小学数学《三角形的面积》课件【三篇】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【导语】好的课件可以创造出各种情境,激发学⽣的主动性和创造性及学习的兴趣,进⽽为数学教学创设出良好的学习氛围,使学⽣迅速的⾛进预设的教学氛围境界。
⼀堂成功的课往往得⼒于⼀个⽣动的课件,这是因为学⽣对每⼀篇新课⽂都有⼀种新鲜的感觉,都怀着新的兴趣和期待。
下⾯是整理分享的⼩学数学《三⾓形的⾯积》课件,欢迎阅读与借鉴。
⼩学数学《三⾓形的⾯积》课件篇⼀
教材分析:
《三⾓形的⾯积》⼀课是北师⼤版五年级上第四单元图形的⾯积的第五节内容,属于平⾯图形⾯积计算教学范畴。
通过平⾯图形⾯积计算教学,不仅可以引导学⽣把握平⾯图形的特征,把握平⾯图形之间的内在联系,真切地体悟渗透其中的转化思想,⽽且可以开发和利⽤学⽣的模仿能⼒,这种模仿融合着类⽐的思考,融合着创造的体验。
学习《三⾓形的⾯积》⼀课之前,学⽣已经有的知识基础有:长⽅形、正⽅形、平⾏四边形的⾯积计算;⼀些简单多边形的特征等。
学⽣在学习⽅法⽅⾯的基础有:在学习平⾏四边形的⾯积时,学⽣已经初步感受了可以⽤剪拼、平移、旋转等操作活动,使图形等积变形。
事实上,在学这课之前,部分学⽣对三⾓形⾯积计算的公式并不是⼀⽆所知,但那只是⼀种机械记忆,知道公式,说不清所以来。
三⾓形的⾯积计算公式推导的⽅法与平⾏四边形⾯积计算公式的推导⽅法有相通之处,因此本节课进⼀步运⽤转化思想来探究等积变形是⼗分重要的,对后⾯继续探究梯形⾯积的计算,圆的⾯积计算以及圆柱的体积计算都有重要帮助。
教学⽬标:
1、探索并掌握三⾓形⾯积公式,能正确计算三⾓形的⾯积,并能⽤公式解决简单的实际问题。
2、培养学⽣应⽤已有知识解决新问题的能⼒。
3、使学⽣经历操作、观察、讨论、归纳等数学活动,进⼀步体会转化⽅法的价值,发展学⽣的空间观念和初步的推理能⼒。
4、让学⽣在探索活动中获得积极的情感体验,进⼀步培养学⽣学习数学的兴趣。
教学重点:探索并掌握三⾓形⾯积计算公式,能正确运⽤公式计算三⾓形的⾯积。
教学难点:在转化中发现图形内在联系及推导说理。
教学关键:让学⽣经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平⾏四边形纸⽚、两个完全⼀样的三⾓形纸⽚若⼲组、剪⼑等。
学具准备:每个⼩组⾄少准备完全⼀样的直⾓三⾓形、锐⾓三⾓形、钝⾓三⾓形各两个,⼀个平⾏四边形,剪⼑。
教学过程:
⼀、创设情境,揭⽰课题
师:我们学校⼀年级有⼀批⼩朋友加⼊少先队组织,学校做150条红领⼱,要我们帮忙算算要⽤多少布,同学们愿意帮学校解决这个问题?
师:同学们,红领⼱是什么形状的?(三⾓形)你会算三⾓形的⾯积吗?这节课我们⼀起研究、探索这个问题。
(板书:三⾓形⾯积的计算)
[设计意图:利⽤学⽣熟悉的红领⼱实物,以及帮学校计算要⽤多少布这样的事例,激起了学⽣想知道怎样去求三⾓形⾯积的欲望,从⽽将“教”的⽬标转化为学⽣“学”的⽬标。
]
⼆、探索交流、归纳新知
师:上节课我们学习平⾏四边形⾯积的计算⽅法,我们是通过什么⽅法探究平⾏四边形⾯积?平⾏四边形的⾯积公式是什么呢?
(板书:平⾏四边形⾯积=底×⾼)
师:上节课,我们把平⾏四边形转化成长⽅形来探索平⾏四边形⾯积的计算公式的。
⼤家猜⼀猜:能不能把三⾓形也转化成已学过的图形来求⾯积呢?
[设计意图:学⽣由于有平⾏四边形⾯积公式的推导经验,必然会产⽣:能不能把三⾓形也转化成已学过的图形来求它的⾯积呢?从⽽让学⽣⾃⼰找到新旧知识间的联系,使旧知识成为新知识的铺垫。
]
(⼀)分组实验,合作学习。
提出操作和探究要求。
⑴将三⾓形转化成学过的什么图形?
⑵三⾓形与转化后的图形有什么关系?
让学⽣拿出课前准备的三种类型三⾓形,⼩组合作动⼿拼⼀拼、摆⼀摆或剪拼。
(⼆)学⽣以⼩组为单位进⾏操作和讨论。
学⽣根据⽼师提出的问题,进⾏讨论。
[设计意图:这⾥,根据学⽣“学”的需要设计了⼀个合作学习的程序,让学⽣分组实验,合作学习,为学⽣创设了⼀个⾃⼰解疑释惑的机会。
]
(3)展⽰学⽣的剪拼过程,交流汇报。
各⼩组汇报实验情况。
(让学⽣将转化后的图形贴在⿊板上,再选择有代表性的情况汇报)
可能出现以下情况:(⽤两个完全⼀样的三⾓形摆拼)
(两锐⾓三⾓形)(两钝⾓三⾓形)(两直⾓三⾓形)(两个等腰直⾓三⾓形)
通过实验学⽣得出:只要是两个完全⼀样的三⾓形都能拼成⼀个平⾏四边形。
也可能把⼀个三⾓形剪拼成平⾏四边形。
3、归纳交流推导过程,说出字母公式。
讨论后填空:
(1)、两个完全相同的三⾓形可以拼成⼀个平⾏四边形;这个平⾏四边形的底等于____;这个平⾏四边形的⾼等于____;
(2)、每个三⾓形的⾯积等于和它等底等⾼的平⾏四边形⾯积的____。
所以,三⾓形⾯积=____。
结论:每个三⾓形的⾯积是拼成的平⾏四边形的⾯积的⼀半。
根据学⽣讨论、汇报,教师进⾏如下板书:
因为:三⾓形⾯积=拼成的平⾏四边形⾯积÷2
所以:三⾓形⾯积=底×⾼÷2(⾼是底边上的⾼。
)
[设计意图:在⼤量感知的基础上,通过⾃主学习,再通过课件的演⽰使同学们更具体、清晰地弄清了将两个完全⼀样的三⾓形转化成平⾏四边形后,它们间到底有什么关系。
同时⼜渗透了转化的数学思想⽅法,突破了教学难点,提⾼了课堂教学效率。
]
师:如果⽤S表⽰三⾓形⾯积,⽤α和h分别表⽰三⾓形的底和⾼,那么你能⽤字母写出三⾓形的⾯积公式吗?
结合学⽣回答,教师板书S=ah÷2
[设计意图:通过动⼿操作,相互讨论、交流,⽤摆拼(还可以⽤折叠、割补)等⽅法将三⾓形转化成学过的图形推导出了三⾓形⾯积的计算公式,这种“转化”的数学思想⽅法能帮助我们找到探究问题的⽅向,相信同学们今后能应⽤这⼀数学⽅法探究和解决更多的数学问题。
]
三、闯关游戏、应⽤新知
第⼀关⽐⽐谁的基础实
1、试⼀试,计算三⾓形的⾯积。
2、根据条件,求出三⾓形的⾯。
(1)底5厘⽶,⾼7厘⽶。
(2)⾼13⽶,底10⽶。
(3)底0.8⽶,⾼11分⽶。
⼩组做题,⽐⽐谁算的⼜对⼜准。
第⼆关⽐⼀⽐谁的思路活
1、计算下⾯图形的⾯积,你发现了什么?(单位:cm)
得出:等底等⾼的两个三⾓形⾯积相同。
学⽣计算,讨论得出结论
2、想⼀想,下⾯说法对不对?为什么?
(1)三⾓形⾯积是平⾏四边形⾯积的⼀半。
()
(2)⼀个三⾓形⾯积为20平⽅⽶,与它等底等⾼平⾏四边形⾯积是40平⽅⽶。
()
(3)等底等⾼的两个三⾓形,⾯积⼀定相等。
()
(4)两个三⾓形⼀定可以拼成⼀个平⾏四边形。
()
正确请坐好,错误举起⼿说出理由。
第三关⽐⽐谁应⽤得好
1、制作150条少先队员戴的红领⼱,⼤约需要多少平⽅⽶的布?(让学⽣动⼿测量所需数据,再进⾏计算)
2、测量你⼿中三⾓形的⼀条底边和它对应的⾼并计算它的⾯积。
测量时,强调对应。
[设计意图:让学⽣学会⾃⼰动⼿测量选取需要的数据,应⽤所学知识灵活解决问题。
]
四、归纳总结,提升认识
1、在这节课⾥你有什么收获?你有什么要提醒⼤家注意的?
2、今天,你⼜学到了哪些解决问题的⽅法?
[设计意图:让学⽣对所学习的内容进⾏⼩结,是学到的知识进⾏系统化。
]
⼩学数学《三⾓形的⾯积》课件篇⼆
教材分析:
三⾓形的⾯积是在学⽣掌握了三⾓形的特征以及长⽅形、正⽅形⾯积计算的基础上进⾏教学的。
通过对这部分内容的教学,使学⽣理解并掌握三⾓形⾯积计算公式,会应⽤公式计算三⾓形的⾯积,同时加深三⾓形与长⽅形、正⽅形之间内在联系的认识,培养学⽣的实际操作能⼒。
进⼀步发展学⽣的空间观念和思维能⼒,提⾼学⽣的数学素养。
学情分析:
在学习三⾓形的⾯积这⼀内容前,学⽣已经认识了三⾓形的特征;在学习长⽅形⾯积、正⽅形⾯积以及求组合图形的⾯积时,已经学会割、补、移等⽅法,也学会了把未知的学习问题转化为已知的问题。
因此在教学三⾓形的⾯积这课时,学⽣已经具备了⼀定的知识准备和能⼒基础。
教学⽬标:
1、经历三⾓形⾯积公式的推导过程,理解公式的意义。
2、理解三⾓形的底和⾼与“被转化长⽅形”长和宽之间的关系。
3、会⽤三⾓形的⾯积公式计算三⾓形的⾯积。
4、培养学⽣运⽤所学知识解决简单的实际问题的能⼒,体验数学应⽤价值,使学⽣感受到数学就在⾝边。
教学重点:三⾓形⾯积公式的推导。
教学难点:理解三⾓形是同底(长)等⾼(宽)长⽅形⾯积的⼀半。
教学过程:
⼀、导⼊阶段
通过故事情景产⽣⽣活中三⾓形⽐较⼤⼩的问题:
1、⽐三⾓形的⼤⼩⽤数学语⾔来表达是⽐什么?
2、采⽤哪些⽅法可以⽐较呢?
⼩结:运⽤透明⽅格纸来⽐较三⾓形的⼤⼩是⼀种⽅法,但你感觉怎样?
⼆、探究阶段
(⼀)画三⾓形。
1、每个学⽣拿出准备好的长⽅形纸,按要求画三⾓形。
操作说明:
(1)以长⽅形纸的⼀边作为三⾓形的底边。
(2)以对边的任意⼀点作为三⾓形的顶点。
(3)连接顶点与对⾯的两个⾓。
(4)你画了⼀个什么样的三⾓形?
2、⼤组交流。
3、猜⼀猜:要求学⽣根据⾃⼰所画的三⾓形猜⼀猜它的⾯积是整个长⽅形⾯积的⼏分之⼏?
4、观察已画三⾓形与长⽅形之间的特殊关系
5、画出三⾓形已知底上的⼀条⾼,观察已画的三⾓形的⾯积占整个长⽅形⾯积的⼏分之⼏?
(⼆)实验
1、剪拼三⾓形。
操作说明:
(1)剪下你所画的三⾓形。
(2)将剩下部分拼到剪成的三⾓形中。
思考:剩下部分拼成的三⾓形是否与剪成的三⾓形⼀样⼤?
(3)填写实验报告。
2、学⽣完成报告后交流
(三)归纳
根据学⽣的实验得出结论:
⼀个直⾓三⾓形的⾯积是相应的长⽅形⾯积的⼀半。
⼀个锐⾓三⾓形的⾯积是相应的长⽅形⾯积的⼀半。
⼀个钝⾓三⾓形的⾯积是相应的长⽅形⾯积的⼀半。
(1)请学⽣⽤⼀句话来概括。
(2)⽤数学的⽅式来表⽰:三⾓形⾯积=相应长⽅形⾯积/2
(3)根据长⽅形的⾯积公式,推导三⾓形的⾯积公式
(4)⽤字母表⽰三⾓形的⾯积公式。
三、运⽤阶段:
1、教学例1
2、计算导⼊阶段的3个三⾓形的⾯积
(1)分别测出3个三⾓形的底与⾼,作好记录。
(2)计算出每个三⾓形的⾯积。
(3)交流。
拓展:找出下列图形中⾯积相等的两个三⾓形,为什么?
四、总结
这节课我们学习了什么?2、计算三⾓形⾯积要知道那些条件?
⼩学数学《三⾓形的⾯积》课件篇三
⼀、教学⽬标
(⼀)知识与技能
让学⽣经历探索三⾓形⾯积计算公式的过程,掌握三⾓形的⾯积计算⽅法,能解决相应的实际问题。
(⼆)过程与⽅法
通过操作、观察和⽐较,发展学⽣的空间观念,渗透转化思想,培养学⽣分析、综合、抽象概括和动⼿解决实际问题的能⼒。
(三)情感态度和价值观
让学⽣在探索活动中获得积极的情感体验,进⼀步培养学⽣学习数学的兴趣。
⼆、教学重难点
教学重点:探索并掌握三⾓形⾯积计算公式。
教学难点:理解三⾓形⾯积计算公式的推导过程,体会转化的思想。
三、教学准备
多媒体课件,学具袋(每⼩组各有两个完全⼀样的直⾓三⾓形、锐⾓三⾓形、钝⾓三⾓形),⼀条红领⼱。
四、教学过程
(⼀)复习铺垫,激趣引新
1、复习旧知。
(1)计算下⾯各图形的⾯积。
(2)创设情境。
同学们,请⼤家看看⾃⼰胸前的红领⼱,它是什么形状?如果要裁剪⼀条红领⼱,你知道要⽤多⼤的红布吗?求所需红布的⼤⼩就是求这个三⾓形的什么?
2、回顾引新。
(1)回顾:还记得平⾏四边形的⾯积计算公式吗?它是怎样推导出来的?
(2)引新:如果知道了三⾓形的⾯积计算公式,就能直接求出裁剪红领⼱所需红布的⼤⼩了。
今天这节课,我们就来研究三⾓形的⾯积。
(板书课题:三⾓形的⾯积)
【设计意图】⾸先复习旧知,体会⽤公式计算图形⾯积的便捷性,回顾平⾏四边形⾯积计算公式的推导过程,唤醒学⽣相关的活动经验,为后⾯推导三⾓形⾯积计算公式的教学做好准备。
同时,⽤学⽣熟悉的红领⼱引⼊新课,体会数学问题来源于⽣活,激发了他们的学习兴趣。
(⼆)主动探索,推导公式
1、操作转化。
(1)提出问题:既然平⾏四边形能转化成长⽅形推导出⾯积计算公式,那三⾓形能不能也像这样,通过转化推导出计算⾯积的公式呢?
(2)学⽣分组操作,教师巡视指导。
学⽣操作预设:如果学⽣只⽤⼀个三⾓形时⽆法利⽤割补法将三⾓形转化成已学过的图形,教师可适时引导换⼀种思考⽅式,⽤两个相同的三⾓形试试。
(3)学⽣展⽰汇报。
预设拼法⼀:⽤两个完全⼀样的锐⾓三⾓形拼成⼀个平⾏四边形。
预设拼法⼆:⽤两个完全⼀样的直⾓三⾓形拼成⼀个长⽅形或平⾏四边形(以长⽅形为例)。
预设拼法三:⽤两个完全⼀样的钝⾓三⾓形拼成⼀个平⾏四边形(以其中⼀种情况为例)。
(4)想⼀想:你们拼的都不⼀样,但是,我们可以发现,只要是两个完全⼀样的三⾓形,⼀定能拼成什么图形?
学⽣观察,发现:有的⽤两个完全⼀样的锐⾓三⾓形拼成了⼀个平⾏四边形,有的⽤两个完全⼀样的直⾓三⾓形拼成了⼀个长⽅形或平⾏四边形,还有的⽤两个完全⼀样的钝⾓三⾓形也拼成了⼀个平⾏四边形。
虽然选取的三⾓形不⼀样,拼出的结果也不⼀样,但是,只要⽤两个完全⼀样的三⾓形就能拼成⼀个平⾏四边形。
2、观察思考。
(1)观察拼成的平⾏四边形和原来的三⾓形,你发现了什么?
(2)学⽣独⽴思考后汇报:三⾓形的底和平⾏四边形的底相等,三⾓形的⾼和平⾏四边形的⾼相等,三⾓形的⾯积是平⾏四边形⾯积的⼀半。
3、概括公式。
(1)你能⾃⼰写出三⾓形的⾯积计算公式吗?
(2)总结公式。
①板书公式:三⾓形的⾯积=底×⾼÷2。
②⽤字母表⽰三⾓形⾯积计算公式。
(3)回顾与⼩结。
①我们已经知道三⾓形的⾯积等于底乘⾼除以2,回顾⼀下,它是怎样推导出来的?
②教师⼩结:当我们利⽤⼀个三⾓形⽆法将它转化成已学过图形的时候,我们选取了两个完全⼀样的三⾓形进⾏拼摆。
不论是两个完全⼀样的锐⾓三⾓形、直⾓三⾓形还是钝⾓三⾓形,最后都能拼成⼀个平⾏四边形。
通过观察思考发现,原三⾓形的底与拼成的平⾏四边形的底相等,原三⾓形的⾼与拼成的平⾏四边形的⾼相等,原三⾓形的⾯积是拼成的平⾏四边形的⾯积的⼀半。
今天的学习过程中,同学们依然采取把未知的三⾓形的⾯积转化成已知的平⾏四边形的⾯积来研究的⽅法,⾮常好!在今后的学习中,如果再碰到类似问题,希望能继续⽤这种⽅法使问题迎刃⽽解。
【设计意图】本环节设计了操作转化、观察思考和概括公式三个层次的教学,先提出问题,让学⽣利⽤转化的思想,带着问题进⾏操作;再从⾃⼰的展⽰和思考中发现⽤两个完全⼀样的三⾓形能拼成⼀个平⾏四边形,从⽽发现两者之间的等量关系;最后的⼩结环节,让学⽣回顾推导公式的过程,既培养他们回顾反思的能⼒,同时⼜进⼀步渗透转化思想。
(三)巩固运⽤,解决问题
1、教学教材第92页例2。
(1)出⽰例题,呈现问题情境。
(2)理解题意,叙述题⽬内容。
①⽤⾃⼰的话说⼀说题⽬的意思是什么?
②学⽣根据图⽂叙述:知道红领⼱的底是100cm,⾼是33cm,求它的⾯积是多少。
(3)收集信息,明确问题。
①提问:从题⽬中你获得了哪些数学信息?要求什么?
②思考:要求红领⼱的⾯积,其实就是求什么?
③归纳:要求红领⼱的⾯积,其实就是求底是100cm、⾼是33cm的三⾓形的⾯积。
(4)学⽣独⽴解答。
(5)学⽣汇报,教师板书,规范书写。
(6)对照实物与计算结果,帮助学⽣建⽴⼀定的空间观念。
2、完成“做⼀做”练习。
(1)完成教材第92页“做⼀做”第1题。
①学⽣独⽴完成。
②同桌互相说说⾃⼰是怎样做的。
(2)完成教材第92页“做⼀做”第2题。
①学⽣独⽴完成。
②全班集体交流:这个三⾓形的底和⾼分别是多少?怎样计算它的⾯积?
(3)完成教材第92页“做⼀做”第3题。
①学⽣独⽴完成。
②同桌互相说说⾃⼰是怎样做的。
③全班集体交流:这个问题你是怎样算的?
【设计意图】例2呼应了开课时提出的研究问题,既巩固三⾓形⾯积计算公式的应⽤,⼜培养了学⽣解决实际问题的能⼒;紧接着,完成课后的“做⼀做”练习,可以帮助学⽣进⼀步深化理解⾯积公式。
(四)变式练习,内化提⾼
1、基本练习。
完成教材第93页练习⼆⼗第1题。
(1)学⽣独⽴完成。
(2)同桌互相说⼀说⾃⼰是怎样算的。
(3)全班集体交流:你能说说这每个交通警⽰标识牌所表⽰的含义吗?怎样计算它的⾯积?⽤⼿势⽐划⼀下⼀个交通警⽰标识牌的⼤⼩。
(同时进⾏安全教育,同时帮助学⽣建⽴空间观念。
)
2、提⾼练习。
完成教材第93页练习⼆⼗第3题。
(1)理解题意:怎样计算出这三个三⾓形的⾯积?需要知道什么?(先测量出每个三⾓形的底和⾼,再利⽤公式计算。
)
(2)学⽣独⽴完成。
(3)全班集体交流:每个三⾓形的底和⾼分别是多少?怎样计算三⾓形的⾯积?
【设计意图】通过分层练习,巩固了学⽣对三⾓形⾯积计算公式的理解和应⽤,同时对学⽣进⾏交通安全教育。
(五)全课总结,畅谈收获
1、今天这节课学习了什么?怎样学的?
2、今天我们推导出了三⾓形的⾯积计算公式,还学习了利⽤公式解决⽣活中的实际问题。
在推导计算公式时,我们选择将两个完全⼀样的锐⾓三⾓形、直⾓三⾓形或钝⾓三⾓形拼摆在⼀起,转化成已知的平⾏四边形⾯积来研究,再通过观察对⽐发现转化前后三⾓形与平⾏四边形之间的等量关系,从⽽推导出三⾓形的⾯积计算公式等于底乘⾼除以2。
同学们今天依然是利⽤转化的思想解决了遇到的问题,最后还利⽤公式顺利解决了⽣活中的实际问题。
3、介绍数学⼩知识。
(1)同学们,你们知道吗?今天我们⼀起动⼿推导出来的三⾓形的⾯积计算公式,很早以前,我们的祖先就已经发现了。
(2)同学们,我国古代数学家固然伟⼤,但是,⽼师觉得你们也很了不起!咱们不也找到三⾓形⾯积的计算⽅法了吗?其实,只⽤⼀个三⾓形也能转化成平⾏四边形,推导出三⾓形⾯积的计算公式,有兴趣的同学课下可以试⼀试!
(六)作业练习
1、课堂作业:练习⼆⼗第2题。
2、课外作业:练习⼆⼗第4题。