背包问题
经典贪心题
![经典贪心题](https://img.taocdn.com/s3/m/b7a2f574a22d7375a417866fb84ae45c3b35c294.png)
贪心算法是一种在解决问题的过程中追求局部最优的算法,对于一个有多种属性的事物来说,贪心算法会优先满足某种条件,追求局部最优的同时希望达到整体最优的效果。
以下是一些经典的贪心算法问题:1. 背包问题:给定一组物品,每个物品都有自己的重量和价值,背包的总容量有限。
贪心算法需要选择物品以最大化背包中物品的总价值,同时不超过背包的总容量。
这种问题可以有多种变体,例如分数背包问题和完全背包问题。
2. 硬币找零问题:给定一组硬币的面值和数量,以及需要找零的金额。
贪心算法需要选择硬币以最小化找零的总数量。
这个问题可以通过从大到小排序硬币,并从最大面值的硬币开始选择,直到找零的金额达到所需的总金额。
3. 区间选点问题:给定一系列闭区间,每个闭区间都有一个起始点和结束点。
贪心算法需要选择尽量少的点,使得每个闭区间内至少有一个点被选中。
这个问题可以通过对结束点进行排序,并从左到右选择结束点,直到下一个要选择的结束点与上一个选择的结束点之间的距离大于当前选择的结束点与上一个选择的结束点之间的距离为止。
4. 区间覆盖问题:给定一系列闭区间,贪心算法需要选择尽量少的区间,使得所有区间都被覆盖。
这个问题可以通过对每个闭区间的左端点进行排序,并从左到右选择左端点,直到下一个要选择的左端点与上一个选择的左端点之间的距离大于当前选择的左端点与上一个选择的左端点之间的距离为止。
5. 排班问题:给定一组员工和他们的班次需求,以及一组工作日的日程安排。
贪心算法需要为员工分配班次,以最小化总工作时间并满足所有工作日的需求。
这个问题可以通过从可用的班次中选择最长的班次,并从左到右分配员工,直到所有员工都被分配到一个班次为止。
这些问题是贪心算法的经典示例,它们展示了贪心算法在解决优化问题中的广泛应用。
背包问题的多种解法
![背包问题的多种解法](https://img.taocdn.com/s3/m/e27939eb964bcf84b8d57b2d.png)
一个最优解:w i X i Wi2w1X1nmaX v i X i 。
如果不是的话,设(y2,y3, , y n) 是这X i {0,1}( 2 i n) i2问题描述0/1 背包问题 :现有n种物品,对1<=i<=n ,已知第i种物品的重量为正整数 W i,价值为正整数 V i, 背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过 W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:n w i x i Wi 1i i(1)x i { 0,1}( 1 i n)nmax v i x i (2)i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的解向量X (x1, x2 ,x3, ......... , x n) 。
首先说明一下 0-1 背包问题拥有最优解。
假设(X i,X2,X3,……,Xn)是所给的问题的一个最优解,则(X2,X3,……,Xn)是下面问题的n n n个问题的一个最优解,则v i y i v i X i ,且w1X1 w i y i W 。
因此,i 2 i 2 i 2n n n物品1W2=3V2=12物品2W3=4V3=40物品3W4=5V4=25物品4V1X1 V i y i V1X1 V i V i X i,这说明(X i,y2,y3, ............................................................... ,y n)是所给的 0-1 背包问i 2 i 2 i 1题比(X i,X2,X3, ........................... , X n)更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定 n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。
分支界限方法01背包问题解题步骤
![分支界限方法01背包问题解题步骤](https://img.taocdn.com/s3/m/4e29328adb38376baf1ffc4ffe4733687e21fcc1.png)
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
04章组合优化模型
![04章组合优化模型](https://img.taocdn.com/s3/m/efe119ab80c758f5f61fb7360b4c2e3f57272524.png)
04章组合优化模型组合优化模型是指在给定一组有限资源的情况下,通过选择和组合这些资源,以达到其中一种目标的问题。
这一类模型广泛应用于供应链管理、制造业生产优化和物流网络设计等领域。
本文将介绍几种常见的组合优化模型,并分析其应用。
一、背包问题背包问题是最基本的组合优化问题之一、背包问题可以描述为在给定一组物品和一个固定容量的背包的情况下,如何选择物品放入背包中,以使得背包中物品的总价值最大。
背包问题可以有多种变形,如01背包问题、完全背包问题和多重背包问题等。
例如,假设有一个容量为C的背包,和n个物品,每个物品有一个重量wi和一个价值vi。
目标是在背包容量限制下,选择一些物品放入背包中,使得背包中物品的总价值最大。
背包问题可以通过动态规划算法求解。
定义一个二维数组dp,其中dp[i][j]表示在前i个物品中选择一些放入容量为j的背包中所能达到的最大总价值。
背包问题的状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)二、旅行商问题旅行商问题是一个经典的组合优化问题,也是一个NP-hard问题。
旅行商问题可以描述为在给定一组城市和每对城市之间的距离,如何找到一条最短的路径,使得每个城市只访问一次,并且最终回到起始城市。
旅行商问题可以通过深度优先、分支定界算法和遗传算法等方法求解。
尽管求解旅行商问题的确切解决方案是困难的,但通过使用近似算法和启发式算法,可以在合理的时间内得到较好的解。
三、作业调度问题作业调度问题是指在给定一组作业和一组机器的情况下,如何安排作业在机器上执行,以最大程度地减少完成所有作业的总时间。
作业调度问题可以通过贪心算法和动态规划算法求解。
贪心算法可以按照一些优先级规则对作业进行排序,并依次将作业分配给空闲的机器,直到所有作业都被分配完为止。
动态规划算法可以定义一个二维数组dp,其中dp[i][j]表示前i个作业在j个机器上执行的最小总时间。
(完整版)01背包问题
![(完整版)01背包问题](https://img.taocdn.com/s3/m/266d6e8679563c1ec4da7166.png)
01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。
01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。
首先要明确这张表是至底向上,从左到右生成的。
为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。
对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。
同理,c2=0,b2=3,a2=6。
对于承重为8的背包,a8=15,是怎么得出的呢?根据01背包的状态转换方程,需要考察两个值,一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;在这里,f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包以下是actionscript3 的代码public function get01PackageAnswer(bagItems:Array,bagSize:int):Array{var bagMatrix:Array=[];var i:int;var item:PackageItem;for(i=0;i<bagItems.length;i++){bagMatrix[i] = [0];}for(i=1;i<=bagSize;i++){for(varj:int=0;j<bagItems.length;j++){item = bagItems[j] as PackageItem;if(item.weight > i){//i背包转不下itemif(j==0){bagMatrix[j][i] = 0;}else{bagMatrix[j][i]=bagMatrix[j-1][i];}}else{//将item装入背包后的价值总和var itemInBag:int;if(j==0){bagMatrix[j][i] = item.value;continue;}else{itemInBag = bagMatrix[j-1][i-item.weight]+item.value;}bagMatrix[j][i] = (bagMatrix[j-1][i] > itemInBag ? bagMatrix[j-1][i] : itemInBag)}}}//find answervar answers:Array=[];var curSize:int = bagSize;for(i=bagItems.length-1;i>=0;i--){item = bagItems[i] as PackageItem;if(curSize==0){break;}if(i==0 && curSize > 0){answers.push();break;}if(bagMatrix[i][curSize]-bagMatrix[i-1][curSize-item.weight ]==item.value){answers.push();curSize -= item.weight;}}return answers;}PackageItem类public class PackageItem{public var name:String;public var weight:int;public var value:int;public function PackageItem(name:String,weight:int,value:int){ = name;this.weight = weight;this.value = value;}}测试代码varnameArr:Array=['a','b','c','d','e'];var weightArr:Array=[2,2,6,5,4];var valueArr:Array=[6,3,5,4,6];var bagItems:Array=[];for(vari:int=0;i<nameArr.length;i++){var bagItem:PackageItem = new PackageItem(nameArr[i],weightArr[i],valueArr[i]);bagItems[i]=bagItem;}var arr:Array = ac.get01PackageAnswer(bagItems,10);。
背包问题
![背包问题](https://img.taocdn.com/s3/m/2b84ae260a4e767f5acfa1c7aa00b52acfc79cab.png)
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN) 的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得 出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如 何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关 的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令 f[i,v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程, 像这样:f[i,v]=max{f[i,v-vi]+wi,f[i-1,v]}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的 时间则不是常数了,求解状态f[v]的时间是O(v/c),总的复杂度是超过O(VN)的。
背包问题已经研究了一个多世纪,早期的作品可追溯到1897年 数学家托比亚斯·丹齐格(Tobias Dantzig, 1884-1956)的早期作品 ,并指的是包装你最有价值或有用的物品而不会超载你的行李的常见问题。
应用
1998年的石溪布鲁克大学算法库的研究表明,在75个算法问题中,背包问题是第18个最受欢迎,第4个最需 要解决的问题(前三为后kd树,后缀树和bin包装问题)。
基础背包
题目 基本思路
空间复杂 示例程序
递归实现 程序
测试数据 总结
有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些 物品的重量总和不超过背包容量,且价值总和最大。
数学建模背包问题
![数学建模背包问题](https://img.taocdn.com/s3/m/c93223165e0e7cd184254b35eefdc8d376ee1475.png)
背包问题背包问题(Knapsack problem)是一种组合优化的NP 完全问题。
问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。
问题的名称来源于如何选择最合适的物品放置于给定背包中。
相似问题经常出现在商业、组合数学,计算复杂性理论、密码学和应用数学等领域中。
也可以将背包问题描述为决定性问题,即在总重量不超过W 的前提下,总价值是否能达到V ?它是在1978年由Merkel 和Hellman 提出的一、定义:背包问题属于组合优化问题,一般的最优化问题由目标函数和约束条件两部部分组成:我们有n 种物品,物品i 的重量为w i ,价格为p i 。
我们假定所有物品的重量和价格都是非负的。
背包所能承受的最大重量为W 。
如果限定每种物品只能选择0个或1个,则问题称为0-1背包问题。
可以用公式表示为:1max ni i i p x =∑1..,ni i i S T w x W =≤∑ {}0,1i x ∈如果限定物品i 最多只能选择b i 个,则问题称为有界背包问题。
可以用公式表示为:1max ni i i p x =∑1..,n i i i S T w xW =≤∑ {}0,1,,i i x b ∈⋅⋅⋅如果不限定每种物品的数量,则问题称为无界背包问题。
各类复杂的背包问题总可以变换为简单的0-1背包问题进行求解。
二、基本模型的建立方法1、0-1背包问题的数学模型(最基础的背包问题)分类:0-1背包问题简单分为一维背包和二维背包问题。
特点:每种物品仅有一件,可以选择放或不放。
1.1 一维背包问题问题:一个旅行者准备进行徒步旅行,为此他必须决定携带若干物品。
设有n 件物品可供他选择,编号为1,2,...,n 第i 件物品重量为i w 千克,价值为i p 元,他能携带的最大重量为w 千克。
他应该装入哪几件物品价值最大。
解:引入变量i x ,且设1,(1,2,,)0,i i x i n i ⎧==⎨⎩表示将第种物品装入包中表示不将第种物品装入包于是此问题的数学模型为:1max ni i i f p x ==∑1122.....01,1,2,...,.n n iw x w x w x W S T x i n +++≤⎧⎨==⎩或 1.2 二维背包问题一维背包问题只考虑了背包重量的限制,如果再增加背包体积的限制为V ,并设第i 件物品的体积i v ,问如何携带可使总价值最大。
背包问题状态转移方程
![背包问题状态转移方程](https://img.taocdn.com/s3/m/7b69534c6d85ec3a87c24028915f804d2b1687cb.png)
背包问题是一个经典的动态规划问题,有两个主要变种:0/1背包问题和背包问题。
以下是它们的状态转移方程:
1.0/1背包问题:
–设物品的重量数组为weights,价值数组为values,背包容量为W,物品个数为n。
–令dp[i][j]表示在前i个物品中选择一些物品放入容量为j的背包中所能获得的最大价值。
–状态转移方程:
dp[i][j]=max(dp[i−1][j],dp[i−1][j−weigℎts[i]]+values[i])
–其中,dp[i-1][j]表示不选择第i个物品,dp[i-1][j-weights[i]] + values[i]表示选择第i个物品。
2.背包问题(允许物品分割):
–设物品的重量数组为weights,价值数组为values,背包容量为W,物品个数为n。
–令dp[i][j]表示在前i个物品中选择一些物品放入容量为j的背包中所能获得的最大价值。
–状态转移方程:
dp[i][j]=max(dp[i−1][j],dp[i][j−weigℎts[i]]+values[i])
–其中,dp[i-1][j]表示不选择第i个物品,dp[i][j-weights[i]] + values[i]表示选择第i个物品。
这两个状态转移方程是背包问题中最基本的形式,它们都采用动态规划的思想,通过填表格的方式逐步求解问题。
在实际应用中,你可以根据具体问题的要求进行适当的调整。
背包问题的算法
![背包问题的算法](https://img.taocdn.com/s3/m/95146573ef06eff9aef8941ea76e58fafbb04547.png)
背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。
以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。
2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。
3. 初始化:f[0][0]=0。
4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。
时间复杂度:O(n*m),其中n为物品数量,m为背包容量。
空间复杂度:O(n*m)。
01背包问题(01knapsackproblem)
![01背包问题(01knapsackproblem)](https://img.taocdn.com/s3/m/9d5e0dfc4bfe04a1b0717fd5360cba1aa8118c72.png)
01背包问题(01knapsackproblem)0 / 1 背包问题(0 / 1 knapsack problem)背包问题(Knapsack problem)是⼀种组合优化的问题。
问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。
问题的名称来源于如何选择最合适的物品放置于给定背包中。
相似问题经常出现在商业、[组合数学],[计算复杂性理论]、[密码学]和[应⽤数学]等领域中。
也可以将背包问题描述为,即在总重量不超过W的前提下,总价值是否能达到V。
1、题⽬描述假设商店中有如下3个商品,他们的重量和价格如下:索引重量价值011500143000232000假如你是⼀个⼩偷,你有⼀个重量为4的包,每个商品只能偷⼀次,请问你怎么偷才会使得最后的价值最⼤?2、分析这种问题⼀般可以⽤动态规划很好地解决。
但是如果我不⽤动态规划,⽽是⽤搜索所有情况来解决也可以,每个商品都有偷或不偷的选项,所以n个商品就有n^2种情况,所以⽤遍历的⽅法时间复杂度为O(n^2) n为商品的数量现在我们假设B(k, w)表⽰的是前k个商品,在背包容量为w的情况下能偷的最⾼价值当现在⾯对的第k个物品重量太重时:B(k, w) = B(k-1, w),代表我在多了⼀个物品的选择的情况下,仍然和没有这件物品时的选择⼀样,所以结果也⼀样(因为我偷不了或者我不偷的情况)当第k个物品的重量我可以接受时:B(k, w) = B(k-1, w - 这件物品的重量) + 这件物品的价值代表我如果偷了这件物品,那剩下的w - 这件物品重量的空间可以容纳的最⼤价值就是在上⼀次选择时B(k-1, w - 这件物品的重量)的值。
再加上这件物品的价值就是我偷了这件物品的最⼤值。
所以,在衡量⼀个B(k, w)时,⾸先看⼀下能不能偷,能得话看⼀下偷还是不偷两个的最⼤值,就是B(k, w)的值,所以我们回到上⾯的问题,问题的解就是B(2,4)的值我们⽤⼆维数组 dp[][]来表⽰整个的过程可选商品 \ 背包容量012340号商品(1,1500)015001500150015000 ~ 1号商品(4,3000)015001500150030000 ~ 2号商品(3,2000)01500150020003500如图中加粗数字1500代表的是在有前两个商品,背包容量为2时可以偷的最⼤价值为1500图中加粗数字3000,即在有前2个商品,背包重量为4时,可以偷的最⼤价值为3000,这个数是这样算的:第⼆个商品(1号)重量为4,正好满⾜,如果偷的话所以价值为3000 + 0 = 3000如果不偷的话价值和只有1个商品,背包容量为4的价值⼀样,1500取最⼤值为3000所以问题的关键就在构建这个⼆维数组3、实现/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(n * capacity) 可以优化为capacity*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[][] dp = new int[goods][capacity + 1];// 初始化第⼀⾏,因为第⼀⾏上层没有元素了,即只有第⼀个商品时for(int j = 1; j <= capacity; j++){if(j >= w[0]) dp[0][j] = v[0];}// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 1; i < goods; i++) {for(int j = 1; j < capacity + 1; j++) {// 如果容量不够放下第i个商品if(w[i] > j) {dp[i][j] = dp[i-1][j];} else { // 如果可以放下这件商品dp[i][j] =Math.max(dp[i-1][j], v[i] + dp[i-1][j-w[i]]);}}}// System.out.println(Arrays.deepToString(dp));return dp[goods - 1][capacity];}}⽤滚动数组优化空间复杂度:因为如果我们从后往前构建每⼀⾏,那上⼀⾏保留的就可以在构建时候⽤/*** 时间复杂度:O(n * capacity) n为商品数量,capacity为包的⼤⼩* 空间复杂度:O(capacity)*/public class Main{/*** 0/1 背包问题* @param w w[i]代表i号物品的重量(从0开始)* @param v v[i]代表i号物品的价值(从0开始)* @param capacity 代表包的最⼤容量* @return 可以偷的商品的最⼤值*/public static int knapsack(int[] w, int[] v, int capacity){int goods = w.length; // 商品数int[] dp = new int[capacity + 1];// 前i个商品, 背包容量为j时偷得最⼤价值for(int i = 0; i < goods; i++) {for(int j = capacity; j > 0; j--) {// 如果能装下就更新,装不下就不更新(上⼀⾏的值)if(j - w[i] >= 0) {dp[j] = Math.max(dp[j], v[i] + dp[j - w[i]]);}}}return dp[capacity];}}。
背包问题应用场景
![背包问题应用场景](https://img.taocdn.com/s3/m/17eb4f516fdb6f1aff00bed5b9f3f90f77c64d4d.png)
背包问题应用场景
背包问题是一个经典的组合优化问题,可以在很多实际应用场景中找到应用。
以下列举了一些常见的背包问题应用场景:
1. 物品装载问题:在物流、货运、仓储管理等领域中,需要选择合适的物品装载方案,使得装载的物品总价值最大、总重量不超过背包的承载能力。
2. 旅行计划问题:在旅行规划中,需要选择一些物品或景点,使得旅行所需的总费用最小或旅行的总体体验最佳。
3. 资源分配问题:在资源分配和资源规划中,背包问题可以用来确定如何分配有限的资源(例如资金、人力、时间等),以最大化效益。
4. 项目选择问题:在项目管理中,背包问题可以帮助决策者选择适当的项目,以最大化项目的价值或利润。
5. 财富管理问题:在财富管理和投资决策中,背包问题可以用来确定如何分配资金,以最大化投资回报或降低风险。
6. 排课问题:在学校的教务管理中,背包问题可以用来制定每个学期的课程安排,以最大化学生的时间利用率和课程选择满意度。
这些只是背包问题应用的一小部分示例,实际上,背包问题可
以应用在各种需要优化决策的场景中,帮助解决资源分配、规划、调度等问题。
01背包问题的数学逻辑
![01背包问题的数学逻辑](https://img.taocdn.com/s3/m/290f79ab4bfe04a1b0717fd5360cba1aa8118cda.png)
01背包问题的数学逻辑1.引言1.1 概述01背包问题是一类经典的组合优化问题,它是数学逻辑中的一个重要问题之一。
在实际生活中,我们经常会面对资源有限的情况,而如何在有限的资源下做出最佳决策,已经成为一个重要的研究领域。
01背包问题就是在给定总容量和一组物品的情况下,选取其中的一些物品放入背包中,使得背包中物品的总价值最大化,而不超过背包的总容量。
这个问题由G. Dantzig在1957年首次提出,并且成为组合优化中的一个经典问题。
它的名字来源于背包只能放入0或1个同样特性的物品。
虽然问题看似简单,但由于问题的解空间庞大,是一个NP完全问题,因此求解过程通常使用一些近似算法。
1.2 目的本文的目的是探究01背包问题的数学逻辑,并介绍一些常用的求解方法。
通过深入研究01背包问题,我们可以更好地理解其数学模型,在实际应用中解决类似的优化问题。
具体目标包括:1. 分析01背包问题的数学模型,并介绍相关的定义和术语;2. 探讨01背包问题的求解方法,包括动态规划、贪心算法和近似算法等;3. 介绍优化问题的评价指标,包括背包的总价值、总重量和可行性等;4. 分析不同情况下的算法复杂性,讨论解决01背包问题的时间和空间复杂性;5. 举例说明01背包问题在实际生活中的应用,如旅行行李、采购决策等。
通过对01背包问题的研究,我们能够更好地理解和应用数学逻辑,提高问题求解的能力。
了解背包问题的求解方法和评价指标,对我们在实际生活中面对资源有限的情况下做出最佳决策具有重要意义。
无论是在物流管理、金融投资还是其他领域,都可以通过对01背包问题的研究,提高决策的效率和准确度。
在接下来的文章中,将会详细介绍01背包问题的数学逻辑,分析不同求解方法的优劣,并给出实际应用的例子,以便读者更好地理解和应用该问题。
2.正文2.1 01背包问题的定义和背景介绍01背包问题是运筹学中的一个经典问题,在算法和动态规划中有重要的应用。
该问题的核心是在给定的背包容量和一组物品的情况下,如何选择物品放入背包中,使得背包中的物品总价值最大化。
背包问题的数学模型
![背包问题的数学模型](https://img.taocdn.com/s3/m/4d253f2726d3240c844769eae009581b6bd9bdc2.png)
背包问题的数学模型摘要:1.背包问题的定义2.背包问题的数学模型3.背包问题的求解方法4.背包问题的应用实例正文:一、背包问题的定义背包问题是一个经典的优化问题,它的问题是给定一个背包和n 种物品,其中,背包的容量为V,第i 种物品的质量为c_i,价值为p_i,如何通过物品选择,使得装入背包中的物品总价值最大。
二、背包问题的数学模型为了更好地理解背包问题,我们可以将其建立一个数学模型。
假设有n 种物品,分别用v_i 表示第i 种物品的价值,c_i 表示第i 种物品的质量,那么背包问题的数学模型可以表示为:f(x) = max {v_1x_1 + v_2x_2 +...+ v_nx_n}s.t.c_1x_1 + c_2x_2 +...+ c_nx_n <= Vx_i >= 0, i = 1,2,...,n其中,f(x) 表示背包中物品的总价值,x_i 表示第i 种物品的数量,V 表示背包的容量,c_i 表示第i 种物品的质量,v_i 表示第i 种物品的价值。
三、背包问题的求解方法背包问题的求解方法有很多,常见的有动态规划法、回溯法、贪心算法等。
这里我们以动态规划法为例进行介绍。
动态规划法的基本思想是将问题分解为子问题,通过求解子问题,最终得到原问题的解。
对于背包问题,我们可以将问题分解为:在容量为V 的情况下,如何选择物品使得总价值最大。
然后,我们可以通过递归的方式,依次求解子问题,最终得到原问题的解。
四、背包问题的应用实例背包问题是一个非常实用的优化问题,它在现实生活中有很多应用。
例如,一个果农需要根据市场需求和成本,选择合适的水果进行装箱;一个旅行者需要根据行李箱的容量和物品的价值,选择携带的物品等。
这些都可以通过背包问题来求解。
综上所述,背包问题是一个经典的优化问题,它有着广泛的应用。
三种基本背包问题
![三种基本背包问题](https://img.taocdn.com/s3/m/3f413e51814d2b160b4e767f5acfa1c7aa008229.png)
三种基本背包问题⼀、0/1背包问题问题描述:有n件物品和容量为m的背包给出i件物品的重量以及价值求解让装⼊背包的物品重量不超过背包容量且价值最⼤。
特点:这是最简单的背包问题,特点是每个物品只有⼀件供你选择放还是不放。
如果想不通代码就填表观察过程。
输⼊:5 102 62 36 55 44 6输出:15①⼆维解法设f[i][j]表⽰前 i 件物品总重量不超过 j 的最⼤价值可得出状态转移⽅程f[i][j]=max{f[i-1][j-a[i]]+b[i], f[i-1][j]}核⼼代码int f[100][100]={0};for(int i=1;i<=num;i++){for(int j=capacity;j>=1;j--){if(weight[i]<=j){f[i][j]=max(f[i-1][j],f[i-1][j-weight[i]]+value[i]);}elsef[i][j]=f[i-1][j];}}表格:②⼀维解法设f[j]表⽰重量不超过j公⽄的最⼤价值可得出状态转移⽅程f[j]=max{f[j], f[j−a[i]]+b[i]}核⼼代码int f[1000]={0};for(int i=1;i<=num;i++){for(int j=capacity;j>=weight[i];j--){f[j]=max( f[j],f[j-weight[i]]+value[i] );}}循环的第⼆层为什么要从后往前循环因为吧,从后往前循环,每次取得状态不会和你之前取得状态重合,这样就符合01背包的要求,每种物品只取⼀次;不理解填表表格:完整代码:#include <bits/stdc++.h>using namespace std;int main(){int num,capacity; // 第⼀⾏为n值和c值,表⽰n件物品和背包容量ccin>>num>>capacity;int weight[1000];int value[1000];for(int i=1;i<=num;i++){ //每⾏有两个数据,分别表⽰第i(1≤i≤n)件物品的重量和价值。
数学中的离散优化离散问题的最优化方法与算法
![数学中的离散优化离散问题的最优化方法与算法](https://img.taocdn.com/s3/m/58df145afbd6195f312b3169a45177232f60e421.png)
数学中的离散优化离散问题的最优化方法与算法数学中的离散优化:离散问题的最优化方法与算法离散优化是数学中的一个重要分支,涉及到在给定的约束条件下,寻找离散决策变量的最优值。
离散问题的最优化方法与算法在现实生活中有着广泛的应用,例如在经济学、工程学、计算机科学等领域。
本文将介绍几种常见的离散优化方法与算法,并给出相应的实例说明。
1. 背包问题背包问题是一类经典的离散优化问题,其目标是在给定的背包容量下,选择一些物品放入背包中,使得物品的总价值最大化。
常见的背包问题包括0-1背包问题、分数背包问题等。
0-1背包问题要求每个物品要么完整地放入背包,要么完全不放入;而分数背包问题允许物品被切割后放入背包。
这类问题通常可以用动态规划算法来解决。
2. 蚁群算法蚁群算法是一种基于模拟蚂蚁觅食行为的启发式优化算法,在求解离散优化问题中具有很好的效果。
蚁群算法模拟了蚂蚁在搜索食物时的行为,通过信息素的引导和信息素挥发的调控,使蚂蚁集体找到最优解。
蚁群算法在TSP(旅行商问题)等多个领域取得了较好的实验结果。
3. 遗传算法遗传算法是一种模拟自然进化过程的优化算法,适用于求解离散或连续优化问题。
遗传算法通过模拟遗传、变异和选择等基本过程,生成新的解并逐代改进,最终得到一个或多个最优解。
遗传算法通过种群的进化,使解空间中的解逐渐趋向最优解,具有全局搜索能力。
遗传算法在图着色、子集选择等问题中有广泛应用。
4. 线性规划算法线性规划是研究线性约束条件下的最优解的数学方法。
虽然线性规划常被用于求解连续问题,但在离散优化问题中也有相应的应用。
例如,当变量的取值只能是整数时,可将线性规划问题转化为整数线性规划问题,再利用分支定界等方法求解。
5. 图论算法图论是数学中探讨图的性质和关系的重要分支,也是解决离散优化问题的有效工具。
图论中的最短路径算法(如Dijkstra算法、Bellman-Ford算法)、最小生成树算法(如Prim算法、Kruskal算法)等,都可以应用于离散优化中,如网络规划、通信路由等问题。
01背包问题及变种详解
![01背包问题及变种详解](https://img.taocdn.com/s3/m/99bc922ce2bd960590c67757.png)
P01: 01背包问题题目有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大。
基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
《背包问题详解》课件
![《背包问题详解》课件](https://img.taocdn.com/s3/m/cd2b6348b42acfc789eb172ded630b1c58ee9b64.png)
VS
约束条件
背包的容量有限,每个物品的数量和重量 、价值是已知的,目标是最大化背包中物 品的总价值。
多重背包问题的最优解法
贪心算法
按照物品单位重量的价值进行排序,优先选择单位重量价值最高的物品,直到背包满或者无法再放入更多物品。
动态规划
将问题分解为子问题,通过解决子问题的最优解来得到原问题的最优解。具体来说,对于多重背包问题,可以将 问题分解为多个一维背包问题,然后分别求解每个一维背包问题的最优解,最后取最优解中的最大值。
02
背包问题通常涉及到多个约束条 件,如物品的重量、价值、体积 等,以及一个目标函数,如背包 中物品的总价值或总重量。
背包问题的分类
根据物品能否分割,背包问题可以分为可分割问题和不可分 割问题。在可分割问题中,物品可以被切割成任意大小,而 在不可分割问题中,物品只能以完整的形式装入背包。
根据是否考虑时间因素,背包问题可以分为静态问题和动态 问题。在静态问题中,所有物品的属性和背包的容量都是固 定的,而在动态问题中,物品的属性和背包的容量可能会随 着时间变化。
完全背包问题的最优解法
最优解法通常采用贪心算法,即每次选择单位重量价值最高的物品,直到背包容量用完为止。这种方 法能够得到最优解,但并不是所有情况下都能找到最优解。
在某些情况下,贪心算法可能会错过最优解,因为它的选择是基于当前的最优选择,而不是全局的最 优选择。
完全背包问题的动态规划解法
动态规划是解决完全背包问题的另一 种方法,它通过将问题分解为更小的 子问题来求解。对于完全背包问题, 动态规划的思路是先解决子问题,再 根据子问题的解来解决原问题。
《背包问题详解》ppt 课件
目录
• 背包问题的定义与分类 • 0-1背包问题详解 • 多重背包问题详解 • 完全背包问题详解 • 变种背包问题详解
背包九讲(DD)
![背包九讲(DD)](https://img.taocdn.com/s3/m/cf9f0f8ecc22bcd126ff0c73.png)
背包问题九讲目录第一讲 01背包问题第二讲完全背包问题第三讲多重背包问题第四讲混合三种背包问题第五讲二维费用的背包问题第六讲分组的背包问题第七讲有依赖的背包问题第八讲泛化物品第九讲背包问题问法的变化附:USACO中的背包问题前言本篇文章是我(dd_engi)正在进行中的一个雄心勃勃的写作计划的一部分,这个计划的内容是写作一份较为完善的NOIP难度的动态规划总结,名为《解动态规划题的基本思考方式》。
现在你看到的是这个写作计划最先发布的一部分。
背包问题是一个经典的动态规划模型。
它既简单形象容易理解,又在某种程度上能够揭示动态规划的本质,故不少教材都把它作为动态规划部分的第一道例题,我也将它放在我的写作计划的第一部分。
读本文最重要的是思考。
因为我的语言和写作方式向来不以易于理解为长,思路也偶有跳跃的地方,后面更有需要大量思考才能理解的比较抽象的内容。
更重要的是:不大量思考,绝对不可能学好动态规划这一信息学奥赛中最精致的部分。
你现在看到的是本文的1.0正式版。
我会长期维护这份文本,把大家的意见和建议融入其中,也会不断加入我在OI学习以及将来可能的ACM-ICPC的征程中得到的新的心得。
但目前本文还没有一个固定的发布页面,想了解本文是否有更新版本发布,可以在OIBH论坛中以“背包问题九讲”为关键字搜索贴子,每次比较重大的版本更新都会在这里发贴公布。
目录第一讲 01背包问题这是最基本的背包问题,每个物品最多只能放一次。
第二讲完全背包问题第二个基本的背包问题模型,每种物品可以放无限多次。
第三讲多重背包问题每种物品有一个固定的次数上限。
第四讲混合三种背包问题将前面三种简单的问题叠加成较复杂的问题。
第五讲二维费用的背包问题一个简单的常见扩展。
第六讲分组的背包问题一种题目类型,也是一个有用的模型。
后两节的基础。
第七讲有依赖的背包问题另一种给物品的选取加上限制的方法。
第八讲泛化物品我自己关于背包问题的思考成果,有一点抽象。
背包问题的各种求解方法
![背包问题的各种求解方法](https://img.taocdn.com/s3/m/14442c523a3567ec102de2bd960590c69ec3d84c.png)
背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。
因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。
则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。
如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。
这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。
1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。
则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。
由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。
因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。
【转载】各种背包问题模板讲解
![【转载】各种背包问题模板讲解](https://img.taocdn.com/s3/m/c27b64b00129bd64783e0912a216147917117eea.png)
【转载】各种背包问题模板讲解 背包问题集合 ⼀般来说,动态规划(DP)。
都是初学者最难闯过的⼀关,⽽在这⾥详细解说动态规划的⼀种经典题型:背包问题。
这⾥介绍的背包分为以下⼏种:01背包,完全背包,多重背包,混合背包,⼆维费⽤的背包。
(以后会持续更新)【⼀:01背包】⾸先放上例题:01背包问题【题⽬描述】:⼀个旅⾏者有⼀个最多能装M公⽄的背包,现在有n件物品,他们的重量分别是W1,W2…Wn,它们的价值分别是C1,C2……Cn,求旅⾏者能够获得的最⼤总价值。
【输⼊格式】:第⼀⾏:两个整数,M,(背包容量,M<=200)和N(物品数量N<=30)第2⾄N+1⾏,每⾏两个整数,Wi,Ci,表⽰每个物品的重量和价值。
【输出格式】:仅⼀⾏,⼀个数,表⽰最⼤总价值。
【输⼊样例#1】:10 42 13 34 57 9【输出样例#1】:1201背包问题可以说是最简单的背包问题,简单之处就在:他的每⼀个物品都只有⼀个。
⾸先定义⼀个f[MAXN][MAXN]数组,⽤来记录最⼤价值。
即:f[i][v]表⽰的就是当前i件物品放⼊⼀个容量为v的背包的时候可以获得的最⼤价值。
01背包的状态转移⽅程式便是:f[i][v]=max(f[i-1][v],f[i-1][v-w[i]]+c[i])。
众所周知DP问题最重要的便是状态转移⽅程式了,那么这个状态转移⽅程式究竟是怎么来的呢??详解来啦“既然说了是“将第i件物品放⼊背包”,那么如果只考虑第i件物品的⽅式策略,那么就只和第i-1件物品有关了,如果是放第i件物品,那么问题就转化为:“前i-1件物品放⼊容量为v的背包中”,此时能够获得的最⼤价值就是f[i-1][v-w[i]],也就是第i-1件物品放⼊容量为v(原来的总容量)减去w[i](第i件物品的占容)产⽣的最优价值,再加上放通过⼊第i件物品增加的价值c[i]。
那么放⼊第i件物品产⽣的最⼤价值就是要在”放“,或者是”不放“中选择了,”不放“的话,产⽣的价值就是f[i-1] [v],”放“的话,产⽣的最⼤价值就是,f[i-1][v-w[i]]+c[i])。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:
有N件物品和一个容量为V的背包。
第i件物品的费用(即体积,下同)是w[i],价值是c[i]。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路:
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品(部分或全部)恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]+c[i]}。
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i 件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-w[i]的背包中”,此时能获得的最大价值就是f [i-1][v-w[i]]再加上通过放入第i件物品获得的价值c[i]。
注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。
所以按照这个方程递推完毕后,最终的答案并不一定是f[N][V],而是f[N][0..V]的最大值。
如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i-1][v],这样就可以保证f[N][V]就是最后的答案。
但是若将所有f[i][j]的初始值都赋为0,你会发现f[n][v]也会是最后的答案。
为什么呢?因为这样你默认了最开始f[i][j]是有意义的,只是价值为0,就看作是无物品放的背包价值都为0,所以对最终价值无影响,这样初始化后的状态表示就可以把“恰”字去掉。
♦【优化空间复杂度】
♦以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
♦先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-w[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-w[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的逆序推f[v],这样才能保证推f[v]时f[v-w[i]]保存的是状态f[i-1][v-w[i]]的值。
♦伪代码如下:
♦for i=1..N
♦for v=V..0
♦f[v]=max{f[v],f[v-w[i]]+c[i]};
♦其中f[v]=max{f[v],f[v-w[i]]+c[i]}相当于转移方程f[i][v]=max{f[i-1][v],f[i-1][v-w[i]]+c[i]},因为现在的f[v-w[i]]就相当于原来的f[i-1][v-w[i]]。
如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-w[i]]推知,与本题意不符,但它却是另一个重要的完全背包问题最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
有N种物品和一个容量为V的背包,每种物品都有无限件可用。
第i种物品的费用是w[i],价值是c[i]。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本思路:
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。
也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。
如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v 的背包的最大权值。
仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*w[i]]+k*c[i]|0<=k*w[i]<= v}。
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。
这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。
这个算法使用一维数组,先看伪代码:
for i=1..N
for v=0..V
f[v]=max{f[v],f[v-w[i]]+c[i]};
你会发现,这个伪代码与01背包问题的伪代码只有v的循环次序不同而已。
为什么这样一改就可行呢?首先想想为什么01背包问题中要按照v=V..0的逆序来循环。
这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-w[i]]递推而来。
换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-w[i]]。
而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-w[i]],所以就可以并且必须采用v= 0..V的顺序循环。
这就是这个简单的程序为何成立的道理。
这个算法也可以以另外的思路得出。
例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-w[i]]+c[i]},将这个方程用一维数组实现,便得到了上面的伪代码。
一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足w[i]<=w[j]且c[i]>=c[j],则将物品j去掉,不用考虑。
这个优化的正确性显然:任何情况下都可将价值小费用高的j换成物美价廉的i,得到至少不会更差的方案。
对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。
然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。
转化为01背包问题求解
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。
最简单的想法是,考虑到第i种物品最多选V/w[i]件,于是可以把第i种物品转化为V/w[i]件费用及价值均不变的物品,然后求解这个01背包问题。
这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。
更高效的转化方法是:把第i种物品拆成费用为w[i]*2^k、价值为c[i]*2^k的若干件物品,其中k满足w[i]*2^k<V。
这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。
这样把每种物品拆成O(log(V/w[i])+1)件物品,是一个很大的改进。
三、多重背包问题
有N种物品和一个容量为V的背包。
第i种物品最多有n[i]件可用,每件费用是w[i],价值是c[i]。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
基本算法:
这题目和完全背包问题很类似。
基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。
令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[i][v]=max{f[i-1][v-k*w[i]]+ k*c[i]|0<=k<=n[i]}。
复杂度是O(V*∑n[i])。
转化为01背包问题
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为∑n[i]的01背包问题,直接求解,复杂度仍然是O(V*∑n[i])。
但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。
仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。
另外,取超过n[i]件的策略必不能出现。
方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。
使这些系数分别为1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数(注意:这些系数已经可以组合出1~n[i]内的所有数字)。
例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。
分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。
另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。
这样就将第i种物品分成了O(logn[i])种物品,将原问题转化为了复杂度为O(V*∑logn[i])的01背包问题,是很大的改进。