2020年四川省遂宁市中考数学试卷及答案解析
2020年四川省遂宁市中考数学试卷
2020年~2021年最新四川省遂宁市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)1.(4分)(2019•遂宁)|2|--的值为( ) A .2B .2-C .2±D .22.(4分)(2019•遂宁)下列等式成立的是( ) A .2222+=B .23246()a b a b =C .2(2)2a a a a +÷=D .22523x y x y -=3.(4分)(2019•遂宁)如图为正方体的一种平面展开图,各面都标有数字,则数字为2-的面与其对面上的数字 之积是( )A .12-B .0C .8-D .10-4.(4分)(2019•遂宁)某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( ) A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见5.(4分)(2019•遂宁)已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .1±C .1D .1-6.(4分)(2019•遂宁)如图,ABC ∆内接于O ,若45A ∠=︒,O 的半径4r =,则阴影部分的面积为( )A .48π-B .2πC .4πD .88π-7.(4分)(2019•遂宁)如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .148.(4分)(2019•遂宁)关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是( )A .4k >-B .4k <C .4k >-且4k ≠D .4k <且4k ≠-9.(4分)(2019•遂宁)二次函数2y x ax b =-+的图象如图所示,对称轴为直线2x =,下列结论不正确的是( )A .4a =B .当4b =-时,顶点的坐标为(2,8)-C .当1x =-时,5b >-D .当3x >时,y 随x 的增大而增大10.(4分)(2019•遂宁)如图,四边形ABCD 是边长为1的正方形,BPC ∆是等边三角形,连接DP 并延长交CB 的延长线于点H ,连接BD 交PC 于点Q ,下列结论:①135BPD ∠=︒;②BDP HDB ∆∆∽;③:1:2DQ BQ =;④31BDP S ∆-=. 其中正确的有( )A .①②③B .②③④C .①③④D .①②④二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)(2019•遂宁)2018年10月24日,我国又一项世界级工程--港珠澳大桥正式建成通车,它全长55000米,用科学记数法表示为 .12.(4分)(2019•遂宁)若关于x 的方程220x x k -+=有两个不相等的实数根,则k 的取值范围为 .13.(4分)(2019•遂宁)某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为 分.14.(4分)(2019•遂宁)阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数叫做虚数单位,把形如(a bi a +,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=; 22(2)4444134i i i i i +=++=+-=+ 根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-= .15.(4分)(2019•遂宁)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将OCG ∆沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数12y x=经过点B .二次函数2(0)y ax bx c a =++≠的图象经过(0,3)C 、G 、A 三点,则该二次函数的解析式为 .(填一般式)三、计算或解答题(本大题共10小题,满分90分)16.(7分)(2019•遂宁)计算:201920(1)(2)(3.14)4cos30|212|π--+-+--︒+- 17.(7分)(2019•遂宁)解不等式组:3561162x x x x <+⎧⎪+-⎨⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.18.(7分)(2019•遂宁)先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -++=.19.(9分)(2019•遂宁)如图,在四边形ABCD 中,//AD BC ,延长BC 到E ,使CE BC =,连接AE 交CD 于点F ,点F 是CD 的中点.求证: (1)ADF ECF ∆≅∆.(2)四边形ABCD 是平行四边形.20.(9分)(2019•遂宁)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A 至B 共有30级阶梯,平均每级阶梯高30cm ,斜坡AB 的坡度1:1i =;加固后,坝顶宽度增加2米,斜坡EF 的坡度5i =阶梯,结果保留根号)21.(9分)(2019•遂宁)仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价-进价)22.(10分)(2019•遂宁)我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号活动类型A经典诵读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.23.(10分)(2019•遂宁)如图,一次函数3y x =-的图象与反比例函数(0)ky k x==≠的图象交于点A 与点(,4)B a -. (1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点重合),连接OP ,且过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若POC ∆的面积为3,求出点P 的坐标.24.(10分)(2019•遂宁)如图,ABC ∆内接于O ,直径AD 交BC 于点E ,延长AD 至点F ,使2DF OD =,连接FC 并延长交过点A 的切线于点G ,且满足//AG BC ,连接OC ,若1cos 3BAC ∠=,6BC =.(1)求证:COD BAC ∠=∠; (2)求O 的半径OC ; (3)求证:CF 是O 的切线.25.(12分)(2019•遂宁)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B在该图象上,OB交其对称轴l于点M,点M、N关于点P对称,连接BN、ON.(1)求该二次函数的关系式.(2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:①连接OP,当12OP MN=时,请判断NOB∆的形状,并求出此时点B的坐标.②求证:BNM ONM∠=∠.2019年四川省遂宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)1.(4分)|-的值为( )A B .C .D .2【考点】22:算术平方根;28:实数的性质;21:平方根 【分析】根据实数的绝对值的意义解答即可.【解答】解:|-=. 故选:B .2.(4分)下列等式成立的是( )A .2=B .23246()a b a b =C .2(2)2a a a a +÷=D .22523x y x y -=【考点】35:合并同类项;78:二次根式的加减法;4H :整式的除法;47:幂的乘方与积的乘方【分析】直接利用整式的除法运算法则以及积的乘方运算法则、合并同类项法则、二次根式的加减运算法则分别化简得出答案.【解答】解:A 、2+B 、23246()a b a b =,正确;C 、2(2)21a a a a +÷=+,故此选项错误;D 、故222523x y x y x y -=,此选项错误;故选:B .3.(4分)如图为正方体的一种平面展开图,各面都标有数字,则数字为2-的面与其对面上的数字 之积是( )A .12-B .0C .8-D .10-【考点】8I :专题:正方体相对两个面上的文字【分析】根据正方体的平面展开图的特征知,其相对面的两个正方形之间一定相隔一个正方形,所以数字为2-的面的对面上的数字是6,其积为12-.【解答】解:数字为2-的面的对面上的数字是6,其积为2612-⨯=-. 故选:A .4.(4分)某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( ) A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见【考点】3V :总体、个体、样本、样本容量【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见. 故选:C .5.(4分)已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .1±C .1D .1-【考点】3A :一元二次方程的解【分析】直接把0x =代入进而方程,再结合10a -≠,进而得出答案.【解答】解:关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =, 210a ∴-=,10a -≠,则a 的值为:1a =-. 故选:D .6.(4分)如图,ABC ∆内接于O ,若45A ∠=︒,O 的半径4r =,则阴影部分的面积为( )A .48π-B .2πC .4πD .88π-【考点】MO :扇形面积的计算;MA :三角形的外接圆与外心【分析】根据圆周角定理得到290BOC A ∠=∠=︒,根据扇形的面积和三角形的面积公式即可得到结论.【解答】解:45A ∠=︒, 290BOC A ∴∠=∠=︒,∴阴影部分的面积2904144483602BOCBOC S S ππ∆⋅⨯=-=-⨯⨯=-扇形,故选:A .7.(4分)如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .14【考点】5L :平行四边形的性质;KG :线段垂直平分线的性质【分析】先判断出EO 是BD 的中垂线,得出BE ED =,从而可得出ABE ∆的周长AB AD =+,再由平行四边形的周长为24,即可得出答案. 【解答】解:四边形ABCD 是平行四边形,OB OD ∴=,AB CD =,AD BC =,平行四边形的周长为28,14AB AD ∴+=OE BD ⊥,OE ∴是线段BD 的中垂线,BE ED ∴=,ABE ∴∆的周长14AB BE AE AB AD =++=+=,故选:D .8.(4分)关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是( ) A .4k >-B .4k <C .4k >-且4k ≠D .4k <且4k ≠-【考点】2B :分式方程的解;6C :解一元一次不等式【分析】分式方程去分母转化为整式方程,求出整式的方程的解得到x 的值,根据分式方程解是正数,即可确定出k 的范围.【解答】解:分式方程去分母得:(24)2k x x --=, 解得:44k x +=, 根据题意得:404k +>,且424k +≠, 解得:4k >-,且4k ≠. 故选:C .9.(4分)二次函数2y x ax b =-+的图象如图所示,对称轴为直线2x =,下列结论不正确的是( )A .4a =B .当4b =-时,顶点的坐标为(2,8)-C .当1x =-时,5b >-D .当3x >时,y 随x 的增大而增大【考点】3H :二次函数的性质;2H :二次函数的图象【分析】根据二次函数的图象和性质依次对各选项进行判断即可. 【解答】解:二次函数2y x ax b =-+∴对称轴为直线22ax == 4a ∴=,故A 选项正确;当4b =-时,2244(2)8y x x x =--=--∴顶点的坐标为(2,8)-,故B 选项正确;当1x =-时,由图象知此时0y < 即140b ++<5b ∴<-,故C 选项不正确;对称轴为直线2x =且图象开口向上∴当3x >时,y 随x 的增大而增大,故D 选项正确;故选:C .10.(4分)如图,四边形ABCD 是边长为1的正方形,BPC ∆是等边三角形,连接DP 并延长交CB 的延长线于点H ,连接BD 交PC 于点Q ,下列结论: ①135BPD ∠=︒;②BDP HDB ∆∆∽;③:1:2DQ BQ =;④31BDP S ∆-=. 其中正确的有( )A .①②③B .②③④C .①③④D .①②④【考点】KK :等边三角形的性质;LE :正方形的性质;9S :相似三角形的判定与性质 【分析】由等边三角形及正方形的性质求出75CPD CDP ∠=∠=︒、60PCB CPB ∠=∠=︒,从而判断①;证135DBP DPB ∠=∠=︒可判断②;作QE CD ⊥,设QE DE x ==,则2QD x =,22CQ QE x ==,3CE x =,由CE DE CD +=求出x ,从而求得DQ 、BQ 的长,据此可判断③,证62DP DQ -==,根据1sin 2BDP S BD PD BDP ∆=∠求解可判断④. 【解答】解:PBC ∆是等边三角形,四边形ABCD 是正方形, 60PCB CPB ∴∠=∠=︒,30PCD ∠=︒,BC PC CD ==, 75CPD CDP ∴∠=∠=︒,则135BPD BPC CPD ∠=∠+∠=︒,故①正确; 45CBD CDB ∠=∠=︒, 135DBP DPB ∴∠=∠=︒,又PDB BDH ∠=∠,BDP HDB ∴∆∆∽,故②正确;如图,过点Q 作QE CD ⊥于E ,设QE DE x ==,则2QD x =,22CQ QE x ==, 3CE x ∴=,由CE DE CD +=知31x x +=, 解得31x -=, 622QD x -∴=, 2BD =623262BQ BD DQ --∴=-=, 则62326:1:2DQ BQ --=≠,故③错误; 75CDP ∠=︒,45CDQ ∠=︒,30PDQ ∴∠=︒,又75CPD ∠=︒, 75DPQ DQP ∴∠=∠=︒,DP DQ ∴==111sin 222BDP S BD PD BDP ∆∴=∠=,故④正确; 故选:D .二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)2018年10月24日,我国又一项世界级工程--港珠澳大桥正式建成通车,它全长55000米,用科学记数法表示为 45.510⨯ . 【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值是易错点,由于55000有5位,所以可以确定514n =-=. 【解答】解:455000 5.510=⨯, 故答案为45.510⨯.12.(4分)若关于x 的方程220x x k -+=有两个不相等的实数根,则k 的取值范围为 1k < .【考点】AA :根的判别式【分析】利用根的判别式进行计算,令△0>即可得到关于k 的不等式,解答即可. 【解答】解:关于x 的方程220x x k -+=有两个不相等的实数根,∴△0>,即440k ->, 1k <.故答案为:1k <.13.(4分)某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为 88.8 分. 【考点】2W :加权平均数【分析】根据加权平均数的计算方法求值即可. 【解答】解:由题意,则该名教师的综合成绩为: 9240%8540%9020%⨯+⨯+⨯ 36.83418=++ 88.8=故答案为:88.814.(4分)阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数叫做虚数单位,把形如(a bi a +,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=; 22(2)4444134i i i i i +=++=+-=+ 根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-= 7i - . 【考点】2C :实数的运算【分析】直接利用完全平方公式以及多项式乘法分别化简得出答案. 【解答】解:222(12)(2)(2)24244i i i i i i i i +-+-=-+-++- 26i i =-- 61i =-+7i =-.故答案为:7i -.15.(4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将OCG ∆沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数12y x=经过点B .二次函数2(0)y ax bx c a =++≠的图象经过(0,3)C 、G 、A 三点,则该二次函数的解析式为 2111324y x x =-+ .(填一般式)【考点】3H :二次函数的性质;LB :矩形的性质;5H :二次函数图象上点的坐标特征;8H :待定系数法求二次函数解析式;9H :二次函数的三种形式;6G :反比例函数图象上点的坐标特征;PB :翻折变换(折叠问题) 【分析】点(0,3)C ,反比例函数12y x=经过点B ,则点(4,3)B ,由勾股定理得:22(4)4x x -=+,故点3(2G ,0),将点C 、G 、A 坐标代入二次函数表达式,即可求解.【解答】解:点(0,3)C ,反比例函数12y x=经过点B ,则点(4,3)B , 则3OC =,4OA =, 5AC ∴=,设OG PG x ==,则4GA x =-,532PA AC CP AC OC =-=-=-=, 由勾股定理得:22(4)4x x -=+, 解得:32x =,故点3(2G ,0), 将点C 、G 、A 坐标代入二次函数表达式得:3930421440c a b c a b c =⎧⎪⎪++=⎨⎪++=⎪⎩,解得:121143a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,故答案为:2111324y x x =-+. 三、计算或解答题(本大题共10小题,满分90分)16.(7分)计算:201920(1)(2)(3.14)4cos30|2π--+-+--︒+【考点】5T :特殊角的三角函数值;6E :零指数幂;2C :实数的运算;6F :负整数指数幂【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式111424=-++-+11124=-++- 74=-.17.(7分)解不等式组:3561162x x x x <+⎧⎪+-⎨⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.【考点】CB :解一元一次不等式组;CC :一元一次不等式组的整数解;4C :在数轴上表示不等式的解集【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:3561162x xx x<+⎧⎪⎨+-⎪⎩①②解不等式①,3x>-,解不等式②,2x,32x∴-<,解集在数轴上表示如下:x∴的整数解为2-,1-,0,1,2.18.(7分)先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.【考点】23:非负数的性质:算术平方根;1F:非负数的性质:偶次方;6D:分式的化简求值【分析】先化简分式,然后将a、b的值代入计算即可.【解答】解:原式2()2()()()a b aa b a b a a b a b-=-+--+12a b a b=-++1a b=-+,a,b满足2(2)10a b-++=,20a∴-=,10b+=,2a=,1b=-,原式1121=-=--.19.(9分)如图,在四边形ABCD中,//AD BC,延长BC到E,使CE BC=,连接AE交CD于点F,点F是CD的中点.求证:(1)ADF ECF∆≅∆.(2)四边形ABCD是平行四边形.【考点】KD:全等三角形的判定与性质;7L:平行四边形的判定与性质【分析】(1)根据平行线的性质得到DAF E∠=∠,根据线段中点的定义得到DF CF=,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD EC=,等量代换得到AD BC=,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)//AD BC,DAF E∴∠=∠,点F是CD的中点,DF CF∴=,在ADF∆与ECF∆中,DAF EAFD EFCDF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADF ECF AAS∴∆≅∆;(2)ADF ECF∆≅∆,AD EC∴=,CE BC=,AD BC∴=,//AD BC,∴四边形ABCD是平行四边形.20.(9分)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度1:1i=;加固后,坝顶宽度增加2米,斜坡EF 的坡度5i=留根号)【考点】9T :解直角三角形的应用-坡度坡角问题【分析】过A 作AH BC ⊥于H ,过E 作EH BC ⊥于G ,于是得到四边形EGHA 是矩形,求得EG AH =,2GH AE ==,得到92AH BH ==,求得924BG BH HG -=-=,得到910FG =,根据梯形的面积公式求得梯形ABFE 的面积乘以大坝的长度即可得到结论. 【解答】解:过A 作AH BC ⊥于H ,过E 作EH BC ⊥于G , 则四边形EGHA 是矩形, EG AH ∴=,2GH AE ==, 30309009AB cm =⨯==米,斜坡AB 的坡度1:1i =, 922AH BH ∴==, 924BG BH HG -∴=-=, 斜坡EF 的坡度1:5i =, 910FG ∴=, 910924BF FG BG -∴=-=-, 9109249281581362122ABFES ⎛⎫--+∴=+-⨯= ⎪ ⎪⎝⎭梯形, ∴共需土石为8158136220050(81581362)-+⨯=-+立方米.21.(9分)仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价-进价)【考点】9C:一元一次不等式的应用;7B:分式方程的应用【分析】(1)设第一批仙桃每件进价是x元,则第二批每件进价是(5)x+元,再根据等量关系:第二批仙桃所购件数是第一批的32倍,列方程解答;(2)设剩余的仙桃每件售价y元,由利润=售价-进价,根据第二批的销售利润不低于440元,可列不等式求解.【解答】解:(1)设第一批仙桃每件进价x元,则24003370025x x⨯=+,解得180x=.经检验,180x=是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.则:3700370022580%225(180%)0.13700440 18051805y⨯⨯+⨯⨯-⨯-++,解得169 y.答:剩余的仙桃每件售价至少打7折.22.(10分)我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了200名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.【考点】5X:列表法与树W:加权平均数;VC:条形统计图;6V:用样本估计总体;2状图法;VB:扇形统计图【分析】(1)由A类型人数及其所占百分比可得总人数;(2)总人数乘以D的百分比求得其人数,再根据各类型人数之和等于总人数求得B的人数,据此可补全图形;(3)用360︒乘以B类型人数所占比例;(4)总人数乘以前三项人数之和所占比例即可得;(5)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与挑选的两位学生恰好是一男一女的情况,再利用概率公式求解即可求得答案【解答】解:(1)此次调查的总人数为4020%200÷=(人),故答案为:200;(2)D类型人数为20025%50⨯=(人),-+++=(人),B类型人数为200(40305020)60补全图形如下:(3)“数学兴趣与培优”所在扇形的圆心角的度数为60360108200︒⨯=︒, 故答案为:108︒;(4)估计该校喜欢A 、B 、C 三类活动的学生共有40603020001300200++⨯=(人);(5)画树状图如下:,由树状图知,共有12种等可能结果,其中一男一女的有12种结果,∴刚好一男一女参加决赛的概率123205=. 23.(10分)如图,一次函数3y x =-的图象与反比例函数(0)ky k x==≠的图象交于点A 与点(,4)B a -.(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点重合),连接OP ,且过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若POC ∆的面积为3,求出点P 的坐标.【考点】8G :反比例函数与一次函数的交点问题【分析】(1)先求出点B 的坐标,然后利用待定系数法将B 代入反比例函数解析式中即可求出其表达式;(2)设点P 的坐标为(m ,4)(0)m m>,用m 表示出POC ∆的面积,从而列出关于m 的方程,解方程即可.【解答】解:(1)将(,4)B a -代入一次函数3y x =-中得:1a =- (1,4)B ∴--将(1,4)B --代入反比例函数(0)ky k x==≠中得:4k =∴反比例函数的表达式为4y x=; (2)如图:设点P 的坐标为(m ,4)(0)m m>,则(,3)C m m - 4|(3)|PC m m∴=--,点O 到直线PC 的距离为m POC ∴∆的面积14|(3)|32m m m=⨯--=解得:5m =或2-或1或2 点P 不与点A 重合,且(4,1)A 4m ∴≠又0m > 5m ∴=或1或2∴点P 的坐标为4(5,)5或(1,4)或(2,2).24.(10分)如图,ABC ∆内接于O ,直径AD 交BC 于点E ,延长AD 至点F ,使2DF OD =,连接FC 并延长交过点A 的切线于点G ,且满足//AG BC ,连接 OC ,若1cos 3BAC ∠=,6BC =.(1)求证:COD BAC ∠=∠;(2)求O 的半径OC ; (3)求证:CF 是O 的切线.【考点】5M :圆周角定理;ME :切线的判定与性质;7T :解直角三角形【分析】(1)根据切线的性质得到90GAF ∠=︒,根据平行线的性质得到AE BC ⊥,根据圆周角定理即可得到结论;(2)设OE x =,3OC x =,得到3CE =,根据勾股定理即可得到结论; (3)由2DF OD =,得到33OF OD OC ==,求得13OE OC OC OF ==,推出COE FOE ∆∆∽,根据相似三角形的性质得到90OCF DEC ∠=∠=︒,于是得到CF 是O 的切线. 【解答】解:(1)AG 是O 的切线,AD 是O 的直径,90GAF ∴∠=︒, //AG BC , AE BC ∴⊥, CE BE ∴=, 2BAC EAC ∴∠=∠, 2COE CAE ∠=∠, COD BAC ∴∠=∠;(2)COD BAC ∠=∠, 1cos cos 3OE BAC COE OC ∴∠=∠==, ∴设OE x =,3OC x =,6BC =, 3CE ∴=, CE AD ⊥,222OE CE OC ∴+=, 22239x x ∴+=,98x ∴=(负值舍去), 2738OC x ∴==, O ∴的半径OC 为278; (3)2DF OD =,33OF OD OC ∴==,∴13OE OC OC OF ==, COE FOC ∠=∠, COE FOE ∴∆∆∽, 90OCF DEC ∴∠=∠=︒, CF ∴是O 的切线.25.(12分)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON .(1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题: ①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.【考点】HF :二次函数综合题【分析】(1)由于已知二次函数顶点坐标,故可设顶点式,再把点A 代入求a 即求得二次函数关系式.(2)设点B 横坐标为b ,用b 表示直线OB 的k 值即得到直线OB 解析式,把3x =代入即用b 表示点M 坐标.根据M 、N 关于点P 对称,求得12MP NP MN ==,且能用b 表示点N 坐标.①由12OP MN =,可列得关于b 的方程,求解即得到点B 、N 坐标.求2OB 、2ON 、2BN 的值得到222OB ON BN +=,判断NOB ∆是等腰直角三角形.②有点B 、N 坐标求直线BN 解析式(含)b ,令0y =求得直线BN 与x 轴交点D 的坐标,发现C 为OD 中点即直线NC 垂直平分OD ,根据垂直平分线性质得ND NO =,由等腰三角形三线合一得BNM ONM ∠=∠,得证.【解答】解:(1)二次函数顶点为(3,3)P∴设顶点式2(3)3y a x =-+二次函数图象过点(6,0)A 2(63)30a ∴-+=,解得:13a =-∴二次函数的关系式为2211(3)3233y x x x =--+=-+(2)设(B b ,212)(3)3b b b -+>∴直线OB 解析式为:1(2)3y b x =-+OB 交对称轴l 于点M∴当3M x =时,1(2)363M y b b =-+⨯=-+(3,6)M b ∴-+点M 、N 关于点P 对称 3(6)3NP MP b b ∴==--+=-, 33N y b b ∴=+-=,即(3,)N b①12OP MN =OP MP ∴=∴3b =-解得:3b =+22112(32(3333b b ∴-+=-⨯++⨯+=-(3B ∴+,3)-,(3,3N +222(332)(3)36182OB ∴=++-=+,2223(332)36182ON =++=+,222(3323)(3332)72362BN =+-+---=+OB ON ∴=,222OB ON BN +=NOB ∴∆是等腰直角三角形,此时点B 坐标为(332+,3)-.②证明:如图,设直线BN 与x 轴交于点D 21(,2)3B b b b -+、(3,)N b设直线BN 解析式为y kx d =+∴21233kb d b b k d b⎧+=-+⎪⎨⎪+=⎩ 解得:132k b d b ⎧=-⎪⎨⎪=⎩∴直线1:23BN y bx b =-+当0y =时,1203bx b -+=,解得:6x =(6,0)D ∴(3,0)C ,NC x ⊥轴 NC ∴垂直平分OD ND NO ∴= BNM ONM ∴∠=∠。
2020年四川省遂宁市中考数学试卷附答案
)
D. 正五边形
5. 函数 y= 中,自变量 x 的取值范围是( )
A. x>-2 且 x≠1 B. x≥2 且 x≠1
C. x≥-2 且 x≠1
D. x≠1
6. 关于 x 的分式方程 - =1 有增根,则 m 的值( )
A. m=2
B. m=1
C. m=3
D. m=-3
7. 如图,在平行四边形 ABCD 中,∠ABC 的平分线交 AC 于点 E,交 AD 于点 F,交 CD
A. 5 个
B. 4 个
C. 3 个
二、填空题(本大题共 5 小题,共 20.0 分)
D. 2 个
11. 下列各数 3.1415926, ,1.212212221…, ,2-π,-2020, 中,无理数的个数有
______个. 12. 一列数 4、5、4、6、x、5、7、3 中,其中众数是 4,则 x 的值是______.
的延长线于点 G,若 AF=2FD,则 的值为( )
A.
B.
C.
D.
8. 二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴
为直线 x=-1,下列结论不正确的是( )
A. b2>4ac B. abc>0 C. a-c<0 D. am2+bm≥a-b(m 为任意实数)
第 1 页,共 20 页
20. 新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学 习环境,准备到一家植物种植基地购买 A、B 两种花苗.据了解,购买 A 种花苗 3 盆,B 种花苗 5 盆,则需 210 元;购买 A 种花苗 4 盆,B 种花苗 10 盆,则需 380 元. (1)求 A、B 两种花苗的单价分别是多少元? (2)经九年级一班班委会商定,决定购买 A、B 两种花苗共 12 盆进行搭配装扮教 室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆 B 种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买 至少准备多少钱?最多准备多少钱?
2020年四川遂宁中考数学试题及答案
2020年四川遂宁中考数学试题及答案一.选择题(共10小题)1.﹣5的相反数是()A.5 B.﹣5 C.D.答案:A.2.已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×107答案:B.3.下列计算正确的是()A.7ab﹣5a=2b B.(a+)2=a2+C.(﹣3a2b)2=6a4b2D.3a2b÷b=3a2答案:D.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形答案:C.5.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x>﹣2且x≠1 D.x≥﹣2且x≠1 答案:D.6.关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣3答案:D.7.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.答案:C.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是()A.b2>4acB.abc>0C.a﹣c<0D.am2+bm≥a﹣b(m为任意实数)答案:C.9.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E,若CD=,则图中阴影部分面积为()A.4﹣B.2﹣C.2﹣πD.1﹣答案:B.10.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个答案:B.二.填空题(共5小题)11.下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有3个.答案:3.12.一列数4、5、4、6、x、5、7、3中,其中众数是4,则x的值是4.答案:4.13.已知一个正多边形的内角和为1440°,则它的一个外角的度数为36度.答案:36.14.若关于x的不等式组有且只有三个整数解,则m的取值范围是1<m≤4.答案:1<m≤4.15.如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若+++…+=.(n为正整数),则n的值为4039.答案:4039.三.解答题(共10小题)16.计算:﹣2sin30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.解:原式=2﹣2×﹣(﹣1)+4﹣1=2﹣1﹣+1+4﹣1=+3.17.先化简,(﹣x﹣2)÷,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值.解:原式=[﹣(x+2)]•=(﹣)•=•=﹣•=﹣(x﹣3)=﹣x+3,∵x≠±2,∴可取x=1,则原式=﹣1+3=2.18.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.证明:(1)∵AF∥BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴△BDE≌△FAE(AAS);(2)∵△BDE≌△FAE,∴AF=BD,∵D是线段BC的中点,∴BD=CD,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵AB=AC,∴AD⊥BC,∴∠ADC=90°,∴四边形ADCF为矩形.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)解:过点E、F分别作EM⊥AB,FN⊥AB,垂足分别为M、N,由题意得,EC=20,∠AEM=67°,∠AFN=40°,CB=DB=EM=FN,AB=60,∴AM=AB﹣MB=60﹣20=40,在Rt△AEM中,∵tan∠AEM=,∴EM==≈16.9,在Rt△AFN中,∵tan∠AFN=,∴AN=tan40°×16.9≈14.2,∴FD=NB=AB﹣AN=60﹣14.2=45.8,答:2号楼的高度约为45.8米.20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?解:(1)设A、B两种花苗的单价分别是x元和y元,则,解得,答:A、B两种花苗的单价分别是20元和30元;(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),∵1<0.故w有最大值,当x=5时,w的最小值为290,当x=0时,w的最小值为240,故本次购买至少准备240元,最多准备290元.21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∴a2=﹣1,b2=﹣4,c2=﹣3,∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∴,解得:,∴(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3))=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有600人.(2)喜欢C种口味粽子的人数所占圆心角为72度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有2400人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有60人;(2)喜欢B种口味粽子的人数为600×10%=60(人),喜欢C种口味粽子的人数为600﹣180﹣60﹣240=120(人),所以喜欢C种口味粽子的人数所占圆心角的度数为360°×=72°;补全条形统计图为:(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;答案600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率==.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求△DEC的面积.解:∵点A的坐标为(0,2),点B的坐标为(1,0),∴OA=2,OB=1,作DM⊥y轴于M,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠OAB+∠DAM=90°,∵∠OAB+∠ABO=90°,∴∠DAM=∠ABO,在△AOB和△DMA中,∴△AOB≌△DMA(AAS),∴AM=OB=1,DM=OA=2,∴D(2,3),∵双曲线y═(k≠0)经过D点,∴k=2×3=6,∴双曲线为y=,设直线DE的解析式为y=mx+n,把B(1,0),D(2,3)代入得,解得,∴直线DE的解析式为y=3x﹣3;(2)连接AC,交BD于N,∵四边形ABCD是正方形,∴BD垂直平分AC,AC=BD,解得或,∴E(﹣1,﹣6),∵B(1,0),D(2,3),∴DE==3,DB==,∴CN=BD=,∴S△DEC=DE•CN=×=.24.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线.(2)求证:=.(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.(1)证明:连接OE,OP,∵PE⊥AB,点Q为弦EP的中点,∴AB垂直平分EP,∴PB=BE,∵OE=OP,OB=OB,∴△BEO≌△BPO(SSS),∴∠BEO=∠BPO,∵BP为⊙O的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)解:∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴=.(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB=∠BEO=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═=,∵AC=15,∴AG=9,∴CG==12,∵△ACE≌△AQE,∴AQ=AC=15,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12﹣HQ)2+62,解得:HQ=,∴CH=HQ=,∴四边形CHQE的面积=CH•GQ=×6=45.25.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2),∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN解析式为:y=kx+b,由题意可得:,解得:,∴直线AN解析式为:y=2x﹣2,联立方程组得:,解得:,,∴点D(4,6),∴S△ABD=×2×6=6,设点E(m,2m﹣2),∵直线BE将△ABD的面积分为1:2两部分,∴S△ABE=S△ABD=2或S△ABE=S△ABD=4,∴×2×(2m﹣2)=2或×2×(2m﹣2)=4,∴m=2或3,∴点E(2,2)或(3,4);(3)若AD为平行四边形的边,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD=PQ,∴x D﹣x A=x P﹣x Q或x D﹣x A=x Q﹣x P,∴x P=4﹣1+2=5或x P=2﹣4+1=﹣1,∴点P坐标为(5,16)或(﹣1,16);若AD为平行四边形的对角线,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD与PQ互相平分,∴,∴x P=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.。
2020年四川省遂宁市中考数学试卷及答案 (解析版)
2020年四川省遂宁市中考数学试卷一、选择题(共10个小题). 1.(4分)5-的相反数是( ) A .5B .5-C .15D .15-2.(4分)已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为( ) A .68.2310-⨯B .78.2310-⨯C .68.2310⨯D .78.2310⨯3.(4分)下列计算正确的是( ) A .752ab a b -= B .22211()a a a a+=+C .2242(3)6a b a b -=D .2233a b b a ÷=4.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .平行四边形C .矩形D .正五边形5.(4分)函数21x y x +=-中,自变量x 的取值范围是( ) A .2x >-B .2x -C .2x >-且1x ≠D .2x -且1x ≠6.(4分)关于x 的分式方程3122m x x-=--有增根,则m 的值( ) A .2m =B .1m =C .3m =D .3m =-7.(4分)如图,在平行四边形ABCD 中,ABC ∠的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若2AF FD =,则BEEG的值为( ) A .12B .13C .23D .348.(4分)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为直线1x =-,下列结论不正确的是( )A .24b ac >B .0abc >C .0a c -<D .2(am bm a b m +-为任意实数)9.(4分)如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E ,若2CD =,则图中阴影部分面积为( )A .42π-B .22π-C .2π-D .14π-10.(4分)如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF AE ⊥交CB 的延长线于F ,下列结论:①90AED EAC EDB ∠+∠+∠=︒, ②AP FP =, ③102AE AO =, ④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36, ⑤CE EF EQ DE =. 其中正确的结论有( )A .5个B .4个C .3个D .2个二、填空题(本大题共5个小题,每小题4分,共20分) 11.(4分)下列各数3.1415926,9,1.212212221⋯,17,2π-,2020-,34中,无理数的个数有 个.12.(4分)一列数4、5、4、6、x 、5、7、3中,其中众数是4,则x 的值是 . 13.(4分)已知一个正多边形的内角和为1440︒,则它的一个外角的度数为 度. 14.(4分)若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪--⎩有且只有三个整数解,则m 的取值范围是 . 15.(4分)如图所示,将形状大小完全相同的“”按照一定规律摆成下列图形,第1幅图中“”的个数为1a ,第2幅图中“”的个数为2a ,第3幅图中“”的个数为3a ,⋯,以此类推,若12322222020n na a a a +++⋯+=.(n 为正整数),则n 的值为 .三、计算或解答题(本大题共10小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)16.(720182sin 30|12()(2020)2π--︒-+--.17.(7分)先化简,22442(2)42x x x x x x +++--÷--,然后从22x -范围内选取一个合适的整数作为x 的值代入求值.18.(8分)如图,在ABC ∆中,AB AC =,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:BDE FAE ∆≅∆; (2)求证:四边形ADCF 为矩形.19.(8分)在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B 垂直起飞到达点A 处,测得1号楼顶部E 的俯角为67︒,测得2号楼顶部F 的俯角为40︒,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC 和FD 分别垂直地面于点C 和D ,点B 为CD 的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 670.92︒≈,cos670.39︒≈,tan 67 2.36)︒≈20.(9分)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A 、B 两种花苗.据了解,购买A 种花苗3盆,B 种花苗5盆,则需210元;购买A 种花苗4盆,B 种花苗10盆,则需380元.(1)求A 、B 两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A 、B 两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B 种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?21.(9分)阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题:定义:如果二次函数21111(0y a x b x c a =++≠,1a 、1b 、1c 是常数)与22222(0y a x b x c a =++≠,2a 、2b 、2c 是常数)满足120a a +=,12b b =,120c c +=,则这两个函数互为“旋转函数”.求函数2231y x x =-+的旋转函数,小明是这样思考的,由函数2231y x x =-+可知,12a =,13b =-,11c =,根据120a a +=,12b b =,120c c +=,求出2a ,2b ,2c 就能确定这个函数的旋转函数.请思考小明的方法解决下面问题: (1)写出函数243y x x =-+的旋转函数.(2)若函数25(1)y x m x n =+-+与253y x nx =---互为旋转函数,求2020()m n +的值. (3)已知函数2(1)(3)y x x =-+的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是1A 、1B 、1C ,试求证:经过点1A 、1B 、1C 的二次函数与2(1)(3)y x x =-+互为“旋转函数”. 22.(10分)端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A 、B 、C 、D 四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有 人.(2)喜欢C 种口味粽子的人数所占圆心角为 度.根据题中信息补全条形统计图. (3)若该居民小区有6000人,请你估计爱吃D 种粽子的有 人.(4)若有外型完全相同的A 、B 、C 、D 棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A 种粽子的概率.23.(10分)如图,在平面直角坐标系中,已知点A 的坐标为(0,2),点B 的坐标为(1,0),连结AB ,以AB 为边在第一象限内作正方形ABCD ,直线BD 交双曲线(0)ky k x==≠于D 、E 两点,连结CE ,交x 轴于点F .(1)求双曲线(0)ky k x=≠和直线DE 的解析式. (2)求DEC ∆的面积.24.(10分)如图,在Rt ABC ∆中,90ACB ∠=︒,D 为AB 边上的一点,以AD 为直径的O 交BC 于点E ,交AC 于点F ,过点C 作CG AB ⊥交AB 于点G ,交AE 于点H ,过点E 的弦EP 交AB 于点(Q EP 不是直径),点Q 为弦EP 的中点,连结BP ,BP 恰好为O 的切线. (1)求证:BC 是O 的切线. (2)求证:EF ED =. (3)若3sin 5ABC ∠==,15AC =,求四边形CHQE 的面积.25.(12分)如图,抛物线2(0)y ax bx c a =++≠的图象经过(1,0)A ,(3,0)B ,(0,6)C 三点. (1)求抛物线的解析式.(2)抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,直线AN 交抛物线于点D ,直线BE 交AD 于点E ,若直线BE 将ABD ∆的面积分为1:2两部分,求点E 的坐标.(3)P 为抛物线上的一动点,Q 为对称轴上动点,抛物线上是否存在一点P ,使A 、D 、P 、Q 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.2020年四川省遂宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.) 1.(4分)5-的相反数是( ) A .5B .5-C .15D .15-解:5-的相反数是5, 故选:A .2.(4分)已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为( ) A .68.2310-⨯B .78.2310-⨯C .68.2310⨯D .78.2310⨯解:70.0000008238.2310-=⨯. 故选:B .3.(4分)下列计算正确的是( ) A .752ab a b -= B .22211()a a a a+=+C .2242(3)6a b a b -=D .2233a b b a ÷=解:7ab 与5a -不是同类项,不能合并,因此选项A 不正确; 根据完全平方公式可得22211()2a a a a+=++,因此选项B 不正确;2242(3)9a b a b -=,因此选项C 不正确;2233a b b a ÷=,因此选项D 正确;故选:D .4.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形B .平行四边形C .矩形D .正五边形解:A 、等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意; B 、平行四边形是中心对称图形,不是轴对称图形.故本选项不合题意; C 、矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;D 、正五边形是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C . 5.(4分)函数21x y x +=-中,自变量x 的取值范围是( ) A .2x >-B .2x -C .2x >-且1x ≠D .2x -且1x ≠解:根据题意得:2010x x +⎧⎨-≠⎩解得:2x -且1x ≠. 故选:D .6.(4分)关于x 的分式方程3122m x x-=--有增根,则m 的值( ) A .2m =B .1m =C .3m =D .3m =-解:去分母得:32m x +=-,由分式方程有增根,得到20x -=,即2x =, 把2x =代入整式方程得:30m +=, 解得:3m =-, 故选:D .7.(4分)如图,在平行四边形ABCD 中,ABC ∠的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若2AF FD =,则BEEG的值为( ) A .12B .13C .23D .34解:由2AF DF =,可以假设DF k =,则2AF k =,3AD k =, 四边形ABCD 是平行四边形, //AD BC ∴,//AB CD ,AB CD =, AFB FBC DFG ∴∠=∠=∠,ABF G ∠=∠,BE 平分ABC ∠, ABF CBG ∴∠=∠,ABF AFB DFG G ∴∠=∠=∠=∠, 2AB CD k ∴==,DF DG k ==, 3CG CD DG k ∴=+=, //AB DG , ABE CGE ∴∆∆∽, ∴2233BE AB k EG CG k ===, 故选:C .8.(4分)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为直线1x =-,下列结论不正确的是( )A .24b ac >B .0abc >C .0a c -<D .2(am bm a b m +-为任意实数)解:由图象可得:0a >,0c >,△240b ac =->,12ba-=-, 20b a ∴=>,24b ac >,故A 选项不合题意,0abc ∴>,故B 选项不合题意,当1x =-时,0y <, 0a b c ∴-+<,0a c ∴-+<,即0a c ->,故C 选项符合题意,当x m =时,2y am bm c =++, 当1x =-时,y 有最小值为a b c -+, 2am bm c a b c ∴++-+,2am bm a b ∴+-,故D 选项不合题意,故选:C .9.(4分)如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E ,若2CD =,则图中阴影部分面积为( )A .42π-B .22π-C .2π-D .14π-解:连接OD ,过O 作OH AC ⊥于H ,如图, 90C ∠=︒,AC BC =, 45B CAB ∴∠=∠=︒,O 与BC 相切于点D , OD BC ∴⊥,∴四边形ODCH 为矩形,2OH CD ∴==在Rt OAH ∆中,45OAH ∠=︒, 22OA OH ∴==,在Rt OBD ∆中,45B ∠=︒, 45BOD ∴∠=︒,2BD OD ==, ∴图中阴影部分面积OBD DOE S S ∆=-扇形1452222180π⨯⨯=⨯⨯-122π=-.故选:B .10.(4分)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF AE⊥交CB的延长线于F,下列结论:①90AED EAC EDB∠+∠+∠=︒,②AP FP=,③102AE AO=,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE EF EQ DE=.其中正确的结论有()A.5个B.4个C.3个D.2个解:如图,连接OE.四边形ABCD是正方形,AC BD∴⊥,OA OC OB OD===,90BOC∴∠=︒,BE EC=,45EOB EOC∴∠=∠=︒,EOB EDB OED∠=∠+∠,EOC EAC AEO∠=∠+∠,90 AED EAC EDO EAC AEO OED EDB∴∠+∠+∠=∠+∠+∠+∠=︒,故①正确,连接AF.PF AE⊥,90APF ABF ∴∠=∠=︒,A ∴,P ,B ,F 四点共圆, 45AFP ABP ∴∠=∠=︒, 45PAF PFA ∴∠=∠=︒,PA PF ∴=,故②正确,设BE EC a ==,则5AE a =,2OA OC OB OD a ====, ∴51022AE a AO a==,即102AE AO =,故③正确, 根据对称性可知,OPE OQE ∆≅∆, 122OEQ OPEQ S S ∆∴==四边形, OB OD =,BE EC =, 2CD OE ∴=,OE CD ⊥, ∴12EQ OE DQ CD ==,OEQ CDQ ∆∆∽, 4ODQ S ∆∴=,8CDQ S ∆=, 12CDO S ∆∴=,48ABCD S ∴=正方形,故④错误,90EPF DCE ∠=∠=︒,PEF DEC ∠=∠, EPF ECD ∴∆∆∽, ∴EF PEED EC=, EQ PE ∴=,CE EF EQ DE ∴=,故⑤正确,故选:B .二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)下列各数3.1415926,1.212212221⋯,17,2π-,2020-数的个数有 3 个.解:在所列实数中,无理数有1.212212221⋯,2π-3个, 故答案为:3.12.(4分)一列数4、5、4、6、x 、5、7、3中,其中众数是4,则x 的值是 4 . 解:根据众数定义就可以得到:4x =. 故答案为:4.13.(4分)已知一个正多边形的内角和为1440︒,则它的一个外角的度数为 36 度. 解:设此多边形为n 边形, 根据题意得:180(2)1440n -=, 解得:10n =,∴这个正多边形的每一个外角等于:3601036︒÷=︒.故答案为:36.14.(4分)若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪--⎩有且只有三个整数解,则m 的取值范围是14m < .解:解不等式2143x x --<,得:2x >-, 解不等式22x m x --,得:23m x +, 则不等式组的解集为223m x+-<, 不等式组有且只有三个整数解, 2123m +∴<, 解得14m <, 故答案为:14m <.15.(4分)如图所示,将形状大小完全相同的“”按照一定规律摆成下列图形,第1幅图中“”的个数为1a ,第2幅图中“”的个数为2a ,第3幅图中“”的个数为3a ,⋯,以此类推,若12322222020n na a a a +++⋯+=.(n 为正整数),则n 的值为 4039 .解:由图形知112a =⨯,223a =⨯,334a =⨯, (1)n a n n ∴=+,12322222020n na a a a +++⋯+=, ∴2222122334(1)2020nn n +++⋯+=⨯⨯⨯+, 11111112(1)2233412020nn n ∴⨯-+-+-+⋯⋯+-=+, 12(1)12020nn ∴⨯-=+, 1114040nn -=+, 解得4039n =,经检验:4039n =是分式方程的解, 故答案为:4039.三、计算或解答题(本大题共10小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)16.(720182sin 30|12()(2020)2π--︒-+--.解:原式1222(21)412=⨯-+- 2212141=-++- 23=+.17.(7分)先化简,22442(2)42x x x x x x +++--÷--,然后从22x -范围内选取一个合适的整数作为x 的值代入求值.解:原式2(2)2[(2)](2)(2)2x x x x x x +-=-++-+ 2242()222x x x x x x +--=---+26222x x x x x -++-=-+(2)(3)222x x x x x +--=--+ (3)x =-- 3x =-+, 2x ≠±, ∴可取1x =,则原式132=-+=.18.(8分)如图,在ABC ∆中,AB AC =,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:BDE FAE ∆≅∆; (2)求证:四边形ADCF 为矩形.【解答】证明:(1)//AF BC ,AFE DBE ∴∠=∠, E 是线段AD 的中点, AE DE ∴=, AEF DEB ∠=∠, ()BDE FAE AAS ∴∆≅∆;(2)BDE FAE ∆≅∆, AF BD ∴=,D 是线段BC 的中点, BD CD ∴=, AF CD ∴=, //AF CD ,∴四边形ADCF 是平行四边形,AB AC =, AD BC ∴⊥, 90ADC ∴∠=︒, ∴四边形ADCF 为矩形.19.(8分)在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B 垂直起飞到达点A 处,测得1号楼顶部E 的俯角为67︒,测得2号楼顶部F 的俯角为40︒,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC 和FD 分别垂直地面于点C 和D ,点B 为CD 的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 670.92︒≈,cos670.39︒≈,tan 67 2.36)︒≈解:过点E 、F 分别作EM AB ⊥,FN AB ⊥,垂足分别为M 、N ,由题意得,20EC =,67AEM ∠=︒,40AFN ∠=︒,CB DB EM FN ===,60AB =, 602040AM AB MB ∴=-=-=,在Rt AEM ∆中, tan AMAEM EM∠=, 4016.9tan tan 67AM EM AEM ∴==≈∠︒,在Rt AFN ∆中, tan ANAFN FN∠=, tan 4016.914.2AN ∴=︒⨯≈,6014.245.8FD NB AB AN ∴==-=-=,答:2号楼的高度约为45.8米.20.(9分)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A 、B 两种花苗.据了解,购买A 种花苗3盆,B 种花苗5盆,则需210元;购买A 种花苗4盆,B 种花苗10盆,则需380元.(1)求A 、B 两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A 、B 两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B 种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?解:(1)设A 、B 两种花苗的单价分别是x 元和y 元,则35210410380x y x y +=⎧⎨+=⎩,解得2030x y =⎧⎨=⎩,答:A 、B 两种花苗的单价分别是20元和30元;(2)设购买B 花苗x 盆,则购买A 花苗为(12)x -盆,设总费用为w 元, 由题意得:220(12)(30)10240(012)w x x x x x x =-+-=-++,10-<.故w 有最大值,当5x =时,w 的最大值为265,当12x =时,w 的最小值为216, 故本次购买至少准备216元,最多准备265元. 21.(9分)阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题:定义:如果二次函数21111(0y a x b x c a =++≠,1a 、1b 、1c 是常数)与22222(0y a x b x c a =++≠,2a 、2b 、2c 是常数)满足120a a +=,12b b =,120c c +=,则这两个函数互为“旋转函数”.求函数2231y x x =-+的旋转函数,小明是这样思考的,由函数2231y x x =-+可知,12a =,13b =-,11c =,根据120a a +=,12b b =,120c c +=,求出2a ,2b ,2c 就能确定这个函数的旋转函数.请思考小明的方法解决下面问题: (1)写出函数243y x x =-+的旋转函数.(2)若函数25(1)y x m x n =+-+与253y x nx =---互为旋转函数,求2020()m n +的值. (3)已知函数2(1)(3)y x x =-+的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是1A 、1B 、1C ,试求证:经过点1A 、1B 、1C 的二次函数与2(1)(3)y x x =-+互为“旋转函数”. 解:(1)由243y x x =-+函数可知,11a =,14b =-,13c =, 120a a +=,12b b =,120c c +=, 21a ∴=-,24b =-,23c =-,∴函数243y x x =-+的“旋转函数”为243y x x =---;(2)25(1)y x m x n =+-+与253y x nx =---互为“旋转函数”,∴130m nn -=-⎧⎨-=⎩, 解得:23m n =-⎧⎨=⎩,20202020()(23)1m n ∴+=-+=.(3)证明:当0x =时,2(1)(3))6y x x =-+=-, ∴点C 的坐标为(0,6)-.当0y =时,2(1)(3)0x x -+=, 解得:11x =,23x =-,∴点A 的坐标为(1,0),点B 的坐标为(3,0)-.点A ,B ,C 关于原点的对称点分别是1A ,1B ,1C , 1(1,0)A ∴-,1(3,0)B ,1(0,6)C .设过点1A ,1B ,1C 的二次函数解析式为(1)(3)y a x x =+-, 将1(0,6)C 代入(1)(3)y a x x =+-,得:63a =-, 解得:2a =-,过点1A ,1B ,1C 的二次函数解析式为2(1)(3)y x x =-+-,即2246y x x =-++.22(1)(3)246y x x x x =-+=+-,12a ∴=,14b =,16c =-,22a =-,24b =,26c =, 122(2)0a a ∴+=+-=,124b b ==,126(6)0c c +=+-=,∴经过点1A ,1B ,1C 的二次函数与函数2(1)(3)y x x =-+互为“旋转函数”. 22.(10分)端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A 、B 、C 、D 四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有 600 人.(2)喜欢C 种口味粽子的人数所占圆心角为 度.根据题中信息补全条形统计图. (3)若该居民小区有6000人,请你估计爱吃D 种粽子的有 人.(4)若有外型完全相同的A 、B 、C 、D 棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A 种粽子的概率. 解:(1)24040%600÷=(人), 所以本次参加抽样调查的居民有60人;(2)喜欢B 种口味粽子的人数为60010%60⨯=(人), 喜欢C 种口味粽子的人数为60018060240120---=(人), 所以喜欢C 种口味粽子的人数所占圆心角的度数为12036072600︒⨯=︒; 补全条形统计图为:(3)600040%2400⨯=,所以估计爱吃D 种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A 种粽子的结果数为3, 所以他第二个吃的粽子恰好是A 种粽子的概率31124==. 23.(10分)如图,在平面直角坐标系中,已知点A 的坐标为(0,2),点B 的坐标为(1,0),连结AB ,以AB 为边在第一象限内作正方形ABCD ,直线BD 交双曲线(0)k y k x==≠于D 、E 两点,连结CE ,交x 轴于点F . (1)求双曲线(0)k y k x=≠和直线DE 的解析式. (2)求DEC ∆的面积.解:点A 的坐标为(0,2),点B 的坐标为(1,0),2OA ∴=,1OB =,作DM y ⊥轴于M ,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90OAB DAM ∴∠+∠=︒,90OAB ABO ∠+∠=︒,DAM ABO ∴∠=∠,在AOB ∆和DMA ∆中90ABO DAM AOB DMA AB DA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOB DMA AAS ∴∆≅∆,1AM OB ∴==,2DM OA ==,(2,3)D ∴, 双曲线(0)k y k x==≠经过D 点, 236k ∴=⨯=,∴双曲线为6y x=, 设直线DE 的解析式为y mx n =+,把(1,0)B ,(2,3)D 代入得023m n m n +=⎧⎨+=⎩,解得33m n =⎧⎨=-⎩, ∴直线DE 的解析式为33y x =-;(2)连接AC ,交BD 于N ,四边形ABCD 是正方形,BD ∴垂直平分AC ,AC BD =, 解336y x y x =-⎧⎪⎨=⎪⎩得23x y =⎧⎨=⎩或16x y =-⎧⎨=-⎩, (1,6)E ∴--,(1,0)B ,(2,3)D ,DE ∴==,DB ==11022CN BD ∴==, 1110153102222DEC S DE CN ∆∴==⨯⨯=.24.(10分)如图,在Rt ABC ∆中,90ACB ∠=︒,D 为AB 边上的一点,以AD 为直径的O 交BC 于点E ,交AC 于点F ,过点C 作CG AB ⊥交AB 于点G ,交AE 于点H ,过点E 的弦EP 交AB 于点(Q EP 不是直径),点Q 为弦EP 的中点,连结BP ,BP 恰好为O 的切线.(1)求证:BC 是O 的切线.(2)求证:EF ED =.(3)若3sin 5ABC ∠==,15AC =,求四边形CHQE 的面积.【解答】(1)证明:连接OE ,OP ,PE AB ⊥,点Q 为弦EP 的中点,AB ∴垂直平分EP ,PB BE ∴=,OE OP =,OB OB =,()BEO BPO SSS ∴∆≅∆,BEO BPO ∴∠=∠,BP为O的切线,BPO∴∠=︒,90∴∠=︒,BEO90∴⊥,OE BC∴是O的切线.BC(2)解:90BEO ACB∠=∠=︒,AC OE∴,//∴∠=∠,CAE OEA=,OA OE∴∠=∠,EAO AEO∴∠=∠,CAE EAO=.∴EF ED(3)解:AD为的O直径,点Q为弦EP的中点,∴⊥,EP ABCG AB⊥,∴,CG EP//ACB BEO∠=∠=︒,90∴,//AC OE∴∠=∠,CAE AEO=,OA OE∴∠=∠,EAQ AEO∴∠=∠,CAE EAO=,∠=∠=︒,AE AEACE AQE90ACE AQE AAS∴∆≅∆,()∴=,CE QE∠+∠=∠+∠=︒,AEC CAE EAQ AHG90∴∠=∠,CEH AHG∠=∠,AHG CHE∴∠=∠,CHE CEHCH CE ∴=,CH EQ ∴=,∴四边形CHQE 是平行四边形,CH CE =,∴四边形CHQE 是菱形, 3sin sin 5AG ABC ACG AC ∠==∠===, 15AC =,9AG ∴=, 2212CG AC AG ∴=-=,ACE AQE ∆≅∆,15AQ AC ∴==,6QG ∴=,222HQ HG QG =+,222(12)6HQ HQ ∴=-+,解得:152HQ =, 152CH HQ ∴==, ∴四边形CHQE 的面积156452CH GQ ==⨯=.25.(12分)如图,抛物线2(0)y ax bx c a =++≠的图象经过(1,0)A ,(3,0)B ,(0,6)C 三点.(1)求抛物线的解析式.(2)抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,直线AN 交抛物线于点D ,直线BE 交AD 于点E ,若直线BE 将ABD ∆的面积分为1:2两部分,求点E 的坐标.(3)P 为抛物线上的一动点,Q 为对称轴上动点,抛物线上是否存在一点P ,使A 、D 、P 、Q 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)抛物线2(0)y ax bx c a =++≠的图象经过(1,0)A ,(3,0)B , ∴设抛物线解析式为:(1)(3)y a x x =--, 抛物线(1)(3)(0)y a x x a =--≠的图象经过点(0,6)C , 6(01)(03)a ∴=--,2a ∴=,∴抛物线解析式为:22(1)(3)286y x x x x =--=-+;(2)222862(2)2y x x x =-+=--, ∴顶点M 的坐标为(2,2)-,抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称, ∴点(2,2)N ,设直线AN 解析式为:y kx b =+,由题意可得:022k b k b =+⎧⎨=+⎩, 解得:22k b =⎧⎨=-⎩, ∴直线AN 解析式为:22y x =-,联立方程组得:222286y x y x x =-⎧⎨=-+⎩,解得:1110x y =⎧⎨=⎩,2246x y =⎧⎨=⎩, ∴点(4,6)D ,12662ABD S ∆∴=⨯⨯=, 设点(,22)E m m -,直线BE 将ABD ∆的面积分为1:2两部分,123ABE ABD S S ∆∆∴==或243ABE ABD S S ∆∆==, ∴12(22)22m ⨯⨯-=或12(22)42m ⨯⨯-=, 2m ∴=或3,∴点(2,2)E 或(3,4);(3)若AD 为平行四边形的边,以A 、D 、P 、Q 为顶点的四边形为平行四边形, AD PQ ∴=,D A P Q x x x x ∴-=-或D A Q P x x x x -=-, 4125P x ∴=-+=或2411P x =-+=-,∴点P 坐标为(5,16)或(1,16)-;若AD 为平行四边形的对角线,以A 、D 、P 、Q 为顶点的四边形为平行四边形, AD ∴与PQ 互相平分, ∴22P Q A D x x x x ++=, 3P x ∴=,∴点P 坐标为(3,0),综上所述:当点P 坐标为(5,16)或(1,16)-或(3,0)时,使A 、D 、P 、Q 为顶点的四边形为平行四边形.。
2020年四川省遂宁市中考试卷(教师版)
∴AD∥BC,AB∥CD,AB=CD,
∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,
∵BE 平分∠ABC,
∴∠ABF=∠CBG,
∴∠ABF=∠AFB=∠DFG=∠G,
∴AB=CD=2k,DF=DG=k, ∴CG=CD+DG=3k, ∵AB∥DG, ∴△ABE∽△CGE,
∴ BE AB 2k 2 , EG CG 3k 3
四川省遂宁市 2020 年中考数学试题
一.选择题(共 10 小题)
1.-5 的相反数是( )
A. -5
B. 5
1
C.
5
D. 1 5
【答案】B
【解析】
【分析】
只有符号不同的两个数叫做互为相反数,据此即可得答案.
【详解】∵只有符号不同的两个数叫做互为相反数,
∴-5 的相反数是 5,
故选:B.
【点睛】本题考查了相反数的定义,只有符号不同的两个数叫做互为相反数;熟练掌握定义是解题关键.
轴对称图形的定义.是中心对称图形.故错误;
C、是轴对称图形,又是中心对称图形.故正确;
D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转 180 度后它的两部分能够重合;
即不满足中心对称图形的定义.故错误.
故选 C.
点睛:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.
2.已知某新型感冒病毒的直径约为 0.000000823 米,将 0.000000823 用科学记数法表示为( )
A. 8.23×10﹣6
B. 8.23×10﹣7
C. 8.23×106
D. 8.23×107
【答案】B
【解析】
分析:绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a×10-n,与较大数的科学记数法不同的
2020年四川省遂宁市中考数学试卷-解析版
2020年四川省遂宁市中考数学试卷一、选择题(本大题共10小题,共40.0分)1.−5的相反数是()A. 5B. −5C. 15D. −152.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A. 8.23×10−6B. 8.23×10−7C. 8.23×106D. 8.23×1073.下列计算正确的是()A. 7ab−5a=2bB. (a+1a )2=a2+1a2C. (−3a2b)2=6a4b2D. 3a2b÷b=3a24.下列图形中,既是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 矩形D. 正五边形5.函数y=√x+2x−1中,自变量x的取值范围是()A. x>−2且x≠1B. x≥2且x≠1C. x≥−2且x≠1D. x≠16.关于x的分式方程mx−2−32−x=1有增根,则m的值()A. m=2B. m=1C. m=3D. m=−37.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则BEEG的值为()A. 12B. 13C. 23D. 348.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=−1,下列结论不正确的是()A. b2>4acB. abc>0C. a−c<0D. am2+bm≥a−b(m为任意实数)9.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E,若CD=√2,则图中阴影部分面积为()A. 4−π2 B. 2−π2 C. 2−π D. 1−π410. 如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论: ①∠AED +∠EAC +∠EDB =90°, ②AP =FP ,③AE =√102AO , ④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36, ⑤CE ⋅EF =EQ ⋅DE . 其中正确的结论有( )A. 5个B. 4个C. 3个D. 2个二、填空题(本大题共5小题,共20.0分)11. 下列各数3.1415926,√9,1.212212221…,17,2−π,−2020,√43中,无理数的个数有______个.12. 一列数4、5、4、6、x 、5、7、3中,其中众数是4,则x 的值是______. 13. 已知一个正多边形的内角和为1440°,则它的一个外角的度数为______度. 14. 若关于x 的不等式组{x−24<x−132x −m ≤2−x有且只有三个整数解,则m 的取值范围是______.15. 如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n=n2020.(n 为正整数),则n 的值为______.三、解答题(本大题共10小题,共90.0分)16.计算:√8−2sin30°−|1−√2|+(12)−2−(π−2020)0.17.先化简,(x2+4x+4x2−4−x−2)÷x+2x−2,然后从−2≤x≤2范围内选取一个合适的整数作为x的值代入求值.18.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A 处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C 和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+ b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2−3x+1的旋转函数,小明是这样思考的,由函数y=2x2−3x+1可知,a1=2,b1=−3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2−4x+3的旋转函数.(2)若函数y=5x2+(m−1)x+n与y=−5x2−nx−3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x−1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x−1)(x+3)互为“旋转函数”.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有______人.(2)喜欢C种口味粽子的人数所占圆心角为______度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有______人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结(k≠0)于D、AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx E两点,连结CE,交x轴于点F.(k≠0)和直线DE的解析式.(1)求双曲线y=kx(2)求△DEC的面积.24.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O 的切线.(1)求证:BC是⊙O的切线.(2)求证:EF⏜=ED⏜.(3)若sin∠ABC═3,AC=15,求四边形CHQE的面积.525.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:−5的相反数是5, 故选:A .根据只有符号不同的两个数互为相反数,可得一个数的相反数. 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:0.000000823=8.23×10−7. 故选:B .绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】D【解析】解:7ab 与−5a 不是同类项,不能合并,因此选项A 不正确; 根据完全平方公式可得(a +1a )2=a 2+1a 2+2,因此选项B 不正确;(−3a 2b)2=9a 4b 2,因此选项C 不正确; 3a 2b ÷b =3a 2,因此选项D 正确; 故选:D .根据整式的加减、乘除分别进行计算,再判断即可.考查整式的加减、乘除的计算法则,掌握计算方法是正确计算的前提.4.【答案】C【解析】解:A 、等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意; B 、平行四边形是中心对称图形,不是轴对称图形.故本选项不合题意; C 、矩形既是轴对称图形,又是中心对称图形.故本选项符合题意; D 、正五边形是轴对称图形,不是中心对称图形.故本选项不合题意. 故选:C .根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】C【解析】解:根据题意得:{x +2≥0x −1≠0解得:x ≥−2且x ≠1. 故选C .根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x 的取值范围.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.【答案】D【解析】解:去分母得:m+3=x−2,由分式方程有增根,得到x−2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=−3,故选:D.分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7.【答案】C【解析】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB//DG,∴△ABE∽△CGE,∴BEEG =ABCG=2k3k=23,故选:C.由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG= k,再利用平行线分线段成比例定理即可解决问题.本题考查平行四边形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.8.【答案】C【解析】解:由图象可得:a>0,c>0,△=b2−4ac>0,−b2a=−1,∴b=2a>0,b2>4ac,故A选项不合题意,∴abc>0,故B选项不合题意,当x=−1时,y<0,∴a−b+c<0,∴−a+c<0,即a−c>0,故C选项符合题意,当x=m时,y=am2+bm+c,当x=−1时,y有最小值为a−b+c,∴am2+bm+c≥a−b+c,∴am2+bm≥a−b,故D选项不合题意,故选:C.根据二次函数的图象与系数的关系即可求出答案.本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与系数的关系,本题属于基础题型.9.【答案】B【解析】解:连接OD,过O作OH⊥AC于H,如图,∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵⊙O与BC相切于点D,∴OD⊥BC,∴四边形ODCH为矩形,∴OH=CD=√2,在Rt△OAH中,∠OAH=45°,∴OA=√2OH=2,在Rt△OBD中,∵∠B=45°,∴∠BOD=45°,BD=OD=2,∴图中阴影部分面积=S△OBD−S扇形DOE=12×2×2−45×π×2180=2−1 2π.故选:B.连接OD,OH⊥AC于H,如图,根据切线的性质得到OD⊥BC,则四边形ODCH为矩形,所以OH=CD=√2,则OA=√2OH=2,接着计算出∠BOD=45°,BD=OD=2,然后利用扇形的面积公式,利用图中阴影部分面积=S△OBD−S扇形DOE进行计算.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形面积的计算.10.【答案】B【解析】解:如图,连接OE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∴∠BOC=90°,∵BE=EC,∴∠EOB=∠EOC=45°,∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确,连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF=∠PFA=45°,∴PA=PF,故②正确,设BE=EC=a,则AE=√5a,OA=OC=OB=OD=√2a,∴AEAO =√5a√2a=√102,即AE=√102AO,故③正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=12S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE⊥CD,∴EQDQ =OECD=12,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故④错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴EFED =PEEC,∴EQ=PE,∴CE⋅EF=EQ⋅DE,故⑤正确,故选:B.①正确.证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可解决问题.②正确.利用四点共圆证明∠AFP=∠ABP=45°即可.③正确.设BE=EC=a,求出AE,OA即可解决问题.④错误,通过计算正方形ABCD的面积为48.⑤正确.利用相似三角形的性质证明即可.本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线分线段成比例定理,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.11.【答案】3【解析】解:在所列实数中,无理数有1.212212221…,2−π,√43这3个,故答案为:3.根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.本题考查了无理数的知识,解答本题的掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.12.【答案】4【解析】解:根据众数定义就可以得到:x=4.故答案为:4.众数是一组数据中出现次数最多的数,根据众数的定义求出这组数的众数即可.此题考查了众数,熟练掌握众数是一组数据中出现次数最多的数是解题的关键.13.【答案】36【解析】解:设此多边形为n 边形,根据题意得:180(n −2)=1440,解得:n =10,∴这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36.首先设此多边形为n 边形,根据题意得:180(n −2)=1440,即可求得n =10,再由多边形的外角和等于360°,即可求得答案.此题考查了多边形的内角和与外角和的知识.关键是掌握多边形内角和定理:(n −2)⋅180°,外角和等于360°.14.【答案】1<m ≤4【解析】解:解不等式x−24<x−13,得:x >−2,解不等式2x −m ≤2−x ,得:x <m+23, 则不等式组的解集为−2<x <m+23,∵不等式组有且只有三个整数解,∴1<m+23≤2,解得1<m ≤4,故答案为:1<m ≤4.解不等式组得出其解集为−2<x <m+23,根据不等式组有且只有三个整数解得出1<m+23≤2,解之可得答案.此题考查了不等式组的整数解,关键是根据不等式组的整数解求出取值范围,用到的知识点是一元一次不等式的解法.15.【答案】4039【解析】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4,∴a n =n(n +1),∵2a 1+2a 2+2a 3+⋯+2a n =n 2020, ∴21×2+22×3+23×4+⋯+2n(n+1)=n 2020,∴2×(1−12+12−13+13−14+⋯…+1n −1n+1)=n 2020,∴2×(1−1n+1)=n 2020,1−1n+1=n 4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.先根据已知图形得出a n=n(n+1),代入到方程中,再将左边利用1n(n+1)=1n−1n+1裂项化简,解分式方程可得答案.本题主要考查图形的变化规律,解题的关键是根据已知图形得出a n=n(n+1)及1n(n+1)=1n−1n+1.16.【答案】解:原式=2√2−2×12−(√2−1)+4−1=2√2−1−√2+1+4−1=√2+3.【解析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.本题主要考查实数的运算,解题的关键是掌握二次根式和绝对值的性质、熟记特殊锐角三角函数值、负整数指数幂与零指数幂的规定.17.【答案】解:原式=[(x+2)2(x+2)(x−2)−(x+2)]⋅x−2x+2=(x+2x−2−x2−4x−2)⋅x−2x+2=−x2+x+6x−2⋅x−2x+2=−(x+2)(x−3)x−2⋅x−2x+2=−(x−3)=−x+3,∵x≠±2,∴可取x=1,则原式=−1+3=2.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.18.【答案】证明:(1)∵AF//BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴△BDE≌△FAE(AAS);(2)∵△BDE≌△FAE,∴AF=BD,∵D是线段BC的中点,∴BD =CD ,∴AF =CD ,∵AF//CD ,∴四边形ADCF 是平行四边形,∵AB =AC ,∴AD ⊥BC ,∴∠ADC =90°,∴四边形ADCF 为矩形.【解析】(1)根据平行线的性质得到∠AFE =∠DBE ,根据线段中点的定义得到AE =DE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF =BD ,推出四边形ADCF 是平行四边形,根据等腰三角形的性质得到∠ADC =90°,于是得到结论.本题考查了矩形的判定,全等三角形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.19.【答案】解:过点E 、F 分别作EM ⊥AB ,FN ⊥AB ,垂足分别为M 、N ,由题意得,EC =20,∠AEM =67°,∠AFN =40°,CB =DB =EM =FN ,AB =60,∴AM =AB −MB =60−20=40,在Rt △AEM 中,∵tan∠AEM =AM EM ,∴EM =AMtan∠AEM =40tan67∘≈16.9,在Rt △AFN 中,∵tan∠AFN =ANFN ,∴AN =tan40°×16.9≈14.2,∴FD =NB =AB −AN =60−14.2=45.8,答:2号楼的高度约为45.8米.【解析】通过作辅助线,构造直角三角形,利用直角三角形的边角关系,分别求出EM ,AN ,进而计算出2号楼的高度DF 即可.本题考查直角三角形的边角关系,构造直角三角形是常用的方法,掌握边角关系是正确解答的关键.20.【答案】解:(1)设A 、B 两种花苗的单价分别是x 元和y 元,则{3x +5y =2104x +10y =380,解得{x =20y =30, 答:A 、B 两种花苗的单价分别是20元和30元;(2)设购买B 花苗x 盆,则购买A 花苗为(12−x)盆,设总费用为w 元,由题意得:w =20(12−x)+(30−x)x =−x 2+10x +240(0≤x ≤12),∵1<0.故w 有最大值,当x =5时,w 的最小值为290,当x =0时,w 的最小值为240,故本次购买至少准备240元,最多准备290元.【解析】(1)设A 、B 两种花苗的单价分别是x 元和y 元,则{3x +5y =2104x +10y =380,即可求解;(2)设购买B 花苗x 盆,则购买A 花苗为(12−x)盆,设总费用为w 元,由题意得:w =20(12−x)+(30−x)x =−x 2+10x +240(0≤x ≤12),即可求解.本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x =−b 2a 时取得.21.【答案】解:(1)由y =x 2−4x +3函数可知,a 1=1,b 1=−4,c 1=3, ∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=−1,b 2=−4,c 2=−3,∴函数y =x 2−4x +3的“旋转函数”为y =−x 2−4x −3;(2)∵y =5x 2+(m −1)x +n 与y =−5x 2−nx −3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3, ∴(m +n)2020=(−2+3)2020=1.(3)证明:当x =0时,y =2(x −1)(x +3))=−6,∴点C 的坐标为(0,−6).当y =0时,2(x −1)(x +3)=0,解得:x 1=1,x 2=−3,∴点A 的坐标为(1,0),点B 的坐标为(−3,0).∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,∴A 1(−1,0),B 1(3,0),C 1(0,6).设过点A 1,B 1,C 1的二次函数解析式为y =a(x +1)(x −3),将C 1(0,6)代入y =a(x +1)(x −3),得:6=−3a ,解得:a =−2,过点A 1,B 1,C 1的二次函数解析式为y =−2(x +1)(x −3),即y =−2x 2+4x +6. ∵y =2(x −1)(x +3)=2x 2+4x −6,∴a 1=2,b 1=4,c 1=−6,a 2=−2,b 2=4,c 2=6,∴a 1+a 2=2+(−2)=0,b 1=b 2=4,c 1+c 2=6+(−6)=0,∴经过点A 1,B 1,C 1的二次函数与函数y =2(x −1)(x +3)互为“旋转函数”.【解析】(1)由二次函数的解析式可得出a 1,b 1,c 1的值,结合“旋转函数”的定义可求出a 2,b 2,c 2的值,此问得解;(2)由函数y =5x 2+(m −1)x +n 与y =−5x 2−nx −3互为“旋转函数”,可求出m ,n 的值,将其代入(m +n)2020即可求出结论;(3)利用二次函数图象上点的坐标特征可求出点A ,B ,C 的坐标,结合对称的性质可求出点A 1,B 1,C 1的坐标,由点A 1,B 1,C 1的坐标,利用交点式可求出过点A 1,B 1,C 1的二次函数解析式,由两函数的解析式可找出a 1,b 1,c 1,a 2,b 2,c 2的值,再由a 1+a 2=0,b 1=b 2,c 1+c 2=0可证出经过点A 1,B 1,C 1的二次函数与函数y =2(x −1)(x +3)互为“旋转函数”.本题考查了相反数、二次函数图象上点的坐标特征、对称的性质以及待定系数法求二次函数解析式,解题的关键是:(1)利用“旋转函数”的定义求出a2,b2,c2的值;(2)利用“旋转函数”的定义求出m,n的值;(3)根据点的坐标,利用待定系数法求出过点A1,B1,C1的二次函数解析式.22.【答案】600 72 2400【解析】解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有60人;(2)喜欢B种口味粽子的人数为600×10%=60(人),喜欢C种口味粽子的人数为600−180−60−240=120(人),所以喜欢C种口味粽子的人数所占圆心角的度数为360°×120600=72°;补全条形统计图为:(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率=312=14.(1)用喜欢D种口味粽子的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢B种口味粽子的人数,再计算出喜欢C种口味粽子的人数,则用360度乘以喜欢C种口味粽子的人数所占的百分比得到它在扇形统计图中所占圆心角的度数,然后补全条形统计图;(4)画树状图展示所有12种等可能的结果数,找出他第二个吃的粽子恰好是A种粽子的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.23.【答案】解:∵点A的坐标为(0,2),点B的坐标为(1,0),∴OA=2,OB=1,作DM⊥y轴于M,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠OAB +∠DAM =90°,∵∠OAB +∠ABO =90°,∴∠DAM =∠ABO ,在△AOB 和△DMA 中{∠ABO =∠DAM ∠AOB =∠DMA =90°AB =DA,∴△AOB≌△DMA(AAS),∴AM =OB =1,DM =OA =2,∴D(2,3),∵双曲线y═k x (k ≠0)经过D 点,∴k =2×3=6,∴双曲线为y =6x ,设直线DE 的解析式为y =mx +n ,把B(1,0),D(2,3)代入得{m +n =02m +n =3,解得{m =3n =−3, ∴直线DE 的解析式为y =3x −3;(2)连接AC ,交BD 于N ,∵四边形ABCD 是正方形,∴BD 垂直平分AC ,AC =BD ,解{y =3x −3y =6x 得{x =2y =3或{x =−1y =−6, ∴E(−1,−6),∵B(1,0),D(2,3),∴DE =√(2+1)2+(3+6)2=3√10,DB =√(2−1)2+32=√10,∴CN =12BD =√102, ∴S △DEC =12DE ⋅CN =12×3√10×√102=152.【解析】(1)作DM ⊥y 轴于M ,通过证得△AOB≌△DMA(AAS),求得D 的坐标,然后根据待定系数法即可求得双曲线y =k x (k ≠0)和直线DE 的解析式.(2)解析式联立求得E 的坐标,然后根据勾股定理求得DE 和DB ,进而求得CN 的长,即可根据三角形面积公式求得△DEC 的面积.本题考查了反比例函数与一次函数的交点问题,主要考查了正方形的性质、待定系数法求一次函数、反比例函数的解析式,勾股定理的应用,求得D 、E 的坐标是解题的关键.24.【答案】(1)证明:连接OE ,OP ,∵PE ⊥AB ,点Q 为弦EP 的中点,∴AB 垂直平分EP ,∴PB =BE ,∵OE =OP ,OB =OB ,∴△BEO≌△BPO(SSS),∴∠BEO =∠BPO ,∵BP 为⊙O 的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)解:∵∠BEO=∠ACB=90°,∴AC//OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴EF⏜=ED⏜.(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG//EP,∵∠ACB=∠BEO=90°,∴AC//OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═AGAC =35,∵AC=15,∴AG=9,∴CG=√AC2−AG2=12,∵△ACE≌△AQE,∴AQ=AC=15,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12−HQ)2+62,解得:HQ=152,∴CH=HQ=152,∴四边形CHQE 的面积=CH ⋅GQ =152×6=45.【解析】(1)连接OE ,OP ,根据线段垂直平分线的性质得到PB =BE ,根据全等三角形的性质得到∠BEO =∠BPO ,根据切线的判定和性质定理即可得到结论.(2)根据平行线和等腰三角形的性质即可得到结论.(3)根据垂径定理得到EP ⊥AB ,根据平行线和等腰三角形的性质得到∠CAE =∠EAO ,根据全等三角形的性质得到CE =QE ,推出四边形CHQE 是菱形,解直角三角形得到CG =√AC 2−AG 2=12,根据勾股定理即可得到结论.本题考查了圆的综合题,切线的判定和性质,全等三角形的判定和性质,勾股定理,菱形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.25.【答案】解:(1)∵抛物线y =ax 2+bx +c(a ≠0)的图象经过A(1,0),B(3,0), ∴设抛物线解析式为:y =a(x −1)(x −3),∵抛物线y =a(x −1)(x −3)(a ≠0)的图象经过点C(0,6),∴6=a(0−1)(0−3),∴a =2,∴抛物线解析式为:y =2(x −1)(x −3)=2x 2−8x +6;(2)∵y =2x 2−8x +6=2(x −2)2−2,∴顶点M 的坐标为(2,−2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,∴点N(2,2),设直线AN 解析式为:y =kx +b ,由题意可得:{0=k +b 2=2k +b, 解得:{k =2b =−2, ∴直线AN 解析式为:y =2x −2,联立方程组得:{y =2x −2y =2x 2−8x +6, 解得:{x 1=1y 1=0,{x 2=4y 2=6, ∴点D(4,6),∴S △ABD =12×2×6=6,设点E(m,2m −2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4,∴12×2×(2m −2)=2或12×2×(2m −2)=4,∴m =2或3,∴点E(2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD =PQ ,∴x D −x A =x P −x Q 或x D −x A =x Q −x P ,∴x P =4−1+2=5或x P =2−4+1=−1,∴点P坐标为(5,16)或(−1,16);若AD为平行四边形的对角线,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD与PQ互相平分,∴x A+x D2=x P+x Q2,∴x P=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(−1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.【解析】(1)设抛物线解析式为:y=a(x−1)(x−3),把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求S△ABD=12×2×6=6,设点E(m,2m−2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键.。
2020年四川省遂宁市中考数学试卷-含答案
2020年四川省遂宁市中考数学试卷一.选择题(共10小题)1.-5的相反数是()A. -5B. 5C. 15D.15-2.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B. 8.23×10﹣7C. 8.23×106D. 8.23×1073.下列计算正确的是()A. 7ab﹣5a=2bB. (a+1a)2=a2+21aC. (﹣3a2b)2=6a4b2D. 3a2b÷b=3a24.下列图形中,既是中心对称图形又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 矩形D. 正五边形5.函数y=21xx+-中,自变量x的取值范围是()A. x>﹣2B. x≥﹣2C. x>﹣2且x≠1D. x≥﹣2且x≠16.关于x的分式方程2mx-﹣32x-=1有增根,则m的值()A. m=2B. m=1C. m=3D. m=﹣37.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则BEEG的值为()A. 12B. 13C. 23D. 348.二次函数y =ax 2+bx+c (a ≠0)的图象如图所示,对称轴为直线x =﹣1,下列结论不正确的是( )A. b 2>4ac B. abc >0C. a ﹣c <0D. am 2+bm ≥a ﹣b (m 为任意实数)9.如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD =2,则图中阴影部分面积为( )A. 4﹣2πB. 2﹣2πC. 2﹣πD. 1﹣4π10.如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论: ①∠AED+∠EAC+∠EDB =90°, ②AP =FP , ③AE =102AO , ④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36,⑤CE •EF =EQ •DE . 其中正确的结论有( )A. 5个B. 4个C. 3个D. 2个二.填空题(共5小题)11.下列各数3.1415926,9,1.212212221…,17,2﹣π,﹣2020,34中,无理数的个数有_____个.12.一列数4、5、4、6、x 、5、7、3中,其中众数是4,则x 的值是_____. 13.已知一个正多边形的内角和为1440°,则它的一个外角的度数为_____度.14.若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解,则m 的取值范围是______.15.如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若12a +22a +32a +…+2n a =2020n.(n 为正整数),则n 的值为_____.三.解答题(共10小题)16.计算:8﹣2sin30°﹣|1﹣2|+(12)﹣2﹣(π﹣2020)0.17.先化简,(22444x x x ++-﹣x ﹣2)÷22x x +-,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.18.如图,在△ABC 中,AB =AC ,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:△BDE ≌△FAE ; (2)求证:四边形ADCF 为矩形.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B 垂直起飞到达点A 处,测得1号楼顶部E 的俯角为67°,测得2号楼顶部F 的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC 和FD 分别垂直地面于点C 和D ,点B 为CD 的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A 种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═k x(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y =k x(k≠0)和直线DE 的解析式. (2)求DEC 的面积.24.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 边上的一点,以AD 为直径的⊙O 交BC 于点E ,交AC 于点F ,过点C 作CG ⊥AB 交AB 于点G ,交AE 于点H ,过点E 的弦EP 交AB 于点Q (EP 不是直径),点Q 为弦EP 的中点,连结BP ,BP 恰好为⊙O 的切线.(1)求证:BC 是⊙O 的切线. (2)求证:EF =ED .(3)若sin ∠ABC ═35,AC =15,求四边形CHQE 的面积.25.如图,抛物线y =ax 2+bx+c (a ≠0)的图象经过A (1,0),B (3,0),C (0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2020年四川省遂宁市中考数学试卷答案1. B.2. B.3. D.4. C.5. D.6. D.7. C.8. C.9. B.10. B.11. 3.12. 4.13. 36.14. 1<m≤4.15. 4039.16.2sin30°﹣|1|+(12)﹣2﹣(π﹣2020)0﹣2×12﹣﹣1)+4﹣1﹣1+1+4﹣1+3.17.解:原式=()()()()2222-2xxx x⎡⎤+-+⎢⎥+⎢⎥⎣⎦×22xx-+ =2242222x x xx x x⎛⎫+---⨯⎪--+⎝⎭=26222x x xx x-++-⨯-+=()()23222x x xx x+---⨯-+=﹣(x-3)=﹣x+3∵x≠ ±2,∴可取x=1,则原式=﹣1+3=2.18.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴BDE FAE≅△△(AAS);(2)证明:∵BDE FAE≅△△,∴AF=BD,∵D是线段BC的中点,∴BD=CD,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵AB=AC,∴AD BC⊥,∴∠ADC=90°,∴四边形ADCF为矩形.19.解:过点E、F分别作EM⊥AB,FN⊥AB,垂足分别为M、N,由题意得,EC=20,∠AEM=67°,∠AFN=40°,CB=DB=EM=FN,AB=60,∴AM=AB﹣MB=60﹣20=40,在Rt△AEM中,∵tan∠AEM=AM EM,∴EM=AMtan AEM∠=40tan67︒≈16.9,在Rt △AFN 中,∵tan ∠AFN =AN FN, ∴AN =tan40°×16.9≈14.2,∴FD =NB =AB ﹣AN =60﹣14.2=45.8,答:2号楼的高度约为45.8米.20.解:(1)设A 、B 两种花苗的单价分别是x 元和y 元,则35210410380x y x y +=⎧⎨+=⎩,解得2030x y ==⎧⎨⎩, 答:A 、B 两种花苗的单价分别是20元和30元;(2)设购买B 花苗x 盆,则购买A 花苗为(12﹣x )盆,设总费用为w 元, 由题意得:w =20(12﹣x )+(30﹣x )x =﹣x 2+10x+240(0≤x ≤12),∵-1<0.故w 有最大值,当x =5时,w 的最大值为265,当x =12时,w 的最小值为216,故本次购买至少准备216元,最多准备265元.21.解:(1)由y =x 2﹣4x+3函数可知,a 1=1,b 1=﹣4,c 1=3,∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x+3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x+n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”, ∴130m n n -=-⎧⎨-=⎩, 解得:=2=3m n -⎧⎨⎩, ∴(m+n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x+3)=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.22.解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有600人;故答案为:600;(2)喜欢B种口味粽子的人数为600×10%=60(人),喜欢C种口味粽子的人数为600﹣180﹣60﹣240=120(人),所以喜欢C种口味粽子的人数所占圆心角的度数为360°×120600=72°;补全条形统计图为:故答案为:72;(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;故答案为2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率=312=14.23.解:∵点A的坐标为(0,2),点B的坐标为(1,0),∴OA=2,OB=1,作DM⊥y轴于M,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠OAB+∠DAM=90°,∵∠OAB+∠ABO=90°,∴∠DAM=∠ABO,在AOB和DMA△中90ABO DAM AOB DMA AB DA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴AOB DMA ≌(AAS ),∴AM =OB =1,DM =OA =2,∴D (2,3), ∵双曲线()0k y k x=≠经过D 点,∴k =2×3=6,∴双曲线为y =6x ,设直线DE 的解析式为y =mx+n ,把B (1,0),D (2,3)代入得023m n m n +=⎧⎨+=⎩, 解得33m n =⎧⎨=-⎩, ∴直线DE 的解析式为y =3x ﹣3;(2)连接AC ,交BD 于N ,∵四边形ABCD 是正方形,∴BD 垂直平分AC ,AC =BD , 解336y x y x =-⎧⎪⎨=⎪⎩得23x y =⎧⎨=⎩或16x y =-⎧⎨=-⎩, 经检验:两组解都符合题意,∴E (﹣1,﹣6),∵B (1,0),D (2,3),∴DE =22(21)(36)+++=310,DB =22(21)3-+=10, ∴CN =12BD =10, ∴111015310.222DEC S DE CN =•=⨯⨯=24.(1)证明:连接OE ,OP ,∵PE ⊥AB ,点Q 为弦EP 的中点,∴AB 垂直平分EP ,∴PB =BE ,∵OE =OP ,OB =OB ,∴△BEO ≌△BPO (SSS ),∴∠BEO =∠BPO ,∵BP 为⊙O 的切线,∴∠BPO =90°,∴∠BEO =90°,∴OE ⊥BC ,∴BC 是⊙O 的切线.(2)解:∵∠BEO =∠ACB =90°,∴AC ∥OE ,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴EF ED.(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB=∠BEO=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═AGAC=35,∵AC=15,∴AG=9,∴CG=22AC AG=12,∵△ACE≌△AQE,∴AQ=AC=15,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12﹣HQ)2+62,解得:HQ=152,∴CH=HQ=152,∴四边形CHQE的面积=CH•GQ=152×6=45.25.解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣3)=2x 2﹣8x+6;(2)∵y=2x 2﹣8x+6=2(x ﹣2)2﹣2,∴顶点M 的坐标为(2,﹣2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称, ∴点N(2,2),设直线AN 解析式为:y =kx+b ,由题意可得:022=+⎧⎨=+⎩k b k b , 解得:22k b ==-⎧⎨⎩, ∴直线AN 解析式为:y =2x ﹣2,联立方程组得:222286=-⎧⎨=-+⎩y x y x x , 解得:1110x y =⎧⎨=⎩,2246=⎧⎨=⎩x y , ∴点D (4,6),∴S △ABD =12×2×6=6,设点E(m ,2m ﹣2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4, ∴12×2×(2m﹣2)=2或12×2×(2m﹣2)=4,∴m=2或3,∴点E(2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形, ∴AD=PQ ,∴x D ﹣x A =x P ﹣x Q 或x D ﹣x A =x Q ﹣x P ,∴x P =4﹣1+2=5或x P =2﹣4+1=﹣1,∴点P 坐标为(5,16)或(﹣1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形, ∴AD 与PQ 互相平分, ∴22++=P QA Dx x x x ,∴x P =3,∴点P 坐标为(3,0),综上所述:当点P 坐标为(5,16)或(﹣1,16)或(3,0)时,使A 、D 、P 、Q 为顶点的四边形为平行四边形.。
2020年四川遂宁中考数学试题(含答案)
2020年四川遂宁中考数学试题一.选择题(共10小题)1.﹣5的相反数是()A.5 B.﹣5 C.D.2.已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×107 3.下列计算正确的是()A.7ab﹣5a=2b B.(a+)2=a2+C.(﹣3a2b)2=6a4b2D.3a2b÷b=3a24.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形 B.平行四边形C.矩形D.正五边形5.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x>﹣2且x≠1 D.x≥﹣2且x≠16.关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣3 7.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD 于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x =﹣1,下列结论不正确的是()A.b2>4acB.abc>0C.a﹣c<0D.am2+bm≥a﹣b(m为任意实数)9.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A 的⊙O与BC相切于点D,交AB于点E,若CD=,则图中阴影部分面积为()A.4﹣B.2﹣C.2﹣πD.1﹣10.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个二.填空题(共5小题)11.下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有个.12.一列数4、5、4、6、x、5、7、3中,其中众数是4,则x的值是.13.已知一个正多边形的内角和为1440°,则它的一个外角的度数为度.14.若关于x的不等式组有且只有三个整数解,则m的取值范围是.15.如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若+++…+=.(n为正整数),则n的值为.三.解答题(共10小题)16.计算:﹣2sin30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.17.先化简,(﹣x﹣2)÷,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值.18.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B 的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求△DEC的面积.24.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线.(2)求证:=.(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.25.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN 交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.答案一.选择题(共10小题)1.A.2.B.3.D.4.C.5.D.6.D.7.C.8.C.9.B.10.B.二.填空题(共5小题)11.3.12.4.13.36.14.1<m≤4.15.4039.三.解答题(共10小题)16.原式=2﹣2×﹣(﹣1)+4﹣1 =2﹣1﹣+1+4﹣1=+3.17.原式=[﹣(x+2)]•=(﹣)•=•=﹣•=﹣(x﹣3)=﹣x+3,∵x≠±2,∴可取x=1,则原式=﹣1+3=2.18.证明:(1)∵AF∥BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴△BDE≌△FAE(AAS);(2)∵△BDE≌△FAE,∴AF=BD,∵D是线段BC的中点,∴BD=CD,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵AB=AC,∴AD⊥BC,∴∠ADC=90°,∴四边形ADCF为矩形.19.解:过点E、F分别作EM⊥AB,FN⊥AB,垂足分别为M、N,由题意得,EC=20,∠AEM=67°,∠AFN=40°,CB=DB=EM=FN,AB=60,∴AM=AB﹣MB=60﹣20=40,在Rt△AEM中,∵tan∠AEM=,∴EM==≈16.9,在Rt△AFN中,∵tan∠AFN=,∴AN=tan40°×16.9≈14.2,∴FD=NB=AB﹣AN=60﹣14.2=45.8,答:2号楼的高度约为45.8米.20.解:(1)设A、B两种花苗的单价分别是x元和y元,则,解得,答:A、B两种花苗的单价分别是20元和30元;(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),∵1<0.故w有最大值,当x=5时,w的最小值为290,当x=0时,w的最小值为240,故本次购买至少准备240元,最多准备290元.21.解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∴a2=﹣1,b2=﹣4,c2=﹣3,∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∴,解得:,∴(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3))=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y =﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.22.解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有60人;(2)喜欢B种口味粽子的人数为600×10%=60(人),喜欢C种口味粽子的人数为600﹣180﹣60﹣240=120(人),所以喜欢C种口味粽子的人数所占圆心角的度数为360°×=72°;补全条形统计图为:(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率==.23.解:∵点A的坐标为(0,2),点B的坐标为(1,0),∴OA=2,OB=1,作DM⊥y轴于M,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠OAB+∠DAM=90°,∵∠OAB+∠ABO=90°,∴∠DAM=∠ABO,在△AOB和△DMA中,∴△AOB≌△DMA(AAS),∴AM=OB=1,DM=OA=2,∴D(2,3),∵双曲线y═(k≠0)经过D点,∴k=2×3=6,∴双曲线为y=,设直线DE的解析式为y=mx+n,把B(1,0),D(2,3)代入得,解得,∴直线DE的解析式为y=3x﹣3;(2)连接AC,交BD于N,∵四边形ABCD是正方形,∴BD垂直平分AC,AC=BD,解得或,∴E(﹣1,﹣6),∵B(1,0),D(2,3),∴DE==3,DB==,∴CN=BD=,∴S△DEC=DE•CN=×=.24.(1)证明:连接OE,OP,∵PE⊥AB,点Q为弦EP的中点,∴AB垂直平分EP,∴PB=BE,∵OE=OP,OB=OB,∴△BEO≌△BPO(SSS),∴∠BEO=∠BPO,∵BP为⊙O的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)解:∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴=.(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB=∠BEO=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═=,∵AC=15,∴AG=9,∴CG==12,∵△ACE≌△AQE,∴AQ=AC=15,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12﹣HQ)2+62,解得:HQ=,∴CH=HQ=,∴四边形CHQE的面积=CH•GQ=×6=45.25.解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B (3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2),∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN解析式为:y=kx+b,由题意可得:,解得:,∴直线AN解析式为:y=2x﹣2,联立方程组得:,解得:,,∴点D(4,6),∴S△ABD=×2×6=6,设点E(m,2m﹣2),∵直线BE将△ABD的面积分为1:2两部分,∴S△ABE=S△ABD=2或S△ABE=S△ABD=4,∴×2×(2m﹣2)=2或×2×(2m﹣2)=4,∴m=2或3,∴点E(2,2)或(3,4);(3)若AD为平行四边形的边,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD=PQ,∴x D﹣x A=x P﹣x Q或x D﹣x A=x Q﹣x P,∴x P=4﹣1+2=5或x P=2﹣4+1=﹣1,∴点P坐标为(5,16)或(﹣1,16);若AD为平行四边形的对角线,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD与PQ互相平分,∴,∴x P=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.。
2020年四川省遂宁市中考数学试卷(有详细解析)
2020年四川省遂宁市中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共40.0分)1.−5的相反数是()A. 5B. −5C. 15D. −152.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A. 8.23×10−6B. 8.23×10−7C. 8.23×106D. 8.23×1073.下列计算正确的是()A. 7ab−5a=2bB. (a+1a )2=a2+1a2C. (−3a2b)2=6a4b2D. 3a2b÷b=3a24.下列图形中,既是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 矩形D. 正五边形5.函数y=√x+2x−1中,自变量x的取值范围是()A. x>−2且x≠1B. x≥2且x≠1C. x≥−2且x≠1D. x≠16.关于x的分式方程mx−2−32−x=1有增根,则m的值()A. m=2B. m=1C. m=3D. m=−37.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则BEEG的值为()A. 12B. 13C. 23D. 348.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=−1,下列结论不正确的是()A. b2>4acB. abc>0C. a−c<0D. am2+bm≥a−b(m为任意实数)9.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E,若CD=√2,则图中阴影部分面积为()A. 4−π2 B. 2−π2 C. 2−π D. 1−π410. 如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论: ①∠AED +∠EAC +∠EDB =90°, ②AP =FP ,③AE =√102AO , ④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36, ⑤CE ⋅EF =EQ ⋅DE . 其中正确的结论有( )A. 5个B. 4个C. 3个D. 2个二、填空题(本大题共5小题,共20.0分)11. 下列各数3.1415926,√9,1.212212221…,17,2−π,−2020,√43中,无理数的个数有______个.12. 一列数4、5、4、6、x 、5、7、3中,其中众数是4,则x 的值是______. 13. 已知一个正多边形的内角和为1440°,则它的一个外角的度数为______度. 14. 若关于x 的不等式组{x−24<x−132x −m ≤2−x有且只有三个整数解,则m 的取值范围是______.15. 如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n=n2020.(n 为正整数),则n 的值为______.三、解答题(本大题共10小题,共90.0分)16.计算:√8−2sin30°−|1−√2|+(12)−2−(π−2020)0.17.先化简,(x2+4x+4x2−4−x−2)÷x+2x−2,然后从−2≤x≤2范围内选取一个合适的整数作为x的值代入求值.18.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A 处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C 和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+ b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2−3x+1的旋转函数,小明是这样思考的,由函数y=2x2−3x+1可知,a1=2,b1=−3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2−4x+3的旋转函数.(2)若函数y=5x2+(m−1)x+n与y=−5x2−nx−3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x−1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x−1)(x+3)互为“旋转函数”.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有______人.(2)喜欢C种口味粽子的人数所占圆心角为______度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有______人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结(k≠0)于D、AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx E两点,连结CE,交x轴于点F.(k≠0)和直线DE的解析式.(1)求双曲线y=kx(2)求△DEC的面积.24.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E 的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O 的切线.(1)求证:BC是⊙O的切线.(2)求证:EF⏜=ED⏜.(3)若sin∠ABC═3,AC=15,求四边形CHQE的面积.525.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:−5的相反数是5, 故选:A .根据只有符号不同的两个数互为相反数,可得一个数的相反数. 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 2.【答案】B【解析】解:0.000000823=8.23×10−7. 故选:B .绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 3.【答案】D【解析】解:7ab 与−5a 不是同类项,不能合并,因此选项A 不正确; 根据完全平方公式可得(a +1a )2=a 2+1a 2+2,因此选项B 不正确;(−3a 2b)2=9a 4b 2,因此选项C 不正确; 3a 2b ÷b =3a 2,因此选项D 正确; 故选:D .根据整式的加减、乘除分别进行计算,再判断即可.考查整式的加减、乘除的计算法则,掌握计算方法是正确计算的前提. 4.【答案】C【解析】解:A 、等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意; B 、平行四边形是中心对称图形,不是轴对称图形.故本选项不合题意; C 、矩形既是轴对称图形,又是中心对称图形.故本选项符合题意; D 、正五边形是轴对称图形,不是中心对称图形.故本选项不合题意. 故选:C .根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】C【解析】解:根据题意得:{x +2≥0x −1≠0解得:x ≥−2且x ≠1. 故选C .根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x 的取值范围.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.【答案】D【解析】解:去分母得:m+3=x−2,由分式方程有增根,得到x−2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=−3,故选:D.分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7.【答案】C【解析】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB//DG,∴△ABE∽△CGE,∴BEEG =ABCG=2k3k=23,故选:C.由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG= k,再利用平行线分线段成比例定理即可解决问题.本题考查平行四边形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.8.【答案】C【解析】解:由图象可得:a>0,c>0,△=b2−4ac>0,−b2a=−1,∴b=2a>0,b2>4ac,故A选项不合题意,∴abc>0,故B选项不合题意,当x=−1时,y<0,∴a−b+c<0,∴−a+c<0,即a−c>0,故C选项符合题意,当x=m时,y=am2+bm+c,当x=−1时,y有最小值为a−b+c,∴am2+bm+c≥a−b+c,∴am2+bm≥a−b,故D选项不合题意,故选:C.根据二次函数的图象与系数的关系即可求出答案.本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与系数的关系,本题属于基础题型.9.【答案】B【解析】解:连接OD,过O作OH⊥AC于H,如图,∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵⊙O与BC相切于点D,∴OD⊥BC,∴四边形ODCH为矩形,∴OH=CD=√2,在Rt△OAH中,∠OAH=45°,∴OA=√2OH=2,在Rt△OBD中,∵∠B=45°,∴∠BOD=45°,BD=OD=2,∴图中阴影部分面积=S△OBD−S扇形DOE=12×2×2−45×π×2180=2−1 2π.故选:B.连接OD,OH⊥AC于H,如图,根据切线的性质得到OD⊥BC,则四边形ODCH为矩形,所以OH=CD=√2,则OA=√2OH=2,接着计算出∠BOD=45°,BD=OD=2,然后利用扇形的面积公式,利用图中阴影部分面积=S△OBD−S扇形DOE进行计算.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形面积的计算.10.【答案】B【解析】解:如图,连接OE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∴∠BOC=90°,∵BE=EC,∴∠EOB=∠EOC=45°,∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确,连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF=∠PFA=45°,∴PA=PF,故②正确,设BE=EC=a,则AE=√5a,OA=OC=OB=OD=√2a,∴AEAO =√5a√2a=√102,即AE=√102AO,故③正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=12S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE⊥CD,∴EQDQ =OECD=12,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故④错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴EFED =PEEC,∴EQ=PE,∴CE⋅EF=EQ⋅DE,故⑤正确,故选:B.①正确.证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可解决问题.②正确.利用四点共圆证明∠AFP=∠ABP=45°即可.③正确.设BE=EC=a,求出AE,OA即可解决问题.④错误,通过计算正方形ABCD的面积为48.⑤正确.利用相似三角形的性质证明即可.本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线分线段成比例定理,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.11.【答案】3【解析】解:在所列实数中,无理数有1.212212221…,2−π,√43这3个,故答案为:3.根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.本题考查了无理数的知识,解答本题的掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.12.【答案】4【解析】解:根据众数定义就可以得到:x=4.故答案为:4.众数是一组数据中出现次数最多的数,根据众数的定义求出这组数的众数即可.此题考查了众数,熟练掌握众数是一组数据中出现次数最多的数是解题的关键.13.【答案】36【解析】解:设此多边形为n边形,根据题意得:180(n−2)=1440,解得:n=10,∴这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36.首先设此多边形为n边形,根据题意得:180(n−2)=1440,即可求得n=10,再由多边形的外角和等于360°,即可求得答案.此题考查了多边形的内角和与外角和的知识.关键是掌握多边形内角和定理:(n −2)⋅180°,外角和等于360°.14.【答案】1<m ≤4【解析】解:解不等式x−24<x−13,得:x >−2,解不等式2x −m ≤2−x ,得:x <m+23, 则不等式组的解集为−2<x <m+23,∵不等式组有且只有三个整数解,∴1<m+23≤2,解得1<m ≤4,故答案为:1<m ≤4.解不等式组得出其解集为−2<x <m+23,根据不等式组有且只有三个整数解得出1<m+23≤2,解之可得答案.此题考查了不等式组的整数解,关键是根据不等式组的整数解求出取值范围,用到的知识点是一元一次不等式的解法.15.【答案】4039【解析】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4,∴a n =n(n +1),∵2a 1+2a 2+2a 3+⋯+2a n =n 2020, ∴21×2+22×3+23×4+⋯+2n(n+1)=n 2020,∴2×(1−12+12−13+13−14+⋯…+1n −1n+1)=n 2020,∴2×(1−1n+1)=n 2020,1−1n+1=n 4040,解得n =4039,经检验:n =4039是分式方程的解,故答案为:4039.先根据已知图形得出a n =n(n +1),代入到方程中,再将左边利用1n(n+1)=1n −1n+1裂项化简,解分式方程可得答案.本题主要考查图形的变化规律,解题的关键是根据已知图形得出a n =n(n +1)及1n(n+1)=1n −1n+1. 16.【答案】解:原式=2√2−2×12−(√2−1)+4−1=2√2−1−√2+1+4−1=√2+3.【解析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.本题主要考查实数的运算,解题的关键是掌握二次根式和绝对值的性质、熟记特殊锐角三角函数值、负整数指数幂与零指数幂的规定.17.【答案】解:原式=[(x+2)2(x+2)(x−2)−(x+2)]⋅x−2x+2=(x+2x−2−x2−4x−2)⋅x−2x+2=−x2+x+6x−2⋅x−2x+2=−(x+2)(x−3)x−2⋅x−2x+2=−(x−3)=−x+3,∵x≠±2,∴可取x=1,则原式=−1+3=2.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.18.【答案】证明:(1)∵AF//BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴△BDE≌△FAE(AAS);(2)∵△BDE≌△FAE,∴AF=BD,∵D是线段BC的中点,∴BD=CD,∴AF=CD,∵AF//CD,∴四边形ADCF是平行四边形,∵AB=AC,∴AD⊥BC,∴∠ADC=90°,∴四边形ADCF为矩形.【解析】(1)根据平行线的性质得到∠AFE=∠DBE,根据线段中点的定义得到AE=DE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=BD,推出四边形ADCF是平行四边形,根据等腰三角形的性质得到∠ADC=90°,于是得到结论.本题考查了矩形的判定,全等三角形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.19.【答案】解:过点E 、F 分别作EM ⊥AB ,FN ⊥AB ,垂足分别为M 、N ,由题意得,EC =20,∠AEM =67°,∠AFN =40°,CB =DB =EM =FN ,AB =60,∴AM =AB −MB =60−20=40,在Rt △AEM 中,∵tan∠AEM =AM EM , ∴EM =AM tan∠AEM =40tan67∘≈16.9,在Rt △AFN 中,∵tan∠AFN =ANFN ,∴AN =tan40°×16.9≈14.2,∴FD =NB =AB −AN =60−14.2=45.8,答:2号楼的高度约为45.8米.【解析】通过作辅助线,构造直角三角形,利用直角三角形的边角关系,分别求出EM ,AN ,进而计算出2号楼的高度DF 即可.本题考查直角三角形的边角关系,构造直角三角形是常用的方法,掌握边角关系是正确解答的关键.20.【答案】解:(1)设A 、B 两种花苗的单价分别是x 元和y 元,则{3x +5y =2104x +10y =380,解得{x =20y =30, 答:A 、B 两种花苗的单价分别是20元和30元;(2)设购买B 花苗x 盆,则购买A 花苗为(12−x)盆,设总费用为w 元,由题意得:w =20(12−x)+(30−x)x =−x 2+10x +240(0≤x ≤12),∵1<0.故w 有最大值,当x =5时,w 的最小值为290,当x =0时,w 的最小值为240, 故本次购买至少准备240元,最多准备290元.【解析】(1)设A 、B 两种花苗的单价分别是x 元和y 元,则{3x +5y =2104x +10y =380,即可求解;(2)设购买B 花苗x 盆,则购买A 花苗为(12−x)盆,设总费用为w 元,由题意得:w =20(12−x)+(30−x)x =−x 2+10x +240(0≤x ≤12),即可求解.本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x =−b 2a 时取得. 21.【答案】解:(1)由y =x 2−4x +3函数可知,a 1=1,b 1=−4,c 1=3, ∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=−1,b 2=−4,c 2=−3,∴函数y =x 2−4x +3的“旋转函数”为y =−x 2−4x −3;(2)∵y =5x 2+(m −1)x +n 与y =−5x 2−nx −3互为“旋转函数”,∴{m −1=−n n −3=0,解得:{m =−2n =3, ∴(m +n)2020=(−2+3)2020=1.(3)证明:当x =0时,y =2(x −1)(x +3))=−6,∴点C 的坐标为(0,−6).当y =0时,2(x −1)(x +3)=0,解得:x 1=1,x 2=−3,∴点A 的坐标为(1,0),点B 的坐标为(−3,0).∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,∴A 1(−1,0),B 1(3,0),C 1(0,6).设过点A 1,B 1,C 1的二次函数解析式为y =a(x +1)(x −3),将C 1(0,6)代入y =a(x +1)(x −3),得:6=−3a ,解得:a =−2,过点A 1,B 1,C 1的二次函数解析式为y =−2(x +1)(x −3),即y =−2x 2+4x +6. ∵y =2(x −1)(x +3)=2x 2+4x −6,∴a 1=2,b 1=4,c 1=−6,a 2=−2,b 2=4,c 2=6,∴a 1+a 2=2+(−2)=0,b 1=b 2=4,c 1+c 2=6+(−6)=0,∴经过点A 1,B 1,C 1的二次函数与函数y =2(x −1)(x +3)互为“旋转函数”.【解析】(1)由二次函数的解析式可得出a 1,b 1,c 1的值,结合“旋转函数”的定义可求出a 2,b 2,c 2的值,此问得解;(2)由函数y =5x 2+(m −1)x +n 与y =−5x 2−nx −3互为“旋转函数”,可求出m ,n 的值,将其代入(m +n)2020即可求出结论;(3)利用二次函数图象上点的坐标特征可求出点A ,B ,C 的坐标,结合对称的性质可求出点A 1,B 1,C 1的坐标,由点A 1,B 1,C 1的坐标,利用交点式可求出过点A 1,B 1,C 1的二次函数解析式,由两函数的解析式可找出a 1,b 1,c 1,a 2,b 2,c 2的值,再由a 1+a 2=0,b 1=b 2,c 1+c 2=0可证出经过点A 1,B 1,C 1的二次函数与函数y =2(x −1)(x +3)互为“旋转函数”.本题考查了相反数、二次函数图象上点的坐标特征、对称的性质以及待定系数法求二次函数解析式,解题的关键是:(1)利用“旋转函数”的定义求出a 2,b 2,c 2的值;(2)利用“旋转函数”的定义求出m ,n 的值;(3)根据点的坐标,利用待定系数法求出过点A 1,B 1,C 1的二次函数解析式.22.【答案】600 72 2400【解析】解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有60人;(2)喜欢B 种口味粽子的人数为600×10%=60(人),喜欢C 种口味粽子的人数为600−180−60−240=120(人),所以喜欢C 种口味粽子的人数所占圆心角的度数为360°×120600=72°;补全条形统计图为:(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率=312=14.(1)用喜欢D种口味粽子的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢B种口味粽子的人数,再计算出喜欢C种口味粽子的人数,则用360度乘以喜欢C种口味粽子的人数所占的百分比得到它在扇形统计图中所占圆心角的度数,然后补全条形统计图;(4)画树状图展示所有12种等可能的结果数,找出他第二个吃的粽子恰好是A种粽子的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.23.【答案】解:∵点A的坐标为(0,2),点B的坐标为(1,0),∴OA=2,OB=1,作DM⊥y轴于M,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠OAB+∠DAM=90°,∵∠OAB+∠ABO=90°,∴∠DAM=∠ABO,在△AOB和△DMA中{∠ABO=∠DAM∠AOB=∠DMA=90°AB=DA,∴△AOB≌△DMA(AAS),∴AM=OB=1,DM=OA=2,∴D(2,3),∵双曲线y═kx(k≠0)经过D点,∴k=2×3=6,∴双曲线为y =6x ,设直线DE 的解析式为y =mx +n ,把B(1,0),D(2,3)代入得{m +n =02m +n =3,解得{m =3n =−3, ∴直线DE 的解析式为y =3x −3;(2)连接AC ,交BD 于N ,∵四边形ABCD 是正方形,∴BD 垂直平分AC ,AC =BD ,解{y =3x −3y =6x 得{x =2y =3或{x =−1y =−6, ∴E(−1,−6),∵B(1,0),D(2,3),∴DE =√(2+1)2+(3+6)2=3√10,DB =√(2−1)2+32=√10,∴CN =12BD =√102, ∴S △DEC =12DE ⋅CN =12×3√10×√102=152.【解析】(1)作DM ⊥y 轴于M ,通过证得△AOB≌△DMA(AAS),求得D 的坐标,然后根据待定系数法即可求得双曲线y =k x (k ≠0)和直线DE 的解析式.(2)解析式联立求得E 的坐标,然后根据勾股定理求得DE 和DB ,进而求得CN 的长,即可根据三角形面积公式求得△DEC 的面积.本题考查了反比例函数与一次函数的交点问题,主要考查了正方形的性质、待定系数法求一次函数、反比例函数的解析式,勾股定理的应用,求得D 、E 的坐标是解题的关键. 24.【答案】(1)证明:连接OE ,OP ,∵PE ⊥AB ,点Q 为弦EP 的中点,∴AB 垂直平分EP ,∴PB =BE ,∵OE =OP ,OB =OB ,∴△BEO≌△BPO(SSS),∴∠BEO =∠BPO ,∵BP 为⊙O 的切线,∴∠BPO =90°,∴∠BEO =90°,∴OE ⊥BC ,∴BC 是⊙O 的切线.(2)解:∵∠BEO =∠ACB =90°,∴AC//OE ,∴∠CAE =∠OEA ,∵OA =OE ,∴∠EAO =∠AEO ,∴∠CAE =∠EAO ,∴EF⏜=ED ⏜. (3)解:∵AD 为的⊙O 直径,点Q 为弦EP 的中点,∴EP ⊥AB ,∵CG ⊥AB ,∵∠ACB=∠BEO=90°,∴AC//OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═AGAC =35,∵AC=15,∴AG=9,∴CG=√AC2−AG2=12,∵△ACE≌△AQE,∴AQ=AC=15,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12−HQ)2+62,解得:HQ=152,∴CH=HQ=152,∴四边形CHQE的面积=CH⋅GQ=152×6=45.【解析】(1)连接OE,OP,根据线段垂直平分线的性质得到PB=BE,根据全等三角形的性质得到∠BEO=∠BPO,根据切线的判定和性质定理即可得到结论.(2)根据平行线和等腰三角形的性质即可得到结论.(3)根据垂径定理得到EP⊥AB,根据平行线和等腰三角形的性质得到∠CAE=∠EAO,根据全等三角形的性质得到CE=QE,推出四边形CHQE是菱形,解直角三角形得到CG=√AC2−AG2=12,根据勾股定理即可得到结论.本题考查了圆的综合题,切线的判定和性质,全等三角形的判定和性质,勾股定理,菱形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.25.【答案】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x−1)(x−3),∵抛物线y=a(x−1)(x−3)(a≠0)的图象经过点C(0,6),∴6=a(0−1)(0−3),∴抛物线解析式为:y =2(x −1)(x −3)=2x 2−8x +6;(2)∵y =2x 2−8x +6=2(x −2)2−2,∴顶点M 的坐标为(2,−2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,∴点N(2,2),设直线AN 解析式为:y =kx +b ,由题意可得:{0=k +b 2=2k +b, 解得:{k =2b =−2, ∴直线AN 解析式为:y =2x −2,联立方程组得:{y =2x −2y =2x 2−8x +6, 解得:{x 1=1y 1=0,{x 2=4y 2=6, ∴点D(4,6),∴S △ABD =12×2×6=6,设点E(m,2m −2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4,∴12×2×(2m −2)=2或12×2×(2m −2)=4,∴m =2或3,∴点E(2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD =PQ ,∴x D −x A =x P −x Q 或x D −x A =x Q −x P ,∴x P =4−1+2=5或x P =2−4+1=−1,∴点P 坐标为(5,16)或(−1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD 与PQ 互相平分,∴x A +x D 2=x P +x Q 2,∴x P =3,∴点P 坐标为(3,0),综上所述:当点P 坐标为(5,16)或(−1,16)或(3,0)时,使A 、D 、P 、Q 为顶点的四边形为平行四边形.【解析】(1)设抛物线解析式为:y =a(x −1)(x −3),把点C 坐标代入解析式,可求解;(2)先求出点M ,点N 坐标,利用待定系数法可求AD 解析式,联立方程组可求点D 坐标,可求S △ABD =12×2×6=6,设点E(m,2m −2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键.。
2020年四川省遂宁市中考数学试题(word版,含答案)
2020年四川省遂宁市中考数学试卷一.选择题(共10小题)1.﹣5的相反数是()A.5B.﹣5C.D.2.已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1073.下列计算正确的是()A.7ab﹣5a=2b B.(a+)2=a2+C.(﹣3a2b)2=6a4b2D.3a2b÷b=3a24.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形5.函数y=中,自变量x的取值范围是()A.x>﹣2B.x≥﹣2C.x>﹣2且x≠1D.x≥﹣2且x≠1 6.关于x的分式方程﹣=1有增根,则m的值()A.m=2B.m=1C.m=3D.m=﹣37.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是()A.b2>4acB.abc>0C.a﹣c<0D.am2+bm≥a﹣b(m为任意实数)9.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E,若CD=,则图中阴影部分面积为()A.4﹣B.2﹣C.2﹣πD.1﹣10.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个二.填空题(共5小题)11.下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有个.12.一列数4、5、4、6、x、5、7、3中,其中众数是4,则x的值是.13.已知一个正多边形的内角和为1440°,则它的一个外角的度数为度.14.若关于x的不等式组有且只有三个整数解,则m的取值范围是.15.如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若+++…+=.(n为正整数),则n的值为.三.解答题(共10小题)16.计算:﹣2sin30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.17.先化简,(﹣x﹣2)÷,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值.18.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求△DEC的面积.24.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线.(2)求证:=.(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.25.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣5的相反数是()A.5B.﹣5C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.2.已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000823=8.23×10﹣7.故选:B.3.下列计算正确的是()A.7ab﹣5a=2b B.(a+)2=a2+C.(﹣3a2b)2=6a4b2D.3a2b÷b=3a2【分析】根据整式的加减、乘除分别进行计算,再判断即可.【解答】解:7ab与﹣5a不是同类项,不能合并,因此选项A不正确;根据完全平方公式可得(a+)2=a2++2,因此选项B不正确;(﹣3a2b)2=9a4b2,因此选项C不正确;3a2b÷b=3a2,因此选项D正确;故选:D.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.正五边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意;B、平行四边形是中心对称图形,不是轴对称图形.故本选项不合题意;C、矩形既是轴对称图形,又是中心对称图形.故本选项符合题意;D、正五边形是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.5.函数y=中,自变量x的取值范围是()A.x>﹣2B.x≥﹣2C.x>﹣2且x≠1D.x≥﹣2且x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x的取值范围.【解答】解:根据题意得:解得:x≥﹣2且x≠1.故选:D.6.关于x的分式方程﹣=1有增根,则m的值()A.m=2B.m=1C.m=3D.m=﹣3【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可【解答】解:去分母得:m+3=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.7.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.【分析】由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG=k,再利用平行线分线段成比例定理即可解决问题.【解答】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB∥DG,∴△ABE∽△CGE,∴===,故选:C.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是()A.b2>4acB.abc>0C.a﹣c<0D.am2+bm≥a﹣b(m为任意实数)【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:由图象可得:a>0,c>0,△=b2﹣4ac>0,﹣=﹣1,∴b=2a>0,b2>4ac,故A选项不合题意,∴abc>0,故B选项不合题意,当x=﹣1时,y<0,∴a﹣b+c<0,∴﹣a+c<0,即a﹣c>0,故C选项符合题意,当x=m时,y=am2+bm+c,当x=﹣1时,y有最小值为a﹣b+c,∴am2+bm+c≥a﹣b+c,∴am2+bm≥a﹣b,故D选项不合题意,故选:C.9.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E,若CD=,则图中阴影部分面积为()A.4﹣B.2﹣C.2﹣πD.1﹣【分析】连接OD,OH⊥AC于H,如图,根据切线的性质得到OD⊥BC,则四边形ODCH 为矩形,所以OH=CD=,则OA=OH=2,接着计算出∠BOD=45°,BD=OD =2,然后利用扇形的面积公式,利用图中阴影部分面积=S△OBD﹣S扇形DOE进行计算.【解答】解:连接OD,过O作OH⊥AC于H,如图,∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵⊙O与BC相切于点D,∴OD⊥BC,∴四边形ODCH为矩形,∴OH=CD=,在Rt△OAH中,∠OAH=45°,∴OA=OH=2,在Rt△OBD中,∵∠B=45°,∴∠BOD=45°,BD=OD=2,∴图中阴影部分面积=S△OBD﹣S扇形DOE=×2×2﹣=2﹣π.故选:B.10.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个【分析】①正确.证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可解决问题.②正确.利用四点共圆证明∠AFP=∠ABP=45°即可.③正确.设BE=EC=a,求出AE,OA即可解决问题.④错误,通过计算正方形ABCD的面积为48.⑤正确.利用相似三角形的性质证明即可.【解答】解:如图,连接OE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∴∠BOC=90°,∵BE=EC,∴∠EOB=∠EOC=45°,∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确,连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠P AF=∠PF A=45°,∴P A=PF,故②正确,设BE=EC=a,则AE=a,OA=OC=OB=OD=a,∴==,即AE=AO,故③正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE⊥CD,∴==,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故④错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴=,∴EQ=PE,∴CE•EF=EQ•DE,故⑤正确,故选:B.二.填空题(共5小题)11.下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有3个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3.12.一列数4、5、4、6、x、5、7、3中,其中众数是4,则x的值是4.【分析】众数是一组数据中出现次数最多的数,根据众数的定义求出这组数的众数即可.【解答】解:根据众数定义就可以得到:x=4.故答案为:4.13.已知一个正多边形的内角和为1440°,则它的一个外角的度数为36度.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=1440,即可求得n=10,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36.14.若关于x的不等式组有且只有三个整数解,则m的取值范围是1<m≤4.【分析】解不等式组得出其解集为﹣2<x<,根据不等式组有且只有三个整数解得出1<≤2,解之可得答案.【解答】解:解不等式<,得:x>﹣2,解不等式2x﹣m≤2﹣x,得:x<,则不等式组的解集为﹣2<x<,∵不等式组有且只有三个整数解,∴1<≤2,解得1<m≤4,故答案为:1<m≤4.15.如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若+++…+=.(n为正整数),则n的值为4039.【分析】先根据已知图形得出a n=n(n+1),代入到方程中,再将左边利用=﹣裂项化简,解分式方程可得答案.【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵+++…+=,∴+++…+=,∴2×(1﹣+﹣+﹣+……+﹣)=,∴2×(1﹣)=,1﹣=,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.三.解答题(共10小题)16.计算:﹣2sin30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.【解答】解:原式=2﹣2×﹣(﹣1)+4﹣1=2﹣1﹣+1+4﹣1=+3.17.先化简,(﹣x﹣2)÷,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=[﹣(x+2)]•=(﹣)•=•=﹣•=﹣(x﹣3)=﹣x+3,∵x≠±2,∴可取x=1,则原式=﹣1+3=2.18.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.【分析】(1)根据平行线的性质得到∠AFE=∠DBE,根据线段中点的定义得到AE=DE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=BD,推出四边形ADCF是平行四边形,根据等腰三角形的性质得到∠ADC=90°,于是得到结论.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴△BDE≌△F AE(AAS);(2)∵△BDE≌△F AE,∴AF=BD,∵D是线段BC的中点,∴BD=CD,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵AB=AC,∴AD⊥BC,∴∠ADC=90°,∴四边形ADCF为矩形.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)【分析】通过作辅助线,构造直角三角形,利用直角三角形的边角关系,分别求出EM,AN,进而计算出2号楼的高度DF即可.【解答】解:过点E、F分别作EM⊥AB,FN⊥AB,垂足分别为M、N,由题意得,EC=20,∠AEM=67°,∠AFN=40°,CB=DB=EM=FN,AB=60,∴AM=AB﹣MB=60﹣20=40,在Rt△AEM中,∵tan∠AEM=,∴EM==≈16.9,在Rt△AFN中,∵tan∠AFN=,∴AN=tan40°×16.9≈14.2,∴FD=NB=AB﹣AN=60﹣14.2=45.8,答:2号楼的高度约为45.8米.20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?【分析】(1)设A、B两种花苗的单价分别是x元和y元,则,即可求解;(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),即可求解.(1)设A、B两种花苗的单价分别是x元和y元,则,解得,【解答】解:答:A、B两种花苗的单价分别是20元和30元;(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),∵1<0.故w有最大值,当x=5时,w的最小值为290,当x=0时,w的最小值为240,故本次购买至少准备240元,最多准备290元.21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.【分析】(1)由二次函数的解析式可得出a1,b1,c1的值,结合“旋转函数”的定义可求出a2,b2,c2的值,此问得解;(2)由函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,可求出m,n 的值,将其代入(m+n)2020即可求出结论;(3)利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,结合对称的性质可求出点A1,B1,C1的坐标,由点A1,B1,C1的坐标,利用交点式可求出过点A1,B1,C1的二次函数解析式,由两函数的解析式可找出a1,b1,c1,a2,b2,c2的值,再由a1+a2=0,b1=b2,c1+c2=0可证出经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.【解答】解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∴a2=﹣1,b2=﹣4,c2=﹣3,∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∴,解得:,∴(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3))=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有600人.(2)喜欢C种口味粽子的人数所占圆心角为72度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有2400人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.【分析】(1)用喜欢D种口味粽子的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢B种口味粽子的人数,再计算出喜欢C种口味粽子的人数,则用360度乘以喜欢C种口味粽子的人数所占的百分比得到它在扇形统计图中所占圆心角的度数,然后补全条形统计图;(4)画树状图展示所有12种等可能的结果数,找出他第二个吃的粽子恰好是A种粽子的结果数,然后根据概率公式求解.【解答】解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有60人;(2)喜欢B种口味粽子的人数为600×10%=60(人),喜欢C种口味粽子的人数为600﹣180﹣60﹣240=120(人),所以喜欢C种口味粽子的人数所占圆心角的度数为360°×=72°;补全条形统计图为:(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率==.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求△DEC的面积.【分析】(1)作DM⊥y轴于M,通过证得△AOB≌△DMA(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线y=(k≠0)和直线DE的解析式.(2)解析式联立求得E的坐标,然后根据勾股定理求得DE和DB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积.【解答】解:∵点A的坐标为(0,2),点B的坐标为(1,0),∴OA=2,OB=1,作DM⊥y轴于M,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠OAB+∠DAM=90°,∵∠OAB+∠ABO=90°,∴∠DAM=∠ABO,在△AOB和△DMA中,∴△AOB≌△DMA(AAS),∴AM=OB=1,DM=OA=2,∴D(2,3),∵双曲线y═(k≠0)经过D点,∴k=2×3=6,∴双曲线为y=,设直线DE的解析式为y=mx+n,把B(1,0),D(2,3)代入得,解得,∴直线DE的解析式为y=3x﹣3;(2)连接AC,交BD于N,∵四边形ABCD是正方形,∴BD垂直平分AC,AC=BD,解得或,∴E(﹣1,﹣6),∵B(1,0),D(2,3),∴DE==3,DB==,∴CN=BD=,∴S△DEC=DE•CN=×=.24.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线.(2)求证:=.(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.【分析】(1)连接OE,OP,根据线段垂直平分线的性质得到PB=BE,根据全等三角形的性质得到∠BEO=∠BPO,根据切线的判定和性质定理即可得到结论.(2)根据平行线和等腰三角形的性质即可得到结论.(3)根据垂径定理得到EP⊥AB,根据平行线和等腰三角形的性质得到∠CAE=∠EAO,根据全等三角形的性质得到CE=QE,推出四边形CHQE是菱形,解直角三角形得到CG ==12,根据勾股定理即可得到结论.【解答】(1)证明:连接OE,OP,∵PE⊥AB,点Q为弦EP的中点,∴AB垂直平分EP,∴PB=BE,∵OE=OP,OB=OB,∴△BEO≌△BPO(SSS),∴∠BEO=∠BPO,∵BP为⊙O的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)解:∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴=.(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB=∠BEO=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═=,∵AC=15,∴AG=9,∴CG==12,∵△ACE≌△AQE,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12﹣HQ)2+62,解得:HQ=,∴CH=HQ=,∴四边形CHQE的面积=CH•GQ=×6=45.25.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D 坐标,可求S△ABD=×2×6=6,设点E(m,2m﹣2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2),∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN解析式为:y=kx+b,由题意可得:,解得:,∴直线AN解析式为:y=2x﹣2,联立方程组得:,解得:,,∴点D(4,6),∴S△ABD=×2×6=6,设点E(m,2m﹣2),∵直线BE将△ABD的面积分为1:2两部分,∴S△ABE=S△ABD=2或S△ABE=S△ABD=4,∴×2×(2m﹣2)=2或×2×(2m﹣2)=4,∴m=2或3,∴点E(2,2)或(3,4);(3)若AD为平行四边形的边,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD=PQ,∴x D﹣x A=x P﹣x Q或x D﹣x A=x Q﹣x P,∴x P=4﹣1+2=5或x P=2﹣4+1=﹣1,∴点P坐标为(5,16)或(﹣1,16);若AD为平行四边形的对角线,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD与PQ互相平分,∴,∴x P=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.。
2020四川省遂宁市中考试卷(解析版)
四川省遂宁市2020年中考数学试题一.选择题(共10小题)1.-5的相反数是()A. -5B. 5C. 15D.15【答案】B【解析】【分析】只有符号不同的两个数叫做互为相反数,据此即可得答案.【详解】∵只有符号不同的两个数叫做互为相反数,∵-5的相反数是5,故选:B.【点睛】本题考查了相反数的定义,只有符号不同的两个数叫做互为相反数;熟练掌握定义是解题关键.2.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A. 8.23×10﹣6B. 8.23×10﹣7C. 8.23×106D. 8.23×107【答案】B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-7.故选B.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是()A. 7ab﹣5a=2bB. (a+1a)2=a2+21aC. (﹣3a2b)2=6a4b2D. 3a2b÷b=3a2【答案】D【解析】【分析】根据合并同类项、完全平方公式、积的乘方、单项式除单项式分别进行计算,再判断即可.【详解】7ab与﹣5a不是同类项,不能合并,因此选项A不正确;根据完全平方公式可得(a+1a)2=a2+21a+2,因此选项B不正确;(﹣3a2b)2=9a4b2,因此选项C不正确;3a 2b ÷b =3a 2,因此选项D 正确;故选:D .【点睛】本题考查了合并同类项、完全平方公式、积的乘方、单项式除单项式,掌握运算法则是正确计算的前提.4.下列图形中,既是中心对称图形又是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 矩形D. 正五边形 【答案】C【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A 、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B 、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C 、是轴对称图形,又是中心对称图形.故正确;D 、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.故选C .点睛:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.函数y 中,自变量x 的取值范围是( ) A. x >﹣2B. x ≥﹣2C. x >﹣2且x ≠1D. x ≥﹣2且x ≠1【答案】D【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x 的取值范围. 【详解】根据题意得:2010x x +≥⎧⎨-≠⎩, 解得:x ≥﹣2且x ≠1.故选:D .【点睛】本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.关于x 的分式方程2m x -﹣32x-=1有增根,则m 的值( )A. m=2B. m=1C. m=3D. m=﹣3【答案】D【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可.【详解】解:去分母得:m+3=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值.7.如图,在平行四边形ABCD中,∵ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则BEEG的值为()A. 12B.13C.23D.34【答案】C【解析】【分析】由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG=k,再利用平行线分线段成比例定理即可解决问题.【详解】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD平行四边形,∵AD∵BC,AB∵CD,AB=CD,∵∵AFB=∵FBC=∵DFG,∵ABF=∵G,∵BE平分∵ABC,∵∵ABF=∵CBG,∵∵ABF=∵AFB=∵DFG=∵G,∵AB =CD =2k ,DF =DG =k ,∵CG =CD +DG =3k ,∵AB ∵DG ,∵∵ABE ∵∵CGE , ∵2233BE AB k EG CG k ===, 故选:C .【点睛】本题考查了比例的性质、相似三角形的判定及性质、等腰三角形的性质、角平分线的性质、平行四边形的性质、平行线分线段成比例定理,熟练掌握性质及定理是解题的关键.8.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =﹣1,下列结论不正确的是( )A. b 2>4acB. abc >0C. a ﹣c <0D. am 2+bm ≥a ﹣b (m 任意实数)【答案】C【解析】【分析】根据二次函数的图象与系数的关系即可求出答案. 【详解】解:由图象可得:a >0,c >0,∵=b 2﹣4ac >0,﹣2b a=﹣1, ∵b =2a >0,b 2>4ac ,故A 选项不合题意,∵abc >0,故B 选项不合题意,当x =﹣1时,y <0,∵a ﹣b +c <0,∵﹣a +c <0,即a ﹣c >0,故C 选项符合题意,当x =m 时,y =am 2+bm +c ,当x =﹣1时,y 有最小值为a ﹣b +c ,∵am 2+bm +c ≥a ﹣b +c ,∵am 2+bm ≥a ﹣b ,故D 选项不合题意,故选:C . 【点睛】本题考查二次函数的图象和性质,结合图形确定a,b,c 的符号和它们之间的关系是解题的关键. 9.如图,在Rt∵ABC 中,∵C =90°,AC =BC ,点O 在AB 上,经过点A 的∵O 与BC 相切于点D ,交AB 于点E ,若CD ,则图中阴影部分面积为( )A. 4﹣2πB. 2﹣2πC. 2﹣πD. 1﹣4π 【答案】B【解析】【分析】连接OD ,OH ∵AC 于H ,如图,根据切线的性质得到OD ∵BC ,则四边形ODCH 为矩形,所以OH =CD =,则OA OH =2,接着计算出∵BOD =45°,BD =OD =2,然后利用扇形的面积公式,利用图中阴影部分面积=S ∵OBD ﹣S 扇形DOE 进行计算.【详解】解:连接OD ,过O 作OH ∵AC 于H ,如图,∵∵C =90°,AC =BC ,∵∵B =∵CAB =45°,∵∵O 与BC 相切于点D ,∵OD ∵BC ,∵四边形ODCH 为矩形,∵OH =CD ,在Rt∵OAH 中,∵OAH =45°,∵OA OH =2,在Rt∵OBD 中,∵∵B =45°,∵∵BOD =45°,BD =OD =2,∵图中阴影部分面积=S ∵OBD ﹣S 扇形DOE=0.5×2×2﹣452180π⨯⨯ =2﹣12π. 故选:B .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形面积的计算.10.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P 作PF∵AE交CB的延长线于F,下列结论:∵∵AED+∵EAC+∵EDB=90°,∵AP=FP,AO,∵AE=2∵若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,∵CE•EF=EQ•DE.其中正确的结论有()A. 5个B. 4个C. 3个D. 2个【答案】B【解析】【分析】∵正确:证明∵EOB=∵EOC=45°,再利用三角形的外角的性质即可得出答案;∵正确:利用四点共圆证明∵AFP=∵ABP=45°即可;∵正确:设BE=EC=a,求出AE,OA即可解决问题;∵错误:通过计算正方形ABCD的面积为48;∵正确:利用相似三角形的性质证明即可.【详解】∵正确:如图,连接OE,∵四边形ABCD 是正方形,∵AC∵BD ,OA=OC=OB=OD ,∵∵BOC=90°,∵BE=EC ,∵∵EOB=∵EOC=45°,∵∵EOB =∵EDB+∵OED ,∵EOC=∵EAC+∵AEO ,∵∵AED+∵EAC+∵EDO=∵EAC+∵AEO+∵OED+∵EDB=90°,故∵正确;∵正确:如图,连接AF ,∵PF∵AE ,∵∵APF=∵ABF=90°,∵A ,P ,B ,F 四点共圆,∵∵AFP=∵ABP =45°,∵∵PAF=∵PFA =45°,∵PA=PF ,故∵正确;∵正确:设BE=EC=a ,则AE ,OA =OC =OB =OD a ,∵AEAO 2,即AE =2AO ,故∵正确; ∵错误:根据对称性可知,OPE OQE △△,∵OEQ S △=12OPEQ S 四边形=2, ∵OB=OD ,BE=EC ,∵CD=2OE ,OE∵CD ,∵ EQ OE 1==DQ CD 2, OEQ CDQ △△,∵ODQ S =4△, CDQ S =8△,∵CDO S =12△,∵ABCD S =48正方形,故∵错误;∵正确:∵∵EPF=∵DCE=90°,∵PEF=∵DEC ,∵EPF ECD △△, ∵EF PE =ED EC, ∵EQ=PE ,∵CE•EF=EQ•DE ,故∵正确;综上所诉一共有4个正确,故选:B .【点睛】本题主要考查了三角形外角性质、四点共圆问题、全等与相似三角形的综合运用,熟练掌握相关概念与方法是解题关键.二.填空题(共5小题)11.下列各数3.14159261.212212221…,17,2﹣π,﹣2020_____个. 【答案】3【解析】【分析】根据无理数的三种形式:∵开方开不尽的数,∵无限不循环小数,∵含有π的绝大部分数,找出无理数的个数.【详解】解:在所列实数中,无理数有1.212212221…,2﹣π这3个,故答案为:3.【点睛】本题考查无理数定义,熟练掌握无理数的概念是解题的关键.12.一列数4、5、4、6、x 、5、7、3中,其中众数是4,则x 的值是_____.【答案】4【解析】【分析】 众数是一组数据中出现次数最多的数,根据众数的定义求出这组数的众数即可.【详解】解:根据众数定义就可以得到:x =4,故答案为:4.【点睛】本题考查了众数的定义,掌握知识点是解题关键.13.已知一个正多边形的内角和为1440°,则它的一个外角的度数为_____度.【答案】36【解析】【分析】首先设此正多边形为n 边形,根据题意得:180°(n ﹣2)=1440°,即可求得n=10,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n 边形,根据题意得:180°(n ﹣2)=1440°,解得:n=10,∵这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36.【点睛】本题主要考查多边形的内角与外角,熟练掌握定义与相关方法是解题关键.14.若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解,则m 的取值范围是______.【答案】1<m ≤4【解析】【分析】解不等式组得出其解集为﹣2<x <23m +,根据不等式组有且只有三个整数解得出1<23m +≤2,解之可得答案. 【详解】解不等式2143x x --<,得:x >﹣2, 解不等式2x ﹣m ≤2﹣x ,得:x <23m +, 则不等式组的解集为﹣2<x <23m +, ∵不等式组有且只有三个整数解,∵1<23m +≤2, 解得:1<m ≤4,故答案为:1<m ≤4.【点睛】本题考查了不等式组的整数解,关键是根据不等式组的整数解求出取值范围,用到的知识点是一元一次不等式的解法.15.如图所示,将形状大小完全相同的“∵”按照一定规律摆成下列图形,第1幅图中“∵”的个数为a 1,第2幅图中“∵”的个数为a 2,第3幅图中“∵”的个数为a 3,…,以此类推,若12a +22a +32a +…+2n a =2020n .(n 为正整数),则n 的值为_____.【答案】4039【解析】【分析】先根据已知图形得出a n =n (n +1),代入到方程中,再将左边利用111=(1)1n n n n -++裂项化简,解分式方程可得答案.【详解】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4,∵a n =n (n +1), ∵12a +22a +32a +…+2n a =2020n , ∵212⨯+223⨯+234⨯+…+2(1)n n +=2020n , ∵2×(1﹣12+12﹣13+13﹣14+……+1n ﹣11n +)=2020n , ∵2×(1﹣11n +)=2020n , 1﹣11n +=4040n , 解得n =4039,经检验:n =4039是分式方程的解.故答案为:4039.【点睛】本题主要考查图形的变化规律,根据已知图形得出a n =n (n +1)及111=(1)1n n n n -++是解题的关键. 三.解答题(共10小题)16.2sin30°﹣|1|+(12)﹣2﹣(π﹣2020)0.+3【解析】【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.﹣2sin30°﹣|1|+(12)﹣2﹣(π﹣2020)02×12﹣﹣1)+4﹣11+1+4﹣1+3.【点睛】本题考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算以及熟记特殊角的三角函数值.17.先化简,(22444x xx++-﹣x﹣2)÷22xx+-,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值.【答案】﹣x+3,2【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【详解】解:原式=()()()()2222-2xxx x⎡⎤+-+⎢⎥+⎢⎥⎣⎦×22xx-+=2242222 x x xx x x⎛⎫+---⨯⎪--+⎝⎭=26222 x x xx x-++-⨯-+=()()23222 x x xx x+---⨯-+=﹣(x-3)=﹣x+3∵x≠ ±2,∵可取x=1,则原式=﹣1+3=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.18.如图,在∵ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:∵BDE ∵∵F AE ;(2)求证:四边形ADCF 为矩形.【答案】(1)见解析;(2)见解析【解析】【分析】(1)首先根据平行线的性质得到∵AFE=∵DBE ,再根据线段中点的定义得到AE=DE ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=BD ,推出四边形ADCF 是平行四边形,根据等腰三角形的性质得到∵ADC=90°,于是得到结论.【详解】(1)证明:∵AF∵BC ,∵∵AFE=∵DBE ,∵E 是线段AD 的中点,∵AE=DE ,∵∵AEF=∵DEB ,∵BDE FAE ≅△△(AAS );(2)证明:∵BDE FAE ≅△△,∵AF=BD ,∵D 是线段BC 的中点,∵BD=CD ,∵AF=CD ,∵AF∵CD ,∵四边形ADCF 是平行四边形,∵AB=AC ,∵AD BC ⊥,∵∵ADC=90°,∵四边形ADCF 为矩形.【点睛】本题主要考查了全等三角形的证明与矩形证明,熟练掌握相关概念是解题关键.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B 垂直起飞到达点A 处,测得1号楼顶部E 的俯角为67°,测得2号楼顶部F 的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC 和FD 分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)【答案】45.8米【解析】【分析】通过作辅助线,构造直角三角形,利用直角三角形的边角关系,分别求出EM,AN,进而计算出2号楼的高度DF即可.【详解】解:过点E、F分别作EM∵AB,FN∵AB,垂足分别为M、N,由题意得,EC=20,∵AEM=67°,∵AFN=40°,CB=DB=EM=FN,AB=60,∵AM=AB﹣MB=60﹣20=40,在Rt∵AEM中,∵tan∵AEM=AM EM,∵EM=AMtan AEM∠=40tan67︒≈16.9,在Rt∵AFN中,∵tan∵AFN=AN FN,∵AN=tan40°×16.9≈14.2,∵FD=NB=AB﹣AN=60﹣14.2=45.8,答:2号楼的高度约为45.8米.【点睛】本题考查了解直角三角形的应用,构造直角三角形是解题关键.20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?【答案】(1)A、B两种花苗的单价分别是20元和30元;(2)本次购买至少准备240元,最多准备290元【解析】【分析】(1)设A、B两种花苗的单价分别是x元和y元,则35210410380x yx y+=⎧⎨+=⎩,即可求解;(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),即可求解.【详解】解:(1)设A、B两种花苗的单价分别是x元和y元,则35210410380x yx y+=⎧⎨+=⎩,解得2030xy==⎧⎨⎩,答:A、B两种花苗的单价分别是20元和30元;(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),∵-1<0.故w有最大值,当x=5时,w的最大值为265,当x=12时,w的最小值为216,故本次购买至少准备216元,最多准备265元.【点睛】本题考查二次函数的实际应用,根据题意准确找到等量关系,建立函数模型是解题的关键.21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.【答案】(1)y=﹣x2﹣4x﹣3;(2)1;(3)见解析【解析】【分析】(1)由二次函数的解析式可得出a1,b1,c1的值,结合“旋转函数”的定义可求出a2,b2,c2的值,此问得解;(2)由函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,可求出m,n的值,将其代入(m+n)2020即可求出结论;(3)利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,结合对称的性质可求出点A1,B1,C1的坐标,由点A1,B1,C1的坐标,利用交点式可求出过点A1,B1,C1的二次函数解析式,由两函数的解析式可找出a1,b1,c1,a2,b2,c2的值,再由a1+a2=0,b1=b2,c1+c2=0可证出经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.【详解】解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∵a2=﹣1,b2=﹣4,c2=﹣3,∵函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∵130m n n-=-⎧⎨-=⎩,解得:=2 =3mn-⎧⎨⎩,∵(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3)=﹣6,∵点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∵点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∵A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∵a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∵a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∵经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.【点睛】本题考查了二次函数图象上点的坐标特征、对称的性质及待定系数法求二次函数的解析式,准确理解题干中“旋转函数”的定义是解题的关键.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.【答案】(1)600;(2)72,图见解析;(3)2400人;(4画图见解析,1 4【解析】【分析】(1)用喜欢D种口味粽子的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢B种口味粽子的人数,再计算出喜欢C种口味粽子的人数,则用360度乘以喜欢C种口味粽子的人数所占的百分比得到它在扇形统计图中所占圆心角的度数,然后补全条形统计图;(3)用D占的百分比乘以6000即可得到结果;(4)画树状图展示所有12种等可能的结果数,找出他第二个吃的粽子恰好是A种粽子的结果数,然后根据概率公式求解.【详解】解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有600人;故答案为:600;(2)喜欢B种口味粽子的人数为600×10%=60(人),喜欢C种口味粽子的人数为600﹣180﹣60﹣240=120(人),所以喜欢C种口味粽子的人数所占圆心角的度数为360°×120600=72°;补全条形统计图为:故答案为:72;(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;故答案为2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率=312=14.【点睛】本题考查条形统计图和扇形统计图的信息关联、由样本估计总体以及用列表或画树状图求简单事件的概率.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(4)中需注意是不放回实验.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y=kx(k≠0)和直线DE的解析式.(2)求DEC的面积.【答案】(1)y =6x ,y =3x ﹣3;(2)152【解析】【分析】 (1)作DM ∵y 轴于M ,通过证得AOB DMA ≌(AAS ),求得D 的坐标,然后根据待定系数法即可求得双曲线y =k x(k ≠0)和直线DE 的解析式. (2)解析式联立求得E 的坐标,然后根据勾股定理求得DE 和DB ,进而求得CN 的长,即可根据三角形面积公式求得∵DEC 的面积.【详解】解:∵点A 的坐标为(0,2),点B 的坐标为(1,0),∵OA =2,OB =1,作DM ∵y 轴于M ,∵四边形ABCD 是正方形,∵∵BAD =90°,AB =AD ,∵∵OAB +∵DAM =90°,∵∵OAB +∵ABO =90°,∵∵DAM =∵ABO ,在AOB 和DMA △中90ABO DAM AOB DMA AB DA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∵AOB DMA ≌(AAS ),∵AM =OB =1,DM =OA =2,∵D (2,3),∵双曲线()0k y k x=≠经过D 点, ∵k =2×3=6, ∵双曲线为y =6x , 设直线DE 的解析式为y =mx +n ,把B (1,0),D (2,3)代入得023m n m n +=⎧⎨+=⎩, 解得33m n =⎧⎨=-⎩, ∵直线DE 的解析式为y =3x ﹣3;(2)连接AC ,交BD 于N ,∵四边形ABCD是正方形,∵BD垂直平分AC,AC=BD,解336y xyx=-⎧⎪⎨=⎪⎩得23xy=⎧⎨=⎩或16xy=-⎧⎨=-⎩,经检验:两组解都符合题意,∵E(﹣1,﹣6),∵B(1,0),D(2,3),∵DEDB,∵CN=12BD=2,∵1115.2222 DECS DE CN=•=⨯=【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,利用待定系数法求解一次函数与反比例函数的解析式,函数的交点坐标的求解,化为一元二次方程的分式方程的解法,勾股定理的应用,掌握以上知识是解题的关键.24.如图,在Rt∵ABC中,∵ACB=90°,D为AB边上的一点,以AD为直径的∵O交BC于点E,交AC于点F,过点C作CG∵AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q 为弦EP的中点,连结BP,BP恰好为∵O的切线.(1)求证:BC是∵O的切线.(2)求证:EF=ED.(3)若sin∵ABC═35,AC=15,求四边形CHQE的面积.【答案】(1)见解析;(2)见解析;(3)45【解析】【分析】(1)连接OE,OP,根据线段垂直平分线的性质得到PB=BE,根据全等三角形的性质得到∵BEO=∵BPO,根据切线的判定和性质定理即可得到结论.(2)根据平行线和等腰三角形性质即可得到结论.(3)根据垂径定理得到EP∵AB,根据平行线和等腰三角形的性质得到∵CAE=∵EAO,根据全等三角形的性质得到CE=QE,推出四边形CHQE是菱形,解直角三角形得到CG12,根据勾股定理即可得到结论.【详解】(1)证明:连接OE,OP,∵PE∵AB,点Q为弦EP的中点,∵AB垂直平分EP,∵PB=BE,∵OE=OP,OB=OB,∵∵BEO∵∵BPO(SSS),∵∵BEO=∵BPO,∵BP为∵O的切线,∵∵BPO=90°,∵∵BEO=90°,∵OE∵BC,∵BC是∵O的切线.(2)解:∵∵BEO=∵ACB=90°,∵AC∵OE,∵∵CAE=∵OEA,∵OA=OE,∵∵EAO=∵AEO,∵∵CAE=∵EAO,∵EF ED=.(3)解:∵AD为的∵O直径,点Q为弦EP的中点,∵EP∵AB,∵CG∵AB,∵CG∵EP,∵∵ACB=∵BEO=90°,∵AC∵OE,∵∵CAE=∵AEO,∵OA=OE,∵∵EAQ=∵AEO,∵∵CAE=∵EAO,∵∵ACE=∵AQE=90°,AE=AE,∵∵ACE∵∵AQE(AAS),∵CE=QE,∵∵AEC+∵CAE=∵EAQ+∵AHG=90°,∵∵CEH=∵AHG,∵∵AHG=∵CHE,∵∵CHE=∵CEH,∵CH=CE,∵CH=EQ,∵四边形CHQE是平行四边形,∵CH=CE,∵四边形CHQE是菱形,∵sin∵ABC═sin∵ACG═AGAC=35,∵AC=15,∵AG=9,∵CG12,∵∵ACE∵∵AQE,∵AQ=AC=15,∵QG=6,∵HQ2=HG2+QG2,∵HQ2=(12﹣HQ)2+62,解得:HQ=152,∵CH=HQ=152,∵四边形CHQE的面积=CH•GQ=152×6=45.【点睛】此题考查了圆的综合问题,用到的知识点是全等三角形的判定与性质、菱形的判定和性质、勾股定理以及解直角三角形等知识,此题综合性很强,难度较大,注意数形结合思想应用.25.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将∵ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣8x+6;(2)点E(2,2)或(3,4);(3)存在,当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形【解析】【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;(2)先求出点M ,点N 坐标,利用待定系数法可求AD 解析式,联立方程组可求点D 坐标,可求S ∵ABD =12×2×6=6,设点E(m ,2m ﹣2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形性质可求解.【详解】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)的图象经过A (1,0),B (3,0),∵设抛物线解析式为:y =a (x ﹣1)(x ﹣3), ∵抛物线y =a (x ﹣1)(x ﹣3)(a ≠0)的图象经过点C (0,6),∵6=a (0﹣1)(0﹣3),∵a =2,∵抛物线解析式为:y =2(x ﹣1)(x ﹣3)=2x 2﹣8x +6;(2)∵y =2x 2﹣8x +6=2(x ﹣2)2﹣2,∵顶点M 的坐标为(2,﹣2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,∵点N (2,2),设直线AN 解析式为:y =kx +b ,由题意可得:022=+⎧⎨=+⎩k b k b , 解得:22k b ==-⎧⎨⎩, ∵直线AN 解析式为:y =2x ﹣2, 联立方程组得:222286=-⎧⎨=-+⎩y x y x x , 解得:1110x y =⎧⎨=⎩,2246=⎧⎨=⎩x y , ∵点D (4,6), ∵S ∵ABD =12×2×6=6, 设点E (m ,2m ﹣2), ∵直线BE 将∵ABD 的面积分为1:2两部分, ∵S ∵ABE =13S ∵ABD =2或S ∵ABE =23S ∵ABD =4, ∵12×2×(2m ﹣2)=2或12×2×(2m ﹣2)=4, ∵m =2或3, ∵点E (2,2)或(3,4); (3)若AD 为平行四边形的边, 的∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∵AD =PQ ,∵x D ﹣x A =x P ﹣x Q 或x D ﹣x A =x Q ﹣x P ,∵x P =4﹣1+2=5或x P =2﹣4+1=﹣1,∵点P 坐标为(5,16)或(﹣1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∵AD 与PQ 互相平分, ∵22++=P Q A D x x x x , ∵x P =3,∵点P 坐标为(3,0),综上所述:当点P 坐标为(5,16)或(﹣1,16)或(3,0)时,使A 、D 、P 、Q 为顶点的四边形为平行四边形.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键.。
2020年四川省遂宁中考数学试卷
x2 2x
A. m 2
B. m 1
C. m 3
数学试卷 第 1 页(共 6 页)
() D.正五边形
() D. x≥ 2 且 x≠1
() D. m 3
7.如下图,在平行四边形 ABCD 中,ABC 的平分线交 AC 于点 E ,交 AD 于点 F ,交
BE CD 的延长线于点 G ,若 AF 2FD ,则 的值为
绝密★启用前
在 2020 年四川省遂宁市初中毕业暨高中阶段学校招生考试
数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.总分 150 分.考试时间 120 此
分钟.
第Ⅰ卷(选择题,满分 40 分)
注意事项: 1.答题前,考生务必将自己的学校、姓名用 0.5 毫米的黑色墨水签字笔填写在答题
卷 卡上,并检查条形码粘贴是否正确. 2.准考证号、选择题使用 2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题
EG
()
1
1
2
3
A.
B.
C.
D.
2
3
3
4
8.二次函数 y=ax2 bx ca 0 的图象如下图所示,对称轴为直线 x 1 ,下列结论
不正确的是
()
A. b2>4ac
B. abc>0
C. a c<0
D. am2 bm≥a b ( m 为任意实数)
9.如下图,在 Rt△ABC 中,C 90°,AC BC ,点 O 在 AB 上,经过点 A 的 O 与 BC
1
A.5
B. 5
C.
答
5
()
1 D.
5
2.已知某种新型感冒病毒的直径约为 0.000 000 823 米,将 0.000 000 823 用科学记数法
四川省遂宁市2020年中考数学试题
四川省遂宁市2020年中考数学试题学校:___________姓名:___________班级:___________考号:___________1.-5的相反数是( ) A .-5B .5C .15D .1 5-2.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6B .8.23×10﹣7C .8.23×106D .8.23×1073.下列计算正确的是( ) A .7ab ﹣5a =2b B .(a +1a )2=a 2+21aC .(﹣3a 2b )2=6a 4b 2D .3a 2b ÷b =3a 24.下列图形中,既是中心对称图形又是轴对称图形的是( ) A .等边三角形 B .平行四边形C .矩形D .正五边形5.函数y =1x -中,自变量x 的取值范围是( ) A .x >﹣2B .x ≥﹣2C .x >﹣2且x ≠1D .x ≥﹣2且x ≠16.关于x 的分式方程2m x -﹣32x-=1有增根,则m 的值( ) A .m =2B .m =1C .m =3D .m =﹣37.如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BEEG的值为( )A .12B .13C .23D .348.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =﹣1,下列结论不正确的是( )A .b 2>4acB .abc >0C .a ﹣c <0D .am 2+bm ≥a ﹣b (m 为任意实数)9.如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD ,则图中阴影部分面积为( )A .4﹣2π B .2﹣2π C .2﹣π D .1﹣4π 10.如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE 、DE ,分别交BD 、AC 于点P 、Q ,过点P 作PF ⊥AE 交CB 的延长线于F ,下列结论: ①∠AED +∠EAC +∠EDB =90°, ②AP =FP ,③AE =2AO , ④若四边形OPEQ 的面积为4,则该正方形ABCD 的面积为36, ⑤CE •EF =EQ •DE . 其中正确的结论有( )A .5个B .4个C .3个D .2个11.下列各数3.14159261.212212221…,17,2﹣π,﹣2020中,无理数的个数有_____个.12.一列数4、5、4、6、x 、5、7、3中,其中众数是4,则x 的值是_____. 13.已知一个正多边形的内角和为1440°,则它的一个外角的度数为_____度.14.若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解,则m 的取值范围是______.15.如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若12a +22a +32a +…+2n a =2020n.(n 为正整数),则n 的值为_____.162sin30°﹣|1|+(12)﹣2﹣(π﹣2020)0. 17.先化简,(22444x x x ++-﹣x ﹣2)÷22x x +-,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.18.如图,在△ABC 中,AB =AC ,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:△BDE ≌△F AE ; (2)求证:四边形ADCF 为矩形.19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?21.阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y=kx(k≠0)和直线DE的解析式.(2)求DEC的面积.24.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O 交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E 的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O 的切线.(1)求证:BC是⊙O的切线.(2)求证:EF=ED.(3)若sin∠ABC═35,AC=15,求四边形CHQE的面积.25.如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案1.B【解析】【分析】只有符号不同的两个数叫做互为相反数,据此即可得答案.【详解】∵只有符号不同的两个数叫做互为相反数,∴-5的相反数是5,故选:B.【点睛】本题考查了相反数的定义,只有符号不同的两个数叫做互为相反数;熟练掌握定义是解题关键.2.B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-7.故选B.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.D【解析】【分析】根据合并同类项、完全平方公式、积的乘方、单项式除单项式分别进行计算,再判断即可.【详解】7ab与﹣5a不是同类项,不能合并,因此选项A不正确;根据完全平方公式可得(a+1a)2=a2+21a+2,因此选项B不正确;(﹣3a2b)2=9a4b2,因此选项C不正确;3a2b÷b=3a2,因此选项D正确;故选:D.【点睛】本题考查了合并同类项、完全平方公式、积的乘方、单项式除单项式,掌握运算法则是正确计算的前提.4.C【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C、是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.故选C.点睛:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.D【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x的取值范围.【详解】根据题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥﹣2且x≠1.故选:D.【点睛】本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.D【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可.【详解】解:去分母得:m+3=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7.C【解析】【分析】由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG=k,再利用平行线分线段成比例定理即可解决问题.【详解】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB∥DG,∴△ABE ∽△CGE , ∴2233BE AB k EG CG k ===, 故选:C . 【点睛】本题考查了比例的性质、相似三角形的判定及性质、等腰三角形的性质、角平分线的性质、平行四边形的性质、平行线分线段成比例定理,熟练掌握性质及定理是解题的关键. 8.C 【解析】 【分析】根据二次函数的图象与系数的关系即可求出答案. 【详解】解:由图象可得:a >0,c >0,△=b 2﹣4ac >0,﹣2ba=﹣1, ∴b =2a >0,b 2>4ac ,故A 选项不合题意, ∴abc >0,故B 选项不合题意, 当x =﹣1时,y <0, ∴a ﹣b +c <0,∴﹣a +c <0,即a ﹣c >0,故C 选项符合题意, 当x =m 时,y =am 2+bm +c , 当x =﹣1时,y 有最小值为a ﹣b +c , ∴am 2+bm +c ≥a ﹣b +c ,∴am 2+bm ≥a ﹣b ,故D 选项不合题意, 故选:C . 【点睛】本题考查二次函数的图象和性质,结合图形确定a,b,c 的符号和它们之间的关系是解题的关键. 9.B 【解析】 【分析】连接OD ,OH ⊥AC 于H ,如图,根据切线的性质得到OD ⊥BC ,则四边形ODCH 为矩形,所以OH=CD,则OA=2,接着计算出∠BOD=45°,BD=OD=2,然后利用扇形的面积公式,利用图中阴影部分面积=S△OBD﹣S扇形DOE进行计算.【详解】解:连接OD,过O作OH⊥AC于H,如图,∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵⊙O与BC相切于点D,∴OD⊥BC,∴四边形ODCH为矩形,∴OH=CD在Rt△OAH中,∠OAH=45°,∴OA OH=2,在Rt△OBD中,∵∠B=45°,∴∠BOD=45°,BD=OD=2,∴图中阴影部分面积=S△OBD﹣S扇形DOE=0.5×2×2﹣452 180π⨯⨯=2﹣12π.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形面积的计算.10.B【解析】【分析】①正确:证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可得出答案;②正确:利用四点共圆证明∠AFP=∠ABP=45°即可;③正确:设BE=EC=a,求出AE,OA即可解决问题;④错误:通过计算正方形ABCD的面积为48;⑤正确:利用相似三角形的性质证明即可.【详解】①正确:如图,连接OE,∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∴∠BOC=90°,∵BE=EC,∴∠EOB=∠EOC=45°,∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确;②正确:如图,连接AF,∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠PAF =∠PFA =45°,∴PA =PF ,故②正确;③正确:设BE =EC =a ,则AE ,OA =OC =OB =OD a ,∴AE AO ,即AE ,故③正确; ④错误:根据对称性可知,OPE OQE △△,∴OEQ S △=12OPEQ S 四边形=2, ∵OB =OD ,BE =EC ,∴CD =2OE ,OE ⊥CD ,∴ EQ OE 1==DQ CD 2, OEQ CDQ △△, ∴ODQ S =4△, CDQ S =8△,∴CDO S =12△,∴ABCD S =48正方形,故④错误;⑤正确:∵∠EPF =∠DCE =90°,∠PEF =∠DEC ,∴EPF ECD △△, ∴EF PE =ED EC, ∴EQ =PE ,∴CE •EF =EQ •DE ,故⑤正确;综上所诉一共有4个正确,故选:B .【点睛】本题主要考查了三角形外角性质、四点共圆问题、全等与相似三角形的综合运用,熟练掌握相关概念与方法是解题关键.11.3【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数.【详解】解:在所列实数中,无理数有1.212212221…,2﹣π这3个,故答案为:3.【点睛】本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.12.4【解析】【分析】众数是一组数据中出现次数最多的数,根据众数的定义求出这组数的众数即可.【详解】解:根据众数定义就可以得到:x=4,故答案为:4.【点睛】本题考查了众数的定义,掌握知识点是解题关键.13.36【解析】【分析】首先设此正多边形为n边形,根据题意得:180°(n﹣2)=1440°,即可求得n=10,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n边形,根据题意得:180°(n﹣2)=1440°,解得:n=10,∴这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36.【点睛】本题主要考查多边形的内角与外角,熟练掌握定义与相关方法是解题关键.14.1<m≤4【解析】【分析】解不等式组得出其解集为﹣2<x <23m +,根据不等式组有且只有三个整数解得出1<23m +≤2,解之可得答案. 【详解】 解不等式2143x x --<,得:x >﹣2, 解不等式2x ﹣m ≤2﹣x ,得:x <23m +, 则不等式组的解集为﹣2<x <23m +, ∵不等式组有且只有三个整数解,∴1<23m +≤2, 解得:1<m ≤4,故答案为:1<m ≤4.【点睛】本题考查了不等式组的整数解,关键是根据不等式组的整数解求出取值范围,用到的知识点是一元一次不等式的解法.15.4039【解析】【分析】先根据已知图形得出a n =n (n +1),代入到方程中,再将左边利用111=(1)1n n n n -++裂项化简,解分式方程可得答案.【详解】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4,∴a n =n (n +1), ∵12a +22a +32a +…+2n a =2020n , ∴212⨯+223⨯+234⨯+…+2(1)n n +=2020n ,∴2×(1﹣12+12﹣13+13﹣14+……+1n ﹣11n +)=2020n , ∴2×(1﹣11n +)=2020n , 1﹣11n +=4040n , 解得n =4039,经检验:n =4039是分式方程的解.故答案为:4039.【点睛】本题主要考查图形的变化规律,根据已知图形得出a n =n (n +1)及111=(1)1n n n n -++是解题的关键.16+3【解析】【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.【详解】2sin30°﹣|1﹣|+(12)﹣2﹣(π﹣2020)0=2×12﹣1)+4﹣1=1+1+4﹣1+3.【点睛】本题考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算以及熟记特殊角的三角函数值.17.﹣x +3,2【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【详解】解:原式=()()()()2222-2xxx x⎡⎤+-+⎢⎥+⎢⎥⎣⎦×22xx-+=2242222 x x xx x x⎛⎫+---⨯⎪--+⎝⎭=26222 x x xx x-++-⨯-+=()()23222 x x xx x+---⨯-+=﹣(x-3)=﹣x+3∵x≠ ±2,∴可取x=1,则原式=﹣1+3=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.18.(1)见解析;(2)见解析【解析】【分析】(1)首先根据平行线的性质得到∠AFE=∠DBE,再根据线段中点的定义得到AE=DE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=BD,推出四边形ADCF是平行四边形,根据等腰三角形的性质得到∠ADC=90°,于是得到结论.【详解】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF =∠DEB ,∴BDE FAE ≅△△(AAS );(2)证明:∵BDE FAE ≅△△,∴AF =BD ,∵D 是线段BC 的中点,∴BD =CD ,∴AF =CD ,∵AF ∥CD ,∴四边形ADCF 是平行四边形,∵AB =AC ,∴AD BC ⊥,∴∠ADC =90°,∴四边形ADCF 为矩形.【点睛】本题主要考查了全等三角形的证明与矩形证明,熟练掌握相关概念是解题关键.19.45.8米【解析】【分析】通过作辅助线,构造直角三角形,利用直角三角形的边角关系,分别求出EM ,AN ,进而计算出2号楼的高度DF 即可.【详解】解:过点E 、F 分别作EM ⊥AB ,FN ⊥AB ,垂足分别为M 、N ,由题意得,EC =20,∠AEM =67°,∠AFN =40°,CB =DB =EM =FN ,AB =60,∴AM=AB﹣MB=60﹣20=40,在Rt△AEM中,∵tan∠AEM=AM EM,∴EM=AMtan AEM∠=40tan67︒≈16.9,在Rt△AFN中,∵tan∠AFN=AN FN,∴AN=tan40°×16.9≈14.2,∴FD=NB=AB﹣AN=60﹣14.2=45.8,答:2号楼的高度约为45.8米.【点睛】本题考查了解直角三角形的应用,构造直角三角形是解题关键.20.(1)A、B两种花苗的单价分别是20元和30元;(2)本次购买至少准备240元,最多准备290元【解析】【分析】(1)设A、B两种花苗的单价分别是x元和y元,则35210410380x yx y+=⎧⎨+=⎩,即可求解;(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),即可求解.【详解】解:(1)设A、B两种花苗的单价分别是x元和y元,则35210410380x yx y+=⎧⎨+=⎩,解得2030xy==⎧⎨⎩,答:A、B两种花苗的单价分别是20元和30元;(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),∵-1<0.故w有最大值,当x=5时,w的最大值为265,当x=12时,w的最小值为216,故本次购买至少准备216元,最多准备265元.【点睛】本题考查二次函数的实际应用,根据题意准确找到等量关系,建立函数模型是解题的关键.21.(1)y=﹣x2﹣4x﹣3;(2)1;(3)见解析【解析】【分析】(1)由二次函数的解析式可得出a1,b1,c1的值,结合“旋转函数”的定义可求出a2,b2,c2的值,此问得解;(2)由函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,可求出m,n的值,将其代入(m+n)2020即可求出结论;(3)利用二次函数图象上点的坐标特征可求出点A,B,C的坐标,结合对称的性质可求出点A1,B1,C1的坐标,由点A1,B1,C1的坐标,利用交点式可求出过点A1,B1,C1的二次函数解析式,由两函数的解析式可找出a1,b1,c1,a2,b2,c2的值,再由a1+a2=0,b1=b2,c1+c2=0可证出经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.【详解】解:(1)由y=x2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,∵a1+a2=0,b1=b2,c1+c2=0,∴a2=﹣1,b2=﹣4,c2=﹣3,∴函数y=x2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;(2)∵y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,∴130m n n-=-⎧⎨-=⎩,解得:=2 =3mn-⎧⎨⎩,∴(m+n)2020=(﹣2+3)2020=1.(3)证明:当x=0时,y=2(x﹣1)(x+3)=﹣6,∴点C的坐标为(0,﹣6).当y=0时,2(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3,∴点A的坐标为(1,0),点B的坐标为(﹣3,0).∵点A,B,C关于原点的对称点分别是A1,B1,C1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.【点睛】本题考查了二次函数图象上点的坐标特征、对称的性质及待定系数法求二次函数的解析式,准确理解题干中“旋转函数”的定义是解题的关键.22.(1)600;(2)72,图见解析;(3)2400人;(4画图见解析,1 4【解析】【分析】(1)用喜欢D种口味粽子的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢B种口味粽子的人数,再计算出喜欢C种口味粽子的人数,则用360度乘以喜欢C种口味粽子的人数所占的百分比得到它在扇形统计图中所占圆心角的度数,然后补全条形统计图;(3)用D占的百分比乘以6000即可得到结果;(4)画树状图展示所有12种等可能的结果数,找出他第二个吃的粽子恰好是A种粽子的结果数,然后根据概率公式求解.【详解】解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有600人;故答案为:600;(2)喜欢B种口味粽子的人数为600×10%=60(人),喜欢C种口味粽子的人数为600﹣180﹣60﹣240=120(人),所以喜欢C种口味粽子的人数所占圆心角的度数为360°×120600=72°;补全条形统计图为:故答案为:72;(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;故答案为2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率=312=14.【点睛】本题考查条形统计图和扇形统计图的信息关联、由样本估计总体以及用列表或画树状图求简单事件的概率.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(4)中需注意是不放回实验.23.(1)y=6x,y=3x﹣3;(2)152【解析】【分析】(1)作DM⊥y轴于M,通过证得AOB DMA≌(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线y=kx(k≠0)和直线DE的解析式.(2)解析式联立求得E的坐标,然后根据勾股定理求得DE和DB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积.【详解】解:∵点A 的坐标为(0,2),点B 的坐标为(1,0),∴OA =2,OB =1,作DM ⊥y 轴于M ,∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∴∠OAB +∠DAM =90°,∵∠OAB +∠ABO =90°,∴∠DAM =∠ABO ,在AOB 和DMA △中90ABO DAM AOB DMA AB DA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴AOB DMA ≌(AAS ),∴AM =OB =1,DM =OA =2,∴D (2,3), ∵双曲线()0k y k x=≠经过D 点, ∴k =2×3=6, ∴双曲线为y =6x , 设直线DE 的解析式为y =mx +n ,把B (1,0),D (2,3)代入得023m n m n +=⎧⎨+=⎩, 解得33m n =⎧⎨=-⎩, ∴直线DE 的解析式为y =3x ﹣3;(2)连接AC ,交BD 于N ,∵四边形ABCD 是正方形,∴BD 垂直平分AC ,AC =BD , 解336y x y x =-⎧⎪⎨=⎪⎩得23x y =⎧⎨=⎩或16x y =-⎧⎨=-⎩, 经检验:两组解都符合题意,∴E (﹣1,﹣6),∵B (1,0),D (2,3),∴DE DB ,∴CN =12BD =2,∴1115.2222DEC S DE CN =•=⨯= 【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,利用待定系数法求解一次函数与反比例函数的解析式,函数的交点坐标的求解,化为一元二次方程的分式方程的解法,勾股定理的应用,掌握以上知识是解题的关键.24.(1)见解析;(2)见解析;(3)45【解析】【分析】(1)连接OE ,OP ,根据线段垂直平分线的性质得到PB =BE ,根据全等三角形的性质得到∠BEO =∠BPO ,根据切线的判定和性质定理即可得到结论.(2)根据平行线和等腰三角形的性质即可得到结论.(3)根据垂径定理得到EP ⊥AB ,根据平行线和等腰三角形的性质得到∠CAE =∠EAO ,根据全等三角形的性质得到CE =QE ,推出四边形CHQE 是菱形,解直角三角形得到CG =12,根据勾股定理即可得到结论.【详解】(1)证明:连接OE,OP,∵PE⊥AB,点Q为弦EP的中点,∴AB垂直平分EP,∴PB=BE,∵OE=OP,OB=OB,∴△BEO≌△BPO(SSS),∴∠BEO=∠BPO,∵BP为⊙O的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)解:∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴EF ED.(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB=∠BEO=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═AGAC=35,∵AC=15,∴AG=9,∴CG12,∵△ACE≌△AQE,∴AQ=AC=15,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12﹣HQ)2+62,解得:HQ=152,∴CH=HQ=152,∴四边形CHQE的面积=CH•GQ=152×6=45.【点睛】此题考查了圆的综合问题,用到的知识点是全等三角形的判定与性质、菱形的判定和性质、勾股定理以及解直角三角形等知识,此题综合性很强,难度较大,注意数形结合思想应用.25.(1)y=x2﹣8x+6;(2)点E(2,2)或(3,4);(3)存在,当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形【解析】【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求S△ABD=12×2×6=6,设点E(m,2m﹣2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.【详解】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2),∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN 解析式为:y =kx +b ,由题意可得:022=+⎧⎨=+⎩k b k b , 解得:22k b ==-⎧⎨⎩, ∴直线AN 解析式为:y =2x ﹣2,联立方程组得:222286=-⎧⎨=-+⎩y x y x x , 解得:1110x y =⎧⎨=⎩,2246=⎧⎨=⎩x y , ∴点D (4,6),∴S △ABD =12×2×6=6, 设点E (m ,2m ﹣2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4, ∴12×2×(2m ﹣2)=2或12×2×(2m ﹣2)=4, ∴m =2或3,∴点E (2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD =PQ ,∴x D ﹣x A =x P ﹣x Q 或x D ﹣x A =x Q ﹣x P ,∴x P =4﹣1+2=5或x P =2﹣4+1=﹣1,∴点P 坐标为(5,16)或(﹣1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD 与PQ 互相平分, ∴22++=P Q A D x x x x ,∴x P=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键.。
四川省遂宁市2020年中考数学试卷A卷
四川省遂宁市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2020七上·邛崃期末) 下列说法正确是()A . 互为相反数B . 5的相反数是C . 数轴上表示的点一定在原点的左边D . 任何负数都小于它的相反数2. (2分)下列等式正确的是()A . (﹣x2)3=﹣x5B . x3+x3=2x6C . a3•a3=2a3D . 26+26=273. (2分)(2016·广东) 据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为()A . 0.277×107B . 0.277×108C . 2.77×107D . 2.77×1084. (2分)(2019·河池) 某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A . 53,53B . 53,56C . 56,53D . 56,565. (2分)如图所示圆柱的左视图是A .B .C .D .6. (2分) (2019八下·锦江期中) 将点A(2,1)向左平移2个单位长度得到点,则点的坐标是()A . (0,1)B . (2,-1)C . (4,1)D . (2,3)7. (2分) (2018八下·深圳月考) 如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A . ∠ADB=∠ACB+∠CADB . ∠ADE=∠AEDC . ∠B=∠CD . ∠BAD=∠BDA8. (2分) (2017八下·府谷期末) 不等式组的解集在数轴上表示为()A .B .C .D .9. (2分)方程的解是A . x=2B . x=1C .D . x=﹣210. (2分)(2020·朝阳模拟) 在一次生活垃圾分类知识竞赛中,某校七、八年级各有100名学生参加,已知七年级男生成绩的优秀率为40%,女生成绩的优秀率为60%;八年级男生成绩的优秀率为50%,女生成绩的优秀率为70%对于此次竞赛的成绩,下面有三个推断:①七年级男生成绩的优秀率小于八年级男生成绩的优秀率;②七年级学生成绩的优秀率一定小于八年级学生成绩的优秀率;③七、八年级所有男生成绩的优秀率一定小于七、八年级所有女生成绩的优秀率.所有合理推断的序号是()A . ①②B . ①③C . ②③D . ①②③11. (2分) (2017八下·常熟期中) 已知点(﹣1,y1),(2,y2),(π,y3)在双曲线y= 图象上,则()A . y1>y2>y3B . y2>y3>y1C . y2>y1>y3D . y3>y1>y212. (2分)(2012·葫芦岛) 正方形ABCD与正五边形EFGHM的边长相等,初始如图所示,将正方形绕点F 顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合…按这样的方式将正方形依次绕点H、M、E旋转后,正方形中与EF重合的是()A . ABB . BCC . CDD . DA13. (2分)如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A . 6B . 8C . 9D . 1014. (2分) (2020八下·张家港期末) 如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n, ),连接OA,OE,AE,则△OAE的面积为()A . 2B .C .D .二、填空题 (共4题;共4分)15. (1分) (2019七下·大冶期末) 比较3与的大小:3________ (填“<”或“>”)16. (1分) (2019八上·怀集期末) 八边形的外角和等于________°.17. (1分) (2020·襄州模拟) 有4张相同的卡片分别写着数字﹣1、2、﹣3、4,将卡片的背面朝上,并洗匀.从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的 b.则这个一次函数的图象恰好经过第一、二、四象限的概率是________.18. (1分) (2017八下·西城期中) 如图,在平行四边形中,,,于,则 ________.三、解答题 (共6题;共53分)19. (5分) (2017七下·丰台期中) .20. (5分)河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,经测量此时的水位为62.6cm,试求河里初始水位值.21. (12分)(2018·吉林模拟) 甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:甲89798678108乙679791087710且S乙2=1.8,根据上述信息完成下列问题:(1)将甲运动员的折线统计图补充完整;(2)乙运动员射击训练成绩的众数是________,中位数是________.(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.22. (6分)(2020·昆明) (材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.(问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为________;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23. (15分) (2017八下·辉县期末) 如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)24. (10分)(2019·宁洱模拟) 如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共53分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年四川省遂宁市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.) 1.(4分)﹣5的相反数是( ) A .5B .﹣5C .15D .−152.(4分)已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6B .8.23×10﹣7C .8.23×106D .8.23×1073.(4分)下列计算正确的是( ) A .7ab ﹣5a =2b B .(a +1a)2=a 2+1a 2C .(﹣3a 2b )2=6a 4b 2D .3a 2b ÷b =3a 24.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形B .平行四边形C .矩形D .正五边形5.(4分)函数y =√x+2x−1中,自变量x 的取值范围是( ) A .x >﹣2B .x ≥﹣2C .x >﹣2且x ≠1D .x ≥﹣2且x ≠16.(4分)关于x 的分式方程m x−2−32−x=1有增根,则m 的值( )A .m =2B .m =1C .m =3D .m =﹣37.(4分)如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG的值为( )A .12B .13C .23D .348.(4分)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =﹣1,下列结论不正确的是( )A.b2>4acB.abc>0C.a﹣c<0D.am2+bm≥a﹣b(m为任意实数)9.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O 与BC相切于点D,交AB于点E,若CD=√2,则图中阴影部分面积为()A.4−π2B.2−π2C.2﹣πD.1−π410.(4分)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=√102AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A .5个B .4个C .3个D .2个二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有 个.12.(4分)一列数4、5、4、6、x 、5、7、3中,其中众数是4,则x 的值是 . 13.(4分)已知一个正多边形的内角和为1440°,则它的一个外角的度数为 度.14.(4分)若关于x 的不等式组{x−24<x−132x −m ≤2−x有且只有三个整数解,则m 的取值范围是 .15.(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n=n 2020.(n 为正整数),则n 的值为 .三、计算或解答题(本大题共10小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)16.(7分)计算:√8−2sin30°﹣|1−√2|+(12)﹣2﹣(π﹣2020)0.17.(7分)先化简,(x 2+4x+4x 2−4−x ﹣2)÷x+2x−2,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.18.(8分)如图,在△ABC 中,AB =AC ,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.19.(8分)在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B 为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)20.(9分)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?21.(9分)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.22.(10分)端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.23.(10分)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y =k x(k ≠0)和直线DE 的解析式. (2)求△DEC 的面积.24.(10分)如图,在Rt △ABC 中,∠ACB =90°,D 为AB 边上的一点,以AD 为直径的⊙O 交BC 于点E ,交AC 于点F ,过点C 作CG ⊥AB 交AB 于点G ,交AE 于点H ,过点E 的弦EP 交AB 于点Q (EP 不是直径),点Q 为弦EP 的中点,连结BP ,BP 恰好为⊙O 的切线.(1)求证:BC 是⊙O 的切线. (2)求证:EF̂=ED ̂. (3)若sin ∠ABC ═35,AC =15,求四边形CHQE 的面积.25.(12分)如图,抛物线y =ax 2+bx +c (a ≠0)的图象经过A (1,0),B (3,0),C (0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,直线AN 交抛物线于点D ,直线BE 交AD 于点E ,若直线BE 将△ABD 的面积分为1:2两部分,求点E 的坐标. (3)P 为抛物线上的一动点,Q 为对称轴上动点,抛物线上是否存在一点P ,使A 、D 、P 、Q 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.) 1.(4分)﹣5的相反数是( ) A .5B .﹣5C .15D .−15【解答】解:﹣5的相反数是5, 故选:A .2.(4分)已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6B .8.23×10﹣7C .8.23×106D .8.23×107【解答】解:0.000000823=8.23×10﹣7. 故选:B .3.(4分)下列计算正确的是( ) A .7ab ﹣5a =2b B .(a +1a)2=a 2+1a 2C .(﹣3a 2b )2=6a 4b 2D .3a 2b ÷b =3a 2【解答】解:7ab 与﹣5a 不是同类项,不能合并,因此选项A 不正确; 根据完全平方公式可得(a +1a )2=a 2+1a 2+2,因此选项B 不正确; (﹣3a 2b )2=9a 4b 2,因此选项C 不正确; 3a 2b ÷b =3a 2,因此选项D 正确; 故选:D .4.(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形B .平行四边形C .矩形D .正五边形【解答】解:A 、等边三角形是轴对称图形,不是中心对称图形.故本选项不合题意; B 、平行四边形是中心对称图形,不是轴对称图形.故本选项不合题意; C 、矩形既是轴对称图形,又是中心对称图形.故本选项符合题意; D 、正五边形是轴对称图形,不是中心对称图形.故本选项不合题意. 故选:C .5.(4分)函数y =√x+2x−1中,自变量x 的取值范围是( )A .x >﹣2B .x ≥﹣2C .x >﹣2且x ≠1D .x ≥﹣2且x ≠1【解答】解:根据题意得:{x +2≥0x −1≠0解得:x ≥﹣2且x ≠1. 故选:D .6.(4分)关于x 的分式方程m x−2−32−x=1有增根,则m 的值( )A .m =2B .m =1C .m =3D .m =﹣3【解答】解:去分母得:m +3=x ﹣2, 由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0, 解得:m =﹣3, 故选:D .7.(4分)如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG的值为( )A .12B .13C .23D .34【解答】解:由AF =2DF ,可以假设DF =k ,则AF =2k ,AD =3k , ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,AB =CD ,∴∠AFB =∠FBC =∠DFG ,∠ABF =∠G , ∵BE 平分∠ABC , ∴∠ABF =∠CBG ,∴∠ABF =∠AFB =∠DFG =∠G , ∴AB =CD =2k ,DF =DG =k , ∴CG =CD +DG =3k ,∵AB ∥DG , ∴△ABE ∽△CGE , ∴BE EG=AB CG=2k 3k=23,故选:C .8.(4分)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =﹣1,下列结论不正确的是( )A .b 2>4acB .abc >0C .a ﹣c <0D .am 2+bm ≥a ﹣b (m 为任意实数)【解答】解:由图象可得:a >0,c >0,△=b 2﹣4ac >0,−b2a=−1, ∴b =2a >0,b 2>4ac ,故A 选项不合题意, ∴abc >0,故B 选项不合题意, 当x =﹣1时,y <0, ∴a ﹣b +c <0,∴﹣a +c <0,即a ﹣c >0,故C 选项符合题意, 当x =m 时,y =am 2+bm +c , 当x =﹣1时,y 有最小值为a ﹣b +c , ∴am 2+bm +c ≥a ﹣b +c ,∴am 2+bm ≥a ﹣b ,故D 选项不合题意, 故选:C .9.(4分)如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD =√2,则图中阴影部分面积为( )A.4−π2B.2−π2C.2﹣πD.1−π4【解答】解:连接OD,过O作OH⊥AC于H,如图,∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵⊙O与BC相切于点D,∴OD⊥BC,∴四边形ODCH为矩形,∴OH=CD=√2,在Rt△OAH中,∠OAH=45°,∴OA=√2OH=2,在Rt△OBD中,∵∠B=45°,∴∠BOD=45°,BD=OD=2,∴图中阴影部分面积=S△OBD﹣S扇形DOE=12×2×2−45×π×2180=2−12π.故选:B.10.(4分)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=√102AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个【解答】解:如图,连接OE.∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB=OD,∴∠BOC=90°,∵BE=EC,∴∠EOB=∠EOC=45°,∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确,连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠P AF=∠PF A=45°,∴P A=PF,故②正确,设BE=EC=a,则AE=√5a,OA=OC=OB=OD=√2a,∴AEAO =√5a√2a=√102,即AE=√102AO,故③正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=12S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE⊥CD,∴EQDQ =OECD=12,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故④错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴EFED =PEEC,∴EQ=PE,∴CE•EF=EQ•DE,故⑤正确,故选:B.二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有3个.【解答】解:在所列实数中,无理数有1.212212221…,2﹣π,√43这3个,故答案为:3.12.(4分)一列数4、5、4、6、x、5、7、3中,其中众数是4,则x的值是4.【解答】解:根据众数定义就可以得到:x=4.故答案为:4.13.(4分)已知一个正多边形的内角和为1440°,则它的一个外角的度数为 36 度.【解答】解:设此多边形为n 边形,根据题意得:180(n ﹣2)=1440,解得:n =10,∴这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36.14.(4分)若关于x 的不等式组{x−24<x−132x −m ≤2−x 有且只有三个整数解,则m 的取值范围是1<m ≤4 .【解答】解:解不等式x−24<x−13,得:x >﹣2,解不等式2x ﹣m ≤2﹣x ,得:x ≤m+23, 则不等式组的解集为﹣2<x ≤m+23, ∵不等式组有且只有三个整数解,∴1≤m+23<2, 解得1≤m <4,故答案为:1≤m <4.15.(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a 1,第2幅图中“▱”的个数为a 2,第3幅图中“▱”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n =n 2020.(n 为正整数),则n 的值为 4039 .【解答】解:由图形知a 1=1×2,a 2=2×3,a 3=3×4,∴a n =n (n +1),∵2a 1+2a 2+2a 3+⋯+2a n =n 2020, ∴21×2+22×3+23×4+⋯+2n(n+1)=n 2020,∴2×(1−12+12−13+13−14+⋯⋯+1n −1n+1)=n 2020,∴2×(1−1n+1)=n 2020, 1−1n+1=n 4040,解得n =4039,经检验:n =4039是分式方程的解,故答案为:4039.三、计算或解答题(本大题共10小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)16.(7分)计算:√8−2sin30°﹣|1−√2|+(12)﹣2﹣(π﹣2020)0. 【解答】解:原式=2√2−2×12−(√2−1)+4﹣1=2√2−1−√2+1+4﹣1=√2+3.17.(7分)先化简,(x 2+4x+4x −4−x ﹣2)÷x+2x−2,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.【解答】解:原式=[(x+2)2(x+2)(x−2)−(x +2)]•x−2x+2 =(x+2x−2−x 2−4x−2)•x−2x+2=−x 2+x+6x−2•x−2x+2 =−(x+2)(x−3)x−2•x−2x+2=﹣(x ﹣3)=﹣x +3,∵x ≠±2,∴可取x =1,则原式=﹣1+3=2.18.(8分)如图,在△ABC 中,AB =AC ,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:△BDE ≌△F AE ;(2)求证:四边形ADCF为矩形.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE,∵E是线段AD的中点,∴AE=DE,∵∠AEF=∠DEB,∴△BDE≌△F AE(AAS);(2)∵△BDE≌△F AE,∴AF=BD,∵D是线段BC的中点,∴BD=CD,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵AB=AC,∴AD⊥BC,∴∠ADC=90°,∴四边形ADCF为矩形.19.(8分)在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B 为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)【解答】解:过点E、F分别作EM⊥AB,FN⊥AB,垂足分别为M、N,由题意得,EC=20,∠AEM=67°,∠AFN=40°,CB=DB=EM=FN,AB=60,∴AM=AB﹣MB=60﹣20=40,在Rt△AEM中,∵tan∠AEM=AM EM,∴EM=AMtan∠AEM=40tan67°≈16.9,在Rt△AFN中,∵tan∠AFN=AN FN,∴AN=tan40°×16.9≈14.2,∴FD=NB=AB﹣AN=60﹣14.2=45.8,答:2号楼的高度约为45.8米.20.(9分)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A 、B 两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B 种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?【解答】解:(1)设A 、B 两种花苗的单价分别是x 元和y 元,则{3x +5y =2104x +10y =380,解得{x =20y =30, 答:A 、B 两种花苗的单价分别是20元和30元;(2)设购买B 花苗x 盆,则购买A 花苗为(12﹣x )盆,设总费用为w 元,由题意得:w =20(12﹣x )+(30﹣x )x =﹣x 2+10x +240(0≤x ≤12),∵1<0.故w 有最大值,当x =5时,w 的最小值为265,当x =12时,w 的最小值为216, 故本次购买至少准备216元,最多准备265元.21.(9分)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【解答】解:(1)由y =x 2﹣4x +3函数可知,a 1=1,b 1=﹣4,c 1=3,∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x +3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3, ∴(m +n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x +3))=﹣6,∴点C 的坐标为(0,﹣6).当y =0时,2(x ﹣1)(x +3)=0,解得:x 1=1,x 2=﹣3,∴点A 的坐标为(1,0),点B 的坐标为(﹣3,0).∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,∴A 1(﹣1,0),B 1(3,0),C 1(0,6).设过点A 1,B 1,C 1的二次函数解析式为y =a (x +1)(x ﹣3),将C 1(0,6)代入y =a (x +1)(x ﹣3),得:6=﹣3a ,解得:a =﹣2,过点A 1,B 1,C 1的二次函数解析式为y =﹣2(x +1)(x ﹣3),即y =﹣2x 2+4x +6. ∵y =2(x ﹣1)(x +3)=2x 2+4x ﹣6,∴a 1=2,b 1=4,c 1=﹣6,a 2=﹣2,b 2=4,c 2=6,∴a 1+a 2=2+(﹣2)=0,b 1=b 2=4,c 1+c 2=6+(﹣6)=0,∴经过点A 1,B 1,C 1的二次函数与函数y =2(x ﹣1)(x +3)互为“旋转函数”.22.(10分)端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A 、B 、C 、D 四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有 600 人.(2)喜欢C种口味粽子的人数所占圆心角为72度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有2400人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.【解答】解:(1)240÷40%=600(人),所以本次参加抽样调查的居民有60人;(2)喜欢B种口味粽子的人数为600×10%=60(人),喜欢C种口味粽子的人数为600﹣180﹣60﹣240=120(人),所以喜欢C种口味粽子的人数所占圆心角的度数为360°×120600=72°;补全条形统计图为:(3)6000×40%=2400,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率=312=14.23.(10分)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx(k≠0)于D、E两点,连结CE,交x轴于点F.(1)求双曲线y=kx(k≠0)和直线DE的解析式.(2)求△DEC 的面积.【解答】解:∵点A 的坐标为(0,2),点B 的坐标为(1,0),∴OA =2,OB =1,作DM ⊥y 轴于M ,∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∴∠OAB +∠DAM =90°,∵∠OAB +∠ABO =90°,∴∠DAM =∠ABO ,在△AOB 和△DMA 中{∠ABO =∠DAM ∠AOB =∠DMA =90°AB =DA,∴△AOB ≌△DMA (AAS ),∴AM =OB =1,DM =OA =2,∴D (2,3),∵双曲线y ═k x (k ≠0)经过D 点, ∴k =2×3=6,∴双曲线为y =6x ,设直线DE 的解析式为y =mx +n ,把B (1,0),D (2,3)代入得{m +n =02m +n =3,解得{m =3n =−3, ∴直线DE 的解析式为y =3x ﹣3;(2)连接AC ,交BD 于N ,∵四边形ABCD 是正方形,∴BD 垂直平分AC ,AC =BD ,解{y =3x −3y =6x得{x =2y =3或{x =−1y =−6, ∴E (﹣1,﹣6),∵B (1,0),D (2,3),∴DE =√(2+1)2+(3+6)2=3√10,DB =√(2−1)2+32=√10,∴CN =12BD =√102, ∴S △DEC =12DE •CN =12×3√10×√102=152.24.(10分)如图,在Rt △ABC 中,∠ACB =90°,D 为AB 边上的一点,以AD 为直径的⊙O 交BC 于点E ,交AC 于点F ,过点C 作CG ⊥AB 交AB 于点G ,交AE 于点H ,过点E 的弦EP 交AB 于点Q (EP 不是直径),点Q 为弦EP 的中点,连结BP ,BP 恰好为⊙O 的切线.(1)求证:BC 是⊙O 的切线.(2)求证:EF̂=ED ̂. (3)若sin ∠ABC ═35,AC =15,求四边形CHQE 的面积.【解答】(1)证明:连接OE,OP,∵PE⊥AB,点Q为弦EP的中点,∴AB垂直平分EP,∴PB=BE,∵OE=OP,OB=OB,∴△BEO≌△BPO(SSS),∴∠BEO=∠BPO,∵BP为⊙O的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)解:∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,̂=ED̂.∴EF(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB =∠BEO =90°,∴AC ∥OE ,∴∠CAE =∠AEO ,∵OA =OE ,∴∠EAQ =∠AEO ,∴∠CAE =∠EAO ,∵∠ACE =∠AQE =90°,AE =AE ,∴△ACE ≌△AQE (AAS ),∴CE =QE ,∵∠AEC +∠CAE =∠EAQ +∠AHG =90°,∴∠CEH =∠AHG ,∵∠AHG =∠CHE ,∴∠CHE =∠CEH ,∴CH =CE ,∴CH =EQ ,∴四边形CHQE 是平行四边形,∵CH =CE ,∴四边形CHQE 是菱形,∵sin ∠ABC ═sin ∠ACG ═AG AC =35, ∵AC =15,∴AG =9,∴CG =√AC 2−AG 2=12,∵△ACE ≌△AQE ,∴AQ =AC =15,∴QG =6,∵HQ 2=HG 2+QG 2,∴HQ 2=(12﹣HQ )2+62,解得:HQ =152,∴CH =HQ =152,∴四边形CHQE的面积=CH•GQ=152×6=45.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M 的坐标为(2,﹣2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,∴点N (2,2),设直线AN 解析式为:y =kx +b ,由题意可得:{0=k +b 2=2k +b, 解得:{k =2b =−2, ∴直线AN 解析式为:y =2x ﹣2,联立方程组得:{y =2x −2y =2x 2−8x +6, 解得:{x 1=1y 1=0,{x 2=4y 2=6,∴点D (4,6),∴S △ABD =12×2×6=6, 设点E (m ,2m ﹣2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4,∴12×2×(2m ﹣2)=2或12×2×(2m ﹣2)=4, ∴m =2或3,∴点E (2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD =PQ ,∴x D ﹣x A =x P ﹣x Q 或x D ﹣x A =x Q ﹣x P ,∴x P =4﹣1+2=5或x P =2﹣4+1=﹣1,∴点P 坐标为(5,16)或(﹣1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD 与PQ 互相平分,∴x A +x D 2=x P +x Q 2,∴x P=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.。