最新高中数学 2.2.3-2.2.4 直线与平面、平面与平面平行的性质习题 新人教A版必修2
人教A版必修2第二章2.2.3《直线与平面平行的性质》精选题高频考点(含答案)-1
人教A 版必修2第二章2.2.3《直线与平面平行的性质》精选题高频考点(含答案)-1学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在长方体1111ABCD A B C D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是( )A .平行B .相交C .异面D .平行或异面 2.如图所示,在四棱锥P ABCD -中,M N ,分别为AC PC ,上的点,且MN ∥平面PAD ,则( )A .MN PD PB .MN PA ∥C .MN AD P D .以上均有可能 3.如图,P 为平行四边形ABCD 所在平面外一点,E 为AD 上一点,且13AE ED =,F 为PC 上一点,当//PA 平面EBF 时,PF FC=( )A .23B .14C .13D .12 4.如图所示,在长方体1111ABCD A B C D -中,121AB BC AA ,===,则1BC 与平面11BB D D 所成角的正弦值为( )A.3 BC.5 D.5 5.在正方体1111ABCD A B C D -中,E 为棱CD 上一点,且2CE DE =,F 为棱1AA 的中点,且平面BEF 与1DD 交于点G ,与1AC 交于点H ,则( )A .115DG DD =B .113AH HC = C .114DG DD = D .138AH HC = 6.如图,1111ABCD A B C D -是正方体,E 为棱1BB 上的动点(不含端点),平面11AC E 与底面ABCD 的交线为l ,则l 与AC 的位置关系是( )A .异面B .平行C .相交D .与E 点位置有关 7.已知m ,n 是不同的直线,α,β是不重合的平面,下列命题中正确的有( ) ①若m α⊥,m β⊥,则//αβ②若//m α,m β⊂,n αβ=I ,则//m n③若//m α,//m β,则//αβ④若αβ⊥,m α⊂,n β⊂,则m n ⊥A .①②B .①③C .②④D .③④ 8.已知//,a b αα⊂,则直线a 与直线b 的位置关系是( )A .平行B .相交或异面C .异面D .平行或异面 9.已知棱长为3的正方体1111ABCD A B C D -,点E 是棱AB 的中点,12CF FC =u u u r u u u u r ,动点P 在正方形11AA DD (包括边界)内运动,且1PB P 面DEF ,则PC 的长度范围为( )A .B .5⎡⎢⎣C .5⎡⎢⎣D .5⎡⎢⎣10.如图,各棱长均为a 的正三棱柱111ABC A B C -,M 、N 分别为线段1A B 、1B C 上的动点,且MN ∥平面11ACC A ,M ,N 中点S 111ABC A B C -的体积为( )A B C .3 D .11.点E ,F 分别是棱长为1的正方体1111ABCD A B C D -中棱BC ,1CC 的中点,动点P 在正方形11BCC B (包括边界)内运动,且1PA ∥面AEF ,则1PA 的长度范围为( )A .1,2⎡⎢⎣⎦B .42⎡⎢⎣⎦C .342⎡⎤⎢⎥⎣⎦D .31,2⎡⎤⎢⎥⎣⎦12.如图,在正四棱锥S -ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P在线段MN 上运动时,下列四个结论:①EP ⊥AC ;②EP ∥BD ;③EP ∥平面SBD ;④EP ⊥平面SAC ,其中恒成立的为( )A .①③B .③④C .①②D .②③④13.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面交线的位置关系是( )A .异面B .相交C .不能确定D .平行 14.如图所示,a P α,A 是α的另一侧的点,B C D a ∈,,,线段AB AC AD ,,分别交α于点EFG ,,,若445BD CF AF ===,,,则EG =( )A .169B .209C .94D .5415.如图,已知四棱锥P ABCD -的底面是平行四边形,AC 交BD 于点O ,E 为AD 中点,F 在PA 上,AP AF λ=,//PC 平面BEF ,则λ的值为( )A .1B .32C .2D .3 16.给出下列关于互不相同的直线,,l m n 和平面,,αβγ的三个命题:①若l 与m 为异面直线,,l m αβ⊂⊂,则//αβ;②若//,,l m αβαβ⊂⊂,则//l m ;③若,,,//l m n l αββγγαγ===I I I ,则//m n .其中正确的个数为( )A .0B .1C .2D .317.如图,P 为平行四边形ABCD 所在平面外一点,E 为AD 的中点,F 为PC 上一点,当P A ∥平面EBF 时,PF FC=( )A .23B .14C .13D .12 18.如果直线m//直线n ,且m//平面α,那么n 与α的位置关系是() A .相交 B .n//α C .n ⊂α D .n//α或n ⊂α 19.若直线a 平行于平面α,则下列结论错误的是( )A .直线a 上的点到平面α的距离相等B .直线a 平行于平面α内的所有直线C .平面α内有无数条直线与直线a 平行D .平面α内存在无数条直线与直线a 所成的角为90o20.已知l ,m 为两条不同直线,α,β为两个不同平面.则下列命题正确的是( ) A .若l αP ,m α⊂,则l m PB .若l αP ,m αP ,则l m PC .若l α⊂,m β⊂,αβ∥,则l m PD .若l αP ,l β∥,m αβ=I ,则l m P二、填空题21.如图,正方体1111ABCD A B C D -中, AB =点E 为11A D 的中点,点F 在11C D 上,若//EF 平面1ACB ,则EF =________.22.在正方体1111ABCD A B C D -中,E 为棱CD 上一点,且2CE DE =,F 为棱1AA 的中点,且平面BEF 与1DD 交于点G ,与1AC 交于点H ,则1DG DD =______,1AH HC =______. 23.如图所示,a ∥α,A 是α的另一侧的点,B 、C 、D ∈a ,线段AB 、AC 、AD 交α于E 、F 、G ,若BD =4,CF =4,AF =5,则EG =________.24.如图,E 是棱长为1正方体1111ABCD A B C D -的棱11C D 上的一点,且1//BD 平面1B CE ,则线段CE 的长度为___________.25.如图所示,四面体ABCD 被一平面所截,截面EFGH 是一个矩形.则直线CD 与平面EFGH 的关系是______.26.如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)AC BD ⊥①,AC BD =②,//AC ③截面PQMN ,④异面直线PM 与BD 所成的角为45o .27.在三棱锥S ABC -中,ABC ∆是边长为4的正三角形,10SA SB SC ===,平面DEFH 分别与AB ,BC ,SC ,SA 交于D ,E ,F ,H 且D ,E 分别是AB ,BC 的中点,如果直线SB P 平面DEFH ,那么四边形DEFH 的面积为______.28.已知l 、m 是两条直线,α是平面,若要得到“l ∥α”,则需要在条件“m ⊂α,l ∥m ”中另外添加的一个条件是______.29.如图,DC ⊥平面ABC ,EB ∥DC ,EB =2DC ,P ,Q 分别为AE ,AB 的中点.则直线DP 与平面ABC 的位置关系是________.30.正方体1111ABCD A B C D -中,2AB =,点E 为AD 的中点,点F 在1CC 上,若//EF 平面1AB C ,则EF =_____.31.如图所示,在三棱柱111ABC A B C -中,过11A B C ,,的平面与平面ABC 的交线为l ,则l 与直线11A C 的位置关系为________.32.如图所示,长方体1111ABCD A B C D -的底面ABCD 是正方形,其侧面展开图是边长为8的正方形,E F ,分别是侧棱11AA CC ,上的动点,且8AE CF +=,P 在棱1AA 上,且2AP =,若EF P 平面PBD ,则CF =________.33.如图所示,在三棱柱111ABC A B C 中,E F G H ,,,分别是1111AB AC A B A C ,,,的中点,则与平面BCHG 平行的平面为________.34.如图(1)所示,已知正方形ABCD 中,E F ,分别是AB ,CD 的中点,将ADE V 沿DE 折起,如图(2)所示,则BF 与平面ADE 的位置关系是________.35.已知A 、B 、C 、D 四点不共面,且AB ∥平面α,CD ∥α,AC ∩α=E ,AD ∩α=F ,BD ∩α=H ,BC ∩α=G ,则四边形EFHG 是_______四边形.36.如图,棱长为2的正方体1111ABCD A B C D -中,M 是棱AA 1的中点,过C ,M ,D 1作正方体的截面,则截面的面积是________.37.如图所示,在长方体1111ABCD A B C D -中,111BB B D =,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,给出下列命题:.① 四棱锥11B BED F -的体积恒为定值;②存在点E ,使得1B D ⊥平面1BD E ;③存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值;④存在无数个点E ,在棱AD 上均有相应的点G ,使得CG P 平面1EBD ,也存在无数个点E ,对棱AD 上任意的点G , 直线CG 与平面1EBD 均相交.其中真命题的是____________.(填出所有正确答案的序号)38.已正知方体ABCD-A 1B 1C 1D 1的棱长为2,点P 是平面AA 1D 1D 的中心,点Q 是B 1D 1上一点,且PQ ∥平面AB 1D ,则线段PQ 长为______.39.设,a b 是平面M 外两条直线,且//a M ,那么//a b 是//b M 的________条件.40. 已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AA 1D 1D 的中心,点Q 是平面A 1B 1C 1D 1的对角线B 1D 1上一点,且PQ ∥平面AA 1B 1B ,则线段PQ 的长为________.三、解答题41.如图,四棱锥P ABCD -中,底面ABCD 为矩形,侧面PAD 为正三角形,2AD =,3AB =,平面PAD ⊥平面ABCD ,E 为棱PB 上一点(不与P 、B 重合),平面ADE 交棱PC 于点F .(1)求证:AD EF P ;(2)若二面角––B AC E ,求点B 到平面AEC 的距离. 42.如图,在四棱锥P ABCD -中,底面ABCD 是梯形,且//BC AD ,2AD BC =,点Q 是线段AD 的中点,过BQ 的平面BQMN 交平面PCD 于MN ,且PQ AB ⊥,AP PD =,且120APD ∠=︒,24BD AB ==,30ADB ∠=︒.(1)求证://BQ MN ;(2)求直线PA 与平面PCD 所成角的余弦值.43.如图所示的一块木料中,棱BC 平行于面A C ''.(1)要经过面A C ''内的一点P 和棱BC 将木料锯开,在木料表面应该怎样画线? (2)所画的线与平面AC 是什么位置关系?44.如图,已知E ,F 分别是正方体1111ABCD A B C D -的棱1AA ,1CC 上的点,且1AE C F =.求证:四边形1EBFD 是平行四边形.45.如图所示,P 是平行四边形ABCD 所在平面外一点,E 是PD 的中点、若M 是CD 上异于C ,D 的点,连接PM 交CE 于点G ,连接BM 交AC 于点H ,连接GH ,求证:GH //PB .46.已知如图,斜三棱柱ABC -A 1B 1C 1中,点D 、D 1分别为AC 、A 1C 1上的点. (1)当1111A D D C 等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值.47.如图所示,已知三棱柱ABC-A'B'C'中,D 是BC 的中点,D'是B'C'的中点,设平面A'D'B∩平面ABC=a ,平面ADC'∩平面A'B'C'=b ,判断直线a ,b 的位置关系,并证明.48.如图,四棱锥P ABCD -的底面ABCD 为直角梯形,//AD BC ,且112BC AD ==,BC DC ⊥,60BAD ∠=︒,平面PAD ⊥底面ABCD ,E 为AD 的中点,PAD ∆为等边三角形,M 是棱PC 上的一点,设PM k MC=(M 与C 不重合).(1)当1k =时,求三棱锥M BCE -的体积;(2)若//PA 平面BME ,求k 的值.49.如图,E ,F ,G ,H 分别是空间四边形ABCD 各边上的点,且::AE EB AH HD m ==,::CF FB CG GD n ==.(1)证明:E ,F ,G ,H 四点共面.(2)m ,n 满足什么条件时,四边形EFGH 是平行四边形?50.如图,在四校锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面MAC ,PA PD ==4AB =.求证:M 为PB 的中点.参考答案1.A2.B3.B4.D5.D6.B7.A8.D9.B10.D11.B12.A13.D14.B15.D16.B17.D18.D19.B20.D21.222.163823.20 92425.平行26.①③④27.10 28.lα⊄29.平行3031.平行. 32.2. 33.平面1A EF 34.平行35.平行【答案】9 237.①②③④3839.充分不必要40.241.(1)证明见解析;(2.42.(1)证明见解析(243.(1)见解析(2)直线EF与平面AC平行直线,BE CF与平面AC相交. 44.证明见解析45.证明见解析46.(1)1;(2)1.47.直线a,b的位置关系是平行,证明见试题解析.48.(1)14;(2)1.49.(1)见解析(2)当m n时,四边形EFGH是平行四边形. 50.证明见解析。
直线与平面平行的性质习题及答案
§2.2.3 直线与平面平行的性质※基础达标1.已知直线l A. 平行 B. 异面 C. 相交 D. 平行或异面2.梯形ABCD 中AB ⊂⊄A. 平行B. 平行和异面C. 平行和相交D. 异面和相交3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( ).A. 异面B. 相交C. 平行D. 不能确定4.若直线a 、b 均平行于平面α,则a 与b 的关系是( ).A. 平行B. 相交C. 异面D. 平行或相交或异面5.已知l 是过正方体ABCD —A 1B 1C 1D 1的顶点的平面AB 1D 1与下底面ABCD 所在平面的交线,下列结论错误的是( ).A. D 1B 1∥lB. BD l ∥平面A 1D 1B 1 D. l ⊥B 1 C 16.已知正方体1AC 的棱长为1,点P 是的面11AA D D 的中心,点Q 是面1111A B C D 的对角线11B D 上一点,且//PQ 平面11AA B B ,则线段PQ 的长为 .7.设不同的直线a ,b 和不同的平面α,β,γ,给出下列四个说法:① a ∥α,b ∥α,则a ∥b ; ② a ∥α, a ∥β, 则α∥β; ③α∥γ,β∥γ,则α∥β;④ a ∥b ,b ⊂α,则a ∥α. 其中说法正确的序号依次是 .※能力提高 8.如图,空间四边形ABCD 被一平面所截,截面EFGH是平行四边形. (1)求证:CD ∥平面EFGH ;(2)如果AB ⊥CD ,AB =a ,CD =b 是定值,求截面EFGH 的面积.9.如右图,直线AB 和CD 是异面直线,//AB α,//CD α,F DB C H G E A A αB C D MNAC M α=I ,BD N α=I ,求证:AM BN MC ND=.※探究创新10.如下图,在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=12AB ,点E 、M 分别为A 1B 、C 1C 的中点,过点A 1、B 、M 三点的平面A 1BMN 交C 1D 1于点N .(1)求证:EM ∥平面A 1B 1C 1D 1; (2)设截面A 1BMN 把该正四棱柱截成两个几何体的体积分别为V 1、V 2(V 1<V 2),求V 1∶V 2的值.第14练 §2.2.3 直线与平面平行的性质【第14练】 1~5 DBCDD ; 6. 2; 7. ③. 8. 解:(1)证明:∵ EFGH 是平行四边形, ∴ EF ⊄⊂∵ EF ⊂平面ADC ,平面ADC ∩平面BDC =DC , ∴ EF (2)截面EFGH 的面积为 14S ab =.9. 证明:如图,连结AD 交平面α于点Q ,连结MQ 、QN .////AB AQ BN AB ABD AB QN QD NDABD QN αα⎫⎪⊂⇒⇒=⎬⎪=⎭I 平面平面平面,////CD AQ AM CD ACD CD MQ QD MCACD MQ αα⎫⎪⊂⇒⇒=⎬⎪=⎭I 平面平面平面, ∴AM BNMC ND =.10. 解:(1)证明:设A 1B 1的中点为F ,连结EF 、FC 1. ∵E 为A 1B 的中点,∴EF //12B 1B . 又C 1M //12B 1B ,∴EF //MC 1.∴四边形EMC 1F 为平行四边形.∴EM ∥FC 1.∵EM ⊄平面A 1B 1C 1D 1,FC 1⊂平面A 1B 1C 1D 1, ∴EM ∥平面A 1B 1C 1D 1.(2)延长A 1N 与B 1C 1交于P ,则P ∈平面A 1BMN ,且P ∈平面BB 1C 1C . 又∵平面A 1BMN ∩平面BB 1C 1C =BM , ∴P ∈BM ,即直线A 1N 、B 1C 1、BM 交于一点P .又∵平面MNC 1∥平面BA 1B 1, ∴几何体MNC 1—BA 1B 1为棱台. ∵S =12·2a ·a =a 2, S =12·a ·12a =14 a 2,棱台MNC 1—BA 1B 1的高为B 1C 1=2a ,V 1=13·2a ·(a 2+2214a a ⋅+14a 2)=76a 3,∴V 2=2a ·2a ·a -76a 3=176a 3. ∴12V V =717.N A αB C D M Q。
导学案1:2.2.3~2.2.4直线与平面平行的性质~2.2.4平面与平面平行的性质
2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质1探究导航[知识要点]1.直线与平面平行的性质定理;2.平面与平面平行的性质定理.[学习要求] 1.能熟练地利用直线与平面平行的性质定理、平面与平面平行的性质定理解决相关问题;2.培养和提高学生类比、转化等辩证思维能力.2记忆和理解教材新知知识点一:[提出问题]将一本书打开,扣在桌面上,使书脊所在的直线与桌面平行,观察过书脊的每页纸和桌面的交线与书脊的位置.问题1:上述问题中,书脊与每页纸和桌面的交线有何位置关系?问题2:每页纸与桌面的交线之间有何关系?问题3:书脊所在的直线与桌面上任何直线都平行吗?[导入新知]直线与平面平行的性质定理(1) 文字语言:一条直线与一个平面平行,则 与该直线平行.(2)图形语言:(3)图形语言:(4)作用:线面平行⇒线线平行.(5)同学们!你们能写出已知,求证,证明吗?ba //⇒知识点二:[提出问题]同学们,你们教室的左右两侧的墙面是什么位置关系?它们都与你们前面的这侧墙面相交,则它们的交线是什么位置关系?[导入新知]平面与平面平行的性质定理(1)文字语言:如果两个平行平面同时和第三个平面 ,那么它们的交线 .(2)图形语言:(3)符号语言:(4)作用:面面平行⇒线线平行.(5)同学们!你们能写出已知,求证,证明吗?3突破常考题型题型一:直线与平面平行的性质及应用[例1] 如图已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.[活学活用]如图所示,已知三棱锥A -BCD 被一平面所截,截面为平行四边形EFGH ,求证:CD //平面ba //⇒EFGH.题型二:平面与平面平行的性质及应用[例2]求证:夹在两个平行平面间的平行线段相等.[活学活用]α,分别交于点B,A和D,C;M,N分如图所示,两条异面直线BA,DC与两平行平面β别是AB,CD的中点,求证:MN//平面α题型三:直线与平面平行和平面与平面平行的综合应用[例3]在正方体ABCD-A1B1C1D1中,如图所示.求证:平面AB1D1//平面C1BD.[活学活用]如图,棱长为的正方体ABCD-A1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点(1)求证:PQ//平面DCC1D1;(2)求PQ的长;(3)求证:EF//平面BB1D1D.4应用落实体验[随堂即时演练]1.下列命题正确的是( )A .如果b a ,是两条直线,且b a //,那么a 平行于经过b 的任何平面B .若直线α//a ,那么a 与α内的任何直线平行C .直线α//a ,直线α//b ,那么b a //D .若直线αα⊄b a b a ,//,//,那么α//b2.如图,四棱锥P -ABCD 中,M ,N 分别是AC ,PC 上的点,且MN //平面P AD ,则()A .MN //PDB .MN //P AC .MN //AD D .以上均有可能3.在下列命题中,正确的有 (填序号)①若αβα⊂=b a , ,则b a //;②若//a 平面α,α⊂b ,则b a //;③若平面α//平面β,βα⊂⊂b a ,,则b a //;④若平面α//平面β,点P α∈,β//a ,且a P ∈,则α⊂a .参考答案3突破常考题型题型一:直线与平面平行的性质及应用[例1] 已知:a,b在平面α外,a∥α.求证:b∥α.证明:过a作平面β,使它与平面α相交,交线为c.因为a∥α,a⊂β,α∩β=c,所以,a∥c.因为a∥b,所以,b∥c.又因为c⊂α,b不在α内,所以,b∥α.[活学活用]证明:由于EFGH为平行四边形,∴EF∥GH.由于GH⊂平面BCD中,EF不在平面BCD中,故有EF∥平面BCD.而EF⊂平面ACD,平面ACD∩平面BCD=CD,根据直线和平面平行的性质定理可得EF∥CD.EF⊂平面EFGH,CD不在平面EFGH内,故有CD∥平面EFGH.题型二:平面与平面平行的性质及应用[例2]如图:已知:如图,α∥β,AB∥CD,且A∈α,C∈α,B∈β,D∈β.求证:AB=CD.证明:∵AB∥CD,可过AB,CD可作平面γ,且平面γ与平面α和β分别相交与AC和BD.∵α∥β,∴BD∥AC.∴四边形ABCD是平行四边形.∴AB=CD.[活学活用] 略题型三:直线与平面平行和平面与平面平行的综合应用[例3]证明:∵ABCD﹣A1B1C1D1是正方体,∴AB1∥DC1,AD1∥BC1,又AB1∩AD1=A,AB1∥DC1,AD1⊂平面AB1D1,AB1⊂平面AB1D1,∴平面AB1D1∥平面C1BD.[活学活用] 略4应用落实体验1.D2.B3.④。
高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案
2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定●知识梳理1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:a αb β => a∥αa∥b●知能训练一.选择题1.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n2.若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③4.正方体ABCD-A1B1C1D1中M,N,Q分别是棱D1C1,A1D1,BC的中点.P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥面APC;(2)C1Q∥面APC;(3)A,P,M三点共线;(4)面MNQ∥面APC.正确的序号为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,任取两点连成直线,所连的直线中与A1BC1平行的直线共有()A.12条B.18条C.21条D.24条6.直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内7.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交8.如图在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()A.DD1B.A1D1C.C1D1D.A1D9.如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则等于()A.1/2B.1 C.2 D.310.下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④11.如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值二.填空题12.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件时,就有MN⊥A1C1;当N只需满足条件时,就有MN∥平面B1D1C.13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB 1∥平面BC1D;(2)若BC=3,求三棱锥D-BC1C的体积.2.2.2 平面与平面平行的判定●知识梳理1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
数学必修2——2.2.3-2.2.4《直线与平面、平面与平面平行的性质》导学导练
高中数学必修2个人原创,版权所有,翻印必究,如需借用,QQ 索取密码 第1页 解密佛山吉红勇老师扣扣:一0七669八11高中数学必修二2.2.3《直线与平面平行的性质》2.2.4《平面与平面平行的性质》导学导练【知识要点】1、直线与平面平行的性质定理(重点)1)直线与平面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.2)符号语言描述:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα3)图形语言描述,如右图.2、平面与平面平行的性质(重点、难点)1)、两个平面平行的性质(1):如果两个平面平行,那么其中一个平面内的直线平行于另一个平面. 简言之,“面面平行,则线面平行.”2)、两个平面平行的的性质(2):如果两个平行平面同时和第三个平面相交,那么它们的交线平行.【范例析考点】考点一.线面平行性质的应用考点1:由“线面平行”证明“线线平行”例1、如图,已知异面直线AB 、CD 都与平面α平行,CA 、CB 、DB 、DA 分别交α于点E 、F 、G 、H .求证:四边形EFGH 是平行四边形.HGFEBADCα【针对练习】1.若直线a 不平行于平面α,则下列结论成立的是( )A .α内的所有直线都与直线a 异面B .α内不存在与a 平行的直线C .α内的直线都与a 相交D .直线a 与平面α有公共点2.直线a ∥平面α,P ∈α,过点P 平行于α的直线( )A .只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内 3.下列判断正确的是( )A .a ∥α,b α,则a ∥bB .a ∩α=P ,b α,则a 与b 不平行C .aα,则a ∥α D .a ∥α,b ∥α,则a ∥b4.直线和平面平行,那么这条直线和这个平面内的( )A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交 5、判断下列说法是否正确:①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何一条直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内。
直线与平面平行的性质经典例题
2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质一、基础达标1.a∥α,b∥β,α∥β,则a与b位置关系是() A.平行B.异面C.相交D.平行或异面或相交答案 D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交.2.(2014·郑州高一检测)已知直线l∥平面α,P∈α,那么过点P且平行于l的直线() A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内答案 B解析如图所示,∵l∥平面α,P∈α,∴直线l与点P确定一个平面β,α∩β=m,∴P∈m,∴l∥m且m是唯一的.3.三棱锥S-ABC中,E、F分别是SB、SC上的点,且EF∥平面ABC,则() A.EF与BC相交B.EF与BC平行C.EF与BC异面D.以上均有可能答案 B解析由线面平行的性质定理可知EF∥BC.4.(2014·呼和浩特高一检测)如图,四棱锥P-ABCD中,M,N分别为AC,PC 上的点,且MN∥平面P AD,则()A.MN∥PDB.MN∥P AC.MN∥ADD.以上均有可能答案 B解析∵MN∥平面P AD,MN⊂平面P AC,平面P AD∩平面P AC=P A,∴MN∥P A.5.下列说法正确的是() A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c均平行答案 B解析平行于同一条直线的两个平面可以平行也可以相交,所以A错;B正确;C中没有指明这三个点在平面的同侧还是异侧,不正确;D不正确,因为过直线a的平面中,只要b,c不在其平面内,则与b,c均平行.6.过正方体ABCD-A1B1C1D1的三个顶点A1、C1、B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.答案平行解析由面面平行的性质可知第三平面与两平行平面的交线是平行的.7.如图所示,在三棱柱ABC-A1B1C1中,过A1,B,C1的平面与平面ABC的交线为l,试判断l与直线A1C1的位置关系,并给以证明.解l∥A1C1证明在三棱柱ABC-A1B1C1中,A1C1∥AC,A1C1⊄平面ABC,AC⊂平面ABC,∴A1C1∥平面ABC.又∵A1C1⊂平面A1BC1,且平面A1BC1∩平面ABC=l,∴A1C1∥l.二、能力提升8.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点答案 D解析∵l⊄α,∴l∥α或l与α相交.(1)若l ∥α,则由线面平行的性质可知l ∥a ,l ∥b ,l ∥c ,… ∴a ,b ,c ,…这些交线都平行.(2)若l 与α相交,不妨设l ∩α=A ,则A ∈l ,又由题意可知A ∈a ,A ∈b ,A ∈c ,…,∴这些交线交于同一点A .综上可知D 正确.9.如图所示,直线a ∥平面α,A ∉α,并且a 和A 位于平面α两侧,点B ,C ∈a ,AB 、AC 分别交平面α于点E 、F ,若BC =4,CF =5,AF =3,则EF =________.答案 32解析 EF 可看成为直线a 与点A 确定的平面与平面α的交线,∵a ∥α,由线面平行的性质定理知,BC ∥EF ,由条件知AC =AF +CF =3+5=8. 又EF BC =AFAC ,∴EF =AF ×BC AC =3×48=32.10.如图,P 是△ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′S △ABC=________.答案 425解析 由平面α∥平面ABC ,得AB ∥A ′B ′,BC ∥B ′C ′,AC ∥A ′C ′, 由等角定理得∠ABC =∠A ′B ′C ′,∠BCA =∠B ′C ′A ′,∠CAB =∠C ′A ′B ′, 从而△ABC ∽△A ′B ′C ′,△P AB ∽△P A ′B ′, S △A ′B ′C ′S △ABC=⎝⎛⎭⎪⎫A ′B ′AB 2=⎝ ⎛⎭⎪⎫P A ′P A 2=425. 11.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点. 证明 ∵平面AB 1M ∥平面BC 1N , 平面ACC 1A 1∩平面AB 1M =AM , 平面BC 1N ∩平面ACC 1A 1=C 1N , ∴C 1N ∥AM ,又AC ∥A 1C 1, ∴四边形ANC 1M 为平行四边形, ∴AN =C 1M =12A 1C 1=12AC , ∴N 为AC 的中点. 三、探究与创新12.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,能否确定截面的形状?如果能,求出截面的面积.解能.取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,∵A1N∥PC1且A1N=PC1,PC1∥MC,PC1=MC.∴四边形A1MCN是平行四边形,又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1,C1P∩PB=P,∴平面A1MCN∥平面PBC1,因此,过点A1与截面PBC1平行的截面是平行四边形.连接MN,作A1H⊥MN于点H,∵A1M=A1N=5,MN=22,∴A1H= 3.∴S△A1MN=12×22×3= 6.故S▱A1MCN=2S△A1MN=2 6.13.如图所示,已知P是▱ABCD所在平面外一点,M、N分别是AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:l∥BC;(2)MN与平面P AD是否平行?试证明你的结论.解法一(1)证明:因为BC∥AD,BC⊄平面P AD,AD⊂平面P AD,所以BC∥平面P AD.又因为平面PBC∩平面P AD=l,所以BC∥l.(2)平行.取PD的中点E,连接AE,NE,可以证得NE∥AM且NE=AM. 可知四边形AMNE为平行四边形.所以MN∥AE,又因为MN⊄平面APD,AE⊂平面APD,所以MN∥平面APD. 法二(1)证明:由AD∥BC,AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.又因为平面PBC∩平面P AD=l,所以l∥AD,l∥BC.(2)设Q是CD的中点,连接NQ,MQ,则MQ∥AD,NQ∥PD,而MQ∩NQ=Q,所以平面MNQ∥平面P AD.MN⊂平面MNQ,所以MN∥平面P AD.。
课时作业12:2.2.3 直线与平面平行的性质
2.2.3直线与平面平行的性质一、选择题1.如图,已知S为四边形ABCD外一点,点G,H分别为SB,BD上的点,若GH∥平面SCD,则()A.GH∥SAB.GH∥SDC.GH∥SCD.以上均有可能考点直线与平面平行的性质题点利用性质判定位置关系答案 B解析因为GH∥平面SCD,GH⊂平面SBD,平面SBD∩平面SCD=SD,所以GH∥SD,显然GH与SA,SC均不平行,故选B.2.直线a∥平面α,P∈α,过点P平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在α内C.只有一条,且在平面α内D.有无数条,一定在α内考点直线与平面平行的性质题点利用性质判定位置关系答案 C解析由线面平行性质定理知过点P平行于a的直线只有一条,且在平面α内,故选C. 3.对于直线m,n和平面α,下列命题中正确的是()A.如果m⊂α,n⊄α,m,n是异面直线,那么n∥αB.如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交C.如果m⊂α,n∥α,m,n共面,那么m∥nD.如果m∥α,n∥α,m,n共面,那么m∥n考点直线与平面平行的性质题点利用性质判定位置关系答案 C解析由线面平行的性质定理知C正确.4.如图,在长方体ABCD-A1B1C1D1中,点E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于点G,H,则GH与AB的位置关系是()A.平行B.相交C.异面D.平行或异面考点直线与平面平行的性质题点利用性质判定位置关系答案 A解析由长方体性质知:EF∥平面ABCD,∵EF⊂平面EFGH,平面EFGH∩平面ABCD =GH,∴EF∥GH.又∵EF∥AB,∴GH∥AB.5.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH时,下面结论正确的是()A.E,F,G,H一定是各边的中点B.G,H一定是CD,DA的中点C.BE∶EA=BF∶FC,且DH∶HA=DG∶GCD.AE∶EB=AH∶HD,且BF∶FC=DG∶GC考点直线与平面平行的性质题点利用性质判定位置关系答案 D解析由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC =DG∶GC.6.已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为()A.22B.32C .1D. 2考点 直线与平面平行的性质 题点 与线面平行性质有关的计算 答案 A解析 如图,连接AD 1,AB 1,∵PQ ∥平面AA 1B 1B ,平面AB 1D 1∩平面AA 1B 1B =AB 1, PQ ⊂平面AB 1D 1,∴PQ ∥AB 1, ∴PQ =12AB 1=1212+12=22.7.如图,四棱锥S -ABCD 的所有的棱长都等于2,点E 是SA 的中点,过C ,D ,E 三点的平面与SB 交于点F ,则四边形DEFC 的周长为( )A .2+3B .3+ 3C .3+23D .2+2 3考点 直线与平面平行的性质 题点 与线面平行性质有关的计算 答案 C解析 ∵CD ∥AB ,CD ⊄平面SAB ,AB ⊂平面SAB , ∴CD ∥平面SAB .又平面CDEF ∩平面SAB =EF ,∴CD ∥EF , 又CD ∥AB ,∴AB ∥EF .∵SE =EA ,∴EF 为△ABS 的中位线, ∴EF =12AB =1,又DE =CF =3,∴四边形DEFC 的周长为3+2 3.二、填空题8.如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.考点 直线与平面平行的性质 题点 与线面平行性质有关的计算 答案223a 解析 ∵MN ∥平面AC ,平面PMN ∩平面AC =PQ , ∴MN ∥PQ ,易知DP =DQ =2a3,故PQ =PD 2+DQ 2=2DP =22a3.9.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线有_____条.考点 直线与平面平行的性质 题点 利用性质判定位置关系 答案 0或1解析 过直线a 与交点作平面β,设平面β与α交于直线b ,则a ∥b ,若所给n 条直线中有1条是与b 重合的,则此直线与直线a 平行,若没有与b 重合的,则与直线a 平行的直线有0条.10. 如图,已知A ,B ,C ,D 四点不共面,且AB ∥α,CD ∥α,AC ∩α=E ,AD ∩α=F ,BD ∩α=H ,BC ∩α=G ,则四边形EFHG 的形状是______.考点 直线与平面平行的性质 题点 利用性质判定位置关系答案平行四边形解析∵AB∥α,平面ABC∩α=EG,∴EG∥AB.同理FH∥AB,∴EG∥FH.又CD∥α,平面BCD∩α=GH,∴GH∥CD.同理EF∥CD,∴GH∥EF,∴四边形EFHG是平行四边形.11.如图所示的正方体的棱长为4,点E,F分别为A1D1,AA1的中点,则过C1,E,F的截面的周长为________.考点直线与平面平行的性质题点与线面平行性质有关的计算答案45+6 2解析由EF∥平面BCC1B1可知平面BCC1B1与平面EFC1的交线为BC1,平面EFC1与平面ABB1A1的交线为BF,所以截面周长为EF+FB+BC1+C1E=45+6 2.三、解答题12.如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP 于点F,求证:四边形BCFE是梯形.考点直线与平面平行的性质题点利用性质证明平行问题证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面P AD,BC⊄平面P AD,∴BC∥平面P AD.∵平面BCFE∩平面P AD=EF,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCEF是梯形.13.如图,已知E ,F 分别是菱形ABCD 中边BC ,CD 的中点,EF 与AC 交于点O ,点P 在平面ABCD 之外,M 是线段P A 上一动点,若PC ∥平面MEF ,试求PM ∶MA 的值.考点 直线与平面平行的性质 题点 与线面平行性质有关的计算解 如图,连接BD 交AC 于点O 1,连接OM .因为PC ∥平面MEF ,平面P AC ∩平面MEF =OM ,PC ⊂平面P AC , 所以PC ∥OM ,所以PM P A =OCAC.在菱形ABCD 中,因为E ,F 分别是边BC ,CD 的中点,所以OC O 1C =12.又AO 1=CO 1,所以PM P A =OC AC =14,故PM ∶MA =1∶3.四、探究与拓展14.如图,在四面体ABCD 中,截面PQMN 是正方形,则下列命题中错误的是( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45° 考点 直线与平面平行的性质 题点 利用性质判定位置关系 答案 C解析 由题意知PQ ∥AC ,QM ∥BD ,PQ ⊥QM ,则AC ⊥BD ,故A 正确;由PQ ∥AC 可得AC ∥截面PQMN ,故B 正确;异面直线PM 与BD 所成的角等于PM 与PN 所成的角,故D 正确;C 是错误的,故选C.15.如图,在三棱柱ABC -A 1B 1C 1中,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2,若MB ∥平面AEF ,试判断点M 在何位置.考点 直线与平面平行的性质 题点 利用性质证明平行问题解 若MB ∥平面AEF ,过F ,B ,M 作平面FBMN 交AE 于点N , 连接MN ,NF .因为BF ∥平面AA 1C 1C , BF ⊂平面FBMN ,平面FBMN ∩平面AA 1C 1C =MN , 所以BF ∥MN .又MB ∥平面AEF ,MB ⊂平面FBMN , 平面FBMN ∩平面AEF =FN , 所以MB ∥FN ,所以BFNM 是平行四边形, 所以MN ∥BF ,MN =BF =1. 而EC ∥FB ,EC =2FB =2, 所以MN ∥EC ,MN =12EC =1,故MN 是△ACE 的中位线. 所以当M 是AC 的中点时, MB ∥平面AEF .。
学案4:2.2.3 直线与平面平行的性质~ 2.2.4 平面与平面平行的性质
2.2.3 直线与平面平行的性质~ 2.2.4 平面与平面平行的性质问题导学一、直线与平面平行的性质定理的应用活动与探究1求证:若一条直线分别和两个相交平面平行,则这条直线必与它们的交线平行.迁移与应用1.如图,过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面CDD1C1于EE1,则直线BB1与EE1的关系是________.2.如图,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG.求证:EH∥BD.名师点津运用线面平行的性质定理时,应先确定线面平行,再寻找过已知直线的平面与平面相交的交线,然后确定线线平行.证题过程应认真领悟线线平行与线面平行的相互转化关系.二、面面平行的性质定理的应用活动与探究2如图所示,两条异面直线BA,DC与两平行平面α,β分别交于B,A点和D,C点,M,N 分别是AB,CD的中点.求证:MN∥平面α.迁移与应用1.如图所示,已知平面α∥平面β,A∈α,B∈α,C∈β,D∈β,AD∥BC,则线段AD与BC的长度关系是__________.2.如图,已知α∥β,点P是平面α,β外的一点(不在α与β之间).直线PB,PD分别与α,β相交于点A,B和C,D.(1)求证:AC∥BD;(2)已知P A=4 cm,AB=5 cm,PC=3 cm,求PD的长.名师点津面面平行的性质定理的几个有用推论:(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面之间的平行线段相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.三、平行关系的综合应用活动与探究3如图所示,平面四边形ABCD的四个顶点A,B,C,D均在平行四边形A′B′C′D′所确定的平面α外,且AA′,BB′,CC′,DD′互相平行.求证:四边形ABCD是平行四边形.迁移与应用在三棱锥S-ABC中,D,E,F分别是AC,BC,SC的中点,G是AB上任意一点.求证:SG∥平面DEF.名师点津在平行关系中,线线、线面、面面平行关系经常交替使用,相互转化,特别是一些复杂的题目,在线线、线面、面面平行关系中,判定了一个成立,接着可以利用性质转化成另一个也成立,其关系可用下图示意.当堂检测1.如果直线a∥平面α,则()A.平面α内有且只有一条直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a垂直的直线D.平面α内有且只有一条与a垂直的直线2.如果一条直线和一个平面平行,两端点分别在直线和平面上的两线段相等,那么这两条线段所在直线的位置关系是()A.平行B.相交C.异面D.皆有可能3.若α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.有且只有一条与a平行的直线4.过正方体ABCD-A1B1C1D1的顶点A1,C1,B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.5.如图,四边形ABDC是梯形,AB∥CD,且AB∥平面α,AC∩α=M,BD∩α=N,其中M 是AC的中点.AB=4,CD=6,则MN=________.参考答案问题导学活动与探究1【解析】先写出已知与求证,再利用线面平行的性质定理及判定定理证明.解:已知:a∥α,a∥β,α∩β=b.求证:a∥b.证明:设A∈α,且A∉b,过直线a和点A作平面γ交平面α于直线c,如图,∵a∥α,a⊂γ,α∩γ=c,∴a∥c(直线和平面平行的性质定理).再设B∈β,且B∉b,同样,过直线a和点B的平面δ交平面β于直线d.同理a∥d(直线和平面平行的性质定理).∴d∥c.又∵d⊂β,c⊄β,∴c∥β(直线与平面平行的判定定理).又∵c⊂α,α∩β=b,∴c∥b(直线与平面平行的性质定理).从而a∥b.迁移与应用1.BB1∥EE12.证明:因为EH∥FG,FG⊂平面BCD,EH⊄平面BCD,所以EH∥平面BCD.因为EH⊂平面ABD,平面ABD∩平面BCD=BD,所以EH∥BD.活动与探究2【解析】利用三角形的中位线及面面平行的性质证明.证明:过点A作AE∥CD交α于E,取AE的中点P,连接MP,PN,BE,ED,AC.∵AE∥CD,∴AE,CD确定平面AEDC.则平面AEDC∩平面α=DE,平面AEDC∩平面β=AC,∵α∥β,∴AC∥DE.又P,N分别为AE,CD的中点,∴PN∥DE.PN⊄α,DE⊂α,∴PN∥α.又M,P分别为AB,AE的中点,∴MP∥BE,且MP⊄α,BE⊂α,∴MP∥α.∴平面MPN∥平面α.又MN⊂平面MPN,∴MN∥α.迁移与应用1.AD=BC2.(1)证明:∵PB∩PD=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)解:由(1)得AC∥BD,∴P AAB=PCCD.∴45=3CD.∴CD=154.∴PD=PC+CD=274(cm).活动与探究3【解析】充分利用A′B′C′D′的平行关系及AA′,BB′,CC′,DD′间的平行关系,先得出线面平行,再得面面平行,最后再由面面平行的性质定理得线线平行.证明:∵四边形A′B′C′D′是平行四边形,∴A′D′∥B′C′.∵A′D′⊄平面BB′C′C,B′C′⊂平面BB′C′C,∴A′D′∥平面BB′C′C.同理AA′∥平面BB′C′C.∵A′D′⊂平面AA′D′D,AA′⊂平面AA′D′D,且A′D′∩AA′=A′,∴平面AA′D′D∥平面BB′C′C.又∵AD,BC分别是平面ABCD与平面AA′D′D、平面BB′C′C的交线,故AD∥BC.同理可证AB∥CD.∴四边形ABCD是平行四边形.迁移与应用证明:∵D,E分别是AC,BC的中点.∴DE∥AB.又DE⊄平面SAB,AB⊂平面SAB,∴DE∥平面SAB.同理可证EF∥平面SAB.∵DE∩EF=E,∴平面DEF∥平面SAB.∵SG⊂平面SAB,∴SG∥平面DEF.当堂检测1.B2.D 3.D4.l∥A1C15.5。
课时作业15:2.2.3 直线与平面平行的性质--2.2.4 平面与平面平行的性质
2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质一、选择题1.直线a∥平面α,α内有n条直线交于一点,那么这n条直线中与直线a平行的() A.至少有一条B.至多有一条C.有且只有一条D.没有2.设a,b是两条直线,α,β是两个平面,若a∥α,a⊂β,α∩β=b,则α内与b相交的直线与a的位置关系是()A.平行B.相交C.异面D.平行或异面3.下列命题中不正确的是()A.两个平面α∥β,一条直线a平行于平面α,则a一定平行于平面βB.平面α∥平面β,则α内的任意一条直线都平行于平面βC.一个三角形有两条边所在的直线平行于一个平面,那么三角形所在平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或者是异面直线4.如图,在长方体ABCDA1B1C1D1中,E,F分别是棱AA1和BB1的中点,过EF的平面EFGH分别交BC和AD于G,H,则GH与AB的位置关系是()A.平行B.相交C.异面D.平行或异面5.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当点A、B分别在平面α,β内运动时,动点C()A.不共面B.当且仅当点A、B分别在两条直线上移动时才共面C.当且仅当点A、B分别在两条给定的异面直线上移动时才共面D.无论点A,B如何移动都共面二、填空题6.如图,正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF ∥平面AB1C,则线段EF的长度等于________.7.如图所示,直线a∥平面α,A∉α,并且a和A位于平面α两侧,点B,C∈a,AB、AC 分别交平面α于点E,F,若BC=4,CF=5,AF=3,则EF=________.三、解答题8.如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE为梯形.9.如图,S是平行四边形ABCD所在平面外一点,M,N分别是SA,BD上的点,且AMSM=DNNB,求证:MN∥平面SBC.10.如图,三棱柱ABCA1B1C1中,底面是边长为2的正三角形,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2,当点M在何位置时,BM∥平面AEF.参考答案一、选择题1.【答案】 B【解析】 过a 和平面内n 条直线的交点只有一个平面β,所以平面α与平面β只有一条交线,且与直线a 平行,这条交线可能不是这n 条直线中的一条,也可能是.故选B.2.【答案】 C【解析】 条件即为线面平行的性质定理,所以a ∥b ,又a 与α无公共点,故选C.3.【答案】 A【解析】 选项A 中直线a 可能与β平行,也可能在β内,故选项A 不正确;三角形两边必相交,这两条相交直线平行于一个平面,那么三角形所在的平面与这个平面平行,所以选项C 正确;依据平面与平面平行的性质定理可知,选项B ,D 也正确,故选A.4.【答案】 A【解析】 由长方体性质知:EF ∥平面ABCD ,∵EF ⊂平面EFGH ,平面EFGH ∩平面ABCD =GH ,∴EF ∥GH ,又∵EF ∥AB ,∴GH ∥AB ,∴选A.5.【答案】 D【解析】 无论点A 、B 如何移动,其中点C 到α、β的距离始终相等,故点C 在到α、β距离相等且与两平面都平行的平面上.二、填空题6.【答案】 2【解析】 因为EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面AB 1C ∩平面ABCD =AC ,所以EF ∥AC .又点E 为AD 的中点,点F 在CD 上,所以点F 是CD 的中点,所以EF =12AC = 2. 7.【答案】 32【解析】 EF 可看成直线a 与点A 确定的平面与平面α的交线,∵a ∥α,由线面平行的性质定理知,BC ∥EF ,由条件知AC =AF +CF =3+5=8.又EF BC =AF AC ,∴EF =AF ×BC AC =3×48=32. 三、解答题8.证明:∵四边形ABCD 是矩形,∴BC ∥AD .∵AD ⊂平面APD ,BC ⊄平面APD ,∴BC ∥平面APD .又平面BCFE ∩平面APD =EF ,∴BC ∥EF ,∴AD ∥EF .又E ,F 是△APD 边上的点,∴EF ≠AD ,∴EF ≠BC .∴四边形BCFE 是梯形.9.证明:在AB 上取一点P ,使AP BP =AM SM,连接MP ,NP ,则MP ∥SB .∵SB ⊂平面SBC ,MP ⊄平面SBC ,∴MP ∥平面SBC .又AM SM =DN NB ,∴AP BP =DN NB,∴NP ∥AD . ∵AD ∥BC ,∴NP ∥BC .又BC ⊂平面SBC ,NP ⊄平面SBC ,∴NP ∥平面SBC .又MP ∩NP =P ,∴平面MNP ∥平面SBC ,而MN ⊂平面MNP ,∴MN ∥平面SBC .10.解:如图,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ ,则PQ ∥AE .因为EC =2FB =2,所以PE =BF .所以四边形BFEP 为平行四边形,所以PB ∥EF .又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AEF ,PB ∥平面AEF .又PQ ∩PB =P ,所以平面PBQ ∥平面AEF .又BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,即点M 为AC 的中点时,BM ∥平面AEF .。
高中数学必修二(人教A版)练习2.2.3、2.2.4 直线与平面平行的性质、平面与平面平行的性质 Word版含答案
直线与平面平行的性质.平面与平面平行的性质一、选择题(本大题共小题,每小题分,共分).如果,是两条异面直线,且∥α,那么与α的位置关系是( ).∥α.与α相交.⊂α.不确定.如果平面α平行于平面β,那么( ).平面α内任意直线都平行于平面β.平面α内仅有两条相交直线平行于平面β.平面α内任意直线都平行于平面β内的任意直线.平面α内的直线与平面β内的直线不能垂直.在正方体′′′′中,下列四对截面中,彼此平行的一对截面是( ).平面′与平面′′.平面′′与平面′.平面′′与平面′.平面′′与平面′图--.如图--所示,正方体的底面与正四面体的底面在同一平面α上,且∥,正方体的六个面所在的平面与直线,相交的平面个数分别记为,,那么+=( ) .....下面给出四个命题,其中正确命题的个数是( )①若∥α,∥α,则∥;②若∥α,⊂α,则∥;③若∥,⊂α,则∥α;④若∥,∥α,则∥α......若,为两条不重合的直线,α,β为两个不重合的平面,则下列命题中正确的是( ) .若,都平行于平面α,则,一定不是相交直线.若,都垂直于平面α,则,一定是平行直线.已知α,β互相平行,,互相平行,若∥α,则∥β.若,在平面α内的射影互相平行,则,互相平行图--.如图--所示,在正方体-中,,分别为棱,的中点,在平面内且与平面平行的直线( ) .不存在.有条.有条.有无数条二、填空题(本大题共小题,每小题分,共分).已知α,β,γ是三个不重合的平面,,是两条不重合的直线.若α∩β=,β∩γ=,且α∥γ,则与的位置关系是..已知,,是互不相同的直线,α,β,γ是三个不同的平面,给出下列命题:①若与为异面直线,⊂α,⊂β,则α∥β;②若α∥β,⊂α,⊂β,则∥;③若α∩β=,β∩γ=,γ∩α=,∥γ,则∥.其中所有真命题的序号为..如图--甲所示,往透明塑料制成的长方体-容器内灌进一些水,固定容器底面一边于地面上,再将容器倾斜,随着倾斜度的不同,有下列四种说法:①水的部分始终呈棱柱状;②水面四边形的面积不变;③棱始终与水面平行;④当容器倾斜到如图--乙所示位置时,·是定值.其中所有正确说法的序号是.图--.有一木块如图--所示,点在平面′′内,棱平行于平面′′,要经过点和棱将木块锯开,锯开的面必须平整,有种锯法,则=.图--三、解答题(本大题共小题,共分).(分)如图--①所示,在直角梯形中,∥,⊥,==,为的中点,,,分别为,,的中点,。
高中数学必修二人教A版练习:2.2.3直线与平面平行的性质含解析.doc
2.2.3 直线与平面平行的性质【选题明细表】1.若一条直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段所在直线的位置关系是( D )(A)平行(B)相交(C)异面(D)平行、相交或异面2.已知两条相交直线a,b,a∥平面α,则b与α的位置关系是( D )(A)b⊂平面α(B)b∥α或b⊂α(C)b∥平面α(D)b与平面α相交或b∥平面α解析:b与a相交,可确定一个平面,记为β,若β与α平行,则b∥α;若β与α不平行,则b与α相交.3.(2018·北京西城期末)设α,β是两个不同的平面,l是一条直线,若l∥α,l∥β,α∩β=m,则( A )(A)l与m平行(B)l与m相交(C)l与m异面(D)l与m垂直解析:如图所示,α,β是两个不同的平面,l是一条直线,当l∥α,l∥β,且α∩β=m时,l∥m.故选A.4.如图,四棱锥P ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( B )(A)MN∥PD(B)MN∥PA(C)MN∥AD(D)以上均有可能解析:因为MN∥平面PAD,平面PAC∩平面PAD=PA,MN⊂平面PAC,所以MN∥PA.5.如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.则四边形BCFE的形状为.解析:因为BC∥平面PAD,平面BCFE∩平面PAD=EF,所以EF∥BC,又EF≠AD,AD=BC,所以四边形BCFE为梯形.答案:梯形6.证明:如果一条直线和两个相交的平面都平行,那么这条直线与这两个平面的交线平行.证明:已知:直线a∥平面α,直线a∥平面β,且α∩β=b.求证:a∥b.如图,经过直线a作平面γ,δ,使γ∩α=c,δ∩β=d.由题意可知a∥α,a⊂γ,γ∩α=c,所以a∥c,同理a∥d,所以c∥d,又因为d⊂β,a⊄β,所以c⊄β,因此c∥β.又c⊂α,α∩β=b,所以c∥b.因为a∥c,由基本性质4知a∥b.7.(2018·合肥二模)若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( C )(A)0条(B)1条(C)2条(D)1条或2条解析:如图所示,四边形EFGH为平行四边形,则EF∥GH.因为EF⊄平面BCD,GH⊂平面BCD,所以EF∥平面BCD.因为EF⊂平面ACD,平面BCD∩平面ACD=CD,所以EF∥CD,所以CD∥平面EFGH.同理AB∥平面EFGH.故选C.8.在三棱锥S ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,点D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为( A )(A) (B)(C)45 (D)45解析:取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF∥DE,HF=DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形, 其面积S=HF·HD=(AC)·(SB)=.9.如图,四边形ABCD是空间四边形,E,F,G,H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,则当四边形EFGH是菱形时,AE∶EB= .解析:因为AC∥平面EFGH,所以EF∥AC,HG∥AC.所以EF=HG=·m.同理,EH=FG=·n.因为四边形EFGH是菱形,所以·m=·n,所以AE∶EB=m∶n.答案:m∶n10.如图,在长方体ABCD A1B1C1D1中,点P∈BB1(P不与B,B1重合).PA∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:如图,连接AC,A1C1,在长方体ABCD A1B1C1D1中,AA1∥CC1,且AA1=CC1,所以四边形ACC1A1是平行四边形.所以AC∥A1C1.因为AC⊄平面A1BC1,A1C1⊂平面A1BC1,所以AC∥平面A1BC1.因为AC⊂平面PAC,平面A1BC1∩平面PAC=MN,所以AC∥MN.因为MN⊄平面ABCD,AC⊂平面ABCD,所以MN∥平面ABCD.11.在空间四边形ABCD中,AC,BD为其对角线,E,F,G,H分别为AC,BC,BD,AD上的点,若四边形EFGH为平行四边形,求证:AB∥平面EFGH.证明:因为四边形EFGH为平行四边形,所以EF∥GH. 因为GH⊂平面ABD,EF⊄平面ABD,所以EF∥平面ABD.因为EF⊂平面ABC,平面ABC∩平面ABD=AB,所以EF∥AB.因为AB⊄平面EFGH,EF⊂平面EFGH,所以AB∥平面EFGH.。
课时作业23:2.2.3 直线与平面平行的性质~2.2.4 平面与平面平行的性质
2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质基础过关1.若一条直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段所在直线的位置关系是( ) A.平行 B.相交C.异面D.平行、相交或异面解析 画图可知两直线可平行、相交或异面,故选D. 答案 D2.如图所示,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G ,H ,则GH 与AB 的位置关系是( )A.平行B.相交C .异面D.平行和异面解析 ∵E ,F 分别是AA 1,BB 1的中点,∴EF ∥AB . 又AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH .又AB ⊂平面ABCD ,平面ABCD ∩平面EFGH =GH , ∴AB ∥GH . 答案 A3.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则下列命题中不正确的是( )①⎭⎬⎫a ∥c b ∥c ⇒a ∥b ;② ⎭⎬⎫a ∥γb ∥γ⇒a ∥b ;③⎭⎬⎫α∥c β∥c ⇒α∥β;④⎭⎬⎫α∥γβ∥γ⇒α∥β;⑤ ⎭⎬⎫α∥c a ∥c ⇒α∥a ;⑥⎭⎬⎫α∥γa ∥γ⇒a ∥α. A.④⑥B.②③⑥C.②③⑤⑥D.②③解析 由公理4及平行平面的传递性知①④正确.举反例知②③⑤⑥不正确.②中a ,b 可以相交,还可以异面;③中α,β可以相交;⑤中a 可以在α内;⑥中a 可以在α内. 答案 C4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱A 1B 1,B 1C 1的中点,P 是棱AD 上一点,AP =13,过点P ,E ,F 的平面与棱CD 交于Q ,则PQ = . 解析 易知EF ∥平面ABCD ,PQ =平面PEF ∩平面ABCD ,∴EF ∥PQ ,易知DP =DQ =23,故PQ =PD 2+DQ 2=2DP =223. 答案2235.如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于 .解析 因为EF ∥平面AB 1C ,且EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,所以EF ∥AC .又因为E 为AD 的中点,所以EF 为△ACD 的中位线,所以EF = 12AC =12×22= 2. 答案26.如图所示,四面体ABCD 被一平面所截,截面EFGH 是一个矩形.求证:CD ∥平面EFGH . 证明 ∵截面EFGH 是矩形,∴EF∥GH.又GH⊂平面BCD,EF⊄平面BCD.∴EF∥平面BCD.而EF⊂平面ACD,平面ACD∩平面BCD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.7.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB =2CD,E,E1分别是棱AD,AA1上的点.设F是棱AB的中点,证明:直线EE1∥平面FCC1.证明因为F为AB的中点,所以AB=2AF,又因为AB=2CD,所以CD=AF,因为AB∥CD,所以CD∥AF,所以四边形AFCD为平行四边形,所以FC∥AD,又FC⊄平面ADD1A1,AD⊂平面ADD1A1,所以FC∥平面ADD1A1.因为CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,所以CC1∥平面ADD1A1,又FC∩CC1=C,所以平面ADD1A1∥平面FCC1.又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.能力提升8.设α∥β,A∈α,B∈β,C是AB的中点,当A,B分别在平面α,β内运动时,那么所有的动点C()A.不共面B.当且仅当A,B分别在两条直线上移动时才共面C.当且仅当A,B分别在两条给定的异面直线上移动时才共面D.不论A,B如何移动,都共面解析如图所示,A′,B′分别是A,B两点在α,β上运动后的两点,此时AB中点C变成A′B′中点C′.连接A′B,取A′B的中点E,连接CE,C′E,CC′,AA′,BB′.则CE∥AA′,从而易得CE∥α.同理C′E∥β.又∵α∥β,∴C′E∥α.∵C′E∩CE=E,∴平面CC′E∥平面α.∴CC′∥α.故不论A,B如何移动,所有的动点C都在过点C且与α,β平行的平面上.答案D9.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点解析∵l⊄α,∴l∥α或l与α相交.①若l∥α,则由线面平行的性质定理可知l∥a,l∥b,l∥c,…,∴a,b,c,…,这些交线都平行.②若l与α相交,不妨设l∩α=A,则A∈l,又由题意可知A∈a,A∈b,A∈c,…,∴这些交线交于同一点A.综上可知D正确.答案D10.在长方体ABCD-A1B1C1D1中,E为棱DD1上的点.当平面AB1C∥平面A1EC1时,点E的位置是.解析如图,连接B1D1,BD,设B1D1∩A1C1=M,BD∩AC=O,连接ME,B1O.∵平面AB1C∥平面A1EC1,平面AB1C∩平面BDD1B1=B1O,平面A1EC1∩平面BDD1B1=ME,∴B1O∥ME.又四边形B1MDO为平行四边形,则B1O∥MD.故E与D重合.答案与D重合11.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使α,β都平行于γ;②α内有不共线的三点到β的距离相等;③存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β.其中可以判断两个平面α与β平行的条件有个.解析若α与β相交,如图所示,可在α内找到A,B,C三个点到平面β的距离相等,所以排除②.容易证明①③都是正确的.答案212.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S △MNG ∶S △ADC .(1)证明 如图,连接BM ,BN ,BG 并分别延长交AC ,AD ,CD 于P ,F ,H .∵M ,N ,G 分别为△ABC ,△ABD ,△BCD 的重心, 则有BM MP =BN NF =BGGH =2.连接PF ,FH ,PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD . 同理MG ∥平面ACD .又MG ∩MN =M ,MG ,MN ⊂平面MNG , ∴平面MNG ∥平面ACD .(2)解 由(1)可知,MG PH =BG BH =23, ∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD ,∴△MNG ∽△ADC ,且相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.创新突破13.已知:如图,三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.若平面BC 1D ∥平面AB 1D 1,求ADDC 的值.解 如图,连接A 1B 交AB 1于点O ,连接OD 1.由棱柱的性质,知四边形A 1ABB 1为平行四边形, 所以点O 为A 1B 的中点. 因为平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面AB 1D 1=D 1O ,平面A 1BC 1∩平面BC 1D =BC 1,所以BC 1∥D 1O , 所以D 1为线段A 1C 1的中点, 所以D 1C 1=12A 1C 1.因为平面BC 1D ∥平面AB 1D 1, 且平面AA 1C 1C ∩平面BDC 1=DC 1, 平面AA 1C 1C ∩平面AB 1D 1=AD 1, 所以AD 1∥DC 1.又因为AD ∥D 1C 1, 所以四边形ADC 1D 1是平行四边形, 所以AD =C 1D 1=12A 1C 1=12AC ,所以ADDC =1.。
高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)
§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。
§2.2.3 直线与平面平行的性质习题及答案知识分享
§2.2.3 直线与平面平行的性质※基础达标1.已知直线l //平面α,m 为平面α内任一直线,则直线l 与直线m 的位置关系是( ).A. 平行B. 异面C. 相交D. 平行或异面 2.梯形ABCD 中AB //CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( ).A. 平行B. 平行和异面C. 平行和相交D. 异面和相交3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( ).A. 异面B. 相交C. 平行D. 不能确定4.若直线a 、b 均平行于平面α,则a 与b 的关系是( ). A. 平行 B. 相交 C. 异面 D. 平行或相交或异面5.已知l 是过正方体ABCD —A 1B 1C 1D 1的顶点的平面AB 1D 1与下底面ABCD 所在平面的交线,下列结论错误的是( ).A. D 1B 1∥lB. BD //平面AD 1B 1C. l ∥平面A 1D 1B 1D. l ⊥B 1 C 16.已知正方体1AC 的棱长为1,点P 是的面11AA D D 的中心,点Q 是面1111A B C D 的对角线11B D 上一点,且//PQ 平面11AA B B ,则线段PQ 的长为 .7.设不同的直线a ,b 和不同的平面α,β,γ,给出下列四个说法:① a ∥α,b ∥α,则a ∥b ; ② a ∥α, a ∥β, 则α∥β; ③α∥γ,β∥γ,则α∥β;④ a ∥b ,b ⊂α,则a ∥α. 其中说法正确的序号依次是 .※能力提高 8.如图,空间四边形ABCD 被一平面所截,截面EFGH 是平行四边形. (1)求证:CD ∥平面EFGH ;(2)如果AB ⊥CD ,AB =a ,CD =b 是定值,求截面EFGH 的面积.FDBCH GE A9.如右图,直线AB 和CD 是异面直线,//AB α,//CD α,AC Mα=I ,BD N α=I ,求证:AMBNMCND=.※探究创新10.如下图,在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=12AB ,点E 、M 分别为A 1B 、C 1C 的中点,过点A 1、B 、M 三点的平面A 1BMN 交C 1D 1于点N .(1)求证:EM ∥平面A 1B 1C 1D 1; (2)设截面A 1BMN 把该正四棱柱截成两个几何体的体积分别为V 1、V 2(V 1<V 2),求V 1∶V 2的值.A αBCDM N第14练 §2.2.3 直线与平面平行的性质【第14练】 1~5 DBCDD ; 6.2; 7. ③. 8. 解:(1)证明:∵ EFGH 是平行四边形, ∴ EF //GH , 又 ∵ EF ⊄平面BDC , GH ⊂平面BDC , ∴ EH //平面BDC .∵ EF ⊂平面ADC ,平面ADC ∩平面BDC =DC , ∴ EF //DC ,∴ CD ∥平面EFGH .(2)截面EFGH 的面积为 14S ab =.9. 证明:如图,连结AD 交平面α于点Q ,连结MQ 、QN .////AB AQ BN AB ABD AB QN QD NDABD QN αα⎫⎪⊂⇒⇒=⎬⎪=⎭I 平面平面平面, ////CD AQ AM CD ACD CD MQ QD MCACD MQ αα⎫⎪⊂⇒⇒=⎬⎪=⎭I 平面平面平面, ∴AM BN MC ND =. 10. 解:(1)证明:设A 1B 1的中点为F ,连结EF 、FC 1.∵E 为A 1B 的中点,∴EF //12B 1B . 又C 1M //12B 1B ,∴EF //MC 1.∴四边形EMC 1F 为平行四边形.∴EM ∥FC 1.∵EM ⊄平面A 1B 1C 1D 1,FC 1⊂平面A 1B 1C 1D 1, ∴EM ∥平面A 1B 1C 1D 1. (2)延长A 1N 与B 1C 1交于P ,则P ∈平面A 1BMN ,且P ∈平面BB 1C 1C . 又∵平面A 1BMN ∩平面BB 1C 1C =BM , ∴P ∈BM ,即直线A 1N 、B 1C 1、BM 交于一点P .又∵平面MNC 1∥平面BA 1B 1, ∴几何体MNC 1—BA 1B 1为棱台.∵S =12·2a ·a =a 2, S =12·a ·12a =14a 2,棱台MNC 1—BA 1B 1的高为B 1C 1=2a ,V 1=13·2a ·(a 2+2214a a ⋅+14a 2)=76a 3,∴V 2=2a ·2a ·a -76a 3=176a 3. ∴12V V =717.NA αBCDM Q。
高中数学2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质课时作业含解析新人教A版必修2
2.2.3 直线与平面平行的性质 2.2.4 平面与平面平行的性质[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.[2019·孝感校级单元测试]如果直线a平行于平面α,则( )A.平面α内有且只有一条直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a垂直的直线D.平面α内有且只有一条与a垂直的直线解析:过直线a可作无数个平面与α相交,这些交线都与a平行,所以在平面α内与直线a平行的直线有无数条,故A不正确,B正确.平面内存在与a异面垂直的直线,且有无数条,故C,D不正确.答案:B2.如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF的平面EFGH 分别交BC和AD于G、H,则HG与AB的位置关系是( )A.平行B.相交C.异面 D.平行和异面解析:∵E、F分别是AA1、BB1的中点,∴EF∥AB.又AB⊄平面EFGH,EF⊂平面EFGH,∴AB∥平面EFGH.又AB⊂平面ABCD,平面ABCD∩平面EFGH=GH,∴AB∥GH.答案:A3.已知a,b表示两条不同的直线,α,β表示两个不重合的平面,给出下列四个命题:①若α∥β,a⊂α,b⊂β,则a∥b;②若a∥b,a∥α,b∥β,则α∥β;③若α∥β,a⊂α,则a∥β;④若a∥α,a∥β,则α∥β.其中正确的个数为 ( )A.1 B.2 C.3 D.4解析:对于①,a∥b或a与b是异面直线,故①错;对于②,也可能是α与β相交,故②错;对于④,同样α与β也可能相交,故④错.只有③对.答案:A4.[2019·广州校级课时练]如图,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( )A.MN∥PDB.MN∥PAC.MN∥ADD.以上均有可能解析:四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,因为MN⊂平面PAC,平面PAC∩平面PAD=PA,由直线与平面平行的性质定理可得,MN∥PA.答案:B5.如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,长方形ABCD为底面,则四边形EFGH的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定解析:因为平面与长方体的两组相对的平面分别相交,根据面面平行的性质定理可知,两组交线分别平行,即EF∥HG,EH∥FG,所以四边形EFGH为平行四边形,故选B.答案:B二、填空题(每小题5分,共15分)6.若空间四边形ABCD的两条对角线AC、BD的长分别是8,12,过AB的中点E作平行于BD、AC的截面四边形的周长为________.解析:截面四边形为平行四边形,则l=2×(4+6)=20.答案:207.如图,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH的边上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.解析:连接FH,由题意知,HN∥平面B1BDD1,FH∥平面B1BDD1,且HN∩FH=H,所以平面NHF∥平面B1BDD1.所以当M在线段HF上运动时,有MN∥平面B1BDD1.故填M∈线段HF.答案:M∈线段HF.8.在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱A1B1,B1C1的中点,P是棱AD上一点,AP =a3,过P ,M ,N 的平面与棱CD 交于Q ,则PQ =________.解析:由线面平行的性质知MN ∥PQ ∥AC ,所以PQ AC =23,又AC =2a ,所以PQ =223a .答案:223a三、解答题(每小题10分,共20分)9.已知E ,F ,G ,H 为空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且EH ∥FG .求证:EH ∥BD .证明:因为EH ∥FG ,EH ⊄平面BCD ,FG ⊂平面BCD ,所以EH ∥平面BCD ,又因为EH ⊂平面ABD ,平面BCD ∩平面ABD =BD , 所以EH ∥BD .10.正方形ABCD 与正方形ABEF 所在的平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ ,求证:PQ ∥平面BCE .证明:证法一(线线平行⇒线面平行) 如图1所示, 作PM ∥AB ,交BE 于M ,作QN ∥AB 交BC 于N ,连接MN . ∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD . 又AP =DQ ,∴PE =QB ,又PM ∥AB ∥QN ,∴PM AB =PE AE =QB BD ,QN DC =BQBD,∴PM AB =QNDC,又AB 綊DC ,∴PM ∥QN 且PM =QN , ∴四边形PMNQ 为平行四边形,∴PQ ∥MN , 又MN ⊂平面BCE ,PQ ⊄平面BCE ,∴PQ ∥平面CBE .证法二(面面平行⇒线面平行) 如图2,在平面ABEF 内过点P 作PM ∥BE 交AB 于点M ,连接QM ,又PM ⊄平面BCE ,BE ⊂平面BCE ,∴PM ∥平面BCE ,AP PE =AM MB.又AE =BD ,AP =DQ ,∴PE =BQ ,∴AP PE =DQ BQ ,∴AM MB =DQQB,∴MQ ∥AD ,又AD ∥BC ,∴MQ ∥BC ,MQ ⊄平面BCE ,BC ⊂平面BCE ,∴MQ ∥平面BCE ,又PM ∩MQ =M ,∴平面PMQ ∥平面BCE ,又PQ ⊂平面PMQ ,∴PQ ∥平面BCE .[能力提升](20分钟,40分)11.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下列结论正确的是( )A .E ,F ,G ,H 一定是各边的中点B .G ,H 一定是CD ,DA 的中点C .BE :EA =BF :FC ,且DH :HA =DG :GCD .AE :EB =AH :HD ,且BF :FC =DG :GC解析:由BD ∥平面EFGH ,得BD ∥EH ,BD ∥FG ,则AE :EB =AH :HD ,且BF :FC =DG :GC .答案:D12.如图,P 是△ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段PA ,PB ,PC 于A ′,B ′,C ′,若PA:AA ′=:3,则△A ′B ′C ′与△ABC 面积的比为________.解析:由题意知,△A ′B ′C ′∽△ABC ,从而S △A ′B ′C ′S △ABC =⎝ ⎛⎭⎪⎫PA ′PA 2=⎝ ⎛⎭⎪⎫252=425. 答案::2513.如图,已知P 是▱ABCD 所在平面外一点,M ,N 分别是AB ,PC 的中点,平面PAD ∩平面PBC =l .(1)求证:l ∥BC ;(2)MN 与平面PAD 是否平行?试证明你的结论.解析:(1)证明:因为BC ∥AD ,BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD .又因为BC ⊂平面PBC ,平面PBC ∩平面PAD =l , 所以l ∥BC .(2)平行.取PD 的中点E ,连接AE ,NE , 可以证得NE 綊AM .所以四边形AMNE 为平行四边形, 所以MN ∥AE .又因为AE 平面PAD ,MN 平面PAD ,所以MN ∥平面PAD . 14.如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形. (1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. 解析:(1)证明:∵四边形EFGH 为平行四边形,∴EF ∥HG . ∵HG ⊂平面ABD ,EF ⊄平面ABD ,∴EF ∥平面ABD . ∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,AB ⊄平面EFGH ,EF ⊂平面EFGH . ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH . (2)设EF =x (0<x <4),∵四边形EFGH 为平行四边形, ∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x 4. ∴FG =6-32x .∴四边形EFGH 的周长l =2⎝ ⎛⎭⎪⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,∴四边形EFGH 周长的取值范围是(8,12).。
高一数学必修二2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质导学案(解析版)
2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质一、课标解读1、掌握直线与平面平行的性质定理及其应用;2、学生通过观察与类比,借助实物模型理解性质及应用。
3、进一步提高学生空间想象能力、思维能力;二、自学导引问题1:在直线与平面平行的条件下可以得到什么结论?并用文字语言表述之.问题2:上述定理通常称为直线与平面平行的性质定理,该定理用符号语言可怎样表述?问题3:直线与平面平行的性质定理可简述为“线面平行,则线线平行”,在实际应用中它有何功能作用?问题4:平面与平面平行的性质定理:问题5:符号语言表述:问题6:面与面平行的性质定理有何作用?三、合作探究探究1:如果直线a 与平面α平行,那么直线a 与平面α内的直线有哪些位置关系?探究2:若直线a 与平面α平行,那么在平面α内与直线a 平行的直线有多少条?这些直线的位置关系如何?探究3:如果直线a 与平面α平行,那么经过平面α内一点P 且与直线a 平行的直线怎样定位?探究4:如果α∥β,,,βα⊂⊂b a 则直线a 与直线b 的位置关系如何?四、典例精析例1 如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.已知:βαβα//,//,a a l =求证:l a //变式训练1 已知,,321l l l ===γβγαβα ,1l ∥2l .求证:3l ∥1l ,3l ∥2l例2.如图所示,三棱椎BCD A -被一平面所截,截面为平行四边形EFGH .求证:CD ∥平面EFGH变式训练2 在长方体1111ABCD A BC D -中,点重合)不与11,(B B BBP ∈M BA PA =1 N BC PC =1 ,求证:MN ∥平面AC例 3 已知N M CD AB ,,之间的线段,,是夹在两个平行平面βα分别为CD AB ,的中点.求证:MN ∥α变式训练3 如图所示,在正方体1111ABCD A BC D -中,P N M ,,分别为11111,,B A D B B A上的点,若311111==BA BM D B N B ,又PN ∥11D A ,求证:MN ∥平面11BCC B例4 如图所示,已知的分别是所在平面外一点,是平行四边形PC AB N M ABCD P ,,中点,平面l PBC PAD =平面 .(1) 求证:l ∥BC(2) MN 与平面PAD 是否平行?证明你的结论.五、自主反馈 1.平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面a =c ,若a ∥b ,则c 与a ,b的位置关系是( )A .c 与a ,b 都异面B .c 与a ,b 都相交C .c 至少与a ,b 中的一条相交D .c 与a ,b 都平行2.如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线的位置关系是( )A .都平行B .都相交C .一个相交,一个平行D .都异面 3.对于直线m 、n 和平面α,下面命题中的真命题是A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//nB .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //D .如果m n m ,//,//αα、n 共面,那么n m //4.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题①若m ⊂α,n ∥α,则m ∥n ;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β;其中真命题的个数是A .0B .1C .2D .35.A 、B 是不在直线l 上的两点,则过点A 、B 且与直线l 平行的平面的个数是 ( )A .0个B .1个C .无数个D .以上三种情况均有可能 6 用一个平面去截正方体,所得的截面可能是______________________________;7.三个平面两两相交,有三条交线,则这三条交线的位置关系为__________;8. 在△ABC 中,AB =5,AC =7,∠A =60°,G 是重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN ___________;9. P 是边长为8的正方形ABCD 所在平面外的一点,且PA =PB =PC =PD =8,M 、N 分别在PA 、BD 上,且53==ND BN MA PM ,则MN =_________; 答案2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质例1 证明:过b a 于交作平面αγb a a //,//∴α,于交平面作平面过c βδα βββ⊂⊄∴c b c b c a a ,,//,//,//又l a l b l b b //,//,,,//∴∴=⊂∴βααβ 又例2 略例3 证明:情形一:若ABCD CD AB 在同一平面内,则平面, BD AC BD AC //,//,,∴βαβα 的交线为,与BD MN CD AB N M //,,∴的中点,为又αα平面平面又//,MN BD ∴⊂P AE E CD AE A CD AB 中点,取于交作异面,过情形二:若α//, 连接AEDC CD AE CD AE ED BE PN MP 确定平面,,//,,,,∴ 且平面AC ED AEDC ,的交线为,与βα的中点分别为又CD AE N P ED AC ,,,//,//∴βααα//,//,//,//MP BE MP PN ED PN ∴∴∴同理可证 αα//,,//MN MPN MN MPN ∴⊂∴平面又平面例4 证明:(1)PAD AD PAD BC AD BC 平面平面⊂⊄,,// l PAD PBC PAD BC =∴平面平面,又平面 //l BC //∴(2)平行证明:取NE AE E PD ,,连接的中点AM NE AM NE =且可得,//是平行四边形可知四边形AMNEPAD MN AE MN 平面//,//∴∴变式训练1.略2.证明:M BA PA AA BB BA B A =11111,// 且中,在平面 1111,,CC PB MA PM CC AA AA PB MA PM =∴==∴又 ① N BC PC CC BB BCC B =11111,// 且中,在平面1CC PB NC PN =∴ ② 由①②得AC MN NC PN MA PM //,∴=AC MN AC AC AC MN 平面,平面平面//,∴⊂⊄3.证明:31,31,//11111111==A B P B D B N B D A PN 得由 ,//,3111BB PM BA BM ∴=又 11111,BCC B BB BCC B PM 平面平面又⊂⊄ 11111111//,////C B D A D A PN BCC B PM ,又平面∴ 111111//,C B PN BCC B C B ∴⊂平面1111//BCC B PN BCC B PN 平面,平面又∴⊄ 11//,BCC B PMN P PN PM 平面平面又∴= 11//,BCC B MN PMN MN 平面平面∴⊂ 自主反馈答案1.D2.A3.C4.A5.D6. 3,4,5,6边形7. 平行或交于一点 8.3392 9. 19。
专题2-2-3、2-2-4 直线与平面平行的性质、平面与平面
一、选择题1.已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b 的位置关系是A.平行B.相交C.异面D.不确定【答案】A【解析】由面面平行的性质定理可知选项A正确.2.已知平面α、β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.能推导出m∥β的是A.①④ B.①⑤C.②⑤ D.③⑤【答案】D【解析】由两平面平行的性质可知两平面平行,在一个平面内的直线必平行于另一个平面,于是选D. 3.在空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,当BD∥平面EFGH时,下面结论正确的是A.E、F、G、H一定是各边的中点B.G、H一定是CD、DA的中点C.BE∶EA=BF∶FC,且DH∶HA=DG∶GCD.AE∶EB=AH∶HD,且BF∶FC=DG∶GC【答案】D4.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有A.0条 B.1条C .0或1条D .无数条 【答案】C【解析】过直线a 与交点作平面β,设平面β与α交于直线b ,则a ∥b ,若所给n 条直线中有1条是与b 重合的,则此直线与直线a 平行;若没有重合的,则与直线a 平行的直线有0条.故选C.5.如图所示的三棱柱111ABC A B C -中,过11A B 的平面与平面ABC 交于直线DE ,则DE 与AB 的位置关系是A .异面B .平行C .相交D .以上均有可能 【答案】B6.一正方体木块如图所示,点P 在平面A C ''内,经过P 和棱BC 将木料锯开,锯开的面必须平整,有N 种锯法,则N 为A .0B .1C .2D .无数 【答案】B【解析】在平面A C ''上过P 作∥EF B C '',则∥EF BC ,∴沿EF 、BC 所确定的平面锯开即可.由于此平面唯一确定,∴只有一种方法,故选B .7.如图,在三棱柱错误!未找到引用源。
高中数学人教A版必修2一课三测:2.2.3-4 直线与平面平行的性质 平面与平面平行的性质
2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质填一填1.直线与平面平行的性质定理文字语言一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言a∥α,a⊂β,α∩β=b⇒a∥b图形语言2.平面与平面平行的性质定理文字语言如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号语言α∥β,α∩γ=a,β∩γ=b⇒a∥b图形语言判一判1.(×) 2.若一条直线与平面平行,那么这条直线与这个平面内的无数条直线平行.(√) 3.若一条直线与平面平行,那么这条直线与这个平面没有公共点.(√)4.若直线a不在α内,则a∥α.(×)5.若直线l上有无数个点不在平面α内,则l∥α.(×)6.若两个平面平行,那么分别在这两个平面内的直线互相平行.(×)7.若两个平面平行,那么其中一个平面内的任意一条直线与另一个平面平行.(√)8.已知两个平面平行,若有第三个平面与其中的一个平面平行,那么它与另一平面也平行.(√)想一想1.两个平面平行,那么两个平面内的所有直线都相互平行吗?提示:不一定.因为两个平面平行,所以这两条直线无公共点,它们平行或异面.2.两个平面平行,其中一个平面内直线必平行于另一个平面吗?提示:平行.因为两个平面平行,则两个平面无公共点,则其中一个平面内的直线必和另一个平面无公共点,所以它们平行.3.利用线面平行性质定理解题的步骤是什么?提示:4.应用平面与平面平行性质定理的基本步骤是什么?提示:思考感悟:练一练1.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG,则EH与BD的位置关系是()A.平行B.相交C.异面D.不确定答案:A2.如图,在三棱锥S-ABC中,E,F分别是SB,SC上的点,且EF∥平面ABC,则() A.EF与BC相交B.EF∥BCC.EF与BC异面D.以上均有可能答案:B3.如图所示的三棱柱ABC-A1B1C1,过A1B1的平面与平面ABC交于直线DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能答案:B4.已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:①若m∥n,n⊂α,则m∥α②若m∥α,n∥α,且m⊂β,n⊂β,则α∥β③m∥α,n ⊂α,则m∥n④若α∥β,m⊂α,则m∥β,其中正确的个数是()A.1 B.2C.3 D.4答案:A知识点一直线与平面平行的性质定理的理解①m,n⊂β②n⊂α③m∥α④m∥n.现把其中一些关系看作条件,另一些看作结论,组成一个真命题是________.解析:结合线面平行的性质定理,可知①②③⇒④,结合线面平行的判定定理,可知①②④⇒③.答案:①②③⇒④或①②④⇒③2.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有() A.0条B.1条C.0或1条D.无数条解析:与a平行的可能有0或1条.知识点二平面与平面平行性质定理的理解3.()①若a∥α,b∥α,则a∥b②若a∥α,a∥β,则α∥β③若α∥β,a⊂α,则a∥βA.0个B.1个C.2个D.3个解析:①当a,b共面时,满足a∥b或a,b相交;当a,b不共面时,a与b为异面直线.故不正确.②若a∥α,a∥β,则α∥β或α,β相交.故不正确.③根据两平面平行的性质.正确.故选B.答案:B4.已知直线a∥平面α,a∥平面β,α∩β=b,则a与b()A.相交B.平行C.异面D.共面或异面解析:∵直线a∥α,a∥β,∴在平面α,β中必分别有一直线平行于a,不妨设为m,n,∴a∥m,a∥n,∴m∥n.又α,β相交,m在平面α内,n在平面β内,∴m∥β,∴m∥b,∴a∥b.故选B.知识点三直线与平面平行的性质定理的应用如图,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面P AD,则() A.MN∥PDB.MN∥P AC.MN∥ADD.以上均有可能解析:四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面P AD,因为MN ⊂平面P AC,平面P AC∩平面P AD=P A,所以由直线与平面平行的性质定理可得,MN∥P A.答案:B6.如图,在长方体ABCD-A1B1C1D1中,点P∈BB1(P不与B,B1重合).P A∩A1B=M,PC∩BC1=N.求证:MN∥平面ABCD.证明:如图,连接AC,A1C1,在长方体ABCD-A1B1C1D1中,AA1∥CC1,且AA1=CC1,所以四边形ACC 1A 1是平行四边形. 所以AC ∥A 1C 1.因为AC ⊄平面A 1BC 1,A 1C 1⊂平面A 1BC 1, 所以AC ∥平面A 1BC 1.因为AC ⊂平面P AC ,平面A 1BC 1∩平面P AC =MN , 所以AC ∥MN .因为MN ⊄平面ABCD ,AC ⊂平面ABCD , 所以MN ∥平面ABCD .综合知识 平面与平面平行的性质定理的应用如图,正方体ABCD -A 1B 1C 1D 1中过BD 1的平面,分别与AA 1,CC 1交于M ,N ,则四边形BND 1M 的形状为________.解析:由题意知,平面A 1ABB 1∥平面C 1CDD 1, 所以MB ∥D 1N ,同理,D 1M ∥BN . 所以四边形BND 1M 是平行四边形. 答案:平行四边形 8.如图所示,已知正方体ABCD -A 1B 1C 1D 1中,面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F .求证:EF ∥平面ABCD .解析:证明:过E 作EG ∥AB 交BB 1于G , 连接GF ,所以B 1E B 1A =B 1G B 1B,B 1E =C 1F ,B 1A =C 1B ,所以C 1F C 1B =B 1G B 1B,所以FG ∥B 1C 1∥BC .又因为EG ∩FG =G ,AB ∩BC =B ,所以平面EFG ∥平面ABCD .又EF ⊂平面EFG , 综合知识 线面平行、面面平行的性质定理9.四棱锥P -ABCD 的底面ABCD 是梯形,AB ∥CD ,且AB =23CD .试问在PC 上能否找到一点E ,使得BE ∥平面P AD ?若能,请确定E 点的位置,并给出证明;若不能,请说明理由.解析:在PC 上取点E ,使CE PE =12,则BE ∥平面P AD .证明如下:延长DA 和CB 交于点F ,连接PF .在梯形ABCD 中,AB ∥CD ,AB =23CD .所以AB CD =BF FC =23,所以BC BF =12.又CE PE =12,所以在△PFC 中,CE PE =BC BF , 所以BE ∥PF ,而BE ⊄平面P AD ,PF ⊂平面P AD . 所以BE ∥平面P AD .基础达标一、选择题1.若一条直线和一个平面平行,夹在直线和平面间的两条线段相等,那么这两条线段所在直线的位置关系是( )A .平行B .相交C .异面D .平行、相交或异面解析:作出图形,如图所示:在正方体ABCD -A 1B 1C 1D 1中,A 1B 1∥ABCD .A 1B 与AB 1,相交.AA 1∥BB 1,A 1B 与B 1C 异面.故选D. 答案:D2.如果一条直线与两个平行平面中的一个平行,那这条直线与另一个平面的位置关系是( )A .平行B .相交C .在平面内D .平行或在平面内解析:由题这条直线与另一个平面平行或者直线在平面上.故选D. 答案:D3.已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b∥α或b⊂αC.b∥平面αD.b与平面α相交或b∥平面α解析:b与a相交,可确定一个平面,记为β,若β与α平行,则b∥α;若β与α不平行,则b与α相交.答案:D4.已知平面α∥平面β,直线a⊂α,直线b⊂β,则①a∥b②a,b为异面直线③a,b 一定不相交④a∥b或a,b异面,其中正确的是()A.①②B.②③C.③④D.①②③④解析:∵平面α∥平面β.∴α与β没有公共点.∵直线a⊂α,直线b⊂β.∴a与b没有公共点.即a与b一定不相交.∴a∥b或a与b为异面直线.选C.答案:C5.如图,在多面体ABC-DEFG中,平面ABC∥平面DEFG,EF∥DG,且AB=DE,DG =2EF,则()A.BF∥平面ACGDB.CF∥平面ABEDC.BC∥FGD.平面ABED∥平面CGF解析:取DG的中点为M,连接AM,FM,如图所示.则由已知条件易证四边形DEFM 是平行四边形,∴DE綊FM.∵平面ABC∥平面DEFG,平面ABC∩平面ADEB=AB,平面DEFG∩平面ADEB=DE,∴AB∥DE,∴AB∥FM.又AB=DE,∴AB=FM,∴四边形ABFM是平行四边形,即BF∥AM.又BF⊄平面ACGD,∴BF∥平面ACGD.故选A.答案:A6.如图,在三棱柱ABC -A 1B 1C 1中,点D 为AC 的中点,点D 1是A 1C 1上的一点,若BC 1∥平面AB 1D 1,则A 1D 1D 1C 1等于( )A.12B .1C .2D .3解析:可证AD 1∥DC 1,所以D 1为A 1C 1中点. 答案:B 7.如图,在三棱台A 1B 1C 1-ABC 中,点D 在A 1B 1上,且AA 1∥BD ,点M 是△A 1B 1C 1内的一个动点,且有平面BDM ∥平面A 1C 1CA .则动点M 的轨迹是( )A .平面B .直线C .线段,但只含1个端点D .圆解析:因为平面BDM ∥平面A 1C 1CA ,平面BDM ∩平面A 1B 1C 1=DM ,平面A 1C 1CA ∩平面A 1B 1C 1=A 1C 1,所以DM ∥A 1C 1,过D 作DE ∥A 1C 1交B 1C 1于E ,则点M 的轨迹是线段DE (不包括点D ). 答案:C 二、填空题8.一个面截空间四边形的四边得到四个交点,如果该空间四边形的两条对角线与这个截面平行,那么此四个交点围成的四边形是________.解析:由线面平行的性质定理可得四个交点围成的四边形为平行四边形. 答案:平行四边形 9.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:因为直线EF ∥平面AB 1C ,EF ⊂平面ABCD ,且平面AB 1C ∩平面ABCD =AC ,所以EF ∥AC ,因为E 是DA 的中点,所以F 是DC 的中点,由中位线定理可得EF =12AC ,在正方体ABCD -A 1B 1C 1D 1中,AB =2,AC =22,所以EF = 2.答案: 2 10.如图,过正方体ABCD -A 1B 1C 1D 1的顶点B 1,D 1与棱AB 的中点P 的平面与底面ABCD 所在平面的交线记为l ,则l 与B 1D 1的位置关系为________.解析:如图所示,在正方体ABCD-A1B1C1D1中,平面ABCD∥平面A1B1C1D1,且平面B1D1P∩平面A1B1C1D1=B1D1,平面B1D1P∩平面ABCD=l,所以l∥B1D1.答案:l∥B1D111.如图,α∩β=CD,α∩γ=EF,β∩γ=AB,AB∥α,则CD与EF的位置关系为________.解析:由线面平行的性质得,AB∥CD,AB∥EF,由公理4得CD∥EF.答案:平行12.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为CC1,C1D1,D1D,CD 的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,MN∥平面BDD1B1.解析:如图,取B1C1的中点P,连接NP,NH,HF,PF,则可证明平面NPFH∥平面BDD1B1,若MN⊂平面NPFH,则MN∥平面BDD1B1.答案:M∈FH.(答案不唯一,如FH∩GE=M等)三、解答题13.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AD∥BC,平面A1DCE与B1B 交于点E.求证:EC∥A1D.证明:因为BE ∥AA 1,AA 1⊂平面AA 1D ,BE ⊄平面AA 1D , 所以BE ∥平面AA 1D .因为BC ∥AD ,AD ⊂平面AA 1D ,BC ⊄平面AA 1D , 所以BC ∥平面AA 1D .又BE ∩BC =B ,BE ⊂平面BCE ,BC ⊂平面BCE , 所以平面BCE ∥平面AA 1D .又平面A 1DCE ∩平面BCE =EC ,平面A 1DCE ∩平面AA 1D =A 1D , 所以EC ∥A 1D . 14.如图,P 为平行四边形ABCD 所在平面外一点,M ,N 分别是AB ,PC 的中点,平面P AD ∩平面PBC =l .(1)求证:BC ∥l .(2)MN 与平面P AD 是否平行?试证明你的结论. 解析:证明:(1)在▱ABCD 中,BC ∥AD , BC ⊄平面P AD ,AD ⊂平面P AD , 所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,且BC ⊂平面PBC ,所以BC ∥l . (2)MN ∥平面P AD .证明如下:取PD 中点E ,连接AE ,NE .因为N 是PC 的中点,所以NE 綊12CD ,又M 为AB 的中点,所以AM 綊12DC ,所以AM 綊NE ,所以四边形AMNE 为平行四边形,所以AE ∥MN . 又因为AE ⊂平面P AD ,MN ⊄平面P AD , 所以MN ∥平面P AD .能力提升15.如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形. (1)求证:AB ∥平面EFGH ,CD ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. 解析:(1)证明:∵四边形EFGH 为平行四边形,∴EF ∥HG . ∵HG ⊂平面ABD ,EF ⊄平面ABD ,∴EF ∥平面ABD . ∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB ,AB ⊄平面EFGH ,EF ⊂平面EFGH . ∴AB ∥平面EFGH .同理可证,CD ∥平面EFGH .(2)设EF =x (0<x <4),∵四边形EFGH 为平行四边形,∴CF CB =x 4,则FG 6=BF BC =BC -CF BC =1-x 4. ∴FG =6-32x . ∴四边形EFGH 的周长l =2⎝⎛⎭⎫x +6-32x =12-x . 又∵0<x <4,∴8<l <12,∴四边形EFGH 周长的取值范围是(8,12).16.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q 分别是BC ,C 1D 1,AD 1,BD 的中点.(1)求证:PQ ∥平面DCC 1D 1;(2)求PQ 的长;(3)求证:EF ∥平面BB 1D 1D .解析:(1)法一 如图,连接AC ,CD 1. 因为P ,Q 分别是AD 1,AC 的中点,所以PQ ∥CD 1.又PQ ⊄平面DCC 1D 1,CD 1⊂平面DCC 1D 1,所以PQ ∥平面DCC 1D 1.法二 取AD 的中点G ,连接PG ,GQ ,则有PG ∥DD 1,GQ ∥DC ,且PG ∩GQ =G , 所以平面PGQ ∥平面DCC 1D 1.又PQ ⊂平面PGQ ,所以PQ ∥平面DCC 1D 1.(2)由(1)易知PQ =12D 1C =22a . (3)法一 取B 1D 1的中点O 1,连接FO 1,BO 1,则有FO 1綊12B 1C 1. 又BE 綊12B 1C 1, 所以BE 綊FO 1.所以四边形BEFO 1为平行四边形,所以EF ∥BO 1,又EF ⊄平面BB 1D 1D ,BO 1⊂平面BB 1D 1D , 所以EF ∥平面BB 1D 1D .法二 取B 1C 1的中点E 1,连接EE 1,FE 1,则有FE1∥B1D1,EE1∥BB1,且FE1∩EE1=E1,所以平面EE1F∥平面BB1D1D.又EF⊂平面EE1F,所以EF∥平面BB1D1D.由Ruize收集整理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.3-2.2.4直线与平面、平面与平面平行的性质
一、选择题
1.已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是( )
A.平行B.相交
C.异面D.不确定
解析:选A 由面面平行的性质定理可知选项A正确.
2.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为( )
A.都平行
B.都相交且一定交于同一点
C.都相交但不一定交于同一点
D.都平行或交于同一点
解析:选D ∵l⊄α,∴l∥α或l∩α=A,若l∥α,则由线面平行性质定理可知,l ∥a,l∥b,l∥c,…,∴由公理可知,a∥b∥c…;若l∩α=A,则A∈a,A∈b,A∈c,…,a∩b∩c=A.
3.在正方体ABCD-A1B1C1D1中,若经过D1B的平面分别交AA1和CC1于点E、F,则四边形D1EBF的形状是( )
A.矩形B.菱形
C.平行四边形D.正方形
解析:选C 因为平面和左右两个侧面分别交于ED1、BF,所以ED1∥BF,同理D1F∥EB,所以四边形D1EBF是平行四边形.
4.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A,B分别在α,β内运
动时,那么所有的动点C ( )
A .不共面
B .当且仅当A ,B 在两条相交直线上移动时才共面
C .当且仅当A ,B 在两条给定的平行直线上移动时才共面
D .不论A ,B 如何移动都共面
解析:选D 由面面平行的性质,不论A 、B 如何运动,动点C 均在过点C 且与α、β都平行的平面上.
5.下列说法正确的是( )
A .平行于同一条直线的两个平面平行
B .平行于同一个平面的两个平面平行
C .一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行
D .若三直线a ,b ,c 两两平行,则在过直线a 的平面中,有且只有一个平面与b ,c 均平行
解析:选B 平行于同一条直线的两个平面可以平行也可以相交,所以A 错;B 正确;C 中没有指明这三个点在平面的同侧还是异侧,不正确;D 不正确,因为过直线a 的平面中,只有b ,c 不在其平面内,则与b ,c 均平行.
二、填空题
6.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP =a 3
,过P 、M 、N 的平面与棱CD 交于Q ,则PQ =________. 解析:∵MN ∥平面AC ,平面PMN ∩平面AC =PQ , MN ⊂平面PMN ,
∴MN ∥PQ .易知DP =DQ =23
a , 故PQ =2×23a =223
a . 答案:223
a
7.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在
CD上,若EF∥平面AB1C,则线段EF的长度等于________.
解析:∵EF∥平面AB1C,EF⊂平面ABCD,平面AB1C∩平面ABCD=AC,∴EF∥AC.又点E 为AD的中点,点F在CD上,
∴点F是CD的中点,∴EF=1
2
AC= 2.
答案: 2
8.如图是正方体的平面展开图:
在这个正方体中,①BM∥平面ADE;②CN∥平面BAF;③平面BDM∥平面AFN;④平面BDE∥平面NCF,以上说法正确的是________(填序号).
解析:以ABCD为下底还原正方体,如图所示,
则易判定四个说法都正确.
答案:①②③④
三、解答题
9.如图所示:ABC-A1B1C1中,平面ABC∥平面A1B1C1,若D是棱CC1
的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1?证明你的结论.解:当点E为棱AB的中点时,
DE∥平面AB1C1.证明如下:
如图,取BB1的中点F,连EF、FD、DE,
∵D、E、F分别为CC1、AB、BB1的中点,
∴EF∥AB1,∵AB1⊂平面AB1C1,EF⊄平面AB1C1,
∴EF∥平面AB1C1.同理可证FD∥平面AB1C1.
∵EF∩FD=F,∴平面EFD∥平面AB1C1.
∵DE⊂平面EFD.
∴DE∥平面AB1C1.
10.如图,在直三棱柱ABC-A
1B1C1中,D是棱CC1上的一点,P
是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.求证:CD
=C1D.
证明:如图,连接AB1,设AB1与BA1交于点O,连接OD.
∵PB1∥平面BDA1,PB1⊂平面AB1P,平面AB1P∩平面BDA1=OD,∴OD∥PB1.
又AO=B1O,∴AD=PD.
又AC∥C1P,∴CD=C1D.。