2020初中数学《一元一次方程》9大题型超全解析

合集下载

「初中数学」一元一次方程应用题各种题型汇总,第二部分

「初中数学」一元一次方程应用题各种题型汇总,第二部分

「初中数学」一元一次方程应用题各种题型汇总,第二部分这一期文章分类讲解各种行程问题,行程问题有一般行程问题,相遇问题,追及问题,顺流(风)、逆流(风)问题,上坡、下坡问题,火车过隧道(桥)问题,环形跑道问题等。

不管哪一种问题,基本数量关系都是,路程=速度×时间,具体到每一种题型,则要考虑具体的特征,活学活用,却不可生搬硬套。

一.一般行程问题1.某人从A地去B地,如果他以4Km/h的速度步行前进,正好在预定的时间内到达,他用这个速度步行了全程的一半后,其余路程搭乘速度为20Km/h的公共汽车,结果比预定时间早到27min,求AB 两地的距离.【分析与解答】首先统一单位,27min=27/60h=9/20h,再看有两个不变量,一个是预定时间,一个是A、B两地的距离,不变量是列方程的依据。

①若设预定时间为x小时,则用不变量AB两地距离列方程,接下来根据两种条件分别表示出A、B两地距离的代数式即可。

因为以4Km/h的速度前进,恰好在预定时间到达,所以A、B两地距离为4x;再看,按原速走了一半路程2x,说明用时x/2小时,由于最后乘车速度快,比预定时间早到27min=9/20h,所以后一半路程用时(x/2一9/20)h,所以A、B两地距离可表示为:2x+20(x/2一9/20),可得方程:4x=2x+20(x/2一9/20),解得x=9/8(h),4x=4×9/8=9/2(km).②若设A、B两地距离为x千米,则用不变的预定时间列方程。

按原速度前进表示的预定时间为:x/4;第二种表示的预定时间为(x/2)÷4+(x/2)÷20+9/20=x/8+x/40十9/20.所以方程为:x/4=x/8+x/40十9/20,解得x=9/2.2.一个车队共有n(n为正整数)辆小轿车,正以36Km/h的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4m,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆车的车尾经过自己身边共用了20s的时间,假设每辆车的车长均为4.87m.(1)求n的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为vm/s,当车队的第一辆车的车头从他身边经过了15s时,为了躲避一只小狗,他突然以3vm/s的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35s,求v的值.【分析与解答】首先统一单位,36Km/h=10m/s,①简单,是基本行程问题,只是注意n辆车有n一1个间隔,则4.87n十5.4(n一1)=20×10,解得n=20.②车队总长为20×4.87+5.4×(20一1)=200(m).同向行走,速度不同,时间相同时,距离差=速度差×时间,乙在35s内正好相差一个车队的距离,只不过这35s,分为15s和20s两种情况,所以可得,15(10一v)+(35一15)(10一3v)=200.解得v=2.二.相遇问题3.A,B两地相距60千米,甲、乙两人分别从A,B两地出发,相向而行,甲比乙迟出发20分钟,每小时比乙多行3千米,在甲出发后1小时40分钟两人相遇,问甲、乙每小时各行多少千米?【分析与解答】等量关系为:甲走的路程十乙走的路程=总路程,注意,乙比甲多走20分=1/3小时,也就说,甲共用时间为1小时40分=5/3小时,乙共用1/3+5/3=2小时,所以设乙每小时行x千米,可列方程为:5/3(x+3)+5x/3+x/3=60.解得x=15,x十3=18.甲每小时走18千米,乙每小时走15千米.三.追及问题4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速快30千米,但骄车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了1/3,结果又用两小时才追上这辆卡车,求卡车的速度.【分析与解答】本题是同地不同时追及问题,到追上时两车所走距离相等,只是时间不同,速度不同,所以设卡车的速度为每小时x千米,骄车原来的速度为(x+30)千米/时,修理后的速度为2/3(x+30)千米/时,注意卡车共用时(2十1+1/4十2)小时,骄车行驶共用时(1+2)小时,所以可得方程为:2x+x+x/4十2x=(x十30)+2×2(x十30)/3,解得x=24.所以卡车的速度为24千米/时.四.火车过桥问题5.一座铁路桥长1200m,现有一列火车从桥上通过,测得火车从上桥到完全通过桥共用时50s,整列火车在桥上的时间为30s,求火车的长度和速度.【分析与解答】火车过桥问题关键理解,火车过桥指火车全部过桥,即从车头上桥到车尾必须离桥,则火车走的路程为桥长+车长;火车在桥上,指从车头上桥到车头就要离开时,则火车走的路程为桥长减车长,此题已知桥长,时间,可以一定的速度列方程,设火车的长度为x米,可得:(1200十x)/50=(1200一x)/30,解得x=300,(1200十300)/50=300,所以火车上300m,车速30m/s.五.火车错车问题6.甲、乙两列火车的长分别为144m和180m,甲车比乙车每秒多行4m,两列车相向而行,从相遇到完全错开需9s.(1)甲、乙两列车的速度各是多少?(2)若同向而行,从甲车的车头刚追上乙车的车尾到甲车完全超过乙车,需要多少秒?【分析与解答】思考并理解,火车从相遇到完全错开,等量关系为:两车距离和=两车车长和,两车同向从车头刚追上到完全超过乙车,等量关系为:快车距离一慢车距离=两车车长和.(1)设乙车的速度为xm/s,甲车速度为(x十4)m/s,可得方程为9x+9(x十4)=180+144,解得x=16,x+4=20.所以甲车速度为20m/s,乙车速度为16m/s.(2)设需y(秒),方程为:20y一16y=180+144,解得y=81.所以需要81秒.六.顺流(风)、逆流(风)问题7.一架飞机在A,B两城市之间飞行,风速为20km/h,顺风飞行需要8h,逆风飞行需要8.5h,求无风时飞机的飞行速度和A,B两城市之间的航程.【分析与解答】设无风时飞机的速度为xKm/h,依两城市间距离一定可得方程.8(x+20)=8.5(x一20),解x=660,所以8(x十20)=8.5(x一20)=5440,所以无风时飞机速度为660km/h,A、B两城市距离为5440km.另外也可设两城市距离为y千米,用无风时飞机的速度一定可得方程:y/8一20=y/8.5+20,解得y=5440,所以y/8一20=y/8.5+20=660.8.某学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,共用了3h,已知船在静水中的速度是8Km/h,水流的速度为2Km/h,甲、丙两地相距2Km,求甲、乙两地间的距离.【分析与解答】学生乘船由甲地顺流而下到乙地,然后又逆流而上到丙地,丙地在什么地方,未知,所以应分丙地在甲、乙两地之间与丙在甲地上游两种情况分类讨论,设甲、乙两地间距离为xKm,①当丙地在甲、乙丙地之间时有,x/(8+2)十(x一2)/(8-2)=3,解得x=12.5:②当丙地在甲地上游时,有x/(8+2)十(x+2)/(8-2)=3,解得x=10,所以甲、乙两地间距离为12.5km或10km.七.上坡、下坡问题9.家住山脚下的小强同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1Km;(2)他上山2h到达的位置,离山顶还有1Km;(3)抄近路下山,下山路程比上山路程近2Km;(4)下山用1h.根据以上信息,他做出如下计划:(1)在山顶游览1h;(2)中午12:00回到家吃午餐.若依据以上信息和计划登山游玩,请问:小强同学应该在什么时间从家出发?【分析与解答】在所有的'A×B=C'的关系中,若设出其中一个量(比如A),一般可用另两个量中的一个量(或B、或C)建立等量关系,这时我们要仔细分析题中信息,用未知数A表示出关于B(或C)的代数式,表示出B的代数式用C作等量关系列方程,表示出C的代数式用B作等量关系列方程,就本题来说,信息多,需要仔细辨别.若设上山速度为x千米/时,则下山速度为(x十1)千米/时,①用路程列方程,因上山2h到达的位置离山顶还有1千米,所以上山,山脚距山顶总路程为2x+1,由于下山用1h,但比上山路程近2千米,所以也可表示出山脚距山顶总路程为(x+1)×1+2,所以可得方程:2x+1=(x+1)×1+2.解得x=2,所以上山速度为2千米/时,上山的路程为5千米,故计划上山的时何为5÷2=2.5(h),那么下山的速度为3千米/时,因下山用1h,加上山顶游览1h,那么这次登山游玩共用时2.5+1+1=4.5(h),所以出发时间为12时一4时30分=7时30分,也就是小强同学应该在7:30从家出发;②用速度作等量关系列方程,设山脚与山顶的距离为y千米,因为上山2h到达的位离山顶还有1千米,所以可表示上山速度为(y一1)/2,由于下山比上山近2千米且用1h,所以可表示下山速度为(y一2)÷1,后边1省略,因有下山比上山速度每小时快1千米,可得方程:(y一1)/2=(y一2)一1,解得y=5,后边的问题同样可解,不再叙述.八.封闭跑道问题10.甲、乙两人分别位于周长为400的正方形水池相邻的两个顶点上,同时开始沿逆时针方向绕池边行车,甲在乙前方,甲的速度为50米/分,乙的速度为44米/分,求甲、乙两人出发后几分钟第一次相遇.【分析与解答】甲快乙慢且甲在乙前,等同于甲、乙相距300米甲追乙的追及问题.这样分析之后就简单多了.设出发x分甲、乙第一次相遇,依据:路程差=300,可得:50x一44x=300,解得x=50,所以甲、乙两人出发后50分钟第一次相遇.还有一种两人同地反面行走的情况,第一次相遇时,等量关系为:距离和=封闭跑道周长,与一般相遇问题类似,比较简单.九.数轴上动点运动问题11.如图,数轴上两个动点A,B开始时所表示的数分别为一8,4,A,B两点各自以一定的速度在数轴上运动,且A点运动速度为2个单位长度/s.(1)A,B两点同时出发相向而行,在原点处相遇,求B点的运动速度.(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发向同方向运动,且在运动过程中,始终有CB:CA=1:2,若干秒后,C点在一10处,求此时B点的位置.【分析与解答】不管是什么运动,无论是直线运动,曲线运动,上坡还是下坡等,我们抓住基本的数量关系,具体分析不同的问题,找见不变的量,定能解决问题.(1)是相遇问题,时间相同,设B点运动速度为x个单位长度/s,B 点运动时间=A点运动时间=8/2,所以可得8x/2=4,解得x=1,(若写为8/2=4/x,则为分式方程,初一不要求,但我们也看出初一,初二知识的相关联特点,所以说初一学好一元一次方程,到初二,初三以至后来的方程题好学的多了).所以B点运动速度为1个单位/s.想:时间相同,路程比=速度比,立马知B点速度.(2)是类追及问题,只不过问的是A与B相距6个单位长度下的时间,由于A点运动快,所以有A点在B点左侧,与A点在B点右侧两种情况(分类讨论).设ts时两点相距6个单位长度,列方程为:①当A点在B点左侧时,2t一t=(4十8)一6,解得t=6.②当A点在B点右侧时,2t一t=(4十8)十6,解得t=18.所以6s或18s时两点相距6个单位长度.(3)有CB:CA=1:2这一条件,即CA=2CB,依此可列方程,设C 点运动速度为y个单位长度/s,由于时间相同,可得:2一y=2(y一1),解得y=4/3,(若不好理解,再引进一个辅助未知数,设运动时间为m,则2m一ym=2(ym一m),同样可得).当C 点在一10处时,所用时间为10÷(4/3)=15/2(s),此时B点表示的数为4一1×15/2=一7/2.以上是所作的行程问题的分类,有不完整的地方,同学们自己补充,任何人都不可能写全,人类在进步,知识在发展,同学们只要多归纳,多总结,掌握了基本的解题方法,就能以不变应万变,做一类通一片,切记重要的是自己归纳、总结!感谢大家的关注、转发、点赞、交流!。

(完整版)初中数学一元一次方程应用题九大类型(可编辑修改word版)

(完整版)初中数学一元一次方程应用题九大类型(可编辑修改word版)

七年级方程应用题九大类型一、列一元一次方程解应用题的一般步骤二、一元一次方程解决应用题的分类1、市场经济、打折销售问题2、方案选择问题3、储蓄、储蓄利息问题4、工程问题5、行程问题6、环行跑道与时钟问题7、若干应用问题等量关系的规律8、数字问题9、日历问题一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,• 是否符合实际,检验后写出答案.一.市场经济、打折销售问题(一)知识点:(1)商品利润=商品售价-商品成本价(2)商品利润率=价价价价×100%价价价价价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打 8 折出售,即按原价的 80%出售.(二)例题解析1、某高校共有 5 个大餐厅和 2 个小餐厅.经过测试:同时开放 1 个大餐厅、2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅、1 个小餐厅,可供 2280 名学生就餐.(1)求1 个大餐厅、1 个小餐厅分别可供多少名学生就餐;(2)若7 个餐厅同时开放,能否供全校的 5300 名学生就餐?请说明理由.解:(1)设 1 个小餐厅可供y 名学生就餐,则 1 个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以 1680-2y=960(名)(2)因为960 ⨯ 5 + 360 ⨯ 2 = 5520 > 5300 ,所以如果同时开放 7 个餐厅,能够供全校的 5300 名学生就餐.练习题2、工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?3、某地区居民生活用电基本价格为每千瓦时 0.40 元,若每月用电量超过 a 千瓦则超过部分按基本电价的70%收费.(1)某户八月份用电 84 千瓦时,共交电费 30.72 元,求 a.(2)若该用户九月份的平均电费为 0.36 元,则九月份共用电多少千瓦?应交电费是多少元?4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为 60 元,八折出售后,商家所获利润率为 40%。

一元一次方程中的九种题型

一元一次方程中的九种题型

一元一次方程中的九种题型一元一次方程的应用题,是中学阶段学习方程问题的第一个难点,共有九种题型需要注意。

一、方程的有关概念1. 方程:含有未知数的等式就叫做方程。

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。

⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c三、移项法则把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。

五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).六、列一元一次方程解应用题的一般步骤1.列方程解应用题的基本步骤注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上。

一元一次方程(专题详解)(解析版)

一元一次方程(专题详解)(解析版)

一元一次方程专题详解专题03 一元一次方程专题详解 (1)3.1从算式到方程 (2)知识框架 (2)一、基础知识点 (2)知识点1 方程和一元一次方程的概念 (2)知识点2 方程的解与解方程 (3)知识点3 等式的性质 (4)二、典型题型 (5)题型1 依题意列方程 (5)题型2 运用等式的性质解方程 (6)三、难点题型 (7)题型1 利用定义求待定字母的值 (7)3.2解一元一次方程-合并同类项和移项 (8)知识框架 (8)一、基础知识点 (8)知识点1 合并同类项解一元一次方程 (8)知识点2 移项解一元一次方程 (9)二、典型题型 (10)题型1 一元一次方程的简单应用 (10)3.3解一元一次方程-去括号与去分母 (11)知识框架 (11)一、基础知识点 (11)知识点1 去括号 (11)知识点2 去分母 (12)二、典型题型 (13)题型1 去括号技巧 (13)题型2 转化变形解方程 (15)题型3 解分子分母中含有小数系数的方程 (16)三、难点题型 (18)题型1 待定系数法 (18)题型2 同解问题 (18)题型3 含参数的一元一次方程 (19)题型4 利用解的情况求参数的值 (20)题型5 整体考虑 (21)3.4实际问题与一元一次方程 (21)一、基础知识点 (21)知识点1 列方程解应用题的合理性 (21)知识点2 建立书写模型常见的数量关系 (22)知识点3 分析数量关系的常用方法 (23)二、典型例题 (24)3.1从算式到方程知识框架一、基础知识点知识点1 方程和一元一次方程的概念1) 方程:含有未知数的等式。

例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。

如何判断一元一次方程:①整式方程;②只含有一个未知数,且未知数 的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 例1.下列各式中,那些是等式?那些是方程?①3x-6;②3-5=-2;③x+2y=8;④x+2≠3;⑤x-x1=2; ⑥y=10;⑦3y 2+2y=0;⑧3a<-5a ;⑨3x 2+2x-1=0;⑩213m m y =-+ 【答案】是方程的有:③、⑤、⑥、⑦、⑨、⑩方程需满足2个条件:1)含有未知数;2)是等式。

期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(解析版)-七年级数学上册

期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(解析版)-七年级数学上册

(人教版)七年级上册数学期末复习重要考点03《一元一次方程》十大重要考点题型【题型1方程的有关概念】1.(2022秋•新城区校级期末)下列各式中:①x=0;②2x>3;③x2+x﹣2=0;④1+2=0;⑤3x﹣2;⑥x﹣y=0;是方程的有()A.3个B.4个C.5个D.6个【分析】含有未知数的等式叫方程,根据方程的定义逐项判断即可得出答案.【解答】解:根据方程的定义可得:①③④⑥是方程,②2x>3是不等式,⑤3x﹣2,不是等式,不是方程,故方程有4个,故选:B.【点评】本题考查了方程的定义,熟练掌握方程的定义是解此题的关键.2.(2023秋•贵州期末)下列各式中是一元一次方程的是()A.x+y=6B.x2+2x=5C.+1=0D.2+3=0【分析】由一元一次方程的概念可知:①含有一个未知数,②未知数的次数为1,③整式方程,据此进行判断即可.【解答】解:A.x+y=6,含有两个未知数,不是一元一次方,不符合题意;B.x2+2x=5,未知数的次数为2,不是一元一次方,不符合题意;C.+1=0,分母含有未知数,是分式方程,不是一元一次方,不符合题意;D.2+3=0,含有一个未知数,且未知数的次数为1,为整式方程,符合题意.故选:D.【点评】本题考查了一元一次方程的判断,熟练掌握一元一次方程的定义是解题的关键.3.(2022秋•古冶区期末)方程:①2x﹣1=x﹣7,②12=13−1,③2(x+5)=x﹣4,④23=+2,其中解为x=﹣6的方程的个数为()A.1B.2C.3D.4【分析】分别计算各一元一次方程的解,然后判断作答即可.【解答】解:①2x﹣1=x﹣7,移项合并得,x=﹣6,符合要求;②12=13−1,去分母得,3x=2x﹣6,移项合并得,x=﹣6,符合要求;③2(x+5)=x﹣4,去括号得,2x+10=x﹣4,移项合并得,x=﹣14,不符合要求;④23=+2,去分母得,2x=3x+6,移项合并得,﹣x=6,系数化为1得,x=﹣6,符合要求;综上分析可知,解为x=﹣6的方程有3个,故选:C.【点评】本题考查了解一元一次方程.解题的关键在于正确的解方程.4.(2022秋•琼海期末)已知方程(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则m的值是()A.2B.3C.±3D.﹣3【分析】根据一元一次方程的定义,只含有一个未知数,并且未知数的最高次数是1的整式方程,进行计算即可解答.【解答】解:由题意得:|m|﹣2=1且m﹣3≠0,∴m=﹣3,故选:D.【点评】本题考查了绝对值,一元一次方程的定义,熟练掌握一元一次方程的定义是解题的关键.5.(2022秋•花山区期末)当m=时,方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,据此可得结论.【解答】解:∵方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程,∴|m﹣2|=1,且m﹣3≠0,解得m=1,故答案为:1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.6.(2023秋•曾都区期中)若方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,则代数式|m ﹣1|的值为.【分析】利用一元一次方程的定义,可列出关于m的一元二次方程及一元一次不等式,解之可得出m的值,再将其代入|m﹣1|中,即可求出结论.【解答】解:∵方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,∴2−1=0−(−1)≠0,解得:m=﹣1,∴|m﹣1|=|﹣1﹣1|=2.故答案为:2.【点评】本题考查了一元一次方程的定义以及绝对值,牢记“只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程”是解题的关键.7.(2023春•黄浦区期中)已知:(a +2b )y 2−13K 13=3是关于y 的一元一次方程.(1)求a 、b 的值;(2)若x =a 是方程r26−K12+3=x −K 3的解,求|a ﹣b ﹣2|﹣|b ﹣m |的值.【分析】(1)先根据一元一次方程的定义列出关于a ,b 的方程组,求出a ,b 的值即可;(2)把x =a 代入方程求出m 的值,再代入代数式求解即可.【解答】解:(1)∵(a +2b )y 2−13K 13=3是关于y 的一元一次方程,2=0−13=1,解得=4=−2;(2)∵a =4,x =a 是方程r26−K12+3=x −K 3的解,∴1−32+3=4−4−3,解得m =−12,∴|a ﹣b ﹣2|﹣|b ﹣m |=|4+2﹣2|﹣|﹣2+12|=52.【点评】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.【题型2等式的基本性质】1.(2023秋•洮北区期末)将等式m =n 变形错误的是()A .m +5=n +5B .−7=−7C .m −12=n −12D .﹣2m =2n【分析】根据等式的性质可得答案.【解答】解:A 、若m =n ,则m +5=n +5,原变形正确,故此选项不符合题意;B 、若m =n ,则−7=−7,原变形正确,故此选项不符合题意;C 、若m =n ,则m −12=n −12,原变形正确,故此选项不符合题意;D 、若m =n ,则﹣2m =﹣2n ,原变形错误,故此选项符合题意.故选:D .【点评】本题考查了等式的性质,解题的关键是掌握等式的性质:等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变.2.(2022秋•琼海期末)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若x=y,则=D.若=(c≠0),则a=b【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.【解答】解:A、若x=y,则x+5=y+5,此选项正确;B、若a=b,则ac=bc,此选项正确;C、若x=y,当a≠0时=,此选项错误;D、若=(c≠0),则a=b,此选项正确;故选:C.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.3.(2023秋•新民市校级月考)下列等式变形不正确的是()A.由x=y,得到x+3=y+3B.由3a=b,得到2a=b﹣aC.由m=n,得到4m=4n D.由bm=bn,得到m=n【分析】根据等式的性质进行判断即可.【解答】解:A.将等式x=y的两边都加上3得到的仍是等式,即x+3=y+3,因此选项A不符合题意;B.将3a=b的两边都减去a得到的仍是等式,即3a﹣a=b﹣a,也就是2a=b﹣a,因此选项B不符合题意;C.将m=n的两边都乘以4仍是等式,即4m=4n,因此选项C不符合题意;D.将bm=bn的两边都除以b,当b=0时就不能得到m=n,因此选项D符合题意.故选:D.【点评】本题考查等式的性质,理解等式的基本性质是正确判断的关键.4.(2022秋•五华县期末)下列等式变形中,结果正确的是()A.如果a=b,那么a﹣m=b+mB.由﹣3x=2得x=−32D.如果=,那么a=b【分析】根据等式性质1对A选项进行判断;根据等式性质2对B、D选项进行判断;根据绝对值的意义对C选项进行判断.【解答】解:A.如果a=b,那么a﹣m=b﹣m,所以A选项不符合题意;B.由﹣3x=2,则x=−23,所以B选项不符合题意;C.如果|a|=|b|,那么a=b或a=﹣b,所以C选项不符合题意;D.如果=,则a=b,所以D选项符合题意.故选:D.【点评】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.也考查了绝对值.5.(2022秋•保亭县期末)下列式子变形中,正确的是()A.由6+x=10得x=10+6B.由3x+5=4x得3x﹣4x=﹣5C.由5x=5得x=5D.由2(x﹣1)=3得2x﹣1=3【分析】根据等式的性质,逐项分析判断即可求解.【解答】解:A.由6+x=10得x=10﹣6,故该选项不正确,不符合题意;B.由3x+5=4x得3x﹣4x=﹣5,故该选项正确,符合题意;C.由5x=5得x=1,故该选项不正确,不符合题意;D.由2(x﹣1)=3得−1=32,故该选项不正确,不符合题意;故选:B.【点评】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.6.(2022秋•广平县期末)等式就像平衡的天平,能与如图的事实具有相同性质的是()B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+cD.如果a=b,那么a2=b2【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.【点评】本题考查了等式的基本性质,解题的关键是掌握等式的基本性质:等式性质:1、等式两边加同一个数(或式子)结果仍得等式;2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.(2022秋•颍州区期末)若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=;④a2=b2;⑤=1.其中正确的有.(填序号)【分析】根据等式的基本性质,解答即可.【解答】解:若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=,当m=0时,分式不成立;④a2=b2;⑤=1,当b=0时,分式不成立其中正确的有①②④.故答案为:①②④.【点评】本题考查了等式的基本性质,掌握等式的基本性质是解题的关键,【题型3一元一次方程的解法】1.(2023春•蒸湘区校级期末)解方程3=1−K15时,去分母正确的是()A.5x=1﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=15﹣3(x﹣1)D.5x=3﹣3(x﹣1)【分析】按照解一元一次方程的步骤进行计算即可解答.【解答】解:3=1−K15,去分母,方程两边同乘15得:5x=15﹣3(x﹣1),故选:C.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.2.(2022秋•唐县期末)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由16x=﹣1,可得x=−16D.由K12=4−3,可得2(x﹣1)=x﹣3【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由16x=﹣1,可得x=﹣6,不符合题意;D、由K12=4−3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.(2022秋•广州期末)将方程0.3=1+1.2−0.30.2中分母化为整数,正确的是()A.103=10+12−32B.3=10+1.2−0.30.2C.103=1+12−32D.3=1+1.2−0.32【分析】方程各项分子分母扩大相应的倍数,使其小数化为整数得到结果,即可作出判断.【解答】解:方程整理得:103=1+12−32.故选:C.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.4.(2022秋•丹阳市期末)关于x的一元一次方程2021−2022=2023的解为x=2,那么关于y的一元一次方程K20212021+2023(2021−p=2022的解为.【分析】将关于y的一元一次方程变形,然后根据一元一次方程解的定义得到y﹣2021=2,进而可得y 的值.【解答】解:将关于y的一元一次方程K20212021+2023(2021−p=2022变形为K20212021−2022=2023(−2021),∵关于x的一元一次方程2021−2022=2023的解为x=2,∴y﹣2021=2,∴y=2023,故答案为:2023.【点评】本题考查了解一元一次方程,一元一次方程的解,熟练掌握整体思想的应用是解题的关键.5.(2022秋•张湾区期末)解方程:(1)1−2K16=2r13;(2)3x﹣7(x﹣1)=3﹣2(x﹣1).【分析】(1)方程去分母,去括号,移项合并,将x系数化为1,即可求出解;(2)方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项合并得:﹣6x=﹣5,解得:=56;(2)去括号得:3x﹣7x+7=3﹣2x+2,移项合并得:﹣2x=﹣2,解得:x=1.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.6.(2023秋•鼓楼区校级月考)解方程:(1)4x+1=﹣5x+10;(2)K12=r76+1.【分析】(1)直接移项、合并同类项,进而解方程得出答案;(2)直接去分母,再移项、合并同类项,进而解方程得出答案.【解答】解:(1)4x+1=﹣5x+104x+5x=10﹣1,合并同类项得:9x=9,解得:x=1;(2)K12=r76+1去分母得:6(x﹣1)=2(x+7)+12,去括号得:6x﹣6=2x+14+12,移项、合并同类项得:4x=32,解得:x=8.【点评】此题主要考查了解一元一次方程,正确掌握解方程的方法是解题关键.7.(2023秋•姑苏区校级月考)解方程:(1)2(x+3)=5x;(2)K30.5−r40.2=1.6.【分析】(1)按去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)按去分母,去括号,移项,合并同类项,系数化为1的步骤求解即可.【解答】解:(1)2(x+3)=5x,去括号得:2x+6=5x,移项合并同类项得:﹣3x=﹣6,系数化为1得:x=2;(2)K30.5−r40.2=1.6,化简得:10K305−10r402=1.6,2x﹣6﹣5x﹣20=1.6,移项合并同类项得:﹣3x=27.6,系数化为1得:x=﹣9.2.【点评】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.8.(2022秋•中宁县期末)解方程:2K15−r12=1解:去分母,得2(2x﹣1)﹣5(x+1)=10……①去括号,得4x﹣2﹣5x+5=10……②移项,合并同类项,得﹣x=13……③系数化为1,得x=﹣13……④(1)步骤①去分母的依据是;(2)上面计算步骤出错的是第步,错误的原因是;(3)请你写出这个方程正确的解法.【分析】(1)利用等式的基本性质判断即可;(2)找出出错的步骤,分析其原因即可;(3)写出正确的解答过程即可.【解答】解:(1)步骤①去分母的依据是等式的基本性质;故答案为:等式的基本性质;(2)上面计算步骤出错的是第二步,错误的原因是去第二个括号时,括号中第二项没有变号;故答案为:二,去第二个括号时,括号中第二项没有变号;(3)去分母得:2(2x﹣1)﹣5(x+1)=10,去括号得:4x﹣2﹣5x﹣5=10,移项得:4x﹣5x=10+2+5,合并同类项得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.【题型4方程解中的遮挡问题】1.有一方程=﹣1,其中一个数字被污渍盖住了.已知该方程的解为x=﹣1,那么处的数字应是()A.5B.﹣5C.12D.−12【分析】根据方程的解的定义(使得方程成立的未知数的值)解决此题.【解答】解:设处的数字是a.∴2−3=−1.∴a=5.故选:A.【点评】本题主要考查方程的解,熟练掌握方程的解的定义是解决本题的关键.2.(2023秋•洮北区期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(2022秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得4+▲=6,解得▲=2.故答案为:2.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.(2022秋•馆陶县期末)方程5y﹣7=2y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣1.这个常数应是()A.10B.4C.﹣4D.﹣10【分析】将y=﹣1代入方程计算可求解这个常数.【解答】解:将y=﹣1代入方程5y﹣7=2y﹣中,5×(﹣1)﹣7=2×(﹣1)﹣,解得=10,故选:A.【点评】本题主要考查一元一次方程的解,理解一元一次方程解的概念是解题的关键.5.(2022秋•隆化县期末)小马虎在做作业,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了.怎么办?他翻开书后的答案,发现方程的解是x=9.请问这个被污染的常数是()A.1B.2C.3D.4【分析】设被污染的数字为y,将x=9代入,得到关于y的方程,从而可求得y的值.【解答】解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.【点评】本题主要考查的是一元一次方程的解得定义以及一元一次方程的解法,掌握方程的解得定义是解题的关键.6.(2022秋•临猗县期末)小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y−12=12y﹣■,怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=3,他很快便补好了这个常数,你能补出这个常数吗?它应是()A.﹣2B.3C.﹣4D.5【分析】设这个常数为x,已知此方程的解是y=3,将之代入二元一次方程2y−12=12y﹣x,即可得这个常数的值.【解答】解:能,设被污染的常数为a,则2y−12=12y﹣a,∵此方程的解是y=3,∴将此解代入方程,方程成立,∴2×3−12=12×3﹣a,解得a=﹣4,故选:C.【点评】本题主要考查了一元一次方程的应用以及它的解的意义.知道一元一次方程的解,求方程中的常数项,可把方程的解代入方程求得常数项的值.(把■作为一个未知数来看即可).7.(2022秋•威县期末)嘉淇在解关于x的一元二次方程2K13+■=r34时,发现常数■被污染了;(1)嘉淇猜■是﹣1,请解一元一次方程2K13−1=r34.(2)老师告诉嘉淇这个方程的解为x=﹣7,求被污染的常数.【分析】(1)利用去分母,移项,合并同类项,系数化1,可得答案;(2)设被污染的正整数为m,则有2×(−7)−13+=−7+34,求解可得答案.【解答】解:(1)2K13−1=r34,去分母得:4(2x﹣1)﹣12=3(x+3),去括号得:8x﹣4﹣12=3x+9,移项合并得:5x=25,系数化为1得:x=5;(2)设“■”的常数为m,由于x=﹣7是方程的解,则2×(−7)−13+=−7+34,解之得,m=4,所以被污染的常数是4.【点评】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.8.(2022春•西峡县期中)同学们在做解方程的练习时,卷子上有一个方程“2x−12=18x+□”中“□”没印清晰,小梅问老师,老师只说:“□是一个常数;该方程的解与当y=3时代数式5(y﹣1)﹣2(y﹣2)﹣4的值相同”.聪明的小梅很快补上了这个常数.求小梅补上的这个常数是多少?【分析】把y=3代入代数式5(y﹣1)﹣2(y﹣2)﹣4中进行计算,然后设小梅补上的这个常数是a,再把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,最后进行计算即可解答.【解答】解:当y=3时,5(y﹣1)﹣2(y﹣2)﹣4=5×(3﹣1)﹣2×(3﹣2)﹣4=5×2﹣2×1﹣4=10﹣2﹣4=4,设小梅补上的这个常数是a,由题意得:把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,8−12=12+a,a=8−12−12=7,∴小梅补上的这个常数是7.【点评】本题考查了一元一次方程的解,熟练掌握一元一次方程的解的意义是解题的关键.【题型5求一元一次方程含参问题】1.(2022秋•洪山区校级期末)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为()A.a=3B.a=1C.a=2D.a=﹣1【分析】将x=2代入原方程即可求出答案.【解答】解:将x=2代入2x+a﹣5=0,∴2×2+a﹣5=0,∴a=1,故选:B.【点评】本题考查一元一次方程的解,解题的关键是将x=2代入原方程,本题属于基础题型.2.(2022秋•庆阳期末)小磊在解关于x的方程r43−r4=2时,求得的解为x=﹣1,则k的值为()A.﹣1B.﹣3C.1D.5【分析】把x=﹣1代入方程r43−r4=2,解关于k的方程即可.【解答】解:把x=﹣1代入方程r43−r4=2得,−1+43−−1+4=2,方程两边都乘以12得,4(﹣1+4)﹣3(﹣1+k)=24,解得:k=﹣3,故选:B.【点评】此题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022春•镇平县期中)若关于x的方程3(x+4)=2a+5的解大于关于x的方程(4r1)4=o3K4)3的解,试确定a的取值范围.【分析】先求出两个方程的解,即可得出不等式,求出不等式的解集即可.【解答】解:∵3(x+4)=2a+5,∴x=2K73,∵(4r1)4=o3K4)3,∴x=−163a,∴2K73>−163a,解得a>718.【点评】本题考查了解一元一次方程和解一元一次不等式,能得出关于a的不等式是解此题的关键.4.(2023秋•椒江区校级期中)若不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,求m+n的值.【分析】把x=1代入方程计算,求出m与n的值,即可求出m+n的值.【解答】解:把x=1代入方程得:2r3=2+1−B6,去分母得:2(2k+m)=12+1﹣nk,整理得:(4+n)k=13﹣2m,∵不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,∴4+n=0,13﹣2m=0,解得:n=﹣4,m=6.5,则m+n=2.5.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(2022秋•秦都区校级期末)若方程2(3x+1)=1+2x的解与关于x的方程6−23=2(x+3)的解互为倒数,求k的值.【分析】解方程2(3x+1)=1+2x得出x的值,根据方程的解互为倒数知另一方程的解,代入可得关于k的方程,解之可得.【解答】解:2(3x+1)=1+2x,去括号,得6x+2=1+2x,移项、合并同类项,得4x=﹣1,化系数为1,得=−14.∵−14的倒数是﹣4,∴将x=﹣4代入方程6−23=2(+3),则6−23=−2,∴6﹣2k=﹣6.解得k=6.【点评】本题考查了方程的解的定义,就是能够使方程左右两边相等的未知数的值.解题的关键是正确解一元一次方程.6.(2022秋•游仙区校级月考)如果关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,求2a2﹣a的值.【分析】求出第一个方程的解,根据两方程解互为相反数得出关于a的一元一次方程,求出a的值,然后代入2a2﹣a计算即可.【解答】解:解方程2(x﹣4)﹣48=﹣3(x+2),得x=10,∵关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,∴方程4x﹣(3a+1)=6x+2a﹣1的解为x=﹣10,把x=﹣10代入得,﹣40﹣(3a+1)=﹣60+2a﹣1,解得,a=4,∴2a2﹣a=2×42﹣4=2×16﹣4=32﹣4=28.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.7.(2022秋•如东县期中)已知关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,求k的值.【分析】根据同解方程的定义可得出关于x与k的方程组,再求解即可.【解答】解:∵关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,∴x=2k﹣1,把x=2k﹣1代入3r4−5K18=1,得2k﹣1+2k=7,解得k=2,∴k的值为2.【点评】本题考查了同解方程的定义,掌握同解方程的定义,得出k的值是解题的关键.8.(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【题型6利用一元一次方程解决错解问题】1.(2023春•叙州区期末)小红在解关于x的方程:﹣3x+1=3a﹣2时,误将方程中的“﹣3”看成了“3”,求得方程的解为x=1,则原方程的解为.【分析】把x=1代入3x+1=3a﹣2,求出a的值,再把a的值代入原方程求解即可.【解答】解:把x=1代入3x+1=3a﹣2,得3+1=3a﹣2,解得a=2,故原方程为﹣3x+1=6﹣2,﹣3x=3,解得x=﹣1.故答案为:x=﹣1.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.2.(2022秋•献县期末)小马虎在解关于x的方程2a﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.【分析】把x=3代入2a+5x=21得出方程2a+15=21,求出a=3,得出原方程为6﹣5x=21,求出方程的解即可.【解答】解:∵小马虎在解关于x的方程2﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x =3,∴把x=3代入2a+5x=21得出方程2a+15=21,解得:a=3,即原方程为6﹣5x=21,解得x=﹣3.故答案为:x=﹣3.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022秋•陇县期末)小明在解方程2K13=r3−1去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x﹣1=x+a ﹣1,把x=2代入方程即可得到一个关于a的方程,求得a的值,然后把a的值代入原方程,解这个方程即可求得方程的解.【解答】解:根据题意,得:2x﹣1=x+a﹣1,把x=2代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:2K13=r23−1,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.【点评】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.4.(2023秋•道里区校级期中)某同学在解方程2K13=r2−1去分母时,方程右边的﹣1没有乘以6,因而求得方程的解为x=2,求a的值和方程正确的解.【分析】把x=2代入看错的方程求出a的值,确定出所求方程,求出解即可.【解答】解:把x=2代入4x﹣2=3x+3a﹣1得:a=13,∴原方程为2K13=r132−1,去分母得2(2x﹣1)=3(x+13)﹣6,去括号得4x﹣2=3x+1﹣6,移项得4x﹣3x=1+2﹣6,合并同类项得x=﹣3.【点评】此题考查了一元一次方程的解,熟练掌握运算法则是解本题的关键.5.(2022秋•丰顺县校级月考)(1)已知关于x的方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,求a2020的值.(2)小马虎在解关于x的方程2x=ax﹣21时,出现了一个失误:“在将ax移到方程的左边时,忘记了变号.”结果他得到方程的解为x=﹣3,求a的值和原方程的解.【分析】(1)根据方程的解互为倒数,可得关于a的方程,根据解方程,可得a的值,再根据乘方的性质,可得答案;(2)根据解方程,可得答案.【解答】解:(1)∵2x+3=﹣1,∴x=﹣2,∵方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,∴2(x﹣1)=﹣3a﹣6的解为−12,∴2(−12−1)=−3−6,解得,a=﹣1,∴a2020=(﹣1)2020=1.(2)由题意得2x+ax=﹣21,x=﹣3为此方程的解,∴﹣6﹣3a=﹣21,∴a=5,∴原方程为2x=5x﹣21,∴x=7,原方程的解是7.【点评】本题考查了一元一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键.6.小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【题型7一元一次方程的整数解问题】1.(2023秋•西城区校级期中)若关于x的一元一次方程kx=x+3的解为正整数,则整数k的值为()A.2B.4C.0或2D.2或4【分析】先求出方程的解,再根据关于x的一元一次方程kx=x+3的解为正整数和k为整数得出k﹣1=1或k﹣1=3,再求出k即可.【解答】解:解方程kx=x+3得:x=3K1,∵关于x的一元一次方程kx=x+3的解为正整数,k为整数,∴k﹣1=1或k﹣1=3,∴k=2或4.故选:D.【点评】本题考查了一元一次方程的解,能根据题意得出关于k的方程是解此题的关键.2.(2022秋•南充期末)已知a为自然数,关于x的一元一次方程6x=ax+6的解也是自然数,则满足条件的自然数a共有()A.3个B.4个C.5个D.6个【分析】解此题可先将一元一次方程进行移项、合并同类项等转换,得出x的解,再根据题意判断a的值.【解答】解:6x=ax+6,6x﹣ax=6,(6﹣a)x=6,x=66−,因为x和a均为自然数,所以6﹣a可以被6整除,且6﹣a不等于0,分解质因数得6=1×2×3,所以6﹣a只可能等于1、2、3、6,即a可能等于5、4、3、0,故只有选项B符合题意,故选:B.【点评】此题考查了自然数的定义,以及一元一次方程的解法,熟练掌握即可解答.3.(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.4.(2022秋•九龙坡区校级期末)已知关于x的方程a(x+1)=a﹣2(x﹣2)的解都是正整数,则整数a 的所有可能的取值的积为()A.﹣12B.1C.8D.0【分析】根据一元一次方程的解法求出x的表达式,然后根据题该方程的解都是正整数即可求出a的值.【解答】解:a(x+1)=a﹣2(x﹣2),ax+a=a﹣2x+4,ax=﹣2x+4,(a+2)x=4,由于x是正整数,故a+2=1或2或4,。

2020中考热点题型一元一次方程9大题型解析,很重要,一定要看!

2020中考热点题型一元一次方程9大题型解析,很重要,一定要看!

(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案二、一元一次方程解决应用题的分类1.市场经济、打折销售问题(一)知识点(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价 ×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1.某高校共有5个大餐厅和2个小餐厅。

经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。

(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。

解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为960×5+360×2=5520>5300 ,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。

2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。

该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是元,标价是(45+x)元。

依题意,得:8(45+x)×0.85-8x=(45+x-35)×12-12x解得:x=155(元)所以45+x=200(元)3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。

第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文

第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文

第09讲用一元一次方程解决问题(12种题型)一、配套问题配套问题在考试中十分常见,比如合理安排工人生产、按比例选取工程材料、调剂人数或货物等。

解决配套问题的关键是要认识清楚部分量、总量以及两者之间的关系。

每套所需各零件的比与生产各零件总数量成反比.二、工程问题工程问题的基本量有:工作量、工作效率、工作时间。

关系式为:①工作量=工作效率×工作时间;②工作时间=,③工作效率=。

工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。

还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。

三. 销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。

(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打6折出售,即按原标价的60%出售.四、比赛积分问题①.获取信息(找出胜、平、负的场数和积分,胜、平、负1场的积分,该队的总积分)②.能用字母表示数(常设胜/平/负的场数为x)③.寻找等量关系胜场数×胜1场的积分+平局场数×平1场的积分+负场数×负1场的积分=这个队的总积分五、方案选择问题1.借助方程先求出相等的情况。

2.再考虑什么情况下一种方案比另一种方案好,从而进行决策。

六、数字问题1、多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是10b+a②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是100c+10b+a③四、五…位数依此类推。

2、连续数的表示方法:①三个连续整数为:n-1,n,n+1(n为整数)②三个连续偶数为:n-2,n,n+2(n为偶数)或2n-2,2n,2n+2(n为整数)③三个连续奇数为:n-2,n,n+2(n为奇数)或2n-1,2n+1,2n+3(n为整数)七、几何问题1.将几何图形赋予了代数元素,便产生了一类新问题,2.解决这类问题时,通常要用到图形的性质以及几何量之间的关系.八、和差倍分问题1.和、差关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2.倍、分关系:通过关键词语“是几倍、增加几倍、增加到几倍、增加百分之几、增长率……”来体现.3.比例问题:全部数量=各种成分的数量之和.此类题目通常把一份设为x.解题的关键是弄清“倍、分”关系及“和、差”关系.九、分段计费问题分段计费问题解题思路1.明确分段区间2.明确不同区间的计费标准3.分区间讨论计算十. 行程问题1.行程问题中有三个基本量:路程、时间、速度。

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)七年级上册应用题专题讲解列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

因此我们要努力学好这部分知识。

一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套??”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率??”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x元,则2x+1000=250002x=24000x=12000答:去年该单位为灾区捐款12000元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x公斤,则x-[25%x+40%×(1-25%)x]+1=25%x+40%×(1-25%)x10%x=1 x=10答:油箱里原有汽油10公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。

2020年初一数学一元一次方程的13种应用题型全解析

2020年初一数学一元一次方程的13种应用题型全解析

一、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。

列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。

二、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

一元一次方程9大题型

一元一次方程9大题型

一元一次方程9大题型一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案二、一元一次方程解决应用题的分类1.市场经济、打折销售问题(一)知识点(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1.某高校共有5个大餐厅和2个小餐厅。

经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。

(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。

解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为960×5+360×2=5520>5300 ,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。

2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。

该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是元,标价是(45+x)元。

依题意,得:8(45+x)×0.85-8x=(45+x-35)×12-12x解得:x=155(元)所以45+x=200(元)3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。

一元一次方程应用汇总及答案解析

一元一次方程应用汇总及答案解析

一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。

解:等量关系 甲行的总路程+乙行的路程=总路程 (18千米)设乙的速度是x 千米/时,则列出方程是: 18211)1(211321=++⎪⎭⎫ ⎝⎛+x x3、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t 分钟后第一次相遇,t 等于 分钟。

老师提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系:快者跑的路程-慢者跑的路程=800 (俗称多跑一圈) 320t -280t =800 t =205、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?老师提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

部编数学七年级上册专题09一元一次方程章末重难点题型(12个题型)(解析版)含答案

部编数学七年级上册专题09一元一次方程章末重难点题型(12个题型)(解析版)含答案

专题09 一元一次方程章末重难点题型(12个题型)一、经典基础题题型1 方程与一元一次方程的辨别题型2 利用一元一次方程的定义和方程的解求值题型3等式的性质及应用题型4 一元一次方程中的同解问题题型5 方程的特殊解问题(求参数的值)题型6 解方程题型7 含参数的一元一次方程题型8 一元一次方程中的错解和遮挡问题题型9 一元一次方程中的新定义问题题型11 一元一次方程中的整体换元题型12 一元一次方程中的实际应用二、优选提升题题型1 方程与一元一次方程的辨别例1.(2022·吉林·大安市七年级期末)下列各式中,是一元一次方程的是()A.x+2y=5B.x2+x-1=0C.1xD.3x+1= 10【点睛】本题主要考查了一元一次方程的定义,熟记一元一次方程的定义是解题的关键.变式1.(2022·河南三门峡·七年级期末)在①21x +;②171581+=-+;③1112x x -=-;④23x y +=中,方程共有( )A .1个B .3个C .2个D .4个变式2.(2022·广东湛江·七年级期末)下列各式中,不是方程的是( )A .2a a a+=B .23x +C .215x +=D .()2122x x +=+【答案】B【分析】根据方程的定义(含有未知数的等式称为方程)依次进行判断即可.【详解】解:根据方程的定义可得:A 、C 、D 选项均为方程,选项B 不是等式,所以不是方程,故选:B .【点睛】题目主要考查方程的定义,深刻理解方程的定义是解题关键.题型2 利用一元一次方程的定义和方程的解求值【解题技巧】依据一元一次方程的定义,x 的次数为1,系数不为0方程的解:解方程就是求出使方程中等号左右两边相等的未知数的值,这个值叫方程的解.例1.(2022·河南郑州·七年级期末)若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( )A .2m ¹-B .0m ¹C .2m ¹D .2m >-【答案】A【分析】根据一元一次方程的定义:只含有一个未知数,未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程进行求解即可.【详解】解:∵方程()21m x +=是关于x 的一元一次方程,∴20m +¹即2m ¹-.故选:A .【点睛】本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义.变式1.(2022·福建泉州·七年级期末)若3x =是关于x 的方程5ax b -=的解,则622a b --的值为( )A .2B .8C .-3D .-8【答案】B 【分析】将x =3代入ax -b =5中得3a -b =5,将该整体代入6a -2b -2中即可得出答案.【详解】解:将x =3代入ax -b =5中得:3a -b =5,所以6a -2b -2=2(3a -b )-2=2×5-2=8.故选:B .【点睛】本题考查了一元一次方程的解,求代数式的值,熟练掌握整体法是解题的关键.变式2.(2022·河南南阳·七年级期末)若()110m x -+=是关于x 的一元一次方程,则m 的值可以是______(写出一个即可)【答案】2(答案不唯一)【分析】只含有一个未知数,并且未知数的次数是一次的整式方程叫一元一次方程,利用一元一次方程的定义得出10m -¹,即可得出答案.【详解】解:()110m x -+=Q 是关于x 的一元一次方程,10m \-¹,解得1m ¹,m \的值可以是2.故答案为:2(答案不唯一).【点睛】此题主要考查了一元一次方程的定义,正确掌握一元一次方程定义是解题关键.题型3 等式的性质及应用【解题技巧】等式的性质1:等式两边加同一个数(或式子)结果仍得等式;等式的性质2:等式两边乘同一个数或除以一个不为零的数,结果仍得等式.例1.(2022·海南·七年级期末)已知a b =,根据等式的性质,可以推导出的是( )A .21a b +=+B .33a b -=-C .232a b -=D .a b c c=例1.(2022·四川成都·八年级期末)某小组设计了一组数学实验,给全班同学展示以下三个图,其中(a )(b )中天平保持左右平衡,现要使(c )中的天平也平衡,需要在天平右盘中放入砝码的克数为( )A .25克B .30克C .40克D .50克【答案】C 【分析】由图(a )和图(b )可得5个黑三角和5个黑圆共重150克,从而1个黑三角和1个黑圆共重30克,由此可计算出1个黑三角重20克,1个黑圆重10克,可计算出此题结果.【详解】设一个黑三角重a 克,一个黑圆重b 克,由题意,得5(a +b )=150,解得a +b =30,由图(a )得,a +2(a +b )=80,即a +2×30=80,解得a =20,∴b =30-20=10,∴a +2b =20+10×2=20+20=40,故选:C .【点睛】此题考查了利用等式的性质和方程解决实际问题的能力,关键是能根据题意列出关系式,利用等式的性质进行计算.例2.(2022·江苏泰州·七年级期末)已知方程x -2y =5,请用含x 的代数式表示y ,则y =_______.题型4 一元一次方程中的同解问题解题技巧:通过前一个方程求得x 的值并代入后一个方程,转化为含另一未知数的方程、例1.(2022·黑龙江大庆·期末)关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,则m 的值为( )A .12B .14C .14-D .12-【答案】C变式1.(2022·辽宁大连·七年级期末)如果方程24=x 与方程的解相同,则k 的值为( )A .2B .C .4D .【答案】C【分析】解方程2x =4,求出x ,根据同解方程的定义计算即可.【详解】解:∵2x =4,∴x =2,∵方程2x =4与方程3x +k =-2的解相同,∴3×2+k =10解得,k =4,故选:C .【点睛】本题考查的是同解方程,掌握一元一次方程的解法是解题的关键.变式2.(2022·山东烟台·期末)若关于x 的方程()3212x k x -=+的解与关于x 的方程()821k x -=+的解互为相反数,则k =______.310x k +=2-4-题型5 方程的特殊解问题(求参数的值)解题技巧:求含参数一元一次方程的逆过程例1.(2022·河南安阳·七年级期末)关于x 的方程的解是正整数,则整数k 可以取的值是__________.【答案】3【分析】把含x 的项合并,化系数为1求x ,再根据x 为正整数求整数k 的值.【详解】解:移项、合并,得,解得:,∵x 为正整数,k 为整数,∴解得k=3.故答案为:3.【点睛】本题考查一元一次方程的解.关键是按照字母系数解方程,再根据正整数解的要求求整数k 的值.变式1.(2022·上海金山·八年级期末)如果关于x 的方程ax =b 无解,那么a 、b 满足的条件()A .a =0,b =0B .a ≠0,b ≠0C .a ≠0,b =0D .a =0,b ≠0【答案】D【分析】根据方程无解,可知含x 的系数为0,常数不为0,据此求解.【详解】解:∵关于x 的方程ax =b 无解,∴a =0,b ≠0,故选:D .【点睛】本题考查一元一次方程的解,理解方程无解时含x 的系数为0,常数项不为0是解题关键.变式2.(2022·湖南)关于x 的方程(a +1)x =a ﹣1有解,则a 的值为( )A .a ≠0B .a ≠1C .a ≠﹣1D .a ≠±1【答案】C【分析】根据一元一次方程有解,可得一元一次方程的系数不能为零,可得答案.【详解】根据一元一次方程有解,可得一元一次方程的系数不能为零,可得答案.21x kx +=21x kx -=-12x k=--2=-1k -解:由关于x 的方程(a +1)x =a ﹣1有解,得a +1≠0,解得a ≠﹣1.故选:C .【点睛】本题考查了一元一次方程有解的条件,利用了一元一次方程的系数不能为零.变式3.(2022·黑龙江大庆·期末)关于x 的方程()()2153a x a x b -=-+有无穷多个解,则a b -=______.题型6 解方程【解题技巧】解含有括号的一元一次方程:一般方法是由内到外逐层去括号,但有时这样做不一定能简化运算。

一元一次方程的知识点和主要题型汇总.

一元一次方程的知识点和主要题型汇总.

一元一次方程的知识点和主要题型汇总.A 、1-=x 是方程312=+x 的解B 、2=y 是方程23121-=-y y 的解 C 、1=t 是方程031=-t 的解 D 、4=x 是方程)1(235x x -=-的解03、等式的性质①等式的性质等式两边加(或减)同一个数(或式子)结果仍相等。

等式两边乘同一个数,或除以同一个的数,结果仍相等。

②已知等式ax=ay,下列变形不正确的是( ). A 、x=y B 、ax+1= ay+1 C 、ay=ax D 、3-ax=3-ay③列说法正确的是( )A 、等式两边都加上一个数或一个整式,所得结果仍是等式;B 、等式两边都乘以一个数,所得结果仍是等式;C 、等式两边都除以同一个数,所以结果仍是等式;D 、一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式; ④在等式ab ac =两边都除以a ,可得b c =。

这句话对吗?说出你的理由?_________________________________________________________________ ⑤在等式a b =两边都除以21c+,可得2211a b c c =++。

这句话对吗?说出你的理由。

_________________________________________________________04、移项①定义:把等式一边的某项 后移到另一边,叫做移项。

②通常常数项要移到方程的右边,未知项要移到方程的左边。

③移项时要变号:移正变 ,移负变 。

④下列一项正确的是( ) A 、若312-=-x ,则13--=x B 、若xx 382+=-,则823=-x xC 、若232=-x ,则 232+-=x D 、若x x 2513+=-,则1523+=-x x05、系数化为1①一元一次方程的最简形式:bax =②定义:当把方程化为最简形式b ax =后,方程两边都除以未知数的系数 ,得到方程的解 的过程叫做系数化为1. ③系数化为1时,未知数的系数做分母。

(最新)精编七年级第三章一元一次方程题型及答题解析

(最新)精编七年级第三章一元一次方程题型及答题解析

68
26.司机在驾驶汽车时,发现紧急情况到踩下刹车需要一段时间,这段时间叫反应时间.之后还会继续行驶
一段距离.我们把司机从发现紧急情况到汽车停止所行驶的这段距离叫“刹车距离”
(如图).
22.列方程解应用题
小明周六去北京图书馆查阅资料,他家距图书馆
35 千米,小明从家出发先步行 20 分钟到车站,紧接着坐上
D 、2 50 元的价格卖出两件衣服,
其中一件盈利
25%,另一件亏损
25%,在这次买卖中,
10.若 , , 都是不等于零的数,且
,则 (
)
A. 2
B.-1
C. 2 或-1
D.不存在
11. A 种饮料比 B 种饮料单价少 1 元,小峰买了 2 瓶 A 种饮料和 3 瓶 B 种饮料, 一共花了 13 元,如果设 B 种
3
2
A. 18x + 2(2 x -1) = 18 - 3( x+ 1)
B. 3x (2x 1) 3 (x 1)
C. 18x (2x 1) 18 (x 1)
D. 3x 2(2x 1) 3 3(x 1)
m
6.若
1与 2m - 7 互为相反数,则
m的值为(

3
3
3
A、
4
4
3
4
B、
C 、-
D 、-
3
4
3
7.一个商店把彩电按标价的九折出售,仍可获利
B.若 a = b ,则 ac = bc
C.若 a = b ,则 2a = 3b cc
xy D.若 x = y ,则 =
aa
2.若
与 kx- 1= 15 的解相同则 k 的值为(

2020中考数学《一元一次方程》专题复习考点讲解(含答案)

2020中考数学《一元一次方程》专题复习考点讲解(含答案)

一元一次方程【培优图解】【技法透析】1.一元一次方程的有关概念(1)方程:含有未知数的等式叫方程:由方程的定义可知:判断一个数学式子是否为方程,只需要看它是否具备以下两个条件:①这个式子必须是等式,②这个等式中必须含有未知数,这两个条件缺一不可,否则就不是方程.方程必是等式,但等式不一定是方程.(2)方程的解:使方程左、右两边相等的未知数的值叫方程的解.(3)解方程:求方程解的过程叫做解方程.“解方程”是指确定方程的解的过程,也就是把方程进行变形的过程,因此,“解方程”与“方程的解”是两个完全不同的概念.(4)一元一次方程:只含有一个未知数,未知数的次数为1,这样的方程叫一元一次方程,判断一个方程是不是一元一次方程,必须具备以下三个条件:①必须是整式方程;②只含有一个未知数;③未知数的次数为1,且系数不为0.如方程x-23x=是分式方程而不是整式方程,方程3x-2y=1中含有两个未知数,方程2x-5=x2+1中未知数的最高次数为2(次),因此,这三个方程都不是一元一次方程.像方程5x-3=5(x-1),从表面上看,好像是一元一次方程,其实经过化简后这个方程变为-3=-5,就不是一元一次方程;而像方程x2-2x-3=x2+5,表面上看它是一元二次方程,其实经过化简后,这个方程变为-2x=8,所以实际上它是一元一次方程.2.等式的性质(1)等式的性质1:等式的两边都加上(或减去)同一个数或同一个式子,所得的结果仍是等式,即:如果a=b,则a±c=b±c.(2)等式的性质2:等式的两边都乘以(或除以)同一个不为0的数所得的结果仍是等式.即:如果a=b,则ac=bc,a bc c =.(c≠0)3.解一元一次方程的一般步骤(1)去分母:即在方程的左、右两边都乘以各分母的最小公倍数,去公母的依据是等式的性质2.去分母时要防止漏乘不含分母的项,同时要把分子(如果含几项)作为一个整体用括号括起来,以及分母约分后“1”省略不写.(2)去括号:去括号的依据是去括号法则及乘法分配律.去括号时先要分清括号前是“+”还是“-”号,不要弄错符号,还要防止漏乘括号里后面的项.(3)移项:移项是解方程常用的一种变形.移项的依据是等式的性质.一般是把含有未知数的项移到方程的左边,把不含未知数的项都移到方程的右边.注意移项一定要变号.(4)合并同类项:运用合并同类项法则,将方程化为ax=b(a≠0)的形式.合并同类项的依据是乘法分配律.(5)系数化为1:即在方程左、右两边都除以未知数的系数a,得到方程的解为x=ba .系数化为1的依据是等式的性质2,它是解一元一次方程的最后_步变形,经过系数化为1的变形就可以求出未知数的值,从而得到一元一次方程的解.在系数化为1时,两数相除不要写反了,要明确哪个是被除数,哪个是除数,不要颠倒了.在解方程时,需要我们既要学会按部就班(严格按步骤),又要能随机应变(可根据方程的结构特征灵活打乱步骤).4.含字母系数的一元一次方程含字母系数的一元一次方程总可以化为:ax=b的形式.当字母a、b的取值范围未给出时,则要讨论解的情况,其方法是:(1)当a≠0时,方程有唯一解,即x=b a(2)当a=0,b=0时,方程有无数个解;(3)当a =0,b ≠0时,方程无解.5.解一元一次方程的常用技巧(1)有多重括号时,去括号与合并同类项可交替进行:(2)当括号内含有分数时,常由外向内去括号再去分母;(3)当分母中含有小数时,先用分数的基本性质化为整数;(4)运用整体思想,即把含有未知数的代数式看作是一个整体进行变形.6.列方程解应用题的一般步骤(1)审清题意,即弄清题目中已知什么,要求什么,明确各个数量之间是什么关系.(2)找相等关系,要善于从应用题中发现直接的或隐含的表示已知数和未知数全部含义的相等关系.(3)设未知数,并列出相应的数量关系的表达式,设未知数有直接设法与间接设法.(4)列方程,将相等关系转化为方程.(5)解方程,求出所列方程的解,求解的过程可以简化.(6)检验并作答,检验所解得的方程的解是否符合题意或实际问题,最后再作答.“设”与“答”要带单位,且单位要统一.【名题精讲】考点1 利用一元一次方程的定义解题例1 已知方程(m -2)1m x -+16=0是关于x 的一元一次方程.求m 的值和方程的解.【切题技巧】 由一元一次方程的定义可知:关于x 的一元一次方程的条件是只含有一个未知数,未知数的次数为1且其系数不为0,于是应有:m -2≠0,11m -=.从而可求得m 的值及相应的方程的解.【规范解答】【借题发挥】 一元一次方程必须同时满足以下三个条件:①必须是整式方程,②只含有一个未知数,③未知数的次数为1且系数不为0,利用定义法解题是数学解题的一种方法,从本质上说,数学中的定理、公式、法则和性质等,都是由定义和公理推演出来的.巧用定义法解题必须对定义有透彻的理解.【同类拓展】 1.已知(m 2-1)x 2-(m +1)x +8=0是关于x 的一元一次方程.(1)求代数式200(m +x)(x -2m )+10m 的值.(2)求关于y的方程m1y-=x的解.考点2一元一次方程的解法例2 解方程3211112223422x x⎡⎤⎛⎫++-=⎪⎢⎥⎝⎭⎣⎦.观察方程结构特征:32与23互为倒数,32×2是整数,故解此方程时先不急于去分母,而应先去中括号,再去小括号计算较简便.【规范解答】去中括号得:111132422x x ⎛⎫++-=⎪⎝⎭去小括号整理得:131 422 x x+=移项合并得:13 42x-=-系数化为1得:x=6【借题发挥】灵活解一元一次方程时常用到的方法技巧有:①若有多重括号,应根据方程中数据特征,灵活运用去括号法则与合并同类项法则,交替进行;②若括号内含分数时,则由外向内先去括号、再去分母;③恰当运用整体思想,因此在解方程时,既要学会严格按步骤进行,又要依据方程结构特征灵活变通步骤.【同类拓展】2.如果x=2是111471019632x a⎧⎫⎡⎤+⎛⎫+-+=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭的解.那么a=_______.考点3含字母系数的一元一次方程例3 解关于x的方程:2a(a-4)x+4(a+1)x-2a=a2+4x【切题技巧】先将原方程整理为“ax=b”的形式,因为是字母系数的一元一次方程,所以必须讨论方程解的情况.【规范解答】原方程整理得:a(2a-4)x=a(a+2)①当a≠0,a≠2时方程有唯一解,x2 24aa+ =-②当a=0时,方程有无数个解;③当a=2时,方程无解.【借题发挥】含字母系数的一元一次方程总能转化为“ax=b”的形式,对于方程中字母系数a、b的值没有明确给出时,则要对a、b的取值的可能情况进行讨论,再讨论方程的解的情况,其方法为:①当a≠0时,方程有唯一解,即x=ba;当a=0,b=0时,方程的解为无数个;当a=0,b≠0时,方程无解.【同类拓展】3.如果a、b为常数,关于x的方程:223kx a x bkb+-=+,无论k为何值时,它的解总是1.求a、b的值.考点4设元技巧例4 一只小船从甲港到乙港逆流航行需2小时,水流速度增加1倍后,再从甲港到乙港航行需3小时,水流速度增加后,则从乙港返回甲港需航行( ) A.0.5小时B.1小时C.1.2小时D.1.5小时【切题技巧】本题要求从乙港返回甲港所需的时间,则需要求甲、乙两港间的距离及顺水航行的速度,故可考虑设辅助未知数,设甲、乙两港的距离为S,船在静水中的速度为x0,原水流速度为x1,依题意有:【规范解答】 B【借题发挥】恰当、合理地设元是列方程解应用题的关键步骤之一,设什么为元,需要根据具体问题的条件来确定,对未知元的选择,有时可将要求的量作为未知数(即问什么设什么)称此为直接设元;有时需要将要求的量以外的其它量设为未知元(即所设的不是所求的,但更易找出符合题意的数量关系与相等关系)称此为间接设元;有时应用题中隐含一些未知的常量,这些量对求解无直接联系;但如果不指明这些量的存在,则难求其解.因此需要把这些未知的常量设为参数,以便建立相等关系,称此为辅助设元,辅助设元的目的不是为了求其值,而是为列方程创造条件.【同类拓展】4.A和B分别从甲、乙两站于早上8:00出发相向而行,40分钟相遇,相遇后,两人继续向前,A到达乙站后立即返回,又行走了全程的1516后追上B,A追上B时是_______时_______分.考点5常见题型的应用题例5初一(1)班有学生60名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5,并且这两个小组都不参加的人数比两小组都参加的人数的14多2,则同时参加这两个小组的人数是( )A.16 B.12 C.10 D.8【切题技巧】本题较复杂、数量较多,我们可以把该班人数分四个部分,即:两个小组都参加,仅参加数学小组,仅参加英语小组,两个小组都不参加.于是可设同时参加这两个小组的有x人,则仅参加数学小组的有(36-x)人.仅参加英语小组的有(36-5-x)人.两个小组都不符加的有(14x+2)人,依题意有:x+(36-x)+(36-5-x)+(14x+2)=60∴x=12.【规范解答】 B【借题发挥】常见题型的应用题包括:行程与时钟问题,工程与比例分配问题,浓度与调配问题;数字与日历、数表问题;市场营销与方案决策问题;增长率等,这类应用题在中考、竞赛中一直是热点之一,需要我们认真审题,分清各类应用题的基本数量关系,运用画线段示意图和列表格的方式来帮助分析题意,使题意变得直观、清晰.5.将连续的奇数:1,3,5,7,……排成如右图数表,用十字框任意框出5个数,十字框框出的五个数之和能等于2000吗?能等于2010吗?能等于2055吗?若能,请写出十字框框出的五个数.考点6情景应用题例6某超市对顾客实行优惠购物,规定如下:(1)若一次性购物少于200元,则不优惠;(2)若一次性购物满200元,但不超过500元,按标价给予9折优惠;(3)若一次性购物超过500元,其中500元以下部分(包括500元)按标价给予9折优惠,超过500元部分按标价8折优惠.李明两次去超市购物,分别付款198元和554元.现在王娟准备一次性地购买和李明分两次购买同样多的物品,她需付多少元?【切题技巧】先根据两次购物的付款情况分别对购物款作一个初步估计,因为第一次付款为198元,有可能未享受优惠,也有可能是打九折后的付款,故有两种情况,而第二次付款为554元,显然第二次的购物款超过了500元,再分别求出两次的实际购物款.【规范解答】【借题发挥】解数学情景应用题要在读懂材料并理解题意的基础上,用数学的眼光去观察问题,理解题意,培养数学应用意识,解决问题.本例中要分情况讨论,购物超过500元时,应分段累计付款,“打n折”的含义为按标价的n×10%付款.6.《中华人民共和国个人所得税法》规定,公民每月工资不超过800元的不需交税,超过800元的部分为全月应纳锐所得额,且根据超过部分的多少按不同的税率交税,详细的税率如表;某人3月份纳税款为117.10元,求他当月的工资是多少?参考答案1.(1)2010 (2)y=5或y=-3.2.-43.1324 ab⎧=⎪⎨⎪=-⎩4.9时55分.5.不能为2000 也不能为2011 能等于2055,且这五个数分别为:409,411,413,399,423.6.2221元.。

一元一次方程应用汇总及答案解析

一元一次方程应用汇总及答案解析

一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。

解:等量关系 甲行的总路程+乙行的路程=总路程 (18千米)设乙的速度是x 千米/时,则列出方程是: 18211)1(211321=++⎪⎭⎫ ⎝⎛+x x3、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t 分钟后第一次相遇,t 等于 分钟。

老师提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系:快者跑的路程-慢者跑的路程=800 (俗称多跑一圈) 320t -280t =800 t =205、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?老师提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020初中数学《一元一次方程》9大题型超全解析
一、列一元一次方程解应用题的一般步骤
(1)审题:弄清题意
(2)找出等量关系:找出能够表示本题含义的相等关系
(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程
(4)解方程:解所列的方程,求出未知数的值
(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案
二、一元一次方程解决应用题的分类
1.市场经济、打折销售问题
(一)知识点
(1)商品利润=商品售价-商品成本价
(2)商品利润率=商品利润/商品成品价100%
(3)商品销售额=商品销售价商品销售量
(4)商品的销售利润=(销售价-成本价)销售量
(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.
(二)例题解析
1.某高校共有5个大餐厅和2个小餐厅。

经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。

相关文档
最新文档