(已调好的)高等数学公式与法则

合集下载

全部高等数学计算公式

全部高等数学计算公式

全部高等数学计算公式高等数学是数学的一个分支,包括微积分、线性代数、数理方程、概率论、复分析等多个内容。

每个分支都有大量的计算公式,下面将分别介绍这些分支中一些经典的计算公式。

一、微积分公式1.极限公式:(1)函数极限公式:$lim(f(x)±g(x))=limf(x)±limg(x)$$lim(f(x)g(x))=limf(x)·limg(x)$$lim\frac{{f(x)}}{{g(x)}}=\frac{{limf(x)}}{{limg(x)}}$(2)常见函数极限:$lim\frac{{sinx}}{{x}}=1$$lim(1+\frac{1}{{n}})^n=e$$lim(1+\frac{1}{{n}})^{n(p-q)}=e^{(p-q)}$2.导数公式:(1)基本导数公式:$(c)'=0$$(x^n)'=nx^{n-1}$$(e^x)'=e^x$$(a^x)'=a^xlna$$(lnx)'=\frac{1}{{x}}$$(sinx)'=cosx$$(cosx)'=-sinx$$(tanx)'=sec^2x$(2)导数的四则运算:$(f(x)\pm g(x))'=f'(x)\pm g'(x)$$(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)$$(\frac{{f(x)}}{{g(x)}})'=\frac{{f'(x)g(x)-f(x)g'(x)}}{{g^2(x)}}$(3)链式法则:$(f(g(x)))'=f'(g(x))g'(x)$3.积分公式:(1)基本积分公式:$\int{cx^n}dx=\frac{{cx^{n+1}}}{{n+1}}+C$$\int{e^x}dx=e^x+C$$\int{a^x}dx=\frac{{a^x}}{{lna}}+C$$\int{\frac{{1}}{{x}}}dx=ln,x,+C$$\int{sinx}dx=-cosx+C$$\int{cosx}dx=sinx+C$$\int{sec^2x}dx=tanx+C$(2)常用积分公式:$\int{u}dv=uv-\int{v}du$$\int{sin^2x}dx=\frac{{x}}{2}-\frac{{sin2x}}{4}+C$$\int{cos^2x}dx=\frac{{x}}{2}+\frac{{sin2x}}{4}+C$4.泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{{f''(a)}}{{2!}}(x-a)^2+...+\frac{{f^{(n)}}}{{n!}}(x-a)^n+R_n(x)$二、线性代数公式1.行列式公式:(1)二阶行列式:$D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$(2)三阶行列式:$D=\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}=aei+bfg+c dh-ceg-afh-bdi$2.矩阵运算公式:(1)两个矩阵的和:$A+B=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix }+\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{bmatrix}a_{11}+b_{11}&a_{12}+b_{12}\\a_{21}+b_{21}&a_{22}+b_{2 2}\end{bmatrix}$(2)两个矩阵的乘积:$AB=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} \begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}=\begin{ bmatrix}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{ 21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{bmatrix}$3.特征值与特征向量公式:$A-\lambda I=0$其中,A为矩阵,$\lambda$为特征值,I为单位矩阵。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

高等数学公式

高等数学公式

高等数学公式高等数学涵盖了广泛的内容,包括微积分、线性代数、复变函数等。

下面是一些常用的高等数学公式:微积分公式:1. 导数的定义:f'(x) = lim(h->0) [(f(x+h) - f(x))/h]2. 导数的基本运算法则:- (常数法则) (k*f(x))' = k*f'(x)- (加法法则) (f(x) + g(x))' = f'(x) + g'(x)- (乘法法则) (f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)- (商法则) (f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/(g(x))^23. 微分与积分的关系(牛顿-莱布尼茨公式):∫[a,b] f'(x) dx = f(b) - f(a)线性代数公式:1. 矩阵乘法:设 A 是 m✖n 矩阵,B 是 n✖p 矩阵,则 AB 是 m✖p 矩阵。

2. 矩阵转置:(A')ij = Aji,即将矩阵的行与列互换得到的新矩阵。

3. 逆矩阵:若A 是一个可逆矩阵,则存在一个矩阵A^-1,使得 A * A^-1 = I,其中 I 是单位矩阵。

4. 行列式:设 A 是一个 n✖n 矩阵,则其行列式为 det(A) = ∑[σ∈Sn] (ε(σ) * ∏[i=1 to n] a[i,σ(i)]),其中ε(σ) 是置换σ 的符号。

复变函数公式:1. 欧拉公式:e^(iθ) = cos(θ) + i*sin(θ)2. 求导公式(柯西-黎曼条件):- 如果 f(z) = u(x,y) + i*v(x,y) 是可微的,则 u 和 v 的一阶偏导数存在且满足以下条件:- ∂u/∂x = ∂v/∂y,即 u 对 x 的偏导数等于 v 对 y 的偏导数- ∂u/∂y = -∂v/∂x,即 u 对 y 的偏导数等于 v 对 x 的偏导数这只是高等数学中的一小部分公式,还有其他更多的公式和定理,但这些公式是学习高等数学的基础,是非常重要的。

(word完整版)高等数学公式定理整理

(word完整版)高等数学公式定理整理

(word完整版)⾼等数学公式定理整理⾼等数学公式定理整理1.01版本定理,公式整理仅⽤于参考,具体学习请多做题⽬以增进对知识的掌握。

蓝⾊为定理红⾊为公式三⾓函数恒等公式:两⾓和差tan αanα·ta+tan βanβ)-(tan α=β)-tan(αtan αanα·ta-(1tan βa +(tan α=β)+tan(αcos αosα·s±sin αinα·c =β)±sin(αsin αinα·s +cos αosα·c =β)-cos(αβsin αsin βcos αcos )βαcos(?-?=+和差化积]2β)-(α]sin[2β)+(α-2sin[=cos β-cos α]2β)-(α]cos[2β)+(α2cos[=cos β+cos α]2β)-(α]sin[2β)+(α2cos[=sin β-sin α]2β)-(α]cos[2β)+(α2sin[=sin β+sin α积化和差β)]-cos(α-β)+[cos(α21-=sin αinα·s β)]-cos(α+β)+[cos(α21=cos αosα·c β)]-sin(α-β)+[sin(α21=cos αosα·s β)]-sin(α+β)+[sin(α21=sin αinα·c倍⾓公式(部分):很重要!αtan -1αtan 2=tan2αα2sin -1=1-α2cos =αsin -αcos =α2cos cot αo +(tan α22sin αsinα·=sin2α22222⼀、函数函数的特性: 1.有界性:假设函数在D 上有定义,如果存在正数M ,使得对于任何的x ∈D 都满⾜|f(x)|≤M 。

则称f (x )是D 的有界函数。

如果正数M 不存在,则称这个函数是D 上的⽆界函数。

高等数学十大定理公式

高等数学十大定理公式

高等数学十大定理公式高等数学十大定理公式有有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。

1、有界性|f(x)|≤K2、最值定理m≤f(x)≤M3、介值定理若m≤μ≤M,∃ξ∈[a,b],使f(ξ)=μ4、零点定理若f(a)⋅f(b)<0∃ξ∈(a,b) ,使f(ξ)=05、费马定理设f(x)在x0处:1,可导2,取极值,则f′(x0)=06、罗尔定理若f(x)在[a,b] 连续,在(a,b) 可导,且f(a)=f(b) ,则∃ξ∈(a,b) ,使得f′(ξ)=07、拉格朗日中值定理若f(x)在[a,b] 连续,在(a,b) 可导,则∃ξ∈(a,b) ,使得f(b)−f(a)=f′(ξ)(b−a)8、柯西中值定理若f(x)、g(x)在[a,b] 连续,在(a,b) 可导,且g′(x)≠0 ,则∃ξ∈(a,b) ,使得f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)9、泰勒定理(泰勒公式)n阶带皮亚诺余项:条件为在$x_0$处n阶可导$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\ ,x\xrightarrow{} x_0$ n阶带拉格朗日余项:条件为n+1阶可导$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfra c{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0 )^{n+1}\ ,x\xrightarrow{} x_0$10、积分中值定理(平均值定理)若f(x)在[a,b] 连续,则∃ξ∈(a,b),使得∫baf(x)dx=f(ξ)(b−a)。

高等数学常用公式与定理总结

高等数学常用公式与定理总结

高等数学常用公式与定理总结作为一门基础学科,高等数学在各个领域中发挥着重要的作用。

学习高等数学,掌握一些常用的公式与定理是非常必要的。

本文将对高等数学常用的公式与定理进行总结,以供读者参考和下载使用。

一、常用公式总结1. 三角函数公式- 正弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:a/sinA = b/sinB = c/sinC- 余弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:c^2 = a^2 + b^2 - 2abcosC- 正切公式:tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)2. 导数与微分公式- 导数的链式法则:若y = f(u)和u = g(x)都可导,则复合函数y = f(g(x))的导数为:dy/dx = f'(g(x)) * g'(x)- 微分的乘法法则:若z = u * v,则dz = u * dv + v * du- 微分的复合法则:若z = f(u)且u = g(x)都可导,则复合函数z = f(g(x))的微分为:dz = f'(g(x)) * g'(x) * dx3. 级数公式- 幂级数:若幂级数∑(n=0,∞)an(x-a)^n的收敛半径为R,则在收敛区间内函数f(x)的表达式为:f(x) = ∑(n=0,∞)an(x-a)^n- 等比数列的和:如果|q| < 1,则等比数列∑(n=0,∞)aq^n的和为:S = a / (1 - q)二、常用定理总结1. 一元函数极值定理设函数f(x)在[a, b]上连续,在(a, b)内可导,且在(a, b)内具有极值,那么它的极值点必定在(a, b)内的某个驻点或者两个端点上。

2. 泰勒公式设函数f(x)在点a附近有直到n阶的连续导数,那么函数在点a处的泰勒展开式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)3. 全微分定理设函数z = f(x, y)在点(x0, y0)的某一邻域内偏导数存在且连续,那么在点(x0, y0)处可微分,且有:δz = ∂f/∂x * δx + ∂f/∂y * δy三、总结与下载通过本文的总结,我们对高等数学的常用公式与定理进行了梳理。

大学高等数学所有的公式大全精华

大学高等数学所有的公式大全精华

大学高等数学所有的公式大全精华在大学的数学学习中,高等数学是一门非常重要和广泛应用的学科。

学好高等数学,不仅需要理解和掌握其概念和原理,还需要熟练掌握其中的各种公式。

本文将为大家汇总并分享一份大学高等数学的公式大全,帮助大家更好地学习和运用这门学科。

一、导数和微分1. 函数y=f(x)的导函数:f'(x)2. 基本微分公式:(1)常数函数微分公式:d(cf(x))/dx = cf'(x),其中c为常数(2)幂函数微分公式:d(x^n)/dx = nx^(n-1),其中n为实数(3)指数函数微分公式:d(e^x)/dx = e^x(4)对数函数微分公式:d(lnx)/dx = 1/x(5)三角函数微分公式:a) d(sin x)/dx = cos xb) d(cos x)/dx = -sin xc) d(tan x)/dx = sec^2xd) d(cot x)/dx = -csc^2xe) d(sec x)/dx = sec x * tan xf) d(csc x)/dx = -csc x * cot x(6)反三角函数微分公式:a) d(arcsin x)/dx = 1/√(1-x^2)b) d(arccos x)/dx = -1/√(1-x^2)c) d(arctan x)/dx = 1/(1+x^2)d) d(arccot x)/dx = -1/(1+x^2)e) d(arcsec x)/dx = 1/(x√(x^2-1))f) d(arccsc x)/dx = -1/(x√(x^2-1))二、积分1. 基本积分表达式:(1)常数函数积分:∫c*dx = cx,其中c为常数(2)幂函数积分:∫x^n*dx = (1/(n+1))x^(n+1),其中n≠-1(3)指数函数积分:∫e^x*dx = e^x(4)对数函数积分:∫(1/x)*dx = ln|x|(5)三角函数积分:a) ∫sin x*dx = -cos xb) ∫cos x*dx = sin xc) ∫tan x*dx = -ln|cos x|d) ∫cot x*dx = ln|sin x|e) ∫sec x*dx = ln|sec x + tan x|f) ∫csc x*dx = ln|csc x - cot x|(6)反三角函数积分:a) ∫(1/√(1-x^2))*dx = arcsin xb) ∫(-1/√(1-x^2))*dx = arccos xc) ∫(1/(1+x^2))*dx = arctan xd) ∫(-1/(1+x^2))*dx = arccot xe) ∫(1/(x√(x^2-1)))*dx = sec^(-1)xf) ∫(-1/(x√(x^2-1)))*dx = csc^(-1)x三、级数1. 等差数列求和:(1)数列前n项和:Sn = (a1+an)*n/2(2)数列前n项和(已知首项和公差):Sn = (n/2)*(2a1+(n-1)d) 2. 等比数列求和:(1)数列前n项和(|q|<1):Sn = a1*(1-q^n)/(1-q)(2)无穷等比数列和(|q|<1):S = a1/(1-q)3. 幂级数收敛性:收敛:∑(n=0,∞)a^n(|a|<1)发散:∑(n=0,∞)a^n(|a|≥1)四、微分方程1. 常微分方程:(1)一阶线性常微分方程:dy/dx + P(x)y = Q(x)(2)一阶齐次线性常微分方程:dy/dx + P(x)y = 0(3)二阶齐次线性常微分方程:d^2y/dx^2 + P(x)dy/dx + Q(x)y = 0(4)常系数齐次线性常微分方程:d^n/dx^n + a_(n-1)d^(n-1)/dx^(n-1) + ... + a_1dy/dx + a_0y = 02. 偏微分方程:(1)一维波动方程:∂^2u/∂t^2=c^2∂^2u/∂x^2(2)二维泊松方程:∂^2u/∂x^2+∂^2u/∂y^2=f(x,y)(3)三维拉普拉斯方程:∂^2u/∂x^2+∂^2u/∂y^2+∂^2u/∂z^2=0五、概率与统计1. 古典概型计数原理:若一个事件可由n个步骤进行描述,第k个步骤有n_k种可能,则该事件共有n_1*n_2*...*n_k种可能2. 排列组合:(1)排列数公式:A(n,m) = n!/(n-m)!(2)组合数公式:C(n,m) = n!/(m!*(n-m)!)3. 随机事件概率计算:(1)基本事件概率公式:P(A) = n(A)/n(S),其中n(A)为事件A 发生的可能结果数,n(S)为样本空间S的可能结果数通过以上列举的公式,希望能够帮助大家更好地学习和理解大学高等数学。

高等数学公式定理(全)

高等数学公式定理(全)

高等数学公式定理(全)·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tan β)tan(α-β)=(tanα-tanβ)/(1+tanα·tan β)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cos α·sinβ·cosγ+cosα·cosβ·sinγ-sin α·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cos α·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

最完整高数公式大全赶紧了以后用

最完整高数公式大全赶紧了以后用

最完整高数公式大全赶紧了以后用1.极限相关公式:- 极限定义:如果对于任意一个给定的正数ε,存在正数δ,使得只要x与a的距离小于δ,则必有f(x)与L的距离小于ε,即lim(x→a)f(x)=L。

2.一元函数相关公式:- 基本求导法则:(C)'=0,(xⁿ)'=nxⁿ⁻¹,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x,(cotx)'=-csc²x,(secx)'=secxtanx,(cscx)'=-cscxcotx。

- 链式法则:设y=f(u),u=g(x),则y=f(g(x)),则y'=(dy)/(dx)=(dy)/(du)*(du)/(dx)=f'(u)*g'(x)。

-高阶导数:(fⁿ(x))'=fⁿ⁻¹(x)·f'(x),其中n为正整数。

-函数泰勒级数展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x),其中Rⁿ(x)为剩余项。

- 微分方程:设y=f(x),则dy/dx=f'(x),d²y/dx²=f''(x),…3.多元函数相关公式:-偏导数:设z=f(x,y),则∂z/∂x表示在y固定的条件下对x的变化率,∂z/∂y表示在x固定的条件下对y的变化率。

-链式法则:设z=f(x,y),x=g(u,v),y=h(u,v),则∂z/∂u=∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u,…- 梯度:设z=f(x₁,x₂,…,xₙ),则gradz=(∂z/∂x₁,∂z/∂x₂,…,∂z/∂xₙ)。

- 散度:设F=(P,Q,R)为一个三维向量场,则divF=∂P/∂x+∂Q/∂y+∂R/∂z。

高数基本公式

高数基本公式

高数基本公式在高等数学中,有很多基本的公式和定理,这些是理解和解决问题的基础。

以下是一些常见的高数基本公式:1. 极限运算法则:极限的四则运算法则:lim(a+b),lim(a-b),lim(a×b),lim(a/b) 和lim(b/a) 当 a≠0。

极限存在准则:收敛准则、夹逼准则、单调有界准则。

2. 导数与微分:导数定义:f'(x) = lim((h->0) [f(x+h) - f(x)] / h)微分定义:df(x) = f'(x)dx常见导数公式:(sinx)' = cosx,(cosx)' = -sinx,(e^x)' = e^x,(lnx)' = 1/x,(log_ax)' = 1/(xlna)(a>0且a≠1)。

3. 积分:积分基本公式:∫[a,b] kdx = k∫[a,b] dx,∫[a,b] [f(x) + g(x)]dx = ∫[a,b] f(x)dx + ∫[a,b] g(x)dx。

常见积分公式:∫[0,π] sinxdx = -cosx|[0,π] = 2,∫[0,π] cosxdx = sinx|[0,π] = 0,∫[0,π] exdx = e^x|[0,π] = e^π - e^0。

4. 级数:级数收敛的定义:若对于任意给定的正数ε,都存在一个正数N,使得对于n>N时,对于所有的i,|u_i| < ε都成立,则称级数∑u_i收敛。

级数收敛的必要条件是通项趋于0。

5. 微分方程:一阶线性微分方程:dy/dx + P(x)y = Q(x)。

其通解公式为:y = e^(-∫P(x)dx)[∫Q(x)e^(∫P(x)dx)dx + c]。

二阶常系数线性微分方程:y'' + py' + qy = f(x)。

其通解公式为:y = e^(-∫p/2dx)[∫e^(∫p/2dx)[f(x) + (q-p^2/4)e^(-2∫p/2dx)] dx + c1]和y = e^(-∫p/2dx)[c1cos(∫p/2dx) + c2sin(∫p/2dx)]。

高数的基本公式大全

高数的基本公式大全

高数的基本公式大全高等数学(简称高数)是大多数理工科专业的重要学科之一,其理论基础和应用广泛深入。

在学习高数的过程中,熟练掌握各类基本公式是非常关键的。

本文将为大家总结并介绍一些高数中常用的基本公式,希望能对广大学生有所指导和帮助。

一、导数公式1. 基本导数:常数导数为0,幂函数求导是将幂次降低一次并乘以原幂次系数。

2. 乘积法则:$(u * v)' = u' * v + u * v'$3. 商法则:$\left(\frac{u}{v}\right)' = \frac{u' * v - u * v'}{v^2}$4. 复合函数求导法则:$(f(g(x)))' = f'(g(x)) * g'(x)$5. 反函数求导法则:$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$6. 指数函数求导法则:$(a^x)' = a^x * \ln(a)$7. 对数函数求导法则:$(\log_a{x})' = \frac{1}{x *\ln(a)}$8. 三角函数求导法则:$(\sin{x})' = \cos{x}$,$(\cos{x})' = -\sin{x}$,$(\tan{x})' = \sec^2{x}$9. 反三角函数求导法则:$(\arcsin{x})' = \frac{1}{\sqrt{1- x^2}}$,$(\arccos{x})' = -\frac{1}{\sqrt{1 - x^2}}$,$(\arctan{x})' = \frac{1}{1 + x^2}$二、积分公式1. 基本积分:幂函数的积分是将幂次升高一次并除以新的幂次。

2. 基本定积分:$\int_a^b{f(x)dx} = F(b) - F(a)$,其中$F(x)$为$f(x)$的一个原函数。

高等数学所有公式

高等数学所有公式

高等数学所有公式高等数学涵盖了多个方向和领域,包括微积分、线性代数、常微分方程等。

下面列出一些高等数学中常见的公式:微积分方面:1. 导数定义:$f'(x)=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$2. 基本导数公式:$(C)'=0$、$(x^n)'=nx^{n-1}$、$(\sin x)'=\cos x$、$(\cos x)'=-\sin x$、$(e^x)'=e^x$、$\left(\lnx\right)'=\frac{1}{x}$等3. 链式法则:$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$积分与不定积分方面:1. 不定积分定义:$\int f(x)dx=F(x)+C$2. 基本积分公式:$\int x^n dx=\frac{1}{n+1}x^{n+1}+C$、$\int \sin x dx=-\cos x +C$、$\int \cos x dx=\sin x+C$、$\int e^x dx=e^x +C$3. 牛顿-莱布尼茨公式:$\int_a^b f(x)dx=F(b)-F(a)$级数与数列方面:1. 数列极限的定义:$\lim\limits_{n\to\infty}a_n=A$2. 数列收敛的判定:夹逼准则、单调有界准则等3. 级数收敛的判定:比较判别法、比值判别法、根值判别法等4. 幂级数的收敛半径:$\frac{1}{R}=\lim\limits_{n\to\infty}\left(\frac{a_{n+1}}{a_n}\ri ght)$线性代数方面:1. 矩阵的逆:若$AB=BA=I$,则称$A$是可逆矩阵,且$B$为$A$的逆矩阵,记作$A^{-1}$2. 矩阵行列式:设$A=(a_{ij})_{n\times n}$为$n$阶矩阵,则$|A|=\sum\limits_{j=1}^n(-1)^{i+j}a_{ij}\cdot M_{ij}$,其中$M_{ij}$为元素$a_{ij}$的代数余子式3. 特征值与特征向量:设$A$为$n$阶矩阵,若存在数$\lambda$和非零向量$X$,使得$AX=\lambda X$,则称$\lambda$为$A$的特征值,$X$为对应于$\lambda$的特征向量常微分方程方面:1. 一阶线性常微分方程:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$为已知函数2. 二阶常系数齐次线性方程:$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0$,其中$a,b,c$均为常数3. 欧拉公式:$e^{ix}=\cos x + i\sin x$,其中$i$为虚数单位需要注意的是,以上只列举了部分高等数学中的公式,且实际应用中还涉及到更多的公式和概念。

高数公式大全

高数公式大全

高数公式大全高等数学是一门涉及多个分支和概念的学科,其中包含了许多重要的公式和定理。

以下是一些高等数学中常用的公式和定理的详细内容:1. 极限与连续性:- 极限的定义:对于函数f(x),当x无限接近于某个值a时,如果f(x)的值无限接近于L,则称L为f(x)在x=a处的极限,记作lim(x→a)f(x)=L。

- 常用极限公式:- lim(x→a)(c) = c,其中c为常数。

- lim(x→a)(x^n) = a^n,其中n为正整数。

- lim(x→a)(sin(x)) = sin(a)。

- lim(x→a)(e^x) = e^a,其中e为自然对数的底数。

- lim(x→∞)(1/x) = 0。

- lim(x→0)(sin(x)/x) = 1。

2. 导数与微分:- 导数的定义:对于函数f(x),在某个点x=a处的导数表示函数在该点的变化率,记作f'(a)或df(x)/dx|_(x=a)。

- 常用导数公式:- (c)' = 0,其中c为常数。

- (x^n)' = nx^(n-1),其中n为正整数。

- (sin(x))' = cos(x)。

- (cos(x))' = -sin(x)。

- (e^x)' = e^x。

- (ln(x))' = 1/x。

- 微分的定义:对于函数f(x),在某个点x=a处的微分表示函数在该点的线性近似,记作df(x)。

- 常用微分公式:- df(x) = f'(x)dx。

3. 积分与定积分:- 不定积分的定义:对于函数f(x),其不定积分表示函数的原函数,记作∫f(x)dx。

- 常用不定积分公式:- ∫(c)dx = cx,其中c为常数。

- ∫(x^n)dx = (1/(n+1))x^(n+1),其中n不等于-1。

- ∫(sin(x))dx = -cos(x)。

- ∫(cos(x))dx = sin(x)。

- ∫(e^x)dx = e^x。

高数学公式和知识点笔记

高数学公式和知识点笔记

高数学公式和知识点笔记高等数学是一门重要的基础学科,包含了众多的公式和知识点。

以下是我为大家整理的一份较为全面的高数学公式和知识点笔记,希望能对大家的学习有所帮助。

一、函数与极限(一)函数函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。

函数的性质:1、单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),则称函数 f(x)在该区间上单调递增(或单调递减)。

2、奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数f(x)为偶函数;若 f(x) = f(x),则称函数 f(x)为奇函数。

(二)极限极限的定义:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x)都满足|f(x) A|<ε,那么常数 A 就叫做函数 f(x)当x→x₀时的极限,记作lim(x→x₀) f(x) = A。

极限的运算:1、四则运算:若lim(x→x₀) f(x) = A,lim(x→x₀) g(x) = B,则lim(x→x₀) f(x) ± g(x) = A ± B;lim(x→x₀) f(x) × g(x) = A × B;lim(x→x₀) f(x) / g(x) = A / B(B ≠ 0)。

2、两个重要极限:lim(x→0) (sin x / x) = 1;lim(x→∞)(1 +1 / x)ⁿ = e(n 为常数)。

二、导数与微分(一)导数导数的定义:函数 y = f(x)在点 x₀处的导数 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx。

高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)高等数学公式大全(几乎包含了所有)在高等数学中,公式是解决问题的重要工具之一。

它们可以帮助我们理解和描述数学概念,推导出新的数学结论,并应用于各个领域,包括物理学、工程学、经济学等。

本文将呈现一个高等数学公式大全,几乎包含了所有相关的公式。

希望这个公式大全能对广大数学爱好者和学习者有所帮助。

一、微积分公式微积分是高等数学的基础,它主要研究函数的极限、导数和积分等概念。

以下是一些常用的微积分公式:1. 极限公式:(1)极限的四则运算法则:对于函数f(x)和g(x),若lim[x→a] f(x)存在且等于A,lim[x→a] g(x)存在且等于B,则有:lim[x→a] (f(x)±g(x)) = A±Blim[x→a] (f(x)·g(x)) = A·Blim[x→a] (f(x)/g(x)) = A/B (若B≠0)lim[x→a] (c·f(x)) = c·A (c为常数)(2)洛必达法则:若lim[x→a] f(x) = lim[x→a] g(x) = 0或±∞,则有:lim[x→a] (f(x)/g(x)) = lim[x→a] (f'(x)/g'(x)) (其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数)2. 导数公式:(1)基本求导法则:对于常数c和可导函数u(x)、v(x),有以下导数法则:(常数法则) (c)' = 0(乘法法则) (u·v)' = u'·v + u·v'(除法法则) (u/v)' = (u'·v - u·v')/v^2(2)常见函数的导数公式:函数导数sin(x) cos(x)cos(x) -sin(x)e^x e^xln(x) 1/x3. 积分公式:(1)基本积分法则:对于连续函数f(x)和可导函数F(x),有以下积分法则:(常数法则)∫(c)dx = cx + C (C为常数)(幂函数积分法则)∫(x^n)dx = (x^(n+1))/(n+1) (n≠-1)(三角函数积分法则)∫sin(x)dx = -cos(x) + C∫cos(x)dx = sin(x) + C(2)常见函数的积分公式:函数积分e^x e^x + C (C为常数)1/x ln|x| + C二、线性代数公式线性代数是研究向量空间和线性映射的数学分支。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全高等数学是大学数学学科中的一门重要课程,也是理工科学生必须掌握的基础知识。

在学习高等数学的过程中,数学公式是必不可少的工具。

本文将为大家提供一份大学高等数学公式大全,供学生们参考使用。

一、极限与连续1.1 极限的定义:$$\lim_{x \to a} f(x) = L$$1.2 极限的四则运算:$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a}g(x)$$1.3 极限的乘法法则:$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$1.4 极限的除法法则:$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x\to a} g(x)}, \lim_{x \to a} g(x) \neq 0$$1.5 极限的复合函数法则:$$\lim_{x \to a} f[g(x)] = f[\lim_{x \to a} g(x)]$$1.6 常见的极限公式:- 幂函数的极限:$$\lim_{x \to a} x^k = a^k$$- 自然对数函数的极限:$$\lim_{x \to +\infty} \ln(x) = +\infty$$- 正弦函数的极限:$$\lim_{x \to 0} \sin(x) = 0$$二、导数与微分2.1 导数的定义:$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$2.2 常见函数的导数:- 幂函数的导数:$$\frac{d}{dx} x^n = nx^{n-1}$$- 指数函数的导数:$$\frac{d}{dx} e^x = e^x$$- 三角函数的导数:$$\frac{d}{dx} \sin(x) = \cos(x), \frac{d}{dx} \cos(x) = -\sin(x)$$2.3 导数的四则运算:- 和差规则:$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$- 积法则:$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$- 商法则:$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdotg'(x)}{[g(x)]^2}, g(x) \neq 0$$2.4 高阶导数:$$f''(x) = \frac{d^2}{dx^2} f(x), f'''(x) = \frac{d^3}{dx^3} f(x), \ldots$$三、定积分3.1 定积分的定义:$$\int_a^b f(x) dx = \lim_{\Delta x \to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i$$3.2 定积分的性质:- 线性性质:$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$- 积分与常数的乘积:$$\int_a^b kf(x) dx = k\int_a^b f(x) dx$$3.3 常见函数的定积分:- 幂函数的定积分:$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$- 正弦函数的定积分:$$\int \sin(x) dx = -\cos(x) + C$$- 指数函数的定积分:$$\int e^x dx = e^x + C$$四、级数4.1 等比级数的求和:$$S = \frac{a}{1-r}, |r|<1$$4.2 幂级数的收敛半径:$$R = \frac{1}{\lim \sup_{n \to \infty} \sqrt[n]{|a_n|}}$$ 4.3 常见级数:- 调和级数:$$\sum_{n=1}^{\infty} \frac{1}{n}$$- 几何级数:$$\sum_{n=0}^{\infty} ar^n$$五、常微分方程5.1 一阶线性常微分方程:$$\frac{dy}{dx} + P(x)y = Q(x)$$5.2 二阶常系数齐次线性微分方程:$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0$$5.3 常见的解法:- 变量分离法- 齐次线性微分方程的特征方程法- 二阶线性微分方程的常数变易法以上仅为部分高等数学公式的示例,实际上高等数学的公式非常丰富多样。

高数公式定理大全

高数公式定理大全

高数公式定理大全一、导数和微分1.导数的定义:如果函数f(x)在点x0处可导,则函数f(x)在x0处的导数为:f'(x0) = lim(x→x0) (f(x) - f(x0))/(x - x0)。

2.常见函数的导数:(1)幂函数的导数:(x^n)' = nx^(n-1)。

(2)指数函数的导数:(a^x)' = a^x ln(a),其中a是一个正实数。

(3)对数函数的导数:(ln x)' = 1/x。

(4)三角函数的导数:- (sin x)' = cos x。

- (cos x)' = -sin x。

- (tan x)' = sec^2 x。

- (cot x)' = -csc^2 x。

- (sec x)' = sec x tan x。

- (csc x)' = -csc x cot x。

3.高阶导数:函数f(x)的n阶导数可表示为:f^(n)(x) 或 d^n f / dx^n。

4.微分的定义:函数f(x)在点x0处的微分为:df = f'(x0) dx。

5.微分的性质:(1)微分与导数的关系:df = f'(x) dx。

(2)微分的加法性质:d(u + v) = du + dv。

(3)微分的乘法性质:d(uv) = u dv + v du。

(4)微分的链式法则:如果 y = f(u) 和 u = g(x),则 dy/dx = dy/du * du/dx。

二、积分1.定积分的定义:如果函数f(x)在闭区间[a, b]上有定义,且在[a, b]上可积,则记作∫(a→b) f(x) dx,表示从a到b的f(x)在x轴正方向的面积。

2.基本积分公式:(1)幂函数的积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数。

(2)三角函数的积分:- ∫sin x dx = -cos x + C。

大学高等数学定理公式

大学高等数学定理公式

大学高等数学定理公式大学高等数学是大学阶段重要的一门课程,它涵盖了许多重要的定理和公式。

这些定理和公式在解决数学问题、推导数学证明以及应用数学和工程领域中发挥着重要作用。

在本文中,我们将介绍一些大学高等数学中常见的定理和公式,并探讨其应用。

一、极限与连续1. 导数的定义:对于函数f(x),若存在一个常数a,使得当x趋近于a时,函数的导数存在,并记为f'(a),则称函数在点a处可导。

2. 微分中值定理:若函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)内可导,则存在c∈(a,b),使得f'(c) = (f(b)-f(a))/(b-a)。

3. 泰勒公式:对于函数f(x),若f(x)在x=a处的n阶导数存在,则有:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ(a)(x-a)ⁿ/n! ,其中fⁿ(a)表示函数在点a处的n阶导数。

二、微积分1. 不定积分的基本公式:∫xⁿdx = xⁿ⁺¹/(n+1) + C ,其中C为常数。

2. 定积分的基本公式:若函数f(x)在区间[a,b]上连续,则∫[a,b]f(x)dx存在,且记为F(x)的原函数在区间[a,b] 的定积分为∫[a,b]f(x)dx = F(b) - F(a)。

3. 牛顿-莱布尼兹公式:若函数f(x)在[a,b]上连续,则∫[a,b]f'(x)dx = f(b) - f(a)。

三、向量与矩阵1. 向量的模和方向:对于向量A = (a₁,a₂,...,aₙ),其模记为|A|,方向记为θ,有A =|A|cosθ·i + |A|sinθ·j。

2. 向量的点积:对于向量A = (a₁,a₂,...,aₙ)和B = (b₁,b₂,...,bₙ),其点积记为A·B = a₁b₁ + a₂b₂ + ... + aₙbₙ。

高等数学公式总结

高等数学公式总结

高等数学公式总结高等数学是大学理工科和经济金融等专业的重要基础课程,其中包含了众多的公式。

这些公式是解决各种数学问题的有力工具,掌握它们对于学好高等数学至关重要。

下面就为大家总结一些常见且重要的高等数学公式。

一、函数与极限1、函数的极限当\(x\)趋近于\(x_0\)时,函数\(f(x)\)的极限为\(A\),记作\(\lim_{x \to x_0} f(x) = A\)。

当\(x\)趋近于无穷大时,函数\(f(x)\)的极限为\(A\),记作\(\lim_{x \to \infty} f(x) = A\)。

2、无穷小量与无穷大量若\(\lim_{x \to x_0} f(x) = 0\),则称\(f(x)\)是当\(x\)趋近于\(x_0\)时的无穷小量。

若\(\lim_{x \to x_0} f(x) =\infty\),则称\(f(x)\)是当\(x\)趋近于\(x_0\)时的无穷大量。

3、极限的运算法则若\(\lim_{x \to x_0} f(x) = A\),\(\lim_{x \to x_0} g(x) = B\),则:\(\lim_{x \to x_0} f(x) + g(x) = A + B\)\(\lim_{x \to x_0} f(x) g(x) = A B\)\(\lim_{x \to x_0} f(x) \cdot g(x) = A \cdot B\)若\(B \neq 0\),\(\lim_{x \to x_0} \frac{f(x)}{g(x)}=\frac{A}{B}\)4、两个重要极限\(\lim_{x \to 0} \frac{\sin x}{x} = 1\)\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\)二、导数与微分1、导数的定义函数\(y = f(x)\)在点\(x_0\)处的导数定义为:\(f'(x_0) =\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} =\lim_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}\)2、基本导数公式\((C)'= 0\)(\(C\)为常数)\((x^n)'= nx^{n 1}\)\((\sin x)'=\cos x\)\((\cos x)'=\sin x\)\((\tan x)'=\sec^2 x\)\((\cot x)'=\csc^2 x\)\((\sec x)'=\sec x \tan x\)\((\csc x)'=\csc x \cot x\)\((e^x)'= e^x\)\((\ln x)'=\frac{1}{x}\)\((\log_a x)'=\frac{1}{x \ln a}\)3、导数的四则运算\((u \pm v)'= u' \pm v'\)\((uv)'= u'v + uv'\)\(\left(\frac{u}{v}\right)'=\frac{u'v uv'}{v^2}\)(\(v \neq 0\))4、复合函数求导法则设\(y = f(u)\),\(u = g(x)\),则复合函数\(y = fg(x)\)的导数为:\(y' = f'g(x) \cdot g'(x)\)5、隐函数求导法则对于方程\(F(x, y) = 0\)确定的隐函数\(y = y(x)\),两边对\(x\)求导,然后解出\(y'\)。

(已调好的)高等数学公式与法则

(已调好的)高等数学公式与法则

高等数学常用公式一.重要极限公式1.0sin lim 1x xx→= 2.101lim(1)lim(1)t x x t x e t →→∞+=+=3.0sin lim sin x mx m nx n→= 4.100lim(1)lim(1)kk x x x x kx x e →→+=+=二.基本导数公式1.()0C '= 2.(1)-='a aaxx3.xx e e =')( 4.(x a )'=a a xln5.(x ln )'=x 1 6.)(log 'x a =ax ln 1 7.x x cos )(sin =' 8.x x sin )(cos -='9.x x 2sec )(tan =' 10.x x 2csc )(cot -='11.x x x tan sec )(sec ⋅=' 12.x x x cot csc )(csc ⋅-=' 13.(arcsin )x '14.)(arccos 'x =211x--15.)(arctan 'x =211x + 16.)cot ('x arc =211x +-三.不定积分的基本公式1.⎰+=C kx kdx (k 是常数)2.⎰++=+C u x dx x u u11)1(-≠u3.⎰+=C x x dxln )0(≠x4.C a adx a xx+=⎰ln 1 )1,0(≠>a a 5.⎰+=C e dx e xx6.C x inxdx s +-=⎰cos 7.⎰+=C x xdx sin cos8.C x xdx sec 2+=⎰tan9.C x xdx +-=⎰cot csc 210.⎰+=C x xdx x sec tan sec11.⎰+-=C x xdx x csc cot csc 12.C x C x dx x+-=+=-⎰arccos arcsin 11213.21arctan 1dx x C x =+=+⎰cot arc -C x +四.微积分基本公式(牛顿—莱布尼兹公式)设函数()x F 是连续函数()x f 在区间[]b a ,上的一个原函数,则()()()⎰-=baa Fb F dx x f五.定积分的几何应用 1.面积公式(1)两条曲线()x f y =、()x g y =与两条直线a x =,b x =所围成的平面图形的面积为()()⎰-=badx x g x f A ()b a <(2)两条曲线()y f x =、()y g x =与两条直线c y =,d y =所围成的平面图形的面积为()()⎰-=dc dy y g y f A (d c <)(3)曲线()θr r =及两条半直线αθ=,()βαβθ<=所围成的曲边扇形的面积为()[]θθβαd r A 221⎰=2.旋转体体积公式(1)曲线()x f y =与三条直线0=y,a x =,b x =所围成的平面图形绕x 轴旋转一周所成旋转体的体积为⎰=ba dx x f V )(2π (b a <)(2)曲线()y xφ=与三条直线,0=x c y =,d y =所围成的平面图形绕y 轴旋转一周所成旋转体的体积为dy y V dc )(2⎰=φπ (d c <)六.微分方程1.一阶线性微分方程:()()dyP x y Q x dx+=的通解为()()(())P x dx P x dx y Q x e dx C e -⎰⎰=+⎰ 2.二阶常系数线性齐次方程0=+'+''qy y p y特征方程为 20p q λλ++=(1)12120,xxy C e C eλλ∆>=+(2)120,()x y C C x e λ∆==+(3)120,,(cos sin )xi y e C x C x αλαβββ∆<=±=+七.多元函数微分学 1.全微分:(,)z z z f x y dz dx dy x y∂∂==+∂∂ 2.多元复合函数求导法: (1)[(),()]dz z u z vz f u t v t dt u t v t ∂∂∂∂==⋅+⋅∂∂∂∂ (2)[(,),(,)]z z u z vz f u x y v x y xu x v x∂∂∂∂∂==⋅+⋅∂∂∂∂∂ 3.多元函数的极值及其求法:若0000000000(,)(,)0(,)(,)(,)x y xx xy yy f x y f x y f x y A f x y B f x y C =====, , , ,0020020020(,)00(,)0(,)0A f x y AC B A f x y AC B f x y AC B ⎧<⎧->⎨⎪>⎩⎪⎪-<⎨⎪-=⎪⎪⎩时,为极大值时,为极小值时, 不是极值时, 不能确定则:高等数学运算法则和性质一.极限的四则运算法则1.定理 设函数y =)(x f ,z =)(x g 在0x x →(或x →∞)时都存在极限,且lim )(x f =A ,lim ()g x =B,则它们的和、差、积、商(分母的极限不为零时)在(0x x →)(或x →∞)时也存在极限,且有(1)lim[)(x f ±)(x g ]=lim )(x f ± lim )(x g =A ±B(2)lim[)(x f ·)(x g ]= lim )(x f ·lim )(x g =A ·B (3)lim )0()(lim )(lim )()(≠==B BAx g x f x g x f 2.推论(1)常数可以提到极限号前,即 )(lim )(lim x f c x cf =(2)若lim )(x f =A ,且m 为自然数,则[]m m mA x f x f ==)]([lim )(lim二.导数的四则运算法则1.定理 设函数(),()u x v x 在x 处可导,则它们的和、差、积与商)0)(()()(≠x u x u x v 在x 处也可导,且(1)[()()]''()'()u x v x u x v x ±=± (2)[().()]''()()()'()u x v x u x v x u x v x =+(3)2()'()()()'()()[()]v x v x u x v x u x u x u x '⎡⎤-=⎢⎥⎣⎦2.推论(1)(())''()()cu x cu x c =为常数. (2))()(')')(1(2x u x u x u -=. (3))(')()()()(')()()()(')]'()()([x w x v x u x w x v x u x w x v x u x w x v x u ++=.三.复合函数的求导数(微分)的链式法则1.定理 设函数(),()[()]y f u u x y f x φφ===均可导,则复合函数也可导,且)(')(''.'''x u f y u y y x x u x ϕ⋅=⋅=或 或dxdudu dy dx dy ⋅=. 2.推论 设)(),(),(x v x u u f y ψϕ===均可导,则复合函数()])([x f y ψϕ=也可导,且 ''''x v u x v u y y ⋅⋅=.3.如果复合函数的复合层次更多,上述公式还可以推广.求复合函数的导数时,要分析清复合过程,认清中间变量.简单地说,关键在于层的分解,层的求导,最后再将各层导数相乘.四.微分的四则运算法则 1.dv du v u d ±=±)(2.cdu cu d =)( (c 为常数) 3.udv vdu uv d +=)( 4.2)(u vduudv u v d -= (0≠u )五.不定积分的性质 1.()()f x dx f x '⎡⎤=⎣⎦⎰或()()d f x dx f x dx ⎡⎤=⎣⎦⎰注:先积后导(微),形式不变 2.()()f x dx f x C '=+⎰ 或 ()()df x dx f x C =+⎰注:先导(微)后积,差个常数3.dx x f k dx x kf ⎰⎰=)()(注:常数可提到积分号的外面4.( ()()) ()()f x g x dx f x dx g x dx ±=±⎰⎰⎰注:满足加法原则,可推广到有限项的情形.六.定积分的性质 性质1(线性性质)[]()()b a A f x B g x dx +⎰()baA f x dx =⎰()baB g x dx +⎰,其中A 、B 为常数.此性质可推广到对有限多个函数都成立. 性质2(定积分对积分区间的可加性)()baf x dx ⎰()caf x dx =⎰()bcf x dx +⎰,其中],[b a c ∈或],[b a c ∉.性质3(比较性质) 若()f x ()g x ≥,],[b a x ∈,则()baf x dx ⎰()bag x dx ≥⎰.推论1(保号性质) 若()0f x ≥,],[b a x ∈,则()0baf x dx ≥⎰.推论2()()bbaaf x dx f x dx ≤⎰⎰性质4(估值性质) 若()m f x M ≤≤,],[b a x ∈,则()()()b am b a f x dx M b a -≤≤-⎰.性质5(中值性质) 若函数()y f x =在],[b a 上连续,则至少存在一点],[b a ∈ξ使()()()baf x dx f b a ξ=-⎰.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学常用公式一.重要极限公式1.0sin lim 1x x x →= 2.101lim(1)lim(1)t x x t x e t →→∞+=+=3.0sin limsin x mx m nx n→= 4.100lim(1)lim(1)kk x x x x kx x e →→+=+=二.基本导数公式1.()0C '= 2.(1)-='a a ax x 3.x x e e =')( 4.(x a )'=a a xln 5.(x ln )'=x 1 6.)(log 'x a =ax ln 17.x x cos )(sin =' 8.x x sin )(cos -=' 9.x x 2sec )(tan =' 10.x x 2csc )(cot -=' 11.x x x tan sec )(sec ⋅=' 12.x x x cot csc )(csc ⋅-=' 13.(arcsin )x '14.)(arccos 'x =211x--15.)(arctan 'x =211x + 16.)cot ('x arc =211x +-三.不定积分的基本公式1.⎰+=C kx kdx (k 是常数)2.⎰++=+C u x dx x u u11)1(-≠u3.⎰+=C x x dxln )0(≠x4.C a adx a xx+=⎰ln 1 )1,0(≠>a a 5.⎰+=C e dx ex x6.C x inxdx s +-=⎰cos 7.⎰+=C x xdx sin cos8.C x xdx sec 2+=⎰tan9.C x xdx +-=⎰cot csc 210.⎰+=C x xdx x sec tan sec 11.⎰+-=C x xdx x csc cot csc 12.C x C x dx x+-=+=-⎰arccos arcsin 11213.21arctan 1dx x C x =+=+⎰cot arc -C x +四.微积分基本公式(牛顿—莱布尼兹公式)设函数()x F 是连续函数()x f 在区间[]b a ,上的一个原函数,则()()()⎰-=baa Fb F dx x f五.定积分的几何应用 1.面积公式(1)两条曲线()x f y =、()x g y =与两条直线a x =,b x =所围成的平面图形的面积为()()⎰-=badx x g x f A ()b a <(2)两条曲线()y f x =、()y g x =与两条直线c y =,d y =所围成的平面图形的面积为()()⎰-=dc dy y g y f A (d c <)(3)曲线()θr r =及两条半直线αθ=,()βαβθ<=所围成的曲边扇形的面积为()[]θθβαd r A 221⎰=2.旋转体体积公式(1)曲线()x f y =与三条直线0=y ,a x =,b x =所围成的平面图形绕x 轴旋转一周所成旋转体的体积为⎰=ba dx x f V )(2π (b a <)(2)曲线()y x φ=与三条直线,0=x c y =,d y =所围成的平面图形绕y 轴旋转一周所成旋转体的体积为dy y V dc )(2⎰=φπ (d c <)六.微分方程1.一阶线性微分方程:()()dyP x y Q x dx+=的通解为()()(())P x dx P x dx y Q x e dx C e -⎰⎰=+⎰ 2.二阶常系数线性齐次方程0=+'+''qy y p y 特征方程为20p q λλ++=(1)12120,xxy C e C eλλ∆>=+(2)120,()x y C C x e λ∆==+(3)120,,(cos sin )x i y e C x C x αλαβββ∆<=±=+七.多元函数微分学 1.全微分:(,)z z z f x y dz dx dy x y∂∂==+∂∂ 2.多元复合函数求导法: (1)[(),()]dz z u z v z f u t v t dt u t v t ∂∂∂∂==⋅+⋅∂∂∂∂ (2)[(,),(,)]z z u z vz f u x y v x y xu x v x∂∂∂∂∂==⋅+⋅∂∂∂∂∂ 3.多元函数的极值及其求法:若0000000000(,)(,)0(,)(,)(,)x y xx xy yy f x y f x y f x y A f x y B f x y C =====, , , ,0020020020(,)00(,)0(,)0A f x y AC B A f x y AC B f x y AC B ⎧<⎧->⎨⎪>⎩⎪⎪-<⎨⎪-=⎪⎪⎩时,为极大值时,为极小值时, 不是极值时, 不能确定则:高等数学运算法则和性质一.极限的四则运算法则1.定理 设函数y =)(x f ,z =)(x g 在0x x →(或x→∞)时都存在极限,且lim )(x f =A ,lim ()g x =B,则它们的和、差、积、商(分母的极限不为零时)在(0x x →)(或x →∞)时也存在极限,且有(1)lim[)(x f ±)(x g ]=lim )(x f ± lim )(x g =A ±B(2)lim[)(x f ·)(x g ]= lim )(x f ·lim )(x g =A ·B (3)lim )0()(lim )(lim )()(≠==B BAx g x f x g x f 2.推论(1)常数可以提到极限号前,即 )(lim )(lim x f c x cf =(2)若lim )(x f =A ,且m 为自然数,则[]m m mA x f x f ==)]([lim )(lim二.导数的四则运算法则1.定理 设函数(),()u x v x 在x 处可导,则它们的和、差、积与商)0)(()()(≠x u x u x v 在x 处也可导,且(1)[()()]''()'()u x v x u x v x ±=± (2)[().()]''()()()'()u x v x u x v x u x v x =+(3)2()'()()()'()()[()]v x v x u x v x u x u x u x '⎡⎤-=⎢⎥⎣⎦2.推论(1)(())''()()cu x cu x c =为常数. (2))()(')')(1(2x u x u x u -=. (3))(')()()()(')()()()(')]'()()([x w x v x u x w x v x u x w x v x u x w x v x u ++=.三.复合函数的求导数(微分)的链式法则1.定理 设函数(),()[()]y f u u x y f x φφ===均可导,则复合函数也可导,且)(')(''.'''x u f y u y y x x u x ϕ⋅=⋅=或 或dxdudu dy dx dy ⋅=. 2.推论 设)(),(),(x v x u u f y ψϕ===均可导,则复合函数()])([x f y ψϕ=也可导,且''''x v u x v u y y ⋅⋅=.3.如果复合函数的复合层次更多,上述公式还可以推广.求复合函数的导数时,要分析清复合过程,认清中间变量.简单地说,关键在于层的分解,层的求导,最后再将各层导数相乘.四.微分的四则运算法则 1.dv du v u d ±=±)(2.cdu cu d =)( (c 为常数) 3.udv vdu uv d +=)( 4.2)(u vduudv u v d -= (0≠u )五.不定积分的性质 1.()()f x dx f x '⎡⎤=⎣⎦⎰或()()d f x dx f x dx ⎡⎤=⎣⎦⎰注:先积后导(微),形式不变 2.()()f x dx f x C '=+⎰ 或()()df x dx f x C =+⎰注:先导(微)后积,差个常数 3.dx x f k dx x kf ⎰⎰=)()(注:常数可提到积分号的外面4.( ()()) ()()f x g x dx f x dx g x dx ±=±⎰⎰⎰注:满足加法原则,可推广到有限项的情形.六.定积分的性质 性质1(线性性质)[]()()b a A f x B g x dx +⎰()baA f x dx =⎰()baB g x dx +⎰,其中A 、B 为常数.此性质可推广到对有限多个函数都成立. 性质2(定积分对积分区间的可加性)()baf x dx ⎰()c af x dx =⎰()bcf x dx +⎰,其中],[b a c ∈或],[b a c ∉.性质3(比较性质) 若()f x ()g x ≥,],[b a x ∈,则()baf x dx ⎰()bag x dx ≥⎰.推论1(保号性质) 若()0f x ≥,],[b a x ∈,则()0baf x dx ≥⎰.推论2()()bbaaf x dx f x dx ≤⎰⎰性质4(估值性质) 若()m f x M ≤≤,],[b a x ∈,则()()()b am b a f x dx M b a -≤≤-⎰.性质5(中值性质) 若函数()y f x =在],[b a 上连续,则至少存在一点],[b a ∈ξ使()()()baf x dx f b a ξ=-⎰.。

相关文档
最新文档