查监测、采取有效防治措施、加强人员培训和设备维护以及建立健全的管理制度,才能有效预防和控制瓦斯事故的发生,保障工作人员的生命财产安全。
希望通过我们的努力,能够为瓦斯防治工作贡献一份力量。
高产高效工作面瓦斯防治新技术
高产 高效 工 作 面 瓦 斯 防治 新 技 术
高产高效工作面瓦斯 防治新技术涌出特点 :
1 )绝对 瓦斯涌出量差异悬殊 ,工作面绝对 瓦斯涌 出量大 的非 常大 ,这类 工作面一般都需要抽放 瓦斯才能保证安全生产 ;
2 )相对瓦斯涌出量差异很大 ,相对 涌出量大 的工作面抽放 瓦斯是安全生产 的重要保证 ;
煤
炭
工
程
21 0 0年第 9期
采 煤 塌 陷 地 复 垦 与 利 用 技 术
我国煤矿塌陷地数量大 ,分布面广 。由于地貌及 自然条件 的影 响,采矿对 土地 的破坏形式不完全
一
样。本成果 是在国家重点科技项 目、国家 自然科学基金 、原煤炭部科技攻关项 目资助下完成 的 ,形
成了充填复垦 、非充填复垦 、充填复垦场地建筑利用 、复垦土地生态利用 、景观再造 、复垦土壤重构
包括 :①提出 了 “ 下 ”采煤 资 源 回收难度 系数 的确定 方法 ;② 将 熵权 系数 与理想 点法 用 于分 析 三 “ 三下”开采风险 问题 ,提高 了决策的科 学性 与合理性 ;③运用 G S解决 了困扰矿管部 门己久 的采 出 I
率标准确定 、实际采 出率测算 、“ 三下” 资源界定等 困难 ;④推导 出了 “ 三下 ”煤炭 资源补偿 费的计 算公式 ,提出了 “ 三下” 开采合理采 出率 的确定模 型及 “ 三下 ” 开采资源补偿 费征收模型 ,真正使 兼顾资源环境效益 、社会经济效益进行 “ 三下 ” 开采优 化成为可 能 ;⑤ 设计开发 出了 “ 三下 ”开采 评价与资源补偿费征收程序系统 ,探索 出了切实可行 的应用保证措施 ,实现评价测算 的一体化 、实时
5 )在初次来压 、周期来压期 间,瓦斯涌 出量突然增大 ,瓦斯 积聚更加严重 。 瓦斯治理方针 :先抽后采 、监测监 控 、以风定产
瓦斯危害严重矿井综合治理技术
通过计算 , 明开采野青保护层后 , 说 被保护层大
层瓦斯含量相对较少 , 野青石灰岩 中的裂隙瓦斯也 是 矿井 主要 瓦斯 源之 一 。
煤处于裂隙带和弯曲下沉带之 间。无论实践还是计 算, 都能说 明大煤层的瓦斯得到了卸压而释放 , 得到
了保护而不受破坏。 ( )开采下保护 层时, 3 为使上边 的被保 护层不
式中: 一 煤层实际采高 , = . M 13m;
开采保护层的保护范 围, 是决定保护层工作面 与被保护层工作面巷道布置的重要参数 , 区工作 采
维普资讯
采
矿
技
朱
面巷道必须按照划定的保护范围进行布置 。峰峰煤 矿根据已取得的资料 , 确定 了保护范围的经验值 : () 1 保护层工作面初采推进时, 到被保护层卸 压瓦斯涌出的距离, 与地质构造有密切关系, 正常情
维普资讯
I S 6 1—2 0 S N 17 90 C 4 N 3一l 4 / 3 7 TD
采矿技 术
第 6卷
第 3期
20 06年 9月
Sp 20 e .0 6
Mi ig T c n lg ,Vo . No 3 n n e h oo y 1 6, .
2 2 保 护 范 围的划 定 .
2 1 开 采保 护层 理论分 析 .
其采高 的 2~ 4倍。野 青煤层 的采高为 1 1 . . ~1 3 m, 冒落高度仅为 2 2~ . 其 . 5 2m。按下列公式计算 冒落带的高度 :
H冒 = M/ k一1 ( )= 1 3 ( . . / 1 3—1 =4 3 ) . 3m
况 下为 6 左 右 , 有 3 的情 况 , 断 层 影 响 0m 也 0m 有 时, 可缩小 为 5—8m;
2023年应对高瓦斯矿井的瓦斯综合防治技术
2023年应对高瓦斯矿井的瓦斯综合防治技术抱歉,根据我的能力范围,我无法打开或处理.doc格式的文件。
但是,我可以为您提供一些关于2023年针对高瓦斯矿井的瓦斯综合防治技术的一般建议。
以下是一些可能有助于解决高瓦斯矿井问题的技术和方法:
1. 瓦斯抽放技术:使用瓦斯抽放设备,如瓦斯抽放钻机或瓦斯抽放泵等,将矿井中的可燃性瓦斯抽放到安全区域中。
这可以有效地减少瓦斯积聚和防止瓦斯爆炸。
2. 通风系统优化:通过优化矿井的通风系统,确保空气流动顺畅,将瓦斯及时排出,并提供足够的新鲜空气供应。
这可以降低瓦斯浓度,并保持井下工作环境的安全性。
3. 瓦斯监测技术:使用先进的瓦斯监测设备,及时监测矿井中的瓦斯浓度,并采取相应的措施来应对超过安全限值的情况。
定期进行矿井气体检测和监测,确保瓦斯浓度控制在安全范围内。
4. 安全保护设备:提供适当的个人防护装备,如防爆电器、防爆灯、防爆工具等,以确保井下工人的安全。
确保所有设备都符合相关的安全标准。
5. 教育培训和安全意识提高:加强对矿工的教育培训,提高他们对瓦斯危险的认识和安全意识。
培养他们正确的操作技能,并提供应急处理的知识和技能。
请注意,以上仅是一些一般的建议。
针对具体的矿井和瓦斯问题,可能需要进一步的调查和专业的工程研究来确定适合的瓦斯综合防治技术。
应对高瓦斯矿井的瓦斯综合防治技术
应对高瓦斯矿井的瓦斯综合防治技术在矿井开采过程中,高瓦斯矿井的瓦斯综合防治是一项重要的技术任务。
高瓦斯矿井指的是瓦斯含量大于10%的矿井,具有瓦斯爆炸和窒息等灾害风险。
为了保障矿工的安全,应对高瓦斯矿井的瓦斯综合防治技术必不可少。
下面将针对此问题,提出一些应对高瓦斯矿井的瓦斯综合防治技术。
1. 有效通风系统建设高瓦斯矿井的瓦斯通风系统建设是瓦斯防治的基础。
通风系统需要合理布置风机和风口,确保矿井内空气的流通和排放,减少瓦斯堆积。
此外,还可以利用局部增压通风和分段通风技术,提高矿井通风效果和能量利用效率。
2. 完善的瓦斯抽放系统高瓦斯矿井需要建立完善的瓦斯抽放系统,通过抽放瓦斯来降低矿井内的瓦斯浓度。
可以采用钻孔抽放、巷道回风和煤层抽采等技术,将瓦斯抽放到地面或处理设备进行处理后释放。
同时,还可以采用浮瓦斯抽采和人工抽采相结合的方式,提高瓦斯抽放效果。
3. 安全检测系统高瓦斯矿井需要建立完善的瓦斯检测系统,实时监测矿井内的瓦斯浓度和瓦斯压力,及时发现和报警异常情况。
瓦斯检测系统可以配备瓦斯检测仪、瓦斯集中控制器和报警系统等设备,保障矿工的安全。
4. 技术措施可以采用快速锁定矿区、控制矿井压力、调整运输方式、控制瓦斯挤占等技术手段,加强对高瓦斯矿井瓦斯释放的控制和调节,减少瓦斯积聚和堆积的风险。
5. 人员培训和安全意识教育高瓦斯矿井的瓦斯防治工作离不开矿工的自觉安全意识,需要对矿工进行瓦斯防治技术培训和安全教育,提高矿工对瓦斯危险的认识和应对能力。
矿工应该了解瓦斯的性质、危害和防治技术,严格按照规程和操作规范进行操作。
综上所述,针对高瓦斯矿井的瓦斯综合防治技术,应采取有效的通风系统建设、完善的瓦斯抽放系统、安全检测系统的建设和技术措施的落实等多种手段,并加强矿工的培训和安全意识教育。
只有综合运用各种技术手段和措施,才能有效地防止高瓦斯矿井发生瓦斯爆炸和窒息等灾害,保障矿工的生命安全和健康。
做好瓦斯突出综合治理促进高产高效矿井建设
煤矿安全 做好瓦斯突出综合治理 促进高产高效矿井建设汤家轩(中国煤炭工业协会咨询中心,北京市东城区和平里北街21号,100713) 摘 要 自全国开展高产高效矿井建设15年来,我国的煤矿开采技术取得显著成效,大大缩小了与世界先进水平的差距。
但是,安全开采条件已经成为制约高产高效矿井建设进一步向纵深发展的“瓶颈”,阐述了通过瓦斯综合治理等一系列有针对性、切实可行的技术措施,能够使得部分资源储量丰富、煤层赋存稳定的矿井步入高产高效矿井行列。
关键词 高产高效矿井 矿井建设 瓦斯治理中图分类号 TD71313 TD-90 文献标识码 BAn upgraded compehensive prevention and control of mine gas pushes highly eff icient coal mine construction:some thoughtsTang Jiaxuan(Consultancy Center,China National Coal Association,Hepingli Beijie21,Dongcheng District,Beijing100713) Abstract It is an inevitable choice for the coal sector of this country to construct coal mines with higher effi2 ciency and higher productivity so as to take to the road of industrialization of novel characteristics1Marked achieve2 ments have been realized as a result of15-year long such campaign around this country,which minimizes the gaps between those more advanced coal producing countries and China1On the road of f urther development,however, work safety conditions in mines become a looming bottleneck1By implementing a series of feasible technical meas2 ures,some coal mines with abundant coal reserves in the form of stable coal seam occurrence can be upgraded into coal mines with higher efficiency and higher productivity1K ey w ords coal mine with higher efficiency and higher productivity,bottleneck,development, 自1992年统配煤矿总公司在全国开展高产高效矿井建设以来,建设高产高效矿井已经成为煤炭工业走新型工业化道路的具体体现,成为煤炭企业实现发展方式转变、提高技术装备水平、从根本上改变煤炭工业面貌的必由之路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高产高效矿井的瓦斯综合防治技术作者:王春光摘要:随着煤炭企业的发展,部分矿井已经进入深部开采,加上大型矿井的不断建设,瓦斯灾害已经成为矿井开采发展的主要障碍,文章分析了高产高效工作面涌出瓦斯的来源及涌出规律从不同的方面介绍现代化高产高效矿井的瓦斯综合防治技术。
关键词:高产高效;瓦斯;上隅角;采空区;综合防治高产高效工作面通常指煤层瓦斯含量不大,但由于机械化程度高,开采强度大、产量集中,在生产过程中,瓦斯涌出量较大,经常造成上隅角和回风瓦斯超限的工作面。
在全国51个高产高效工作面矿井中,有17个属于高瓦斯或瓦斯突出矿井,占总数的33%,有68%的高产高效工作面存在着严重的瓦斯超限问题。
在低瓦斯矿井,高产高效工作面由于瓦斯超限影响生产的时间约为正常时间的1/8~1/12,而在高瓦斯矿井或突出矿井,则高达1/3~1/4。
瓦斯问题成为制约高产高效的主要障碍。
掌握高产高效工作面瓦斯来源构成、瓦斯涌出特征、时空分布的规律以及瓦斯涌出与开采技术条件和地质因素的关系,可为研究高产高效工作面瓦斯综合治理方案提供可靠依据。
1 高产高效工作面瓦斯涌出规律与其他采掘工作面相比,高产高效工作面有以下基本特点:采用综合机械采煤,机组割煤比较连续、工作面推进速度快、采落煤块较小、粉煤较多、工作面长度大、走向长度长、采用胶带运输机运煤速度快。
例如平顶山矿区煤层瓦斯含量不是很高,但由于开采强度大,产量集中,加之厚煤层分层开采或邻近层太近,使瓦斯涌出量急剧增加,造成回风巷和局部瓦斯集聚(尤其是上隅角)。
1.1 高产高效工作面的瓦斯来源研究工作面瓦斯的来源,查明各个来源的涌出比例,然后分源进行治理,对瓦斯防治工作很有意义。
研究表明,含瓦斯煤层在开采时,受采掘作业影响,煤层及围岩中的瓦斯赋存平衡条件遭到破坏,受采动影响区域内的煤层、围岩中的瓦斯将涌入工作面,构成采掘工作面瓦斯涌出的组成部分。
采场范围内涌出瓦斯的地点即为瓦斯源。
很显然瓦斯涌出源的多少、各源涌出瓦斯量的大小直接影响采场的瓦斯涌出量。
研究表明,回采工作面瓦斯涌出关系如图1所示。
图1 高产高效工作面的瓦斯来源构成示意图由图1可以看出,回采工作面瓦斯涌出包括3部分,即落煤瓦斯涌出、煤壁瓦斯涌出、采空区瓦斯涌出。
采空区瓦斯涌出又由3部分组成,即围岩瓦斯涌出、回采丢煤瓦斯涌出、邻近层瓦斯涌出。
这3部分瓦斯随着采场内煤、岩层的变形或垮落而卸压。
按各自的规律涌入采空区,混合在一起。
然后,在浓度差,主要是矿井通风负压的作用下涌向工作面。
下面将主要阐述高产高效工作面煤壁、落煤、采空区3部分的瓦斯涌出规律。
1.2 高产高效工作面瓦斯涌出规律(1)煤壁瓦斯涌出规律。
当割煤机不断割煤,新鲜煤壁不断暴露,在矿山压力的作用下,工作面前方煤体中的应力平衡状态遭到破坏,出现了透气性大大增加的卸压带,由于煤体内部到煤壁之间存在着瓦斯压力梯度,瓦斯得以沿卸压带的裂隙向工作面涌出。
瓦斯涌出强度随着煤壁暴露时间的延长而降低。
(2)采落煤块的瓦斯涌出规律。
采煤机落煤把煤粉碎成各种块粒状煤,提高了煤的瓦斯解吸强度,导致瓦斯涌出量的增加。
研究表明,采落煤块的瓦斯涌出强度与煤壁一样,也随时间的增加而减少。
(3)采空区瓦斯涌出规律。
采空区的瓦斯浓度随采空区深度的增加而增高,即离采掘面越远瓦斯浓度越高;采空区内顶板瓦斯浓度高于底板瓦斯浓度;采掘面采用上行通风时,采空区上部(回风侧)瓦斯浓度比下部高。
由采空区瓦斯涌出的来源可知,采空区瓦斯涌出也是由煤块和煤层暴露面等涌出构成,因此也和落煤、煤壁是按同一形式衰减曲线逐渐枯竭的。
研究表明,在工作面初采时,从开切眼开始向前推进,采空区从无到有,随着采空区面积的扩大,采空区瓦斯也逐渐增大,在老顶首次垮落之前采空区瓦斯涌出量较小,当老顶初次垮落后,采空区瓦斯涌出量出现一个峰值,随工作面推进,采空区瓦斯涌出量又增加,随后涌出量又减少,以后发生周期性老顶冒落时,瓦斯涌出量也出现上述的周期变化。
但增加到一定值时,在开采条件基本不变的条件下,采空区瓦斯涌出量将趋于稳定。
2 高产高效工作面瓦斯综合治理目前国内瓦斯治理措施主要有抑制瓦斯涌出及减小工作面瓦斯涌出2类。
抑制瓦斯涌出主要有采用煤体注水等方法。
减小工作面瓦斯涌出主要有改善通风系统,减少通风设施的漏风量,减小通风阻力;改变通风方式,增加进风巷或回风巷,采用均压通风;采用尾巷、高抽巷;采用地面钻孔、顶板走向钻孔、高位钻孔;预抽煤层瓦斯等方法。
抑制瓦斯涌出适用于工作面瓦斯涌出量不大时使用。
减小工作面瓦斯涌出则是治理高产高效工作面瓦斯的根本措施。
目前应用较多的则是采用预抽煤层瓦斯和采用顶板走向钻孔以及采用尾巷、高抽巷等方式治理采空区涌出瓦斯。
预抽煤层瓦斯一般在瓦斯含量较大,煤层透气性系数较高煤层中使用,而对于瓦斯含量较小的煤层使用效果不明显。
顶板走向钻孔、地面钻孔及尾巷抽放则主要是针对采空区瓦斯抽放。
由于高产高效开采一般采空区遗煤较多,采空区瓦斯涌出较大,因此顶板走向钻孔及尾巷抽放效果较好,应用十分广泛。
2.1 工作面通风优化由于工作面通风不合理可能造成瓦斯积聚和超限,可以通过改变通风方式、增大风量、减少漏风等措施使风量能够解决较大的瓦斯。
山西潞安矿业集团王庄矿6108综采面为解决综采回风隅角的瓦斯超限,在6108距切眼20m处掘一横贯与老空区贯通,61下山放水巷车场密闭打开一个面积约为0.9m2的通风口,这样6108工作面风流分为两部分:一部分经回风巷进入61采区回风巷;另一部分经采空区和61下山放水巷进入61采区回风巷,对采空区瓦斯实现了分流治理(见图2)。
该工作面于2000年6月开始回采,到2001年中旬回采完毕,没有出现瓦斯超限现象。
图2 6108工作面通风示意图回采期间,工作面的供风量平均为1280m3/min,其中,回风巷回风1150m3/min,61下山放水巷分流回风量130m3/min,占工作面总风量的10%。
工作面平均瓦斯涌出量5m3/min,最大瓦斯涌出量达到9.3m3/min,分流瓦斯量平均1.2m3/min,最大分流量2m3/min,平均分流量24%。
2.2 利用钻孔抽放减少瓦斯向工作面涌出钻孔抽放是随着钻探设备发展而发展的,由于其操作简便、节省工作量、成本较低,在许多矿区应用越来越广泛。
钻孔分为地面钻孔、穿层钻孔、顺层钻孔等。
穿层钻孔又分为高位钻孔和低位钻孔,顺层钻孔分为平行钻孔和交叉钻孔。
2.2.1 地面钻孔由于采动影响,在煤层的顶板和底板的围岩内产生裂隙,特别在采空区上方形成冒落带和裂隙带,造成邻近煤层的卸压,引起瓦斯的卸压流动效应,邻近煤层与围岩中的大量卸压瓦斯,通过层间的裂隙涌向开采层的回采面。
瓦斯涌入量的大小与邻近煤层的层数、层间距及岩性、煤层厚度及瓦斯含量有关,还和开采层采高、倾角、工作面走向、倾斜长度、顶板管理方法等有关。
工作面回采过程中,地面钻孔主要抽出上裂隙带卸压层内的高浓度瓦斯,截阻其向采面的涌入。
此间冒落带煤层内的瓦斯和下邻近煤层的卸压瓦斯大量地涌入工作面采空区,并随着工作面的不断推进,采空区冒落高度和范围逐渐增大,通风负压逐渐变弱。
当地面钻孔抽放负压大于井下通风负压时,地面钻孔将连续抽出积存于采空区内的瓦斯。
在工作面采完后,上、下邻近层的瓦斯继续向采空区涌入,封闭采掘面后,地面钻孔可以长期抽放老空区瓦斯。
在邻近采诀面开采时,采空区互相连通,钻孔还可以抽出邻近采区的采空区瓦斯。
从以上分析可以看出,地面钻孔无论在工作面回采期间,还是在工作面采完后,都可以长期抽出邻近层和采空区的瓦斯,降低涌入开采巷道的瓦斯量和风流中的瓦斯浓度,减轻通风负担,保证安全生产。
由于地面钻孔的钻孔成本较高,在我国应用不多,主要在我国平顶山矿业集团、阳泉矿业集团和宁夏煤业集团等地应用。
平顶山十矿-320m水平戊10-20100工作面应用了地面钻孔进行抽放。
通过计算该矿瓦斯涌出量为25.3~28.8m3/min,通风能够排出13m3/min,这说明单靠通风不能解决瓦斯问题,必须进行抽放,抽放纯量为12.3~15.8m3/min。
该工作面于1999年4月3日开始回采,4月23日地面钻孔开始抽放瓦斯,连续抽放效果显著。
1个月抽出纯瓦斯7万m3,抽放参数见表1。
抽放瓦斯浓度、纯瓦斯流量变化曲线如图3所示。
表1 钻孔参数表图3 抽放瓦斯浓度、纯瓦斯流量变化曲线图抽放回采工作面回风流瓦斯浓度比抽放前降低0.2%左右。
抽放前回采工作面产量由于受瓦斯超限的制约,不能达到设计能力;抽放后由于工作面瓦斯浓度的降低,使工作面平均日产量由1800t增加到2600t。
2.2.2 高位钻孔抽放高位钻孔是在风巷向煤层顶板施工的钻孔。
高位钻孔瓦斯抽放又称顶板裂隙带抽放,主要作用是以工作面回采采动压力形成的顶板裂隙作为通道来抽放工作面煤壁及上隅角涌出的瓦斯。
根据一系列回采工作面矿山压力规律的研究,煤层随工作面回采,在工作面周围将形成一个采动压力场,采动压力场及其影响范围在垂直方向上形成3个带,即冒落带、裂隙带和变曲下沉带。
在水平方向上形成3个区,即煤壁支撑影响区、离层区和重新压实区。
在这个采动压力场中形成的裂隙空间,便成为瓦斯流动通道。
通过钻孔内的负压,加速了瓦斯的流动,使高位钻孔能够抽出瓦斯,并且抽放量大大超过本煤层瓦斯的抽放量。
一些高位钻孔实现了超前抽放,即工作面离钻孔口还有一段距离时,能抽出高浓度瓦斯,这说明煤、壁支撑影响区内煤层顶板已有裂隙作为瓦斯通道。
这部分瓦斯显然是煤壁中原始煤体释放的。
随着采动影响,工作面煤壁受压形成瓦斯解吸,解吸的瓦斯又通过煤壁裂隙和顶板裂隙流入抽放钻孔,这是高位钻孔能抽到高浓度瓦斯的原因,也是高位钻孔的重要作用点。
高位钻孔抽到上隅角瓦斯是在钻孔的后期,随着钻孔的垂高变小,到接近冒落带或进入冒落带时才出现,这时抽放瓦斯浓度变小。
只要钻场钻孔还保留,仍能够发挥作用。
利用高位钻孔抽放瓦斯是有效解决工作面瓦斯超限问题的一项重要措施。
积聚在采空区顶板裂隙带的瓦斯量非常大,在井下通风压力变化时这些瓦斯容易流动到采煤工作面,造成工作面瓦斯严重超限。
为了实现最佳的高位钻孔瓦斯抽放效果,需要对高位钻孔进行抽放参数优化设计和试验工作。
抽放高度主要取决于裂隙带的高度和裂隙带的可抽高度。
为了求得可抽高度,进行了多种孔深的抽放试验,并把某个范围内能抽到高浓度瓦斯的高度称为可抽高度。
用终孔高度(H1)、高浓度起点高度(H2)和高浓度终点(H3)3个参数来控制可抽高度指标。
在平煤集团高位钻孔瓦斯抽放最大高度为24m,高浓度终点最小高度为6.4m,因此可以将高位钻孔抽放高度区间确定为6.4~24m。
钻孔终点高度确定为25m。
有效平距包括孔外抽放平距和孔内抽放平距。
孔内抽放是指当采面推进到钻孔终点位置后才能抽放出瓦斯;孔外抽放是指当采面距钻孔终点位置还有一段距离,由于有裂隙带的作用,能超前抽出瓦斯。