互逆命题 PPT课件 2 苏科版
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
25、世上最累人的事,莫过於虚伪的过日子。
•
26、事不三思终有悔,人能百忍自无忧。
•
27、智者,一切求自己;愚者,一切求他人。
•
28、有时候,生活不免走向低谷,才能迎接你的下一个高点。
•
29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。
•
30、经验是由痛苦中粹取出来的。
•
31、绳锯木断,水滴石穿。
在你已经学习过的命题中,举出两个命题,它们 不仅是逆命题,而且都是真命题.
命题的证明
如图: (1)如果AD∥EF,那么可以得到什么结论?
(2)如果∠EFC+∠C=180°,那么可以得到什
么结论呢? (3)证明AD∥EF,需要什么条件?证明EF∥BC
呢? (4)证明AD∥EF∥BC,需要什么条件?
•
52、思想如钻子,必须集中在一点钻下去才有力量。
•
53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。
•
54、最伟大的思想和行动往往需要最微不足道的开始。
•
55、不积小流无以成江海,不积跬步无以至千里。
•
8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。
•
9、永远不要逃避问题,因为时间不会给弱者任何回报。
•
10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。
•
11、明天是世上增值最快的一块土地,因它充满了希望。
•
12、得意时应善待他人,因为你失意时会需要他们。
•
•
63、彩虹风雨后,成功细节中。
•
64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。
•
65、只要有信心,就能在信念中行走。
•
66、每天告诉自己一次,我真的很不错。
•
67、心中有理想 再累也快乐
•
68、发光并非太阳的专利,你也可以发光。
•
69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。
13、人生最大的错误是不断担心会犯错。
•
14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。
•
15、不管怎样,仍要坚持,没有梦想,永远到不了远方。
•
16、心态决定命运,自信走向成功。
•
17、第一个青春是上帝给的;第二个的青春是靠自己努力的。
•
18、励志照亮人生,创业改变命运。
•
A ).
B
G
C ),
D
∴DE∥BF (
).
(2)上述推理中,应用了哪两个互逆的真命题?
2.(1)已知:如图,在直角三角形ABC 中∠ACB = 90°,D 是AB 上一点,且∠ACD =∠B . 求证:CD⊥AB.
(2)你在(1)的证明过程中应用了哪两个
互逆的真命题?
C
A
B
D
【小结】 通过今天的学习,你有哪些收获与体会,
•
70、当你的希望一个个落空,你也要坚定,要沉着!
•
71、生命太过短暂,今天放弃了明天不一定能得到。
•
72、只要路是对的,就不怕路远。
•
73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。
•
74、先知三日,富贵十年。付诸行动,你就会得到力量。
•
75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。
条件
结论
两个命题中,如果第一个命题的条件是第二个 命题的结论,而第一个命题的结论又是第二个命题 的条件,那么这两个命题叫做互逆命题.
其中一个命题是另一个命题的逆命题.
【试一试】
1.下列各组命题是否是互逆命题: (1)“正方形的四个角都是直角”与“四个 角都是直角的四边形是正方形”; (2)“等于同一个角的两个角相等”与“如 果两个角都等于同一个角,那么这两个角相等”; (3)“对顶角相等”与“如果两个角相等, 那么这两个角是对顶角”; (4)“同位角相等,两直线平行”与“同位 角不相等,两直线不平行” .
A
D
E
F
B
C
图形特殊的“位置关系”常常决定了图形具有 特殊的“数量关系”;
反过来,图形特殊的“数量关系”常常决定了 图形具有特殊的“位置关系”.
例1 证明:平行于同一条直线的两条直线平行.
已知:如图,直线a、b、c 中,b∥a, c∥a. d
求证:b∥c . 证明:作直线a、b、c的截线d.
1a 2b
E
G
B
F
C
•
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
•
2、从善如登,从恶如崩。
•
3、现在决定未来,知识改变命运。
•
4、当你能梦的时候就不要放弃梦。
•
5、龙吟八洲行壮志,凤舞九天挥鸿图。
•
6、天下大事,必作于细;天下难事,必作于易。
•
7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。
说出来和同学们分享.
【课后作业】
1.课本P161习题12.3第3、4题;
2.思考题(选做)
(1)已知:如图,在△ABC 中,点E 在AC上,
点F 在BC上,点D、G 在AB上,FG∥CD,
∠EDC =∠BFG .
求证:∠AED =∠ACB.
(2)你在(1)的证明过程中应用了哪两个互逆的
真命题?
A
D
∵b∥a (已知),
3
c
∴∠2=∠1 (两直线平行,同位角相等),
∵c∥a (已知),
∴∠3=∠1 (两直线平行,同位角相等),
∴∠2=∠3 (等量代换),
∴b∥c (同位角相等,两直线平行).
例2 证明:直角三角形的两个锐角互余.
已知:如图,在△ABC 中,∠C=90°, A 求证:∠A+∠B=90°.
•
76、好习惯成就一生,坏习惯毁人前程。
•
77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。
•
78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。
•
79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。
•
80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
19、就算生活让你再蛋疼,也要笑着学会忍。
•
20、当你能飞的时候就不要放弃飞。
•
21、所有欺骗中,自欺是最为严重的。
•
22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。
•
23、天行健君子以自强不息;地势坤君子以厚德载物。
•
24、态度决定高度,思路决定出路,细节关乎命运。
•
46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。
•
47、小事成就大事,细节成就完美。
•
48、凡真心尝试助人者,没有不帮到自己的。
•
49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。
•
50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。
•
51、对于最有能力的领航人风浪总是格外的汹涌。
【试一试】 2 .说出下列命题的逆命题,并与同学交流. (1)如果a2=b2,那么a=b; 逆命题:如果a=b,那么a2=b2 .
(2)如果两个角是对顶角,那么它们的平分线组成一 个平角;
逆命题:如果两个角的平分线组成一个平角, 那么这两个角是对顶角. (3)末位数字是5的数,能被5整除; 逆命题:能被5整除的数的末位数字是5. (4)锐角与钝角互为补角. 逆命题:互为补角的两个角一个是锐角一个是 钝角.
初中数学 七年级(下册)
12.3 互逆命题
作 者:徐自钱( 麒麟初级中学)
12.3 互逆命题(1)
【问题情境1】 条件
结论
两直线平行,同位角相等.
同位角相等,两直线平行.
条件
结论
12.3 互逆命题Fra bibliotek【问题情境1】
条件
结论
如果 a+b>0 ,那么 a>0,b>0
如果 a >0,b >0 ,那么 a+b>0
•
32、肯承认错误则错已改了一半。
•
33、快乐不是因为拥有的多而是计较的少。
•
34、好方法事半功倍,好习惯受益终身。
•
35、生命可以不轰轰烈烈,但应掷地有声。
•
36、每临大事,心必静心,静则神明,豁然冰释。
•
37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。
•
38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。
•
39、人的价值,在遭受诱惑的一瞬间被决定。
•
40、事虽微,不为不成;道虽迩,不行不至。
•
41、好好扮演自己的角色,做自己该做的事。
•
42、自信人生二百年,会当水击三千里。
•
43、要纠正别人之前,先反省自己有没有犯错。
•
44、仁慈是一种聋子能听到、哑巴能了解的语言。
•
45、不可能!只存在于蠢人的字典里。
•
56、远大抱负始于高中,辉煌人生起于今日。
•
57、理想的路总是为有信心的人预备着。
•
58、抱最大的希望,为最大的努力,做最坏的打算。
•
59、世上除了生死,都是小事。从今天开始,每天微笑吧。
•
60、一勤天下无难事,一懒天下皆难事。
•
61、在清醒中孤独,总好过于在喧嚣人群中寂寞。
•
62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。
证明:在△ABC 中, ∠A+∠B+∠C =180°
(三角形三个内角的和等于180°),
∴∠A +∠B = 180°- ∠C(等式性质),
∵ ∠C = 90°(已知),
∴∠A +∠B = 180°- 90°(等量代换), C
B
∴ ∠A +∠B = 90°.
说出命题“直角三角形的两个锐角互余”的 逆命题.这个命题是真命题吗?为什么?
构造一个命题的逆命题,并证明这个命题 是真命题,我们就能探索并获得一些新的数学 结论.
这是一种逆向思考研究问题的方法.
【练习】
1. (1)如图,AB∥CD,AB、DE 相交于点G,
∠B=∠D. 在下列括号内填写推理的依据:E F
∵AB∥CD (已知), ∴∠EGA =∠D ( 又∵∠B =∠D (已知), ∴∠EGA =∠B(