天津市和平区2020年中考数学综合测试试题

合集下载

(3份试卷汇总)2019-2020学年天津市和平区中考数学综合测试试题

(3份试卷汇总)2019-2020学年天津市和平区中考数学综合测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°2.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .3.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块4.在同一坐标系中,反比例函数y =k x与二次函数y =kx 2+k(k≠0)的图象可能为( ) A . B .C .D .5.已知一次函数y=ax ﹣x ﹣a+1(a 为常数),则其函数图象一定过象限( )A.一、二B.二、三C.三、四D.一、四6.下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.7.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.8.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是()A.15°B.30°C.45°D.60°9.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥10.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO =30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332) B.(2,332) C.(332,32) D.(32,3﹣332)二、填空题(本题包括8个小题)11.已知直角三角形的两边长分别为3、1.则第三边长为________.12.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.13.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数是_____.14.已知关于x 的不等式组0521x a x -≥⎧⎨-⎩只有四个整数解,则实数a 的取值范是______. 15.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 16.不等式5x ﹣3<3x+5的非负整数解是_____.17.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .18.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .三、解答题(本题包括8个小题)19.(6分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m 下降到12月份的11340元/2m .求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m ?请说明理由20.(6分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y (台)与售价x (元/台)之间的函数关系式及售价x 的取值范围; 售价(元/台)月销售量(台) 400200250 x(2)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w (元)最大?最大利润是多少?21.(6分)先化简分式:(a-3+4+3aa)÷-2+3aa∙+3+2aa,再从-3、5-3、2、-2中选一个你喜欢的数作为a的值代入求值.22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.()1小明和小刚都在本周日上午去游玩的概率为________;()2求他们三人在同一个半天去游玩的概率.23.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=mx的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与mx的大小.24.(10分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)25.(10分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.26.(12分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】根据题意连接AD ,再根据同弧的圆周角相等,即可计算的ABD ∠的大小.【详解】解:连接AD ,∵AB 为O 的直径,∴90ADB ∠=︒.∵40BCD ∠=︒,∴40A BCD ∠=∠=︒,∴904050ABD ∠=︒-︒=︒.故选:B .【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.2.D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.3.C【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,550×60+(x﹣60)×500>55000 解得,x>104 ∴这批电话手表至少有105块考点:一元一次不等式的应用4.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.5.D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y 随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小. 6.C【解析】【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.7.C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上. 故选C.考点:三视图8.B【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.9.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状10.A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=33,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,33).故选A.二、填空题(本题包括8个小题)11.47【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为322437-=;②长为3、322435+=;∴7或4.考点:3.勾股定理;4.分类思想的应用.12.1【解析】【分析】先由DE∥BC,可证得△ADE∽△ABC,进而可根据相似三角形得到的比例线段求得BC的长.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案为:1.【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.13.32°【解析】【分析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A 的度数,根据圆周角定理解答即可.【详解】∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=32°,∴∠BCD=32°,故答案为32°.14.-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围.详解:0521x a x ①②,-≥⎧⎨->⎩由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.15.k>1【解析】【分析】根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.【详解】因为正比例函数y=(k-1)x的图象经过第一、三象限,所以k-1>0,解得:k>1,故答案为:k>1.【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.16.0,1,2,1【解析】5x﹣1<1x+5,移项得,5x﹣1x<5+1,合并同类项得,2x<8,系数化为1得,x<4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1.【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键.17.1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.18.:k<1.【解析】【详解】∵一元二次方程220-+=有两个不相等的实数根,x x k∴△=24-=4﹣4k>0,b ac解得:k<1,则k的取值范围是:k<1.故答案为k<1.三、解答题(本题包括8个小题)19.(1)10%;(1)会跌破10000元/m1.【解析】【分析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.20.(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】【分析】(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.【详解】(1)依题意得:y=200+50×40010x.化简得:y=-5x+1.(2)依题意有:∵300 52200450 xx≥⎧⎨-+≥⎩,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.21.3a+;5【解析】【详解】原式=((3)3a aa++-3+4+3aa)32aa+⋅-∙+3+2aa=(3)343a a aa+--+32aa+⋅-∙+3+2aa=243aa-+32aa+⋅-∙+3+2aa=3a+a=2,原式=522.(1)14;(2)14【解析】【分析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【详解】解:(1)根据题意,画树状图如图:由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为28=14; (2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种, ∴他们三人在同一个半天去游玩的概率为28=14. 答:他们三人在同一个半天去游玩的概率是14. 【点睛】本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23. (1) 223y x =-,12y x =;(2) 当0<x <6时,kx+b <m x ,当x >6时,kx+b >m x 【解析】【分析】(1)根据点A 和点B 的坐标求出一次函数的解析式,再求出C 的坐标6,2),利用待定系数法求解即可求出解析式(2)由C (6,2)分析图形可知,当0<x <6时,kx+b <m x ,当x >6时,kx+b >m x 【详解】(1)S △AOB =12OA•OB =1, ∴OA =2,∴点A 的坐标是(0,﹣2),∵B (1,0)∴230b k b =-⎧⎨+=⎩∴2 3 2kb⎧=⎪⎨⎪=-⎩∴y=23x﹣2.当x=6时,y=23×6﹣2=2,∴C(6,2)∴m=2×6=3.∴y=12x.(2)由C(6,2),观察图象可知:当0<x<6时,kx+b<mx,当x>6时,kx+b>mx.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标24.见解析.【解析】【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.25.(1)33(2)3311m<<;②△AOB与半圆D的公共部分的面积为4+33π(3)tan∠AOB 的值为157或12541.【解析】【分析】(1)根据题意由勾股定理即可解答(2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答(3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x ,列出方程求解即可解答 如图2,当OB =OA 时,内心、外心与顶点O 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,AB ⊥OB ,由勾股定理得m =22227433OA AB -=-= ,故答案为33 .(2)①∵半圆D 与数轴相切时,只有一个公共点,此时m =33,当O 、A 、B 三点在数轴上时,m =7+4=11,∴半圆D 与数轴有两个公共点时,m 的取值范围为3311m <<.故答案为3311m <<.②如图,连接DC ,当BC =2时,∵BC =CD =BD =2,∴△BCD 为等边三角形,∴∠BDC =60°,∴∠ADC =120°,∴扇形ADC 的面积为212024=3603ADCS ⨯⨯=扇形ππ , 12332BDC S =⨯⨯=△ , ∴△AOB 与半圆D 的公共部分的面积为4+33π ; (3)如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,则72﹣(4+x )2=42﹣x 2,解得x =178 ,OH =498,AH 715 ,∴tan∠AOB=157,如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4﹣x)2=42﹣x2,解得x=87,OH=417,AH125,∴tan∠AOB125.综合以上,可得tan∠AOB的值为157或541.【点睛】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线26.(1) 60,90;(2)见解析;(3) 300人【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .1003D .25253+2.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t (单位:分钟)满足的函数关系p =at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟3.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)4.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )A .6B .7C .8D .95.如图,在Rt △ABC 中,∠B=90°,∠A=30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是( )A .312B .36C .33D .326.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个7.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .33 mC .23 mD .4m8.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >39.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+ 二、填空题(本题包括8个小题)11.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.12.如图,某海监船以20km/h 的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为_____km .13.因式分解:3a 2-6a+3=________.14.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.15.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.16.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.17.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.18.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.三、解答题(本题包括8个小题)19.(6分)某电视台的一档娱乐性节目中,在游戏PK 环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA 1、BB 1、CC 1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA 1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.20.(6分)先化简,再求值:(1﹣11x x -+)÷22691x x x ++-,其中x =1. 21.(6分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?22.(8分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.23.(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?25.(10分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE =CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面。

2020年天津市中考数学试卷(含解析)

2020年天津市中考数学试卷(含解析)

2020年天津市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分)1.计算30+(﹣20)的结果等于()A.10 B.﹣10 C.50 D.﹣502.2sin45°的值等于()A.1 B.C.D.23.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×1054.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.方程组的解是()A.B.C.D.8.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)9.计算+的结果是()A.B.C.1 D.x+110.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x211.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.计算x+7x﹣5x的结果等于.14.计算(+1)(﹣1)的结果等于.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.17.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(Ⅰ)线段AC的长等于.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为,图①中m的值为;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm 与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.24.(10分)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t 的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤1≤3时,求S的取值范围(直接写出结果即可).25.(10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?参考答案与试题解析一、选择题1.【解答】解:30+(﹣20)=+(30﹣20)=10.故选:A.2.【解答】解:2sin45°=2×=.故选:B.3.【解答】解:58600000=5.86×107,故选:B.4.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.【解答】解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.故选:D.6.【解答】解:∵<<,∴4<<5,故选:B.7.【解答】解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.故选:A.8.【解答】解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.9.【解答】解:原式==.故选:A.10.【解答】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,∴﹣5=,即x1=﹣2,2=,即x2=5;5=,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.11.【解答】解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.12.【解答】解:∵抛物线的对称轴为直线x=,而点(2,0)关于直线x=的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=,∴﹣=,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,∴a<﹣,故③正确,故选:C.二、填空题13.【解答】解:x+7x﹣5x=(1+7﹣5)x=3x.故答案为:3x.14.【解答】解:原式=()2﹣12=7﹣1=6.故答案是:6.15.【解答】解:∵袋子中装有8个小球,其中红球有3个,∴从袋子中随机取出1个球,则它是红球的概率是.故答案为:.16.【解答】解:将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.故答案为y=﹣2x+1.17.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,DC∥AB,∵AD=3,AB=CF=2,∴CD=2,BC=3,∴BF=BC+CF=5,∵△BEF是等边三角形,G为DE的中点,∴BF=BE=5,DG=EG,延长CG交BE于点H,∵DC∥AB,∴∠CDG=∠HEG,在△DCG和△EHG中,,∴△DCG≌△EHG(ASA),∴DC=EH,CG=HG,∵CD=2,BE=5,∴HE=2,BH=3,∵∠CBH=60°,BC=BH=3,∴△CBH是等边三角形,∴CH=BC=3,∴CG=CH=,故答案为:.18.【解答】解:(Ⅰ)线段AC的长等于=;(Ⅱ)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.三、解答题19.【解答】解:(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.20.【解答】解:(Ⅰ)本次抽取的麦苗有:2÷8%=25(株),m%=1﹣8%﹣12%﹣16%﹣40%=24%,故答案为:25,24;(Ⅱ)平均数是:==15.6,众数是16,中位数是16.21.【解答】解:(1)∵∠APC是△PBC的一个外角,∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;(2)连接OD,如图②所示:∵CD⊥AB,∴∠CPB=90°,∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,∵DE是⊙O的切线,∴DE⊥OD,∴∠ODE=90°,∵∠BOD=2∠PCB=54°,∴∠E=90°﹣∠BOD=90°﹣54°=36°.22.【解答】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB•sin58°≈0.85x,BD=AB•cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.23.【解答】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.24.【解答】解:(Ⅰ)如图①中,过点P作PH⊥OA于H.∵∠OAB=90°,∠B=30°,∴∠BOA=90°﹣30°=60°,∴∠OPH=90°﹣60°=30°,∵OP=1,∴OH=OP=,PH=OP•cos30°=,∴P(,).(Ⅱ)①如图②中,由折叠可知,△O′PQ≌△OPQ,∴OP=O′P,OQ=O′Q,∵OP=OQ=t,∴OP=OQ=O′P=O′Q,∴四边形OPO′Q是菱形,∴QO′∥OB,∴∠ADQ=∠B=30°,∵A(2,0),∴OA=2,QA=2﹣t,在Rt△AQD中,DQ=2QA=4﹣2t,∵O′D=O′Q﹣QD=3t﹣4,∴<t<2.②①当点O′落在AB上时,重叠部分是△PQO′,此时t=,S=×()2=,当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t﹣2,当x=﹣=时,S有最大值,最大值=,当t=1时,S=,当t=3时,S=××=,综上所述,≤S≤.25.【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是。

精品解析:天津市2020年中考数学试题(解析版)

精品解析:天津市2020年中考数学试题(解析版)
【分析】
用红球的个数除以总球的个数即可得出取出红球的概率.
【详解】解:∵不透明袋子中装有8个球,其中有3个红球、5个黑球,
∴从袋子中随机取出1个球,则它是红球的概率为 ,
故答案为: .
【点睛】本题考查概率的求法:如果一个事件有 种可能,而且这些事件的可能性相同,其中事件 出现 种结果,那么事件 的概率 .
17.如图, 的顶点C在等边 的边 上,点E在 的延长线上,G为 的中点,连接 .若 , ,则 的长为_______.
【答案】
【解析】
【分析】
延长DC交EF于点M(图见详解),根据平行四边形与等边三角形的性质,可证△CFM是等边三角形,BF=BE=EF=BC+CF=5,可求出CF=CM=MF=2,可得C、G是DM和DE的中点,根据中位线的性质,可得出CG= ,代入数值即可得出答案.
故选B
3.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()
A. B. C. D.
【答案】B
【解析】
二、填空题(本大题共6小题,每小题3分,共18分)
13.计算 的结果等于_______.
【答案】
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】解:原式= =3x
故答案为:3x
【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.
14.计算 的结果等于_______.
【答案】6
A. B. C. D.
【答案】D

2020年天津市中考数学试卷(解析版)

2020年天津市中考数学试卷(解析版)

2020年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.cos60°的值等于()A.B.1 C.D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算的结果为()A.1 B.a C.a+1 D.8.方程组的解是()A.B.C.D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.计算x7÷x4的结果等于.14.计算的结果等于.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是(写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

2020年天津市中考数学试卷

2020年天津市中考数学试卷

2020年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2020年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

天津市和平区2019-2020学年中考数学第四次调研试卷含解析

天津市和平区2019-2020学年中考数学第四次调研试卷含解析

天津市和平区2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .19B .14C .16D .132.如图所示,在长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 23.实数a ,b 在数轴上对应的点的位置如图所示,则正确的结论是( )A .a+b <0B .a >|﹣2|C .b >πD .0a b4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为( )A .2B .3C .4D .55.如图,点D 、E 分别为△ABC 的边AB 、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为( )A .1:2B .1:3C .1:4D .1:16.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A .(1,1)B .(2,1)C .(2,2)D .(3,1)7.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3-8.若关于x ,y 的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43- 9.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是( )A .B .C .D .10.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -11.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180m 1的该市居民家庭按第一档水价交费;②年用水量不超过240m 1的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150~180m 1之间;④该市居民家庭年用水量的众数约为110m 1.其中合理的是( )A .①③B .①④C .②③D .②④12.以下各图中,能确定12∠=∠的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一艘船向正北航行,在A 处看到灯塔S 在船的北偏东30°的方向上,航行12海里到达B 点,在B 处看到灯塔S 在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S 的最近距离是_____海里(不近似计算).14.分解因式2222x y z yz ---=______.151-22_____. 16.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.17.如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD=_______°.18.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m%和m%,结果在结算时发现,两种耗材的总价相等,求m的值.20.(6分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.21.(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)22.(8分)已知抛物线y=ax2+bx+c.(Ⅰ)若抛物线的顶点为A (﹣2,﹣4),抛物线经过点B (﹣4,0)①求该抛物线的解析式;②连接AB ,把AB 所在直线沿y 轴向上平移,使它经过原点O ,得到直线l ,点P 是直线l 上一动点. 设以点A ,B ,O ,P 为顶点的四边形的面积为S ,点P 的横坐标为x ,当4+62≤S≤6+82时,求x 的取值范围;(Ⅱ)若a >0,c >1,当x=c 时,y=0,当0<x <c 时,y >0,试比较ac 与l 的大小,并说明理由. 23.(8分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AE BE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 24.(10分)如图,AB 是⊙O 的直径,BC ⊥AB ,垂足为点B ,连接CO 并延长交⊙O 于点D 、E ,连接AD 并延长交BC 于点F .(1)试判断∠CBD 与∠CEB 是否相等,并证明你的结论;(2)求证:BD CD BE BC= (3)若BC=32AB ,求tan ∠CDF 的值.25.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.26.(12分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).求该抛物线的解析式;求梯形COBD 的面积.27.(12分)抛物线M :()2410y ax ax a a =-+-≠与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线________;(2)当2AB =时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :()0y kx b k =+≠经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为()330x x >,若当21n -≤≤-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是1 9 ,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.2.B【解析】【分析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则AB BD DF DC设DF=xcm,得到:68 = x6解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.3.D【解析】【分析】根据数轴上点的位置,可得a ,b ,根据有理数的运算,可得答案.【详解】a =﹣2,2<b <1.A.a+b <0,故A 不符合题意;B.a <|﹣2|,故B 不符合题意;C.b <1<π,故C 不符合题意;D.a b<0,故D 符合题意; 故选D .【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键.4.C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C .5.B【解析】【分析】根据中位线定理得到DE ∥BC ,DE=12BC ,从而判定△ADE ∽△ABC ,然后利用相似三角形的性质求解. 【详解】解:∵D 、E 分别为△ABC 的边AB 、AC 上的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∴△ADE 的面积:△ABC 的面积=21()2=1:4,∴△ADE 的面积:四边形BCED 的面积=1:3;故选B .【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.6.B【解析】【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.7.D【解析】【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.8.B【解析】【分析】将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.【详解】解:59x y k x y k +=⎧⎨-=⎩①②,①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-,将7x k =,2y k =-代入236x y +=得:1466k k -=, 解得:34k =. 故选:B .【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.9.D【解析】【分析】根据函数的图象和所给出的图形分别对每一项进行判断即可.【详解】由函数图象知: 随高度h 的增加, y 也增加,但随h 变大, 每单位高度的增加, 注水量h 的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D 项正确.故选: D.【点睛】本题主要考查函数模型及其应用.10.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.11.B【解析】【分析】利用条形统计图结合中位数和中位数的定义分别分析得出答案.【详解】①由条形统计图可得:年用水量不超过180m 1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万), 45×100%=80%,故年用水量不超过180m 1的该市居民家庭按第一档水价交费,正确; ②∵年用水量超过240m 1的该市居民家庭有(0.15+0.15+0.05)=0.15(万), ∴0.355×100%=7%≠5%,故年用水量超过240m 1的该市居民家庭按第三档水价交费,故此选项错误; ③∵5万个数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;④该市居民家庭年用水量为110m 1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m 1,因此正确,故选B .【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.12.C【解析】【分析】逐一对选项进行分析即可得出答案.【详解】A 中,利用三角形外角的性质可知12∠>∠,故该选项错误;B 中,不能确定12∠∠,的大小关系,故该选项错误;C 中,因为同弧所对的圆周角相等,所以12∠=∠,故该选项正确;D 中,两直线不平行,所以12∠≠∠,故该选项错误.故选:C .【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.解:过S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴33(海里).即船继续沿正北方向航行过程中距灯塔S的最近距离是3海里.故答案为:314.(x+y+z)(x﹣y﹣z).【解析】【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项可以为一组组成完全平方式,再用平方差公式即可.【详解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案为(x+y+z)(x-y-z).【点睛】本题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.152【解析】试题分析:先进行二次根式的化简,然后合并同类二次根式即可,1322-=-=22222考点:二次根式的加减16.m=8或【解析】【分析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.17.15【解析】【分析】根据圆的基本性质得出四边形OABC 为菱形,∠AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案.【详解】解:∵OABC 为平行四边形,OA=OC=OB ,∴四边形OABC 为菱形,∠AOB=60°,∵OD ⊥AB ,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案为:15.【点睛】本题主要考查的是圆的基本性质问题,属于基础题型.根据题意得出四边形OABC 为菱形是解题的关键.18.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)m 的值为95.【解析】【分析】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,根据两种耗材的总价相等列方程求解即可.【详解】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据题意,得18000120002150x x =⨯+. 解方程,得450x =.经检验,450x =是原方程的解,且符合题意150600x ∴+=.答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,由题意得:()()45021 2.5%m a m -⋅+ ()()6001501%a m =-⋅+整理,得2950m m -=解方程,得195m =,20m =(舍去).m ∴的值为95.【点睛】本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.20.证明见解析.【解析】【分析】利用AAS 先证明∆ABH ≌∆DCG ,根据全等三角形的性质可得AH=DG ,再根据AH =AG +GH ,DG =DH +GH 即可证得AG =HD.【详解】∵AB ∥CD ,∴∠A =∠D ,∵CE ∥BF ,∴∠AHB =∠DGC ,在∆ABH 和∆DCG 中,A D AHB DGC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ABH ≌∆DCG(AAS),∴AH =DG ,∵AH =AG +GH ,DG =DH +GH ,∴AG =HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 21.(1)证明见解析;(2)四边形EFGH 是菱形,证明见解析;(3)四边形EFGH 是正方形.【解析】【分析】(1)如图1中,连接BD ,根据三角形中位线定理只要证明EH ∥FG ,EH=FG 即可.(2)四边形EFGH 是菱形.先证明△APC ≌△BPD ,得到AC=BD ,再证明EF=FG 即可.(3)四边形EFGH 是正方形,只要证明∠EHG=90°,利用△APC ≌△BPD ,得∠ACP=∠BDP ,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.考点:平行四边形的判定与性质;中点四边形.22.(Ⅰ)①y=x 2+3x ②当3+62≤S≤6+22时,x 的取值范围为是142-≤x≤232-或3222-≤x≤4212-(Ⅱ)ac≤1 【解析】【分析】(I )①由抛物线的顶点为A (-2,-3),可设抛物线的解析式为y=a (x+2)2-3,代入点B 的坐标即可求出a 值,此问得解,②根据点A 、B 的坐标利用待定系数法可求出直线AB 的解析式,进而可求出直线l 的解析式,分点P 在第二象限及点P 在第四象限两种情况考虑:当点P 在第二象限时,x <0,通过分割图形求面积法结合3+62≤S≤6+22,即可求出x 的取值范围,当点P 在第四象限时,x >0,通过分割图形求面积法结合3+6≤S≤6+22,即可求出x 的取值范围,综上即可得出结论,(2)由当x=c 时y=0,可得出b=-ac-1,由当0<x <c 时y >0,可得出抛物线的对称轴x=2b a-≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1. 【详解】(I )①设抛物线的解析式为y=a (x+2)2﹣3,∵抛物线经过点B (﹣3,0),∴0=a (﹣3+2)2﹣3,解得:a=1,∴该抛物线的解析式为y=(x+2)2﹣3=x 2+3x .②设直线AB 的解析式为y=kx+m (k≠0),将A (﹣2,﹣3)、B (﹣3,0)代入y=kx+m ,得:,解得:, ∴直线AB 的解析式为y=﹣2x ﹣2.∵直线l 与AB 平行,且过原点,∴直线l 的解析式为y=﹣2x .当点P在第二象限时,x<0,如图所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范围是≤x≤.当点P′在第四象限时,x>0,过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四边形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范围为≤x≤.综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.(II)ac≤1,理由如下:∵当x=c时,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).把x=0代入y=ax2+bx+c,得y=c,∴抛物线与y轴的交点为(0,c).∵a>0,∴抛物线开口向上.∵当0<x<c时,y>0,∴抛物线的对称轴x=﹣≥c ,∴b≤﹣2ac .∵b=﹣ac ﹣1,∴﹣ac ﹣1≤﹣2ac ,∴ac≤1.【点睛】本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B 的坐标求出a 值,②分点P 在第二象限及点P 在第四象限两种情况找出x 的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac .23.(1)12,14;(2)证明见解析;(3)34m n =. 【解析】【分析】(1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论;(2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =g ,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥Q ,90ACB ∠=︒, BCE CAE BAC ∴∆∆∆∽∽, ∴12CE ACAE EB BC EC ===, 2EB EC ∴=,2EC AE =, ∴14AE EB =. 故答案为:12,14. (2)如图11-中,作//DH CF 交AB 于H .2m =Q ,3n =,∴tan ∠B=12CE AC BE BC ==,tan ∠ACE= tan ∠B=12AE CE = ∴BE=2CE ,12AE CE = 4BE AE ∴=,2BD CD =,设AE a =,则4BE a =, //DH AC Q ,∴2BH BD AH CD==, 53AH a ∴=,5233EH a a a =-=, //DH AF Q ,∴3223EF AE a DE EH a ===,32EF DE ∴=. (3)如图2中,作DH AB ⊥于H .90ACB CEB ∠=∠=︒Q ,90ACE ECB ∴∠+∠=︒,90B ECB ∠+∠=︒,ACE B ∴∠=∠,DA DB =Q ,EAG B ∠=∠,EAG ACE ∴∠=∠,90AEG AEC ∠=∠=︒Q ,AEG CEA ∴∆∆∽,2AE EG EC ∴=g ,32CG AE =Q ,设3CG a =,2AE a =,EG x =, 则有24(3)a x x a =+,解得x a =或4a -(舍弃),1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =Q ,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE Q ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,在Rt ACD ∆中,224AC AD CD b -=,:4:3AC CD ∴=, mAC nDC =Q ,::4:3AC CD n m ∴==,∴34m n =.【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.24.(1)∠CBD与∠CEB相等,证明见解析;(2)证明见解析;(3)tan∠CDF=101-.【解析】试题分析:(1)由AB是⊙O的直径,BC切⊙O于点B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD,结合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,从而可得△EBC∽△BDC,再由相似三角形的性质即可得到结论;(3)设AB=2x,结合BC=32AB,AB是直径,可得BC=3x,OB=OD=x,再结合∠ABC=90°,可得OC=10x,CD=(10-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,从而可得△DCF∽△BCD,由此可得:CD DFBC BD==()1013xx-=101-,这样即可得到tan∠CDF=tan∠DBF=DFBD=101-.试题解析:(1)∠CBD与∠CEB相等,理由如下:∵BC切⊙O于点B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴BD CDBE BC=;(3)设AB=2x,∵BC=32AB,AB是直径,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴x,∴CD=-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴CD DFBC BD==)13xx=13,∵tan∠DBF=DFBD,∴tan∠.点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF,把求tan∠CDF转化为求tan∠DBF=DFBD;(2)通过证△DCF∽△BCD,得到DF CDBD BC=.25.(1)详见解析;(2)详见解析;(3)BC=【解析】【分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=12AC,即可得出OE=12BD,即可得出结论;(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD,∴∠B=∠BAD,∵AD=CD,∴∠C=∠CAD,在△ABC中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OEQ 四边形ABCD 是矩形 1122OA OB OC OD AC BD ∴===== AE CE ⊥Q90AEC ∴∠=︒12OE AC ∴=12OE BD ∴= 90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点FQ 四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ADE ∆Q 是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=Q 在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =3AE ∴=AE BC =QBC ∴=【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD ,解(2)的关键是判断出OE=12AC ,解(3)的关键是判断出△ABE 是底角为30°的等腰三角形,进而构造直角三角形.26.(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形 【解析】【分析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积.【详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1.∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1.∵A (-1,0),∴B (2,0),即OB=2.∴()OCDA 133S 62+⨯==梯形. 27.(1)2x =;(2)213222y x x =-+-;(3)54k > 【解析】【分析】(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线M 的对称轴;(2)根据抛物线的对称轴及2AB =即可得出点A 、B 的坐标,根据点A 的坐标,利用待定系数法即可求出抛物线M 的函数表达式;(3)利用配方法求出抛物线顶点D 的坐标,依照题意画出图形,观察图形可得出2b <-,再利用一次函数图象上点的坐标特征可得出122k b +=,结合b 的取值范围即可得出k 的取值范围. 【详解】(1)∵抛物线M 的表达式为241y ax ax a =-+-,∴抛物线M 的对称轴为直线422a x a-=-=.故答案为:2x =.(2)∵抛物线241y ax ax a =-+-的对称轴为直线2x =,2AB =,∴点A 的坐标为()1,0,点B 的坐标为()3,0.将()1,0A 代入241y ax ax a =-+-,得:410a a a -+-=, 解得:12a =-, ∴抛物线M 的函数表达式为213222y x x =-+-. (3)∵()221311222222y x x x =-+-=--+, ∴点D 的坐标为12,2⎛⎫ ⎪⎝⎭. ∵直线y=n 与直线l 的交点的横坐标记为()330x x >,且当21n -≤≤-时,总有13320x x x x ->->, ∴x 2<x 3<x 1,∵x 3>0,∴直线l 与y 轴的交点在()0,2-下方,∴2b <-.∵直线l :()0y kx b k =+≠经过抛物线的顶点D ,∴122k b +=, ∴15424b k =->.【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出.。

2020年天津市和平区中考数学模拟试卷含答案解析

2020年天津市和平区中考数学模拟试卷含答案解析

2020年天津市和平区中考数学模拟试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣6的绝对值的倒数等于()A.6 B.C.﹣D.﹣62.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9 C.7.6×10﹣8D.0.76×1093.下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a64.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°5.下列一元二次方程中,有两个不相等实数根的方程是()A.x2+1=0 B.x2﹣3x+1=0 C.x2﹣2x+1=0 D.x2﹣x+1=06.正八边形的每个内角的度数是()A.144°B.140°C.135°D.120°7.如图,已知点A,B,C在⊙O上,且∠BAC=25°,则∠OCB的度数是()A.70°B.65°C.55°D.50°8.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.9.如图,M,N分别是平行四边形ABCD的对边AD,BC的中点,且AD=2AB,连接AN,BM,交于点P,连接DN,CM,交于点Q,则以下结论错误的是()A.AP=PN B.NQ=QDC.四边形PQNM是矩形D.△ABN是等边三角形10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1911.二次函数y=ax2+bx+c的图象如图所示,则化简二次根式+的结果是()A.a+b B.﹣a﹣b C.2b﹣c D.﹣2b+c12.如图,在矩形ABCD中,点E是CD的中点,AE平分∠BED,PE⊥AE交BC于点P,连接PA,以下四个结论:①BE平分∠AEC;②PA⊥BE;③AD=AB;④PB=2PC.则正确的个数是()A.4个B.3个C.2个D.1个二、填空题(共6小题,每小题3分,满分18分)13.函数y=中自变量x的取值范围是.14.计算:已知:a+b=3,ab=1,则a2+b2=.15.将分别标有数字0,1,2,3的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于.16.如图,矩形ABCD的对角线AC、BD相交于点0,过点O作OE⊥AC交AB于E.若BC=8,△AOE的面积为20,则sin∠BOE的值为.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是.18.如图,已知扇形OAB与扇形OCD是同心圆,OA=R,OC=r.(1)若R=8,r=6,圆心角度数为60°,则环形面积为;(2)请在原图中以O为圆心,以r′为半径,将环形面积分成面积相等的两个环形,(尺规作图),并将作图步骤进行简单的描述..三、解答题(共7小题,满分64分)19.解不等式组,并写出它的非负整数解.20.我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,一共调査了名同学,其中C类女生有名;(2)将下面的条形统计图补充完整;(3)为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.21.如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,点O在AC上,⊙O经过B,D两点,交BC于点E.(1)求证:AC是⊙O的切线;(2)若AB=6,sin∠BAC=,求BE的长.22.某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?23.如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D 的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732).24.如图,矩形OABC在平面直角坐标系中,并且OA、OC的长满足:|OA﹣2|+(OC ﹣6)2=0.(1)求A、B、C三点的坐标.(2)把△ABC沿AC对折,点B落在点B1处,AB1与x轴交于点D,求直线BB1的解析式.(3)在直线AC上是否存在点P使PB1+PD的值最小?若存在,请找出点P的位置,并求出PB1+PD的最小值;若不存在,请说明理由.(4)在直线AC上是否存在点P使|PD﹣PB|的值最大?若存在,请找出点P的位置,并求出|PD﹣PB|最大值.25.如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).(1)求抛物线的解析式;(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q 的坐标.2020年天津市和平区中考数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.﹣6的绝对值的倒数等于()A.6 B.C.﹣D.﹣6【考点】绝对值;倒数.【分析】先根据绝对值的定义求出﹣6的绝对值,再根据倒数的定义解答即可.【解答】解:﹣6的绝对值是|﹣6|=6,∴﹣6的绝对值的倒数等于.故选B.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9 C.7.6×10﹣8D.0.76×109【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:C.3.下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a6【考点】单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】根据乘法分配律;合并同类项系数相加字母及指数不变;系数乘系数,同底数幂的乘法底数不变指数相加;积的乘方等于乘方的积,可得答案.【解答】解:A、﹣5(a﹣1)=﹣5a+5,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、系数乘系数,同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°【考点】平行线的性质;余角和补角.【分析】本题主要利用两直线平行,同位角相等及余角的定义作答.【解答】解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:B.5.下列一元二次方程中,有两个不相等实数根的方程是()A.x2+1=0 B.x2﹣3x+1=0 C.x2﹣2x+1=0 D.x2﹣x+1=0【考点】根的判别式.【分析】根据一元二次方程根的判别式,分别计算△的值,逐一进行判断即可.【解答】解:A、△=﹣4<0,方程没有实数根;B、△=9﹣4=5>0,方程有两个不相等的实数根;C、△=4﹣4=0,方程有两个相等实数根;D、△=1﹣4=﹣3<0,方程没有实数根.故选:B.6.正八边形的每个内角的度数是()A.144°B.140°C.135°D.120°【考点】多边形内角与外角.【分析】根据n边形的外角和为360°得到正八边形的每个外角的度数==45°,然后利用补角的定义即可得到正八边形的每个内角=180°﹣45°=135°.【解答】解:∵正八边形的外角和为360°,∴正八边形的每个外角的度数==45°,∴正八边形的每个内角=180°﹣45°=135°.故选C.7.如图,已知点A,B,C在⊙O上,且∠BAC=25°,则∠OCB的度数是()A.70°B.65°C.55°D.50°【考点】圆周角定理.【分析】首先连接OB,由圆周角定理可求得∠BOC的度数,然后由等腰三角形的性质,求得答案.【解答】解:连接OB,∵OB=OC,∠BOC=2∠BAC=2×25°=50°,∴∠OCB=∠OBC==65°.故选B.8.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【考点】一次函数与一元一次不等式;在数轴上表示不等式的解集.【分析】观察函数图象得到当x≤﹣1时,函数y1=x+b的图象都在y2=kx﹣1的图象下方,所以不等式x+b≤kx﹣1的解集为x≤﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【解答】解:根据题意得当x≤﹣1时,y1≤y2,所以不等式x+b≤kx﹣1的解集为x≤﹣1.故选D.9.如图,M,N分别是平行四边形ABCD的对边AD,BC的中点,且AD=2AB,连接AN,BM,交于点P,连接DN,CM,交于点Q,则以下结论错误的是()A.AP=PN B.NQ=QDC.四边形PQNM是矩形D.△ABN是等边三角形【考点】平行四边形的性质;等边三角形的判定;矩形的判定.【分析】连接MN,由平行四边形的性质得出AD=BC,AD∥BC,再证出AM=AD,BN=BC,得出AM∥BN,AM=BN,证出四边形ABNM是平行四边形,即可得出AP=PN.【解答】解:连接MN,如图所示:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵M,N分别是平行四边形ABCD的对边AD,BC的中点,∴AM=AD,BN=BC,∴AM∥BN,AM=BN,∴四边形ABNM是平行四边形,∴AP=PN;同理NQ=QD;∴A、B正确;∵AM∥CN,AM=CN,∴四边形ANCM是平行四边形,∴AN∥MC,同理:BM∥ND,∴四边形MPNQ是平行四边形,∵AD=2AB,∴AB=AM,∴四边形ABNM是菱形,∴AN⊥BM,∴∠MPN=90°,∴四边形MPNQ是矩形;∴C正确,D不正确;故选:D.10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质;等腰直角三角形.【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.11.二次函数y=ax2+bx+c的图象如图所示,则化简二次根式+的结果是()A.a+b B.﹣a﹣b C.2b﹣c D.﹣2b+c【考点】二次函数图象与系数的关系.【分析】根据二次函数的图象确定a,b,c的取值范围后再化简二次根式.【解答】解:由图知,二次函数y=ax2+bx+c的图象的开口向,a<0,与y轴交于y轴的正半轴,c>0,对称轴在二象限,﹣<0,a<0,则b<0,图象过点(1,0),因此a+b+c=0,a+c=﹣b>0,所以原式=a+c+c﹣b=﹣b+c﹣b=﹣2b+c.故选D.12.如图,在矩形ABCD中,点E是CD的中点,AE平分∠BED,PE⊥AE交BC于点P,连接PA,以下四个结论:①BE平分∠AEC;②PA⊥BE;③AD=AB;④PB=2PC.则正确的个数是()A.4个B.3个C.2个D.1个【考点】四边形综合题.【分析】根据矩形的性质结合全等三角形的判定与性质得出△ADE≌△BCE(SAS),进而求出△ABE是等边三角形,再求出△AEP≌△ABP(SSS),进而得出∠EAP=∠PAB=30°,分别的得出AD与AB,PB与PC的数量关系.【解答】解:∵在矩形ABCD中,点E是CD的中点,∴DE=EC,在△ADE和△BCE中∵,∴△ADE≌△BCE(SAS),∴AE=BE,∠DEA=∠CEB,∵AE平分∠BED,∴∠AED=∠AEB,∴∠AED=∠AEB=∠CEB=60°,故:①BE平分∠AEC,正确;可得△ABE是等边三角形,∴∠DAE=∠EBC=30°,∵PE⊥AE,∴∠DEA+∠CEP=90°,则∠CEP=30°,故∠PEB=∠EBP=30°,则EP=BP,在△AEP和△ABP中,∴△AEP≌△ABP(SSS),∴∠EAP=∠PAB=30°,又∵AE=AB,∴AP⊥BE,故②正确;∵∠DAE=30°,∴=tan30°=,∴3DE=AD,∴AD=DE,∴③AD=AB正确;∵∠CEP=30°,∴CP=EP,∵EP=BP,∴CP=BP,∴④PB=2PC正确.总上所述:正确的共有4个.故选:A.二、填空题(共6小题,每小题3分,满分18分)13.函数y=中自变量x的取值范围是x≥﹣1且x≠1.【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由y=,得x+1≥0且x﹣1≠0.解得x≥﹣1且x≠1,故答案为:x≥﹣1且x≠1.14.计算:已知:a+b=3,ab=1,则a2+b2=7.【考点】完全平方公式.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:715.将分别标有数字0,1,2,3的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.【解答】解:画树形图如下:由树形图可知所得的两位数恰好是奇数的概率=,故答案为:.16.如图,矩形ABCD的对角线AC、BD相交于点0,过点O作OE⊥AC交AB于E.若BC=8,△AOE的面积为20,则sin∠BOE的值为.【考点】矩形的性质;线段垂直平分线的性质;勾股定理;锐角三角函数的定义.【分析】由题意可知,OE为对角线AC的中垂线,则CE=AE,S△AEC=2S△AOE=40,由S△AEC 求出线段AE的长度,进而在Rt△BCE中,由勾股定理求出线段BE的长度;然后证明∠BOE=∠BCE,从而可求得结果.【解答】解:如图,连接EC.由题意可得,OE为对角线AC的垂直平分线,∴CE=AE,S△AOE=S△COE=5,∴S△AEC=2S△AOE=20.∴AE•BC=20,又BC=8,∴AE=5,∴EC=5.在Rt△BCE中,由勾股定理得:BE==3.∵∠AEO+∠EAO=90°,∠AEO=∠BOE+∠ABO,∴∠BOE+∠ABO+∠EAO=90°,又∠ABO=90°﹣∠OBC=90°﹣(∠BCE+∠ECO)∴∠BOE+[90°﹣(∠BCE+∠ECO)]+∠EAO=90°,化简得:∠BOE﹣∠BCE﹣∠ECO+∠EAO=0,∵OE为AC中垂线,∴∠EAO=∠ECO.代入上式得:∠BOE=∠BCE.∴sin∠BOE=sin∠BCE==.故答案为:.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是2.【考点】轴对称-最短路线问题.【分析】根据平面内线段最短,构建直角三角形,解直角三角形即可.【解答】解:如图,过点作CO⊥AB于O,延长BO到C',使OC'=OC,连接MC',交AB 于P,此时PC'=PM+PC'=PM+PC的值最小,连接AC',∵CO⊥AB,AC=BC,∠ACB=90°,∴∠ACO=×90°=45°,∵CO=OC',CO⊥AB,∴AC'=CA=AM+MC=8,∴∠OC'A=∠OCA=45°,∴∠C'AC=90°,∴C'A⊥AC,∴MC′===2,∴PC+PM的最小值为2.故答案为:2.18.如图,已知扇形OAB与扇形OCD是同心圆,OA=R,OC=r.(1)若R=8,r=6,圆心角度数为60°,则环形面积为;(2)请在原图中以O为圆心,以r′为半径,将环形面积分成面积相等的两个环形,(尺规作图),并将作图步骤进行简单的描述.过B作BE⊥OB,截取BE=OD,连接OE,作OE的垂直平分线,作以OE为斜边的等腰直角三角形OEF,OF为直角边,则OF=r’.【考点】扇形面积的计算.【分析】(1)根据扇形的面积公式计算即可;(2)过B作OB的垂线并截取BE=OD,再作OE的垂直平分线,OF为直角边的等腰直角三角形OEF,于是得到OF即为所求.【解答】解:(1)环形面积=S扇形AOB ﹣S扇形COD=﹣=,故答案为:;(2)如图所示,作法:过B作BE⊥OB,截取BE=OD,连接OE,作OE的垂直平分线,作以OE为斜边的等腰直角三角形OEF,OF为直角边,则OF=r′.三、解答题(共7小题,满分64分)19.解不等式组,并写出它的非负整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,找出符合条件的x的非负整数解即可.【解答】解:,由①得,x>﹣,由②得,x<,故此不等式组的解集为:﹣<x<,它的非负整数解为:0,1,2,3.20.我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,一共调査了50名同学,其中C类女生有8名;(2)将下面的条形统计图补充完整;(3)为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)由扇形图可知,B类总人数为10+15=25人,由条形图可知B类占50%,则样本容量为:25÷50%=50人;由条形图可知,C类占40%,则C类有50×40%=20人,结合条形图可知C类女生有20﹣12=8人;(2)根据(1)中所求数据补全条件统计图;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.【解答】解:(1)样本容量:25÷50%=50,C类总人数:50×40%=20人,C类女生人数:20﹣12=8人.故答案为:50,8;(2)补全条形统计图如下:(3)将A类与D类学生分为以下几种情况:男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D 女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.21.如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,点O在AC上,⊙O经过B,D两点,交BC于点E.(1)求证:AC是⊙O的切线;(2)若AB=6,sin∠BAC=,求BE的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接DO,由等腰三角形的性质和角平分线的定义得出∠1=∠3,证出DO∥BC,由平行线的性质得出∠ADO=90°,即可得出结论;(2)设⊙O的半径为R,由三角函数求出BC,由平行线得出△AOD∽△ABC,得出对应边成比例,求出半径OD,过O作OF⊥BC于F,则BE=2BF,如图所示:则OF∥AC,由平行线的性质得出∠BOF=∠BAC,由三角函数求出BF,即可得出结果.【解答】(1)证明:连接DO,如图1所示∵BD是∠ABC的平分线,∴∠1=∠2,∵OB=OD,∴∠2=∠3,∴∠1=∠3,∴DO∥BC,∵∠C=90°,∴∠ADO=90°,即AC⊥OD,∴AC是⊙O的切线.(2)解:设⊙O的半径为R,在Rt△ABC中,∠ACB=90°,sin∠BAC==,∴BC=×6=4,由(1)知,OD∥BC,∴△AOD∽△ABC,∴,∴,解得:R=2.4,过O作OF⊥BC于F,如图所示:则BE=2BF,OF∥AC,∴∠BOF=∠BAC,∴=sin∠BOF=,∴BF=×2.4=1.6,∴BE=2BF=3.2.22.某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?【考点】二次函数的应用.【分析】(1)根据题意可以得到y与x之间的函数关系式,然后将函数关系式化为顶点式,即可得到y的最大值;(2)根据第一问可以得到第一个月获得的最大利润,然后根据题意,即可得到相应的方程,从而可以得到第二个月里应该将销售单价定为多少.【解答】解:(1)由题意可得,y与x的函数关系式为:y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x﹣12000;∵y=﹣2x2+340x﹣12000=﹣2(x﹣85)2+2450,∴当x=85时,y的值最大为2450元.(2)∵在第一个月里,按使y获得最大值的销售单价进行销售所获利润为2450元,∴第1个月还有3000﹣2450=550元的投资成本没有收回.∴要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,∴﹣2(x﹣85)2+2450=2250,解得,x1=75,x2=95.根据题意,x2=95不合题意应舍去.答:当销售单价为75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元.23.如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D 的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732).【考点】解直角三角形的应用-坡度坡角问题;解直角三角形的应用-仰角俯角问题.【分析】由i的值求得大堤的高度h,点A到点B的水平距离a,从而求得MN的长度,由仰角求得DN的高度,从而由DN,AM,h求得高度CD.【解答】解:作AE⊥CE于E,设大堤的高度为h,点A到点B的水平距离为a,∵i=1:=,∴坡AB与水平的角度为30°,∴,即得h==10m,,即得a=,∴MN=BC+a=(30+10)m,∵测得髙压电线杆顶端点D的仰角为30°,∴,解得:DN=MN•tan30°=(30+10)×=10+10≈27.32(m),∴CD=DN+AM+h=27.32+1.7+10=39.02≈39.0(m).答:髙压电线杆CD的髙度约为39.0米.24.如图,矩形OABC在平面直角坐标系中,并且OA、OC的长满足:|OA﹣2|+(OC ﹣6)2=0.(1)求A、B、C三点的坐标.(2)把△ABC沿AC对折,点B落在点B1处,AB1与x轴交于点D,求直线BB1的解析式.(3)在直线AC上是否存在点P使PB1+PD的值最小?若存在,请找出点P的位置,并求出PB1+PD的最小值;若不存在,请说明理由.(4)在直线AC上是否存在点P使|PD﹣PB|的值最大?若存在,请找出点P的位置,并求出|PD﹣PB|最大值.【考点】一次函数综合题.【分析】(1)由非负数的性质可求得OA和OC的长,则可得到A、C的坐标,再由矩形的性质可求得B点坐标;(2)由轴对称的性质可知AC⊥BB1,由(1)可知A、C点的坐标,可求得直线AC的解析式,则可求得直线BB1的解析式;(3)由B和B1关于直线AC对称可知,连接BD与直线AC交于点P,则此时PD+PB=PD+PB1,满足条件;再由折叠的性质可证明△AOD≌△CB1D,在Rt△AOD中可求得OD,则可求得CD长,在Rt△BCD中由勾股定理可求得BD的长;(4)由三角形三边关系可知|PD﹣PB|<BD,只有当P点在线段BD的延长线或反延长线上时,才有|PD﹣PB|=BD,显然不存在这样的点.【解答】解:(1)∵|OA﹣2|+(OC﹣6)2=0.∴OA=2,OC=6,∴A(0,2),C(6,0),∵四边形OABC为矩形,∴BC=OA=2,∴B(6,2);(2)设直线AC的解析式为y=kx+b,把A、C坐标代入可得,解得,∴直线AC的解析式为y=﹣x+2,由折叠的性质可知AC⊥BB1,∴可设直线BB1的解析式为y=x+m,把B点坐标代入可得2=6+m,解得m=﹣4,∴直线BB1的解析式为y=x﹣4;(3)由(2)可知B和B1关于直线AC对称,如图1,连接BD交AC于点P,则PB=PB1,∴PD+PB=PD+PB1=BD,∴此时PD+PB1最小,由折叠的性质可知B1C=BC=OA=2,∠AOD=∠CB1D=90°,在△AOD和△CB1D中,,∴△AOD≌△CB1D(AAS),∴AD=DC,OD=DB1,设OD=x,则DC=AD=6﹣x,且OA=2,在Rt△AOD中,由勾股定理可得AO2+OD2=AD2,即(2)2+x2=(6﹣x)2,解得x=2,∴CD=AD=6﹣2=4,在Rt△BCD中,由勾股定理可得BD===2,综上可知存在使PB1+PD的值最小的点P,PB1+PD的最小值为2;(4)如图2,连接PB、PD、BD,当p在点A时|PD﹣PB|最大,B与B1对称,|PD﹣PB|=|PD﹣PB1|,根据三角形三边关系|PD ﹣PB1|小于或等于DB1,故|PD﹣PB1|的最大值等于DB1.∵AB1=AB=6,AD==4,∴DB1=2,∴在直线AC上,存在点P使|PD﹣PB|的值最大,最大值为:2.25.如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).(1)求抛物线的解析式;(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q 的坐标.【考点】二次函数综合题.【分析】(1)根据题意得出B点坐标,再利用待定系数法求出抛物线解析式;(2)首先表示出P,E点坐标,再利用PE=PD﹣ED,结合二次函数最值求法进而求出PE 的最大值;(3)根据题意可得:PB=BC,则﹣x2+4x=3,进而求出Q点的横坐标,再利用直线上点的坐标性质得出答案.【解答】解:(1)∵BC⊥x轴,垂足为点C(4,0),且点B在直线y=x+1上,∴点B的坐标为:(4,3),∵抛物线y=ax2+bx+1经过点(2,6)和点B(4,3),∴,解得:,故抛物线的解析式为:y=﹣x2+x+1;(2)如图所示:设动点P的坐标为;(x,﹣x2+x+1),则点E的坐标为:(x,x+1),∵PD⊥x轴于点D,且点P在x轴上,∴PE=PD﹣ED=(﹣x2+x+1)﹣(x+1)=﹣x2+4x=﹣(x﹣2)2+4,则当x=2时,PE的最大值为:4;(3)∵PC与BE互相平分,∴PB=BC,∴﹣x2+4x=3,即x2﹣4x+3=0,解得:x1=1,x2=3,∵点Q分别时PC,BE的中点,且点Q在直线y=x+1,∴①当x=1时,点Q的横坐标为:,∴点Q的坐标为:(,),②当x=3时,点Q的横坐标为:,∴点Q的坐标为:(,),综上所述,点Q的坐标为:(,),(,).2020年6月6日。

2020年天津市中考数学试题及参考答案(word解析版)

2020年天津市中考数学试题及参考答案(word解析版)

2020年天津市初中毕业生学业水平考试试卷数学(试卷满分120分,考试时间100分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算30+(﹣20)的结果等于()A.10 B.﹣10 C.50 D.﹣502.2sin45°的值等于()A.1 B.C.D.23.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×1054.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.方程组的解是()A.B.C.D.8.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)9.计算+的结果是()A.B.C.1 D.x+110.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x211.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EFC.∠AEF=∠D D.AB⊥DF12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0 B.1 C.2 D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算x+7x﹣5x的结果等于.14.计算(+1)(﹣1)的结果等于.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.17.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(Ⅰ)线段AC的长等于.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(本小题8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(本小题8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为,图①中m的值为;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.22.(本小题10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.23.(本小题10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍的时间/min 2 5 20 23 30离宿舍的距离/km 0.2 0.7(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).25.(本小题10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?答案与解析第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算30+(﹣20)的结果等于()A.10 B.﹣10 C.50 D.﹣50【知识考点】有理数的加法.【思路分析】根据有理数的加法法则计算即可,异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去减小的绝对值.【解答过程】解:30+(﹣20)=+(30﹣20)=10.故选:A.【总结归纳】本题主要考查了有理数的加法,熟记运算法则是解答本题的关键.2.2sin45°的值等于()A.1 B.C.D.2【知识考点】特殊角的三角函数值.【思路分析】根据sin45°=解答即可.【解答过程】解:2sin45°=2×=.故选:B.【总结归纳】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.3.据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:58600000=5.86×107,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【知识考点】轴对称图形.【思路分析】直接利用轴对称图形的性质分析得出答案.【解答过程】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.【总结归纳】此题主要考查了轴对称图形的性质,正确掌握相关定义是解题关键.5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答过程】解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.故选:D.【总结归纳】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【知识考点】估算无理数的大小.【思路分析】用“夹逼法”找到在哪两个可化为整数的二次根式之间即可.【解答过程】解:∵<<,∴4<<5,故选:B.【总结归纳】考查估算无理数大小的知识;用“夹逼法”估算无理数是常用的估算无理数的方法.7.方程组的解是()A.B.C.D.【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解答过程】解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=2,则方程组的解为.故选:A.【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)【知识考点】坐标与图形性质;LE:正方形的性质.【思路分析】利用正方形的性质求出OB,BC,CD即可.【解答过程】解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.【总结归纳】本题考查了点的坐标,正方形的性质等知识,解题的关键是熟练掌握正方形的性质,属于中考常考题型.9.计算+的结果是()A.B.C.1 D.x+1【知识考点】分式的加减法.【思路分析】直接利用分式的加减运算法则计算得出答案.【解答过程】解:原式==.故选:A.【总结归纳】此题主要考查了分式的加减法,正确化简分式是解题关键.10.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2【知识考点】反比例函数图象上点的坐标特征.【思路分析】将点A(x1,﹣5),B(x2,2),C(x3,5)分别代入反比例函数y=,求得x1,x2,x3的值后,再来比较一下它们的大小.【解答过程】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,∴﹣5=,即x1=﹣2,2=,即x2=5;5=,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.【总结归纳】本题考查了反比例函数图象上点的坐标特征.所有反比例函数图象上的点的坐标都满足该函数的解析式.11.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E 恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF【知识考点】旋转的性质.【思路分析】依据旋转可得,△ABC≌△DEC,再根据全等三角形的性质,即可得出结论.【解答过程】解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.【总结归纳】本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.12.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0 B.1 C.2 D.3【知识考点】根的判别式;二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】由题意得到抛物线的开口向下,对称轴﹣=,b=﹣a,判断a,b与0的关系,得到abc<0,即可判断①;根据题意得到抛物线开口向下,顶点在x轴上方,即可判断②;根据抛物线y=ax2+bx+c经过点(2,0)以及b=﹣a,得到4a﹣2a+c=0,即可判断③.【解答过程】解:∵抛物线的对称轴为直线x=,而点(2,0)关于直线x=的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=,∴﹣=,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,∴a<﹣,故③正确,故选:C.【总结归纳】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算x+7x﹣5x的结果等于.【知识考点】合并同类项.【思路分析】根据合并同类项法则求解即可.【解答过程】解:x+7x﹣5x=(1+7﹣5)x=3x.故答案为:3x.【总结归纳】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.14.计算(+1)(﹣1)的结果等于.【知识考点】平方差公式;二次根式的混合运算.【思路分析】利用平方差公式解答.【解答过程】解:原式=()2﹣12=7﹣1=6.故答案是:6.【总结归纳】本题主要考查了二次根式的混合运算,平方差公式,应用平方差公式计算时,应注意:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.15.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答过程】解:∵袋子中装有8个小球,其中红球有3个,∴从袋子中随机取出1个球,则它是红球的概率是.故答案为:.【总结归纳】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.16.将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.【知识考点】一次函数图象与几何变换.【思路分析】根据一次函数图象上下平移时解析式的变化规律求解.【解答过程】解:将直线y=﹣2x向上平移1个单位,得到的直线的解析式为y=﹣2x+1.故答案为y=﹣2x+1.【总结归纳】本题考查了一次函数图象与几何变换:对于一次函数y=kx+b,若函数图象向上平移m(m>0)个单位,则平移的直线解析式为y=kx+b+m.17.如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.【知识考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;L5:平行四边形的性质.【思路分析】根据平行四边形的性质和等边三角形的性质,可以得到BF和BE的长,然后可以证明△DCG和△EHG全等,然后即可得到CG的长.【解答过程】解:∵四边形ABCD是平行四边形,∴AD=BC,CD=AB,DC∥AB,∵AD=3,AB=CF=2,∴CD=2,BC=3,∴BF=BC+CF=5,∵△BEF是等边三角形,G为DE的中点,∴BF=BE=5,DG=EG,延长CG交BE于点H,∵DC∥AB,∴∠CDG=∠HEG,在△DCG和△EHG中,,∴△DCG≌△EHG(ASA),∴DC=EH,CG=HG,∵CD=2,BE=5,∴HE=2,BH=3,∵∠CBH=60°,BC=BH=3,∴△CBH是等边三角形,∴CH=BC=3,∴CG=CH=,故答案为:.【总结归纳】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(Ⅰ)线段AC的长等于.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明).【知识考点】勾股定理;圆周角定理;作图—复杂作图;轴对称﹣最短路线问题.【思路分析】(Ⅰ)利用网格根据勾股定理即可求出线段AC的长;(Ⅱ)取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,即可得点P,Q.【解答过程】解:(Ⅰ)线段AC的长等于=;(Ⅱ)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点B′,连接B′C,与半圆相交于点E,连接BE,与AC相交于点P,连接B′P并延长,与BC相交于点Q,则点P,Q即为所求.【总结归纳】本题考查了作图﹣复杂作图、勾股定理、圆周角定理、轴对称﹣最短路线问题,解决本题的关键是掌握轴对称性质.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(本小题8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(本小题8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为,图①中m的值为;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.【知识考点】扇形统计图;条形统计图;加权平均数;中位数;众数.【思路分析】(Ⅰ)根据13cm长的株数和所占的百分比,可以求得本次抽取的麦苗的株数,再根据扇形统计图中的数据,可以计算出m的值;(Ⅱ)根据条形统计图中的数据,可以计算出平均数,写出众数和中位数.【解答过程】解:(Ⅰ)本次抽取的麦苗有:2÷8%=25(株),m%=1﹣8%﹣12%﹣16%﹣40%=24%,故答案为:25,24;(Ⅱ)平均数是:==15.6,众数是16,中位数是16.【总结归纳】本题考查条形统计图、扇形统计图、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(本小题10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.【知识考点】圆周角定理;切线的性质.【思路分析】(1)由三角形的外角性质得出∠C=37°,由圆周角定理得∠BAD=∠C=37°,∠ADC=∠B=63°,∠ADB=90°,即可得出答案;(2)连接OD,求出∠PCB=27°,由切线的性质得出∠ODE=90°,由圆周角定理得出∠BOD =2∠PCB=54°,即可得出答案.【解答过程】解:(1)∵∠APC是△PBC的一个外角,∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;(2)连接OD,如图②所示:∵CD⊥AB,∴∠CPB=90°,∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,∵DE是⊙O的切线,∴DE⊥OD,∴∠ODE=90°,∵∠BOD=2∠PCB=54°,∴∠E=90°﹣∠BOD=90°﹣54°=36°.【总结归纳】本题考查了切线的性质、圆周角定理、三角形的外角性质、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理是解题的关键.22.(本小题10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.【知识考点】解直角三角形的应用.【思路分析】通过作高,构造直角三角形,利用直角三角形的边角关系,列方程求解即可.【解答过程】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB•sin58°≈0.85x,BD=AB•cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.【总结归纳】本题考查直角三角形的边角关系,掌握直角三角形的边角关系,即锐角三角函数,是正确解答的前提,通过作辅助线构造直角三角形是常用的方法.23.(本小题10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍的时间/min 2 5 20 23 30离宿舍的距离/km 0.2 0.7(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.【知识考点】一次函数的应用.【思路分析】(Ⅰ)根据题意和函数图象,可以将表格补充完整;(Ⅱ)根据函数图象中的数据,可以将各个小题中的空补充完整;(Ⅲ)根据(Ⅱ)中的结果和函数图象中的数据,可以写出当0≤x≤28时,y关于x的函数解析式.【解答过程】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(本小题10分)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ=OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).【知识考点】四边形综合题.【思路分析】(Ⅰ)如图①中,过点P作PH⊥OA于H.解直角三角形求出OH,PH即可.(Ⅱ)①解直角三角形求出DQ,DO′即可.②求出点O′落在AB上时,S=×()2=.当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t﹣2,当t=﹣=时,S有最大值,最大值=.再求出当t=1或3时,S的值即可判断.【解答过程】解:(Ⅰ)如图①中,过点P作PH⊥OA于H.∵∠OAB=90°,∠B=30°,∴∠BOA=90°﹣30°=60°,∴∠OPH=90°﹣60°=30°,∵OP=1,∴OH=OP=,PH=OP•cos30°=,∴P(,).(Ⅱ)①如图②中,由折叠可知,△O′PQ≌△OPQ,∴OP=O′P,OQ=O′Q,∵OP=OQ=t,∴OP=OQ=O′P=O′Q,∴四边形OPO′Q是菱形,∴QO′∥OB,∴∠ADQ=∠B=30°,∵A(2,0),∴OA=2,QA=2﹣t,在Rt△AQD中,DQ=2QA=4﹣2t,∵O′D=O′Q﹣QD=3t﹣4,∴<t<2.②当点O′落在AB上时,重叠部分是△PQO′,此时t=,S=×()2=,当<t≤2时,重叠部分是四边形PQDC,S=t2﹣(3t﹣4)2=﹣t2+3t﹣2,当t=﹣=时,S有最大值,最大值=,当t=1时,S=,当t=3时,S=××=,综上所述,≤S≤.【总结归纳】本题属于四边形综合题,考查了菱形的判定和性质,翻折变换,多边形的面积,解直角三角形,二次函数的性质等知识,解题的关键是理解题意,学会利用特殊位置解决问题,属于中考压轴题.25.(本小题10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?【知识考点】二次函数综合题.【思路分析】(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C (0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;②得出CN=EF=.求出MC=﹣m,当MC≥,即m≤﹣1时,当MC<,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.【解答过程】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC ﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是.【总结归纳】本题是二次函数综合题,考查了二次函数的性质,待定系数法,二次函数图象上点的坐标特征,勾股定理等知识,熟练掌握二次函数的性质是解题的关键.。

2020年天津市中考数学试卷及答案解析

2020年天津市中考数学试卷及答案解析

2020年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算30+(﹣20)的结果等于()A.10B.﹣10C.50D.﹣502.(3分)2sin45°的值等于()A.1B.√2C.√3D.23.(3分)据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105 4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C .D .6.(3分)估计√22的值在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 7.(3分)方程组{2x +y =4,x −y =−1的解是( ) A .{x =1y =2 B .{x =−3y =−2 C .{x =2y =0 D .{x =3y =−18.(3分)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C 的坐标是( )A .(6,3)B .(3,6)C .(0,6)D .(6,6) 9.(3分)计算x (x+1)2+1(x+1)2的结果是( ) A .1x+1 B .1(x+1) C .1 D .x +110.(3分)若点A (x 1,﹣5),B (x 2,2),C (x 3,5)都在反比例函数y =10x 的图象上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 3<x 1<x 211.(3分)如图,在△ABC 中,∠ACB =90°,将△ABC 绕点C 顺时针旋转得到△DEC ,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF 12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<−12.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x+7x﹣5x的结果等于.14.(3分)计算(√7+1)(√7−1)的结果等于.15.(3分)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.17.(3分)如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G 为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=5 3.(Ⅰ)线段AC的长等于.(Ⅱ)以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP +PQ 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组{3x ≤2x +1,①2x +5≥−1.②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 ;(Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm )进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为 ,图①中m 的值为 ;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍的时25202330间/min离宿舍的距离/km0.2 0.7(Ⅱ)填空:①食堂到图书馆的距离为 km ;②小亮从食堂到图书馆的速度为 km /min ;③小亮从图书馆返回宿舍的速度为 km /min ;④当小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为 min .(Ⅲ)当0≤x ≤28时,请直接写出y 关于x 的函数解析式.24.(10分)将一个直角三角形纸片OAB 放置在平面直角坐标系中,点O (0,0),点A (2,0),点B 在第一象限,∠OAB =90°,∠B =30°,点P 在边OB 上(点P 不与点O ,B 重合).(Ⅰ)如图①,当OP =1时,求点P 的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ =OP ,点O 的对应点为O ',设OP =t .①如图②,若折叠后△O 'PQ 与△OAB 重叠部分为四边形,O 'P ,O 'Q 分别与边AB 相交于点C ,D ,试用含有t 的式子表示O 'D 的长,并直接写出t 的取值范围;②若折叠后△O 'PQ 与△OAB 重叠部分的面积为S ,当1≤t ≤3时,求S 的取值范围(直接写出结果即可).25.(10分)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(Ⅰ)当a =1,m =﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线1平行于x轴,E是直线1上的动点,F是y轴上的动点,EF=2√2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是√2 2参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算30+(﹣20)的结果等于()A.10B.﹣10C.50D.﹣50【解答】解:30+(﹣20)=+(30﹣20)=10.故选:A.2.(3分)2sin45°的值等于()A.1B.√2C.√3D.2【解答】解:2sin45°=2×√22=√2.故选:B.3.(3分)据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105【解答】解:58600000=5.86×107,故选:B.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .【解答】解:从正面看有两列,左列底层一个小正方形,右列三个小正方形.故选:D .6.(3分)估计√22的值在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间【解答】解:∵√16<√22<√25,∴4<√22<5,故选:B .7.(3分)方程组{2x +y =4,x −y =−1的解是( ) A .{x =1y =2 B .{x =−3y =−2 C .{x =2y =0 D .{x =3y =−1【解答】解:{2x +y =4①x −y =−1②, ①+②得:3x =3,解得:x =1,把x =1代入①得:y =2,则方程组的解为{x =1y =2. 故选:A .8.(3分)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)【解答】解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,6),∴OD=6,∴OB=BC=CD=6,∴C(6,6).故选:D.9.(3分)计算x(x+1)2+1(x+1)2的结果是()A.1x+1B.1(x+1)2C.1D.x+1【解答】解:原式=x+1(x+1)2=1x+1.故选:A.10.(3分)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2【解答】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=10x的图象上,∴﹣5=10x,即x1=﹣2,2=10x,即x2=5;5=10x,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.11.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF【解答】解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=12.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<−12.其中,正确结论的个数是()A.0B.1C.2D.3【解答】解:∵抛物线的对称轴为直线x=1 2,而点(2,0)关于直线x=12的对称点的坐标为(﹣1,0),∵c>1,∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1 2,∴−b2a=12,∴b=﹣a>0,∴abc<0,故①错误;∵抛物线开口向下,与x轴有两个交点,∴顶点在x轴的上方,∵a<0,∴抛物线与直线y=a有两个交点,∴关于x的方程ax2+bx+c=a有两个不等的实数根;故②正确;∵抛物线y=ax2+bx+c经过点(2,0),∴4a+2b+c=0,∵b=﹣a,∴4a﹣2a+c=0,即2a+c=0,∴﹣2a=c,∵c>1,∴﹣2a>1,∴a<−12,故③正确,故选:C.二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)计算x +7x ﹣5x 的结果等于 3x . 【解答】解:x +7x ﹣5x =(1+7﹣5)x =3x . 故答案为:3x .14.(3分)计算(√7+1)(√7−1)的结果等于 6 . 【解答】解:原式=(√7)2﹣12=7﹣1=6. 故答案是:6.15.(3分)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是38.【解答】解:∵袋子中装有8个小球,其中红球有3个, ∴从袋子中随机取出1个球,则它是红球的概率是38.故答案为:38.16.(3分)将直线y =﹣2x 向上平移1个单位长度,平移后直线的解析式为 y =﹣2x +1 . 【解答】解:将直线y =﹣2x 向上平移1个单位,得到的直线的解析式为y =﹣2x +1. 故答案为y =﹣2x +1.17.(3分)如图,▱ABCD 的顶点C 在等边△BEF 的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG .若AD =3,AB =CF =2,则CG 的长为32.【解答】解:∵四边形ABCD 是平行四边形, ∴AD =BC ,CD =AB ,DC ∥AB , ∵AD =3,AB =CF =2, ∴CD =2,BC =3, ∴BF =BC +CF =5,∵△BEF 是等边三角形,G 为DE 的中点, ∴BF =BE =5,DG =EG ,延长CG 交BE 于点H , ∵DC ∥AB , ∴∠CDG =∠HEG , 在△DCG 和△EHG 中, {∠CDG =∠HEG DG =EG ∠DGC =∠EGH, ∴△DCG ≌△EHG (ASA ), ∴DC =EH ,CG =HG , ∵CD =2,BE =5, ∴HE =2,BH =3,∵∠CBH =60°,BC =BH =3, ∴△CBH 是等边三角形, ∴CH =BC =3, ∴CG =12CH =32, 故答案为:32.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上,且AB =53. (Ⅰ)线段AC 的长等于 √13 .(Ⅱ)以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP +PQ 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明) 取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点B ′,连接B ′C ,与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B ′P 并延长,与BC 相交于点Q ,则点P ,Q 即为所求 .【解答】解:(Ⅰ)线段AC 的长等于√32+22=√13;(Ⅱ)如图,取格点M ,N ,连接MN , 连接BD 并延长,与MN 相交于点B ′, 连接B ′C ,与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B ′P 并延长,与BC 相交于点Q , 则点P ,Q 即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组{3x ≤2x +1,①2x +5≥−1.②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 x ≤1 ; (Ⅱ)解不等式②,得 x ≥﹣3 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式组的解集为 ﹣3≤x ≤1 .【解答】解:(Ⅰ)解不等式①,得x ≤1; (Ⅱ)解不等式②,得x ≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为25,图①中m的值为24;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.【解答】解:(Ⅰ)本次抽取的麦苗有:2÷8%=25(株),m%=1﹣8%﹣12%﹣16%﹣40%=24%,故答案为:25,24;(Ⅱ)平均数是:x=13×2+14×3+15×4+16×10+17×625=15.6,众数是16,中位数是16.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.【解答】解:(1)∵∠APC是△PBC的一个外角,∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠B=63°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;(2)连接OD,如图②所示:∵CD⊥AB,∴∠CPB=90°,∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,∵DE是⊙O的切线,∴DE⊥OD,∴∠ODE=90°,∵∠BOD=2∠PCB=54°,∴∠E=90°﹣∠BOD=90°﹣54°=36°.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.【解答】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB•sin58°≈0.85x,BD=AB•cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍的时25202330间/min0.20.50.70.71离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为0.3km;②小亮从食堂到图书馆的速度为0.06km/min;③小亮从图书馆返回宿舍的速度为0.1km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为6或62min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.【解答】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km /min ), 故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km /min ), 故答案为:0.1; ④当0≤x ≤7时,小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为0.6÷0.1=6(min ), 当58≤x ≤68时,小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min ), 故答案为:6或62; (Ⅲ)由图象可得, 当0≤x ≤7时,y =0.1x ; 当7<x ≤23时,y =0.7; 当23<x ≤28时,设y =kx +b , {23k +b =0.728k +b =1,得{k =0.06b =−0.68, 即当23<x ≤28时,y =0.06x ﹣0.68;由上可得,当0≤x ≤28时,y 关于x 的函数解析式是y ={0.1x(0≤x ≤7)0.7(7<x <23)0.06x −0.68(23<x ≤28). 24.(10分)将一个直角三角形纸片OAB 放置在平面直角坐标系中,点O (0,0),点A (2,0),点B 在第一象限,∠OAB =90°,∠B =30°,点P 在边OB 上(点P 不与点O ,B 重合).(Ⅰ)如图①,当OP =1时,求点P 的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ =OP ,点O 的对应点为O ',设OP =t .①如图②,若折叠后△O 'PQ 与△OAB 重叠部分为四边形,O 'P ,O 'Q 分别与边AB 相交于点C ,D ,试用含有t 的式子表示O 'D 的长,并直接写出t 的取值范围;②若折叠后△O 'PQ 与△OAB 重叠部分的面积为S ,当1≤t ≤3时,求S 的取值范围(直接写出结果即可).【解答】解:(Ⅰ)如图①中,过点P 作PH ⊥OA 于H .∵∠OAB =90°,∠B =30°,∴∠BOA =90°﹣30°=60°,∴∠OPH =90°﹣60°=30°,∵OP =1,∴OH =12OP =12,PH =OP •cos30°=√32,∴P (12,√32).(Ⅱ)①如图②中,由折叠可知,△O ′PQ ≌△OPQ ,∴OP =O ′P ,OQ =O ′Q ,∵OP =OQ =t ,∴OP =OQ =O ′P =O ′Q ,∴四边形OPO ′Q 是菱形,∴QO ′∥OB ,∴∠ADQ =∠B =30°,∵A (2,0),∴OA =2,QA =2﹣t ,在Rt △AQD 中,DQ =2QA =4﹣2t ,∵O ′D =O ′Q ﹣QD =3t ﹣4,∴43<t <2.②①当点O ′落在AB 上时,重叠部分是△PQO ′,此时t =23,S =√34×(23)2=√39, 当23<t ≤2时,重叠部分是四边形PQDC ,S =√34t 2−√38(3t ﹣4)2=−7√38t 2+3√3t ﹣2√3, 当x =√32×(−7√38)=127时,S 有最大值,最大值=4√34, 当t =1时,S =√34,当t =3时,S =12×12×√32=√38, 综上所述,√38≤S ≤4√37. 25.(10分)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(Ⅰ)当a =1,m =﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线1平行于x 轴,E 是直线1上的动点,F 是y 轴上的动点,EF =2√2.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是√22【解答】解:(Ⅰ)当a =1,m =﹣3时,抛物线的解析式为y =x 2+bx ﹣3.∵抛物线经过点A (1,0),∴0=1+b ﹣3,解得b =2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE=√EH2+HA2=−√2m,∵AE=EF=2√2,∴−√2m=2√2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=√EF2−EC2=√7.∴点F的坐标为(0,﹣2−√7)或(0,﹣2+√7).②由N是EF的中点,得CN=12EF=√2.根据题意,点N在以点C为圆心、√2为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC=√MO2+CO2=−√2m.当MC≥√2,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=−√2m−√2=√22,解得m=−3 2;当MC<√2,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=√2−(−√2m)=√2 2,解得m=−1 2.∴当m的值为−32或−12时,MN的最小值是√22.。

天津市和平区2019-2020学年中考第五次质量检测数学试题含解析

天津市和平区2019-2020学年中考第五次质量检测数学试题含解析

天津市和平区2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A.116B.18C.316D.142.下列各式计算正确的是()A.a2+2a3=3a5B.a•a2=a3C.a6÷a2=a3D.(a2)3=a53.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为()A.512B.1213C.513D.13124.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D.5.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为( )A.13×710kg B.0.13×810kg C.1.3×710kg D.1.3×810kg6.如果关于x的方程220x x c++=没有实数根,那么c在2、1、0、3-中取值是()A.2;B.1;C.0;D.3-.7.如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x8.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=32b B.a=2b C.a=52b D.a=3b9.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)10.一个圆的内接正六边形的边长为2,则该圆的内接正方形的边长为()A.2B.22C.23D.411.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D 为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()A.r<5 B.r>5 C.r<10 D.5<r<1012.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种二、填空题:(本大题共6个小题,每小题4分,共24分.)13.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.14.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.15.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.16.分解因式:2x2﹣8xy+8y2= .17.太阳半径约为696000千米,数字696000用科学记数法表示为千米.18.因式分解:a2﹣a=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.20.(6分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)21.(6分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?22.(8分)如图,已知ABC V ,请用尺规过点C 作一条直线,使其将ABC V 分成面积比为1:3两部分.(保留作图痕迹,不写作法)23.(8分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题: (1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)24.(10分)某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A 种型号B 种型号第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.(10分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?26.(12分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)27.(12分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.解:共16种情况,和为6的情况数有3种,所以概率为.故选C.2.B【解析】【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解【详解】A.a2与2a3不是同类项,故A不正确;B.a•a2=a3,正确;C.原式=a4,故C不正确;D.原式=a6,故D不正确;故选:B.【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.3.A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,2213050=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.4.A【解析】【分析】根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A 选项几何体的左视图为;B 选项几何体的左视图为;C 选项几何体的左视图为;D 选项几何体的左视图为;故选:A . 【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念. 5.D 【解析】试题分析:科学计数法是指:a×10n ,且110a ≤<,n 为原数的整数位数减一. 6.A 【解析】分析:由方程根的情况,根据根的判别式可求得c 的取值范围,则可求得答案.详解:∵关于x 的方程x 1+1x+c=0没有实数根,∴△<0,即11﹣4c <0,解得:c >1,∴c 在1、1、0、﹣3中取值是1.故选A .点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键. 7.C 【解析】 【分析】由双曲线中k 的几何意义可知12AOC S k =V , 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k 的正负,至此本题即可解答. 【详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=8x;故选C.【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;8.B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.9.D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意; 故选D . 【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式. 10.B 【解析】 【分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解. 【详解】解:∵圆内接正六边形的边长是1, ∴圆的半径为1. 那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是. 故选B . 【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答. 11.D 【解析】延长CD 交⊙D 于点E ,∵∠ACB=90°,AC=12,BC=9,∴,∵D 是AB 中点,∴CD=115AB=22, ∵G 是△ABC 的重心,∴CG=2CD 3=5,DG=2.5,∴CE=CD+DE=CD+DF=10, ∵⊙C 与⊙D 相交,⊙C 的半径为r , ∴ 510r <<, 故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.12.B【解析】【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选B.【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC【解析】【分析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【详解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).。

天津市和平区2019-2020学年中考数学综合测试试题

天津市和平区2019-2020学年中考数学综合测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥2.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =55,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处3.点P (1,﹣2)关于y 轴对称的点的坐标是( ) A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)4.下列计算正确的是( ) A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =5.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是( )A .63B .123C .183D .2436.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=07.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮8.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>;230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④9.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .CDACB .BCABC .BDBCD .ADAC10.在下列二次函数中,其图象的对称轴为2x =-的是 A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-二、填空题(本题包括8个小题) 11.若点A(1,m)在反比例函数y =3x的图象上,则m 的值为________. 12.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______13.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.14.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)15.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.16.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.17.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.184= .三、解答题(本题包括8个小题)19.(6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.20.(6分)如图,已知AB 是O 的直径,点C 、D 在O 上,60D ∠=且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长; ()2若OE 的延长线交O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .21.(6分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下: 命中环数6 7 8 9 10 甲命中相应环数的次数 0 1 3 1 0 乙命中相应环数的次数221(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环; (2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”) 22.(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.23.(8分)如图,点A 在∠MON 的边ON 上,AB ⊥OM 于B ,AE=OB ,DE ⊥ON 于E ,AD=AO ,DC ⊥OM 于C .求证:四边形ABCD 是矩形;若DE=3,OE=9,求AB 、AD 的长.24.(10分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度. 25.(10分)先化简分式: (a -3+4+3a a )÷-2+3a a ∙+3+2a a ,再从-35-3、2、-2中选一个你喜欢的数作为a 的值代入求值.26.(12分)在直角坐标系中,过原点O 及点A (8,0),C (0,6)作矩形OABC 、连结OB ,点D 为OB的中点,点E 是线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒.如图1,当t=3时,求DF 的长.如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.连结AD ,当AD 将△DEF 分成的两部分的面积之比为1:2时,求相应的t 的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体. 2.D 【解析】 如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴5∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+=故答案为D. 3.C 【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2), 故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数; 关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数. 4.C 【解析】解:A 、不是同类二次根式,不能合并,故A 错误; B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C . 5.C 【解析】连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处, ∴MN ⊥CD ,且CE=DE .∴CD=2CE .∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB .∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭. ∵在△CMN 中,∠C=90°,MC=6,NC=3∴CMN 11S ?CM CN 62?3?6?322∆=⋅=⨯⨯=∴CAB CMN S 4S 46?3?24?3∆∆==⨯=.∴CAB CMN MABN S S S 24?36?318?3∆∆=-==四边形C . 6.C 【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac- ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42bx a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中. 7.D 【解析】 【分析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答. 【详解】解:A 、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时, ∴小亮骑自行车的平均速度为:24÷2=12(km/h ),故正确;B 、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时), ∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C 、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时, ∴小亮走的路程为:1×12=12km , ∴妈妈在距家12km 出追上小亮,故正确;D 、由图象可知,当t=9时,妈妈追上小亮,故错误; 故选D . 【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键. 8.D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->. 【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确. ③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确. 故答案选D. 【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

2020年天津市中考数学试题及答案解析

2020年天津市中考数学试题及答案解析

2020年天津市中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020年)计算()3020+-的结果等于( )A .10B .10-C .50D .50-2.(2020年)2sin45°的值等于( )A .1BCD .23.(2020年)据2020年6月24日《天津市日报》报道,6月23日下午,第四届世界智能大会在天津市开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为( )A .8058610⨯.B .75.8610⨯C .658610⨯.D .558610⨯4.(2020年)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .5.(2020年)右图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(2020 )A .3和4之间B .4和5之间C .5和6之间D .6和7之间7.(2020年)方程组241x y x y +=⎧⎨-=-⎩的解是( ) A .12x y =⎧⎨=⎩ B .32x y =-⎧⎨=-⎩ C .20x y =⎧⎨=⎩ D .31x y =⎧⎨=-⎩8.(2020年)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,69.(2020年)计算221(1)(1)x x x +++的结果是( ) A .11x + B .21(1)x + C .1 D .1x +10.(2020年)若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x =的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<11.(2020年)如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,使点B 的对应点E 恰好落在边AC 上,点A 的对应点为D ,延长DE 交AB 于点F ,则下列结论一定正确的是( )A .AC DE =B .BC EF = C .AEFD ∠=∠ D .AB DF ⊥12.(2020年)已知抛物线2y ax bx c =++(,,a b c 是常数,0,1a c ≠>)经过点()2,0,其对称轴是直线12x =.有下列结论: ①0abc >; ②关于x 的方程2ax bx c a ++=有两个不等的实数根; ③12a <-. 其中,正确结论的个数是( )A .0B .1C .2D .3二、填空题13.(2020年)计算75x x x +-的结果等于_______.14.(2020年)计算1)+的结果等于_______.15.(2020年)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是_______.16.(2020年)将直线2y x =-向上平移1个单位长度,平移后直线的解析式为________.17.(2020年)如图,ABCD 的顶点C 在等边BEF 的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG .若3AD =,2AB CF ==,则CG 的长为_______.三、解答题18.(2020年)如图,在每个小正方形的边长为1的网格中,ABC 的顶点,A C 均落在格点上,点B 在网格线上,且53AB =.(Ⅰ)线段AC 的长等于___________;(Ⅱ)以BC 为直径的半圆与边AC 相交于点D ,若,P Q 分别为边,AC BC 上的动点,当BP PQ +取得最小值时,请用无刻度...的直尺,在如图所示的网格中,画出点,P Q ,并简要说明点,P Q 的位置是如何找到的(不要求证明).19.(2020年)解不等式组321,25 1.x x x +⎧⎨+-⎩①② 请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得_______________;(Ⅱ)解不等式②,得_____________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为_______________.20.(2020年)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm )进行了测量.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为__________,图①中m 的值为__________; (Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.21.(2020年)在O 中,弦CD 与直径AB 相交于点P ,63ABC ∠=︒.(Ⅰ)如图①,若100APC ∠=︒,求BAD ∠和CDB ∠的大小;(Ⅱ)如图②,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E ∠的大小.22.(2020年)如图,,A B 两点被池塘隔开,在AB 外选一点C ,连接,AC BC .测得221m BC =,45ACB ∠=︒,58ABC ∠=︒.根据测得的数据,求AB 的长(结果取整数).参考数据:sin58085︒≈.,cos58053︒≈.,tan58160︒≈..23.(2020年)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km ,图书馆离宿舍1km .周末,小亮从宿舍出发,匀速走了7min 到食堂;在食堂停留16min 吃早餐后,匀速走了5min 到图书馆;在图书馆停留30min 借书后,匀速走了10min 返回宿舍,给出的图象反映了这个过程中小亮离宿舍的距离km y 与离开宿舍的时间min x 之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:(Ⅱ)填空: ①食堂到图书馆的距离为_______km .②小亮从食堂到图书馆的速度为_______km/min .③小亮从图书馆返回宿舍的速度为_______km/min .④当小亮离宿舍的距离为0.6km 时,他离开宿舍的时间为_______min . (Ⅲ)当028x ≤≤时,请直接写出y 关于x 的函数解析式.24.(2020年)将一个直角三角形纸片OAB 放置在平面直角坐标系中,点()0,0O ,点()2,0A ,点B 在第一象限,90OAB ∠=︒,30B ∠=︒,点P 在边OB 上(点P 不与点,O B 重合).(1)如图①,当1OP =时,求点P 的坐标;(2)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ OP =,点O 的对应点为O ',设OP t =.①如图②,若折叠后O PQ '与OAB 重叠部分为四边形,,O P O Q ''分别与边AB 相交于点,C D ,试用含有t 的式子表示O D '的长,并直接写出t 的取值范围; ②若折叠后O PQ '与OAB 重叠部分的面积为S ,当13t ≤≤时,求S 的取值范围(直接写出结果即可).25.(2020年)已知点1,0A 是抛物线2y ax bx m =++(,,a b m 为常数,0,0a m ≠<)与x 轴的一个交点.(1)当1,3a m ==-时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为(),0M m ,与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF = ①当点E 落在抛物线上(不与点C 重合),且AE EF =时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是2参考答案1.A【分析】根据有理数的加法运算法则计算即可.【详解】解:()3030002102=-=+-故选:A .【点睛】本题考查有理数的加法运算法则,熟记有理数的加法运算法则是解题的关键.2.B【详解】解:2sin45°=2×2= 故选B3.B【分析】把小数点向左移动7位,然后根据科学记数法的书写格式写出即可.【详解】解:758600000=5.8610⨯,故选:B .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.4.C【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形;B 、不是轴对称图形;C 、是轴对称图形;D 、不是轴对称图形;故选:C.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.D【分析】从正面看所得到的图形是主视图,画出从正面看所得到的图形即可.【详解】解:从正面看第一层有两个小正方形,第二层在右边有一个小正方形,第三层在右边有一个小正方形,即:故选:D.【点睛】本题主要考查了三视图,关键是把握好三视图所看的方向.6.B【分析】因为22<<4到5之间,由此可得出答案.4225【详解】解:∵22<<,4225∴45<<.故选:B【点睛】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7.A【分析】利用加减消元法解出,x y 的值即可.【详解】解:241x y x y +=⎧⎨-=-⎩①② ①+②得:33x =,解得:1x =,把1x =代入②中得:11y -=-,解得:2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故选:A .【点睛】本题考查了二元一次方程组的解法——加减消元法和代入消元法,根据具体的方程组选取合适的方法是解决本类题目的关键.8.D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6∴C 点的坐标为:()6,6,故选:D .【点睛】本题主要考查了点的坐标和正方形的性质,正确求出OB ,BC 的长度是解决本题的关键.9.A【分析】本题可先通分,继而进行因式约分求解本题.【详解】221(1)(1)x x x +++21(1)x x +=+, 因为10x +≠,故211=(1)1x x x +++. 故选:A .【点睛】 本题考查分式的加减运算,主要运算技巧包括通分,约分,同时常用平方差、完全平方公式作为解题工具.10.C【分析】因为A ,B ,C 三点均在反比例函数上,故可将点代入函数,求解123,,x x x ,然后直接比较大小即可.【详解】将A ,B ,C 三点分别代入10y x=,可求得1232,5,2x x x =-==,比较其大小可得:132x x x <<.故选:C .【点睛】本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.11.D【分析】本题可通过旋转的性质得出△ABC 与△DEC 全等,故可判断A 选项;可利用相似的性质结合反证法判断B ,C 选项;最后根据角的互换,直角互余判断D 选项.【详解】由已知得:△ABC ≅△DEC ,则AC=DC ,∠A=∠D ,∠B=∠CED ,故A 选项错误; ∵∠A=∠A ,∠B=∠CED=∠AEF ,故△AEF △ABC ,则EF AE BC AB,假设BC=EF ,则有AE=AB ,由图显然可知AE ≠AB ,故假设BC=EF 不成立,故B 选项错误;假设∠AEF=∠D ,则∠CED=∠AEF=∠D ,故△CED 为等腰直角三角形,即△ABC 为等腰直角三角形,因为题干信息△ABC 未说明其三角形性质,故假设∠AEF=∠D 不一定成立,故C 选项错误;∵∠ACB=90°,∴∠A+∠B=90°.又∵∠A=∠D ,∴∠B+∠D=90°.故AB ⊥DF ,D 选项正确.故选:D .【点睛】本题考查旋转的性质以及全等三角形的性质,证明过程常用角的互换、直角互余作为解题工具,另外证明题当中反证法也极为常见,需要熟练利用.12.C【分析】根据对称轴和抛物线与x 轴的一个交点,得到另一个交点,然后根据图象确定答案即可判断①根据根的判别式240b ac ->,即可判断②;根据1c >以及c=-2a ,即可判断③.【详解】∵抛物线2y ax bx c =++经过点()2,0,对称轴是直线12x =, ∴抛物线经过点(1,0)-,b=-a当x= -1时,0=a-b+c ,∴c=-2a;当x=2时,0=4a+2b+c ,∴a+b=0,∴ab<0,∵c >1,∴abc <0,由此①是错误的,由已知,抛物线与x 轴,有两个交点,∴240b ac ->∵②中方程()22224=4440b ac b a c a b ac a =---=-+>,∴关于x 的方程2ax bx c a ++=有两个不等的实数根,②正确;∵1c >,c=-2a>1, ∴12a <-,③正确 故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.13.3x【分析】根据合并同类项法则化简即可.【详解】解:原式=(1+7-5)x =3x故答案为:3x【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变. 14.6【分析】根据平方差公式计算即可.【详解】解:原式=221- =7-1=6【点睛】本题考查了二次根式的混合运算,解题的关键是熟练掌握平方差公式.15.38.【分析】用红球的个数除以总球的个数即可得出取出红球的概率.【详解】解:∵不透明袋子中装有8个球,其中有3个红球、5个黑球,∴从袋子中随机取出1个球,则它是红球的概率为38, 故答案为:38.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()A m P n =. 16.21y x =-+【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:∵直线的平移规律是“上加下减”, ∴将直线2y x =-向上平移1个单位长度所得到的的直线的解析式为:21y x =-+;故答案为:21y x =-+.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键.17.32【分析】延长DC 交EF 于点M (图见详解),根据平行四边形与等边三角形的性质,可证△CFM 是等边三角形,BF=BE=EF=BC+CF=5,可求出CF=CM=MF=2,可得C 、G 是DM和DE 的中点,根据中位线的性质,可得出CG=12EM ,代入数值即可得出答案.解:如下图所示,延长DC 交EF 于点M ,3AD =,2AB CF ==,平行四边形ABCD 的顶点C 在等边BEF 的边BF 上,//DM AE ∴,CMF ∴是等边三角形,2AB CF CM MF =∴===.在平行四边形ABCD 中,2AB CD ==,3AD BC ==, 又BEF 是等边三角形,325BF BE EF BC CF ===+=+=∴,523EM EF MF =∴=--=.G 为DE 的中点,2CD CM ==,C ∴是DM 的中点,且CG 是DEM △的中位线,1322CG EM =∴=. 故答案为:32.【点睛】本题考查了平行四边形的性质、等边三角形的性质、中位线等知识点,延长DC 交EF 于点M ,利用平行四边形、等边三角形性质求出相应的线段长,证出CG 是DEM △的中位线是解题的关键.18.(1(2)见解析【分析】(1)将AC 放在一个直角三角形,运用勾股定理求解;(2)取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点B ';连接B C ',与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B P '并延长,与BC 相交于点Q ,则点P ,Q 即为所求.解:(Ⅰ)如图,在Rt △AEC 中,CE=3,AE=2,则由勾股定理,得AC=(Ⅱ)如图,取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点B ';连接B C ',与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B P '并延长,与BC 相交于点Q ,则点P ,Q 即为所求.【点睛】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.19.(Ⅰ)1x ≤;(Ⅱ)3x ≥-;(Ⅲ)详见解析;(Ⅳ)31x -≤≤.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解: (Ⅰ)解不等式①,得1x ≤;(Ⅱ)解不等式②,得3x ≥-;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为31x -≤≤.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(Ⅰ)25,24;(II )平均数是15.6,众数为16,中位数为16.【分析】(Ⅰ)由图②中条形统计图即可求出麦苗的株数;用17cm 的麦苗株数6除以总株数24即可得到m 的值;(Ⅱ)根据平均数、众数、中位数的概念逐一求解即可.【详解】解:(Ⅰ)由图②可知:本次抽取的麦苗株数为:2+3+4+10+6=25(株),其中17cm 的麦苗株数为6株,故其所占的比为6÷25=0.24=24%,即m=24. 故答案为:25,24.(Ⅱ)观察条形统计图, 这组麦苗得平均数为:132143154161017615.6234106⨯+⨯+⨯+⨯+⨯==++++x , 在这组数据中,16出现了10次,出现的次数最多,∴这组数据的众数为16.将这组数据按从小到大的顺序排列,其中处于中间位置的数是16, ∴这组数据的中位数为16.故答案为:麦苗高的平均数是15.6,众数是16,中位数是16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(I )37BAD ∠=︒,27∠=︒CDB ;(II )36∠=E .【分析】(Ⅰ)先由△CPB 中外角定理求出∠C 的大小,再根据同弧所对的圆周角相等即可求出∠BAD 的值;且∠ADC=∠ABC ,再由直径AB 所对的圆周角等于90°求出∠ADB=90°,最后∠ADB-∠ADC 即可得到∠CDB 的值;(Ⅱ)连接OD ,由CD ⊥AB 先求出∠DCB ,再由圆周角定理求出∠BOD ,最后由切线的性质可知∠ODE=90°,进而求出∠E 的度数.【详解】解:(Ⅰ)APC ∠是PBC 的一个外角,63ABC ∠=︒,100APC ∠=︒, 37C APC PBC ∴∠=∠-∠=︒.在O 中,BAD C ∠=∠,37BAD ∴∠=︒. AB 为O 的直径,90ADB ∴∠=︒.在O 中,63ADC ABC ∠=∠=︒,又CDB ADB ADC ∠=∠-∠,27CDB ∴∠=︒.故答案为:37BAD ∠=︒,27∠=︒CDB .(Ⅱ)如下图所示,连接OD ,CD AB ⊥,90CPB ∴∠=︒.9027PCB PBC =-∴∠=∠︒︒.在O 中,由同弧所对的圆周角等于圆心角的一半可知:2BOD BCD ∠=∠,∴227=54∠=⨯BOD , DE 是O 的切线,OD DE ∴⊥.即90ODE ∠=︒,90905436∴∠=︒-∠=-=E BOD ,36E ∴∠=︒.故答案为:36E ∠=︒.【点睛】本题考查圆周角定理及其推论、切线的性质、三角形的外角定理等知识点,熟练掌握圆周角定理及其推论是解决本题的关键.22.AB 的长约为160m .【分析】过点A 作AH ⊥BC 于点H ,根据锐角三角函数的定义即可求出答案.【详解】解:如图,过点A 作AH CB ⊥,垂足为H .根据题意,45ACB ∠=︒,58ABC ∠=︒,221BC =.在Rt CAH 中,tan AH ACH CH ∠=, tan 45AH CH AH ==︒∴. 在Rt BAH △中,tan AH ABH BH ∠=,sin AH ABH AB ∠=, tan 58AH BH ∴=︒,sin 58AH AB =︒. 又CB CH BH =+, 221tan 58AH AH ∴=+︒.可得221tan 581tan 58AH ⨯︒=+︒. ()()221tan58221 1.601601tan58sin581 1.600.85AB ⨯︒⨯∴=≈=+︒⋅︒+⨯. 答:AB 的长约为160m .【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.23.(Ⅰ)0.5,0.7,1;(Ⅱ)①0.3;②0.06;③0.1;④6或62;(Ⅲ)当07x ≤≤时,0.1y x =;当723x <≤时,0.7y =;当2328x <≤时,0.060.68y x =-.【分析】(Ⅰ)根据函数图象分析计算即可;(Ⅱ)①结合题意,从宿舍出发,根据图象分析即可;②结合图像确定路程与时间,然后根据速度等于路程除以时间进行计算即可; ③据速度等于路程除以时间进行计算即可;④需要分两种情况进行分析,可能是从学校去食堂的过程,也有可能是从学校回宿舍;(Ⅲ)分段根据函数图象,结合“路程=速度⨯时间”写出函数解析式.【详解】解:(Ⅰ)从宿舍到食堂的速度为0.2÷2=0.1,0.1⨯5=0.5;离开宿舍的时间为23min 时,小亮在食堂,故离宿舍的距离为0.7km ; 离开宿舍的时间为30min 时,小亮在图书馆,故离宿舍的距离为1km 故答案依次为:0.5,0.7,1,(Ⅱ)①1-0.7=0.3,∴食堂到图书馆的距离为0.3km ;故答案为:0.3;②(1-0.7)÷(28-23)=0.06km/min,∴小亮从食堂到图书馆的速度为0.06km/min故答案为:0.06;③1÷(68-58)=0.1km/min,∴小亮从图书馆返回宿舍的速度为0.1km/min ;故答案为:0.1;④当是小亮从宿舍去食堂的过程中离宿舍的距离为06km ., 则此时的时间为0.6÷0.1=6min.当是小亮从图书馆回宿舍,离宿舍的距离为0.6km,则从学校出发回宿舍已经走了1-0.6=0.4(km),0.4 ÷0.1=4(min)58+4=62(min)故答案为:6或62.(Ⅲ)当07x ≤≤时,0.1y x =;当723x <≤时,0.7y =当2328x <≤时,设y kx b =+,将(23,0.7)(28,1)代入解析式23k b 0.728k b 1,解得k 0.06b 0.68∴0.060.68y x =-.【点睛】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.24.(1)点P 的坐标为12⎛ ⎝⎭;(2)①34O D t '=-,t 的取值范围是423t <<;S ≤≤. 【分析】(1)过点P 作PH x ⊥轴,则90OHP ∠=︒,因为90OAB ∠=︒,30B ∠=︒,可得60BOA ∠=︒,进而得30OPH ∠=︒,由30°所对的直角边等于斜边的一半可得1122OH OP ==,进而用勾股定理可得2HP ==,点P 的坐标即求出;(2)①由折叠知,O PQ OPQ '≌,所以O P OP '=,O Q OQ '=;再根据OQ OP =,即可根据菱形的定义“四条边相等的四边形是菱形”可证四边形OQO P '为菱形,所以//QO OB ',可得30ADQ B ∠=∠=︒;根据点A 的坐标可知2OA =,加之OP t =,从而有2QA OA OQ t =-=-;而在Rt QAD 中,242QD QA t ==-,又因为O D O Q QD ''=-,所以得34O D t '=-,由34O D t '=-和2QA t =-的取值范围可得t 的范围是423t <<; ②由①知,'POQ 为等边三角形,由(1)四边形OQO P '为菱形,所以'AB PQ ⊥,三角形DCQ 为直角三角形,∠Q=60°,从而11(34)22CQ DQ t ==-,4)CD t ==-,进而可得222''3124))47POQ CDQ S S S t t =-=-=-+,又已知t 的取值范围是13t ≤≤S ≤≤. 【详解】 解:(1)如图,过点P 作PH x ⊥轴,垂足为H ,则90OHP ∠=︒.90OAB ∠=︒,30B ∠=︒9060BOA B ∴∠=︒-∠=︒.9030OPH POH ∴∠=-∠=︒.在Rt OHP △中,1OP =,1122OH OP =∴=,HP ==.∴点P 的坐标为12⎛ ⎝⎭.(2)①由折叠知,O PQ OPQ '≌,O P OP '∴=,O Q OQ '=.又OQ OP t ==,O P OP OQ O Q t ''∴====.∴四边形OQO P '为菱形.//QO OB '∴.可得30ADQ B ∠=∠=︒.点()2,0A ,2OA ∴=.有2QA OA OQ t =-=-.在Rt QAD 中,242QD QA t ==-.O D O Q QD ''=-,34O D t '∴=-,其中t 的取值范围是423t <<. ②由①知,'POQ 为等边三角形,∵四边形OQO P '为菱形,∴'AB PQ ⊥,三角形DCQ 为直角三角形,∠Q=60°,∴11(34)22CQ DQ t ==-,4)CD t ==-,∴222''3124))47POQ CDQ S S S t t =-=-=-+, ∵13t ≤≤,∴87S ≤≤. ,【点睛】本题主要考查了折叠问题,菱形的判定与性质,求不规则四边形的面积等知识.25.(1)抛物线的顶点坐标为()1,4--;(2)①点F 的坐标为(0,2-或(0,2-;②当m 的值为32-或12-时,MN 【分析】(1)根据1,3a m ==-,则抛物线的解析式为23y x bx =+-,再将点A (1,0)代入23y x bx =+-,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出()0,C m ,点()1,E m m +.过点A 作AH l ⊥于点H ,在Rt EAH 中,利用勾股定理求出AE 的值,再根据AE EF =,EF =m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当1a =,3m =-时,抛物线的解析式为23y x bx =+-.∵抛物线经过点1,0A ,013b ∴=+-.解得2b =.∴抛物线的解析式为223y x x =+-.()222314y x x x =+-=+-, ∴抛物线的顶点坐标为()1,4--.(2)①∵抛物线2y ax bx m =++经过点1,0A 和(),0M m ,0m <,0a b m ∴=++,20am bm m =++,即10am b ++=.1a ,1b m =--.∴抛物线的解析式为()21y x m x m =-++.根据题意,得点()0,C m ,点()1,E m m +.过点A 作AH l ⊥于点H .由点1,0A ,得点()1,H m .在Rt EAH 中,()11EH m m =-+=-,0HA m m =-=-,AE ==∴.AE EF ===2m =-.此时,点()1,2E --,点()0,2C -,有1EC =.点F 在y 轴上,∴在Rt EFC 中,CF =∴点F 的坐标为(0,2-或(0,2-+.②由N 是EF 的中点,得12CN EF ==根据题意,点N 在以点C由点(),0M m ,点()0,C m ,得MO m ,CO m =-.∴在Rt MCO 中,MC =.当MC ≥,即1m ≤-时,满足条件的点N 落在线段MC 上,MN 的最小值为MC NC -=-=32m =-;当MC <,10m -<<时,满足条件的点N 落在线段CM 的延长线上,MN 的最小值为()NC MC -==12m =-.∴当m 的值为32-或12-时,MN . 【点睛】 本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..。

2020年天津市中考数学试卷

2020年天津市中考数学试卷

2020年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算30+(﹣20)的结果等于()A.10B.﹣10C.50D.﹣502.(3分)2sin45°的值等于()A.1B.C.D.23.(3分)据2020年6月24日《天津日报》报道,6月23日下午,第四届世界智能大会在天津开幕.本届大会采取“云上”办会的全新模式呈现,40家直播网站及平台同时在线观看云开幕式暨主题峰会的总人数最高约为58600000人.将58600000用科学记数法表示应为()A.0.586×108B.5.86×107C.58.6×106D.586×105 4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.(3分)方程组的解是()A.B.C.D.8.(3分)如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C 在第一象限,则点C的坐标是()A.(6,3)B.(3,6)C.(0,6)D.(6,6)9.(3分)计算+的结果是()A.B.C.1D.x+110.(3分)若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2 11.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF 12.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0,c>1)经过点(2,0),其对称轴是直线x=.有下列结论:①abc>0;②关于x的方程ax2+bx+c=a有两个不等的实数根;③a<﹣.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x+7x﹣5x的结果等于.14.(3分)计算(+1)(﹣1)的结果等于.15.(3分)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)将直线y=﹣2x向上平移1个单位长度,平移后直线的解析式为.17.(3分)如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G 为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上,且AB=.(Ⅰ)线段AC的长等于.(Ⅱ)以BC为直径的半圆与边AC相交于点D,若P,Q分别为边AC,BC上的动点,当BP+PQ取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P,Q,并简要说明点P,Q的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(8分)农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:cm)进行了测量.根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为,图①中m的值为;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.21.(10分)在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.22.(10分)如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.23.(10分)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开宿舍的时25202330间/min离宿舍的距离/km0.20.7(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.24.(10分)将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B 重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ =OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).25.(10分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.(12分)如图,在 中, , 平分 ,交 于点 ,点 在 上, 经过 两点,交 于点 ,交 于点 .
求证: 是 的切线;若 的半径是 , 是弧 的中点,求阴影部分的面积(结果保留 和根号).
参考答案
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.C
【解析】
试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.
∴BC= x,CD=2x
∵CP:BP=1:2
∴CP= x,BP= x
∵E为DC的中点,
∴CE= CD=x,
∴tan∠CEP= = ,tan∠EBC= =
∴∠CEP=30°,∠EBC=30°
∴∠CEB=60°
∴∠PEB=30°
∴∠CEP=∠PEB
∴EP平分∠CEB,故①正确;
∵DC∥AB,
∴∠CEP=∠F=30°,
A. B. C. D.
3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若 ,大正方形的面积为13,则小正方形的面积为( )
A.3B.4C.5D.6
4.在六张卡片上分别写有 ,π,1.5,5,0, 六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A.9cmB.13cmC.16cmD.10cm
二、填空题(本题包括8个小题)
11.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.
12.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=________.
13.化简: =__________.
14.如图,已知直线 与 轴、 轴相交于 、 两点,与 的图象相交于 、 两点,连接 、 .给出下列结论:
① ;② ;③ ;④不等式 的解集是 或 .
其中正确结论的序号是__________.
15.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.
∴PF·EF≠2AD2,故③错误.
在Rt△ECP中,
∵∠CEP=30°,
∴EP=2PC= x
∵tan∠PAB= =
∴∠PAB=30°
∴∠APB=60°
∴∠AOB=90°
在Rt△AOB和Rt△POB中,由勾股定理得,
AO= x,PO= x
∴4AO·PO=4× x· x=4x2
又EF·EP=2 x· x=4x2
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:该公司“高级技工”有名;所有员工月工资的平均数x为2500元,中位数为元,众数为元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资 (结果保留整数),并判断 能否反映该公司员工的月工资实际水平.
∴EF·EP=4AO·PO.故④正确.
故选,B
【点睛】
本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.
7.D
【解析】
【分析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
20.(6分)观察下列等式:
第1个等式: ;
ቤተ መጻሕፍቲ ባይዱ第2个等式: ;
第3个等式: ;
第4个等式: ;

请解答下列问题:按以上规律列出第5个等式:a5==;用含有n的代数式表示第n个等式:an==(n为正整数);求a1+a2+a3+a4+…+a100的值.
21.(6分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
故选A.
点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
故选:C.
【点睛】
本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).
9.A
【解析】
【分析】
根据绝对值的性质进行求解即可得.
【详解】
∵|-x|=-x,
又|-x|≥1,
∴-x≥1,
即x≤1,
即x是非正数,
故选A.
【点睛】
本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.
A.①②③B.①②④C.①③④D.③④
7.一个几何体的三视图如图所示,则该几何体的表面积是( )
A.24+2πB.16+4πC.16+8πD.16+12π
8.二次函数 的对称轴是
A.直线 B.直线 C.y轴D.x轴
9.若| | =- ,则 一定是()
A.非正数B.正数C.非负数D.负数
10.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为( )
∴小正方形的面积为13﹣8=1.
故选C.
考点:勾股定理的证明.
4.B
【解析】
【分析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
A. B. C. D.
5.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是( )
A. B. C. D.
6.如图,矩形ABCD中,E为DC的中点,AD:AB= :2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;② =PB•EF;③PF•EF=2 ;④EF•EP=4AO•PO.其中正确的是( )
【详解】
∵这组数中无理数有 , 共2个,
∴卡片上的数为无理数的概率是 .
故选B.
【点睛】
本题考查了无理数的定义及概率的计算.
5.B
【解析】
试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.
考点:由实际问题抽象出分式方程
6.B
25.(10分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?
2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()
A.65°B.130°C.50°D.100°
2.使用家用燃气灶烧开同一壶水所需的燃气量 (单位: )与旋钮的旋转角度 (单位:度)( )近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度 与燃气量 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()
考点:切线的性质.
2.C
【解析】
【分析】
根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.
【详解】
解:由图表数据描点连线,补全图像可得如图,
抛物线对称轴在36和54之间,约为41℃
∴旋钮的旋转角度 在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.
∴∠F=∠EBP=30°,∠F=∠BEF=30°,
∴△EBP∽△EFB,

∴BE·BF=EF·BP
∵∠F=∠BEF,
∴BE=BF
∴ =PB·EF,故②正确
∵∠F=30°,
∴PF=2PB= x,
过点E作EG⊥AF于G,
∴∠EGF=90°,
∴EF=2EG=2 x
∴PF·EF= x·2 x=8x2
2AD2=2×( x)2=6x2,
相关文档
最新文档