高考物理试卷分类汇编物理生活中的圆周运动(及答案)及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理试卷分类汇编物理生活中的圆周运动(及答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:
(1)盘的转速ω0多大时,物体A开始滑动?
(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?
【答案】(1)
g
l
μ
(2)
3
4
mgl
kl mg
μ
μ
-
【解析】
【分析】
(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.
(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.
【详解】
若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.
(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:
μmg=mlω02,
解得:ω0=
g l μ
即当ω0=
g
l
μ
A开始滑动.
(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,
r=l+△x
解得:
3
4
mgl x
kl mg
μ
μ
-
V=
【点睛】
当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.
2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴
线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知

重力加速度g 取
若北小球运动的角速度
,求此时细线对小球的拉力大小。

【答案】
【解析】 【分析】
根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。

【详解】
若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:
此时小球做圆周运动的半径为:
解得小球运动的角速度大小
为:代入数据得:
若小球运动的角速度为:
小球对圆锥体有压力,设此时细线的拉力大小为F ,小球受圆锥面的支持力为,则
水平方向上有: 竖直方向上有:
联立方程求得:
【点睛】
解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。

3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,
E 点是半径为0.32R m =的竖直圆轨道的最高点,D
F 部分水平,末端F 点与其右侧的水
平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取2
10/g m s =.求:
(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;
(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.
【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()
221521k k W k +-=+
【解析】
(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20
A A v m g m R
=①,
设碰撞前A 的速度为1v .由机械能守恒定律得:220111222
A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;
设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得
()122A A m v m m v =+④;
解得:211
41/13
A A
B m v v m s m m =
=⨯=++⑤;
由能量转化与守恒定律可得:()22
121122
A A
B Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,
由动能定理得:()()221
2
A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214
/1A A B m v v m s m m k
=
=++⑩;
(i )如果A 、B 能从传送带右侧离开,必须满足()()2
21
2
A B A B m m v m m gL μ+>+,
解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,
(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()22211
22
A B A B W m m v m m v =
+-+,
解得()
2215
21k k W k +-=
+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.
4.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:
(1)滑块滑到B 点时对半圆轨道的压力大小;
(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】
(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】
(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间
01v t s a =
= 运动的距离:21
1.52
x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2
v F mg m R
-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.
(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2D
v R
解得v D 5; 由B 到D ,由动能定理:
22
11222
B D mv mv mg R =+⋅
解得v B=5m/s>v0
可见,滑块从左端到右端做减速运动,加速度为a=3m/s2,根据v B2=v A2-2aL
解得v A=7m/s
5.如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相接,导轨半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C点.试求:
(1)弹簧开始时的弹性势能.
(2)物体从B点运动至C点克服阻力做的功.
(3)物体离开C点后落回水平面时的速度大小.
【答案】(1)3mgR (2)0.5mgR (3)5
2 mgR
【解析】
试题分析:(1)物块到达B点瞬间,根据向心力公式有:
解得:
弹簧对物块的弹力做的功等于物块获得的动能,所以有
(2)物块恰能到达C点,重力提供向心力,根据向心力公式有:
所以:
物块从B运动到C,根据动能定理有:
解得:
(3)从C点落回水平面,机械能守恒,则:
考点:本题考查向心力,动能定理,机械能守恒定律
点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.
6.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L,重力加速度g,小球半径不计,质量为m,电荷q.不加电场时,小球在最低点绳的拉力是球重的9
倍。

(1)求小球在最低点时的速度大小;
(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。

【答案】(1)18v gL =2)335mg mg
E q q
≤≤ 【解析】 【详解】
(1)在最低点,由向心力公式得:
2
1mv F mg L
-= 解得:18v gL =(2)果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,说明小球能通过与圆心等的水平面,但不能通过最高点。

则小球不能通过最高点, 由动能定理得:
2212112222
mg L Eq L mv mv ⋅+=
- 且
2
2
v Eq mg m L
+=
则35mg
E q
=
也不可以低于O 水平面
2
12
mv mgL EqL += 则3mg
E q
=
所以电场强度可能的大小范围为335mg mg
E q q
≤≤
7.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:
(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】
试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2
B M r Mv = 解得:v B =2m/s
(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma
滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2
得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有
221122
C F Mv MgR Mv =+ 得v F =2m/s
在F 处由牛顿第二定律2
g F
N v M F M R
+=
得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律
【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.
8.如图所示,P 为弹射器,PA 、BC 为光滑水平面分别与传送带AB 水平相连,CD 为光滑半圆轨道,其半径R =2m ,传送带AB 长为L =6m ,并沿逆时针方向匀速转动.现有一质量m =1kg 的物体(可视为质点)由弹射器P 弹出后滑向传送带经BC 紧贴圆弧面到达D 点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为μ=0.2.取
g =10m/s 2,现要使物体刚好能经过D 点,求: (1)物体到达D 点速度大小;
(2)则弹射器初始时具有的弹性势能至少为多少.
【答案】(1)25m/s ;(2)62J 【解析】 【分析】 【详解】
(1)由题知,物体刚好能经过D 点,则有:
2D
v mg m R
=
解得:25D v gR =
=m/s
(2)物体从弹射到D 点,由动能定理得:
2
1202
D W mgL mgR mv μ--=-
p W E =
解得:p E =62J
9.如图所示,半径为r 的圆筒绕竖直中心轴转动,小橡皮块紧贴在圆筒内壁上,它与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?(设最大静摩擦力等于滑动摩擦力)
g r
μ【解析】
要使A 不下落,则小物块在竖直方向上受力平衡,有f =mg
当摩擦力正好等于最大静摩擦力时,圆筒转动的角速度ω取最小值,筒壁对物体的支持力
提供向心力,根据向心力公式,得2N m r ω= 而f =μN
解得圆筒转动的角速度最小值为g r
ωμ=
综上所述本题答案是:
g r
μ 点睛:解本题要明确物块刚好不下滑的条件是什么,然后结合受力求解角速度的大小.
10.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面
CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求
(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;
(2)在(1)问的情况下,求小弹珠落点到C 点的距离?
(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?
【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】
(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2A
v r
从A 点到B 点由机械能守恒律有:mg×2R =
221122
B A mv mv - 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2
B
v R
联立以上几式可得:F N =5.5N ,v B 44.1m/s ,
(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t
竖直方向:y =H =212
gt 又:x =y 解得:v′B =4m/s
而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =2
12
gt ,得t =0.8s
则水平方向:x =v B t
故小球落地点距c 点的距离:s 解得:s =6.2m
(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s
则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =2
12
gt ' 又:x'=
2
H 解得:d =0.8m。

相关文档
最新文档