2017年春季学期新版新人教版八年级数学下学期16.1、二次根式同步练习7
人教版数学八年级下册《第十六章二次根式》同步练习(含答案)

人教版数学八年级下册 第十六章二次根式 同步练习一、选择题1.在下列各式中,m 的取值范围不是全体实数的是( B )A .1)2(2+-mB .1)2(2-mC .2)12(--mD .2)12(-m 2.(2018湖南怀化中考)x 的取值范围是( C )A.x 3≤B.x 3<C.x 3≥D.x 3> 3.计算2⎛- ⎝的结果为( B ) A.-1 B.1 C.12 D.12- 4.( B )5.小明的作业本上有以下四题:2;5a 10a=5;③2=aa ;④. 其中做错的题是( D )A.①B.②C.③D.④ 6.若 - - 有意义,则点A (x ,y )落在 ( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若等腰三角形两边长分别为2 和5 ,则这个三角形的周长为 ( C )A. 4 +10B. 4 +5C. 2 +10D. 4 +5 或2 +108. 计算3÷ × 的结果为 ( C ) A. 3 B. 9 C. 1 D. 39.若 ,则 的值为( B )A. B. 2 C. D.10.若a=5,则下列各式是二次根式的是( B )a 5C.2- 2a 3D.2-⎛⎫ ⎪⎝⎭ 二、填空题 11.若x ,y 为实数,且42112=+-+-y x x ,则_______=xy .【答案】212.直角三角形的两条直角边长分别为,则这个直角三角形的面积为 cm 2 .13.的结果是 .【答案】14.若最简二次根式 和 - 能合并,则a 的值为 .【答案】215. 计算:=__________. 答案:三、解答题16.求231294a a a a -+-+--+的值.【解析】 因当0=a 时,2a -才有意义.故原式=231294a a a a -+-+--+ .001320010940=++-=+-+--+=17.已知a ,b 是等腰三角形的两条边长,且a,b 满足b=4+, 求此三角形的周长.【解析】3a 02a 60-⎧⎨-⎩≥由题意,得≥,解得a 3a 3⎧⎨⎩≤≥,∴a=3,∴b=4.、当a 为腰长时,三角形的三边长分别为3,3,4∵3+3>4,∴3,3,4能构成三角形,此时三角形的周长为3+3+4=10; 当b 为腰长时。
人教版八年级数学下第16章二次根式专项训练含答案(K12教育文档)

人教版八年级数学下第16章二次根式专项训练含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版八年级数学下第16章二次根式专项训练含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版八年级数学下第16章二次根式专项训练含答案(word版可编辑修改)的全部内容。
第16章二次根式专项训练专训1.利用二次根式的性质解相关问题名师点金:对于二次根式错误!,有两个“非负”:第一个是a≥0,第二个是错误!≥0,这两个“非负”在解二次根式的有关题目中经常用到.二次根式的被开方数和值均为非负数,是常见的隐含条件.利用被开方数a≥0及二次根式的性质解决有关问题1.若式子错误!在实数范围内有意义,则x的取值范围是________.2.若3x-4-错误!=错误!错误!,则3x-错误!y的值为________.3.(中考·黔南州)实数a在数轴上对应点的位置如图,化简(a-12)+a=________。
(第3题)4.若x、y为实数,且y〉错误!+错误!+2,化简:错误!错误!+错误!.5.已知x,y为实数,且错误!+错误!=(x+y)2,求x-y的值.利用错误!≥0求代数式的值或平方根6.若错误!+|2a-b+1|=0,则(b-a)2 015=()A.-1 B.1 C.52 015D.-52 0157.若x-3与错误!互为相反数,求6x+y的平方根.利用错误!≥0求最值8.当x取何值时,错误!+3的值最小,最小值是多少?利用二次根式的非负性解决代数式化简求值问题9.设等式错误!+错误!=错误!-错误!=0成立,且x,y,a互不相等,求错误!的值.利用被开方数的非负性解与三角形有关的问题10.已知实数x,y,a满足:错误!+错误!=错误!+错误!,试问长度分别为x,y,a 的三条线段能否组成一个三角形?如果能,请求出该三角形的周长;如果不能,请说明理由.专训2.比较二次根式大小的八种方法名师点金:含二次根式的数(或式)的大小比较,是教与学的一个难点,如能根据二次根式的特征,灵活地、有针对性地采用不同的方法,将会得到简捷的解法.较常见的比较方法有:平方法、作商法、分子有理化法、分母有理化法、作差法、倒数法、特殊值法等.平方法1.比较6+错误!与错误!+错误!的大小.作商法2.比较错误!与错误!的大小.分子有理化法3.比较错误!-错误!与错误!-错误!的大小.分母有理化法4.比较错误!与错误!的大小.作差法5.比较错误!与错误!的大小.倒数法6.已知x=错误!-错误!,y=错误!-错误!,试比较x,y的大小.特殊值法7.用“<"连接x,错误!,x2,错误!(0〈x〈1).定义法8.比较错误!与错误!的大小.答案专训11.x≥-12.2 点拨:由题意知3x-4=0,x-错误!y=0,所以x=错误!,y=4,代入求值即可.3.14.解:由错误!得:x=2,∴y>2,∴原式=错误!错误!+错误!=错误!+2=-1+2=1。
人教版初中数学八年级下册第十六章《二次根式》第一节同步练习题(含答案)

人教版初中数学八年级下册第十六章《二次根式》第一节同步练习题(含答案)1 / 4 16.1《二次根式》同步练习题一、选择题(每小题只有一个正确答案)1.在下列式子: , , , , , , 中,是二次根式的有( )A. 2个B. 3个C. 4个D. 5个2.若二次根式 在实数范围内有意义,则x 的取值范围是( )A. x ≤﹣6B. x >6C. x >﹣6D. x ≥﹣63.下列根式中,最简二次根式是( ).A. B. C. D. 4.下列各式中,一定能成立的是( )。
A. B.C. =x-1D.5.已知 , ,则a 与b 的关系为( ).A. a =bB. ab =1C. a =-bD. ab =-1 6.已知: 是整数,则满足条件的最小正整数 为( )A. 2B. 3C. 4D. 57.化简x ,正确的是( )A. B. C. ﹣ D. ﹣二、填空题8.直接写出下列各式的结果:(1)=_______;(2) 2_______;(3) (2_______; (4)_______;(5) 2_______;(6)2_______. 9.已知矩形的长为 ,宽为 ,则面积为______cm 2.10.比较大小6 ______7 .(填“>”,“=”,“<”号)11.已知实数a 在数轴上的位置如图,则化简|1﹣_____.12.已知- 的整数部分为x ,小数部分为y ,则xy=_____________。
三、解答题13.x 是怎样的实数时,下列二次根式有意义.(1) - ; (2)14.已知长方形的长为cm,宽为cm,求与这个长方形面积相等的圆的半径.15.把根号外的因式移到根号内:(1);(2).16.设a,b,c为△ABC的三边,化简人教版初中数学八年级下册第十六章《二次根式》第一节同步练习题(含答案)1 / 4参考答案1.C2.D3.A4.A5.A6.D7.C8. 7 7 7 -7 0.7 49 9. 10.>11.1﹣2a12.3 -913.(1) -1≤x≤2; (2) x <解析:(1)由题意得:,解得-1≤x≤2, 即当-1≤x≤2时, - 有意义;(2)由题意得: ,解得x < , 即当x < 时, 有意义.14. cm解析:设圆的半径为rcm ,根据题意得:πr 2= × =60π,解得r=2 cm ,则圆形图片的半径为2 cm .15.(1) ;(2)解析:(1)原式===﹣(2)原式=(1﹣x )=(1﹣x )•1x- =16.2(a+b+c)解析:根据a ,b ,c 为△ABC 的三边,得到a +b +c >0,a −b −c <0,b −a −c <0,c −b −a <0, 则原式,答案第2页,总2页。
人教版数学八年级下册第16章 二次根式 随堂测试题含答案

word 版 学初中数16.1《二次根式》一、选择题1.已知 是二次根式,则 x、y 应满足的条件是()A.x≥0 且 y≥0B.C.x≥0 且 y>0D.2.当 a<3 时,化简的结果是( )A.-1B.1C.2a-7D.7-2a3.化简的结果是( )A.y-2xB.yC.2x-y4.下列根式中属最简二次根式的是( )D.-yA.B.C.D.5.在下列各式中,m 的取值范围不是全体实数的是( )A.B.C.D.6.给出下列各式:;其中成立的是( )A.①③④B.①②④7.下列式子中,二次根式的个数是(C.②③④ )D.①②③⑴ ;⑵ ;⑶;⑷ ;⑸;⑹;⑺.A.2B.3C.4D.58.在根式①,② ,③,④中最简二次根式是( )A.①②B.③④C.①③D.①④9.若 a<0,则的值为( )A.3B.﹣3C.3﹣2aD.2a﹣310.若代数式有意义,则实数 x 的取值范围是( )A.x≥1B.x≥2C.x>1D.x>211.已知, 则 2xy 的值为( )A.-15 12.若 y2+4y+4+A.﹣6B.15C.-7.5=0,则 yx 的值为(B.﹣8C.6D.7.5 )D.81 / 14word 版 学二、填空题 13.若是二次根式,则点 A(x,6)的坐标为_____.14.要使等式成立,则 x=________.15.当____时,式子有意义.16.已知 n 是正整数, 189 n 是整数,则 n 的最小值是.17.如图,数轴上点 A 表示的数为 a,化简:.初中数18.已知,当分别取 1,2,3,……,2020 时,所对应 y 值总和是_______.三、解答题 19.比较大小:与.20.已知互为相反数,求 ab 的值.21.已知:实数 a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.22.已知:=0,求实数 a,b 的值. 2 / 14word 版 学23.已知 a、b 满足等式.(1)求出 a、b 的值分别是多少?(2)试求的值.初中数24.已知 x,y 为实数,且满足,求 x -y 2020 2020 的值.3 / 14word 版 学初中数1.答案为:D 2.答案为:D 3.答案为:B 4.答案为:A 5.答案为:B 6.答案为:A 7.答案为:C 8.答案为:C 9.答案为:A. 10.答案为:B. 11.答案为:A 12.答案为:B 13.答案为(-3,6). 14.答案为:4. 15.答案为:3≤x<5. 16.答案为:21. 17.答案为:2. 18.答案为:2032.19.解:参考答案.因为所以,所以.20.原式=7 21.解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a) =a+1+2﹣2b﹣b+a =2a﹣3b+3. 22.解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21. 23.解:(1)由题意得,2a﹣6≥0 且 9﹣3a≥0, 解得 a≥3 且 a≤3,所以,a=3,b=﹣9;(2) ﹣ + =﹣+=6﹣9﹣3=﹣6.24.解:∵∴+=0∴1+x=0,1-y=0,解得 x=-1,y=1, X2018-y2018=(-1)2018-12018=1-1=0.人教版八年级下册 16.2 《二次根式的乘除》一.选择题1.将 化简后的结果是( )4 / 14word 版 学A.2B.C.22.计算(﹣ )2 的结果是( )A.﹣6B.6C.±63.下列二次根式中,属于最简二次根式的是( )A.B.C.4.+()2 的值为( )A.0B.2a﹣4C.4﹣2a5.实数 a,b 在数轴上对应点的位置如图所示,则化简D.4 D.36 D.初中数D.2a﹣4 或 4﹣2a 的结果为( )A.b﹣aB.a+bC.ab6.已知 x= +1,y= ﹣1,则 xy 的值为( )A.8B.48C.27.化简的结果是( )A.B.C.二.填空题8.计算:的结果是.9.化简 =.10.将 化成最简二次根式为.11.化简:=.12.计算:• (x>0)=.三.解答题(共 6 小题) 13.把下列二次根式化成最简二次根式(1)(2)D.2a﹣b D.6 D.(3)5 / 14word 版 学14.计算: ×4 ÷ .15.计算:•.16.计算:•(﹣)÷(a>0).17.化简:.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣ .参考答案 一.选择题 1.解: =故选:C.=2 ,6 / 14初中数word 版 学2.解:(﹣ )2=6,故选:B 3.解:A、. =5,故此选项错误;B、 是最简二次根式,故此选项正确;C、 = ,故此选项错误;D、 =2 故选:B.,故此选项错误;4.解:要使有意义,必须 2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.5.解:由数轴得 a<﹣1,b>0,所以原式=|a|+|b|=﹣a+b.故选:A.6.解:当 x= +1,y= ﹣1 时,xy=( +1)( ﹣1)=( )2﹣12=7﹣1 =6, 故选:D.7.解:∵ >0,∴b<0, b =﹣=﹣ .故选:D. 二.填空题 8.解:原式= × =6 .故答案为:6 .7 / 14初中数word 版 学9.解:原式== =2 ,故答案为:2 . 10.解: = ,故答案为: .11.解:因为 >1,所以= ﹣1故答案为: ﹣1.12.解:•(x>0)===4xy2. 故答案为:4xy2. 三.解答题(共 6 小题)13.解:(1)=;(2) =4 ;(3)==.14.解:原式=2 ×4× ÷4 =8 ÷4 =2.15.解:原式= × ×2= =x2. 16.解:原式==8 / 14初中数word 版 学==.初中数17.解:原式==+.18.解:由数轴可知:a<0,b>0,a﹣b<0 所以|a﹣b|﹣ =|a﹣b|﹣|b|=b﹣a﹣b=﹣a.16.3 二次根式的加减一.选择题1.下列二次根式与 2 可以合并的是(A.3B.2.下列计算中,正确的是( )) C.A. + =B.=﹣3 C. =3.计算: ﹣ =( )D.12 D.3 ﹣ =2A.﹣B.0C.D.4.已知 是整数,则 n 的值不可能是( )A.2B.8C.32D.405.如图,从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,则余下的面积为( )A.16 cm2 6.计算 ÷ •B.40 cm2C.8 cm2(a>0,b>0)的结果是( )A.B.C.7.已知 a=2+ A.12,b=2﹣ ,则 a2+b2 的值为( )B.14C.16 9 / 14D.(2 +4)cm2 D.b D.18word 版 学8.计算的结果是( )A.0B.C.9.如果与A.0二.填空题10.化简:11.计算:的和等于 3 ,那么 a 的值是( )B.1C.2的结果为.=.12.计算(5 )( 2)=.三.解答题13.(1)2 ﹣6 ;(2)()﹣( ﹣ ).14.计算. (1) ﹣ + . (2) × ﹣ +( ﹣1)0.(3) ÷ ﹣4 +.(4)( ﹣2)2+( )﹣1﹣( )2.15.已知 a= ﹣ ,b= + ,求值:(1) + ;(2)a2b+ab2.16.已知长方形的长为 a,宽为 b,且 a=,b=.(1)求长方形的周长; (2)当 S 长方形=S 正方形时,求正方形的周长.D. D.3初中数10 / 14word 版 学初中数参考答案一.选择题1.解:A、3 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; B、 =2 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; C、 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; D、12 与 2 被开方数相等,是同类二次根式,故本选项符合题意; 故选:D.2.解:A、 + = +2,无法合并,故此选项错误;B、=3,故此选项错误;C、 =1,故此选项错误;D、3 ﹣ =2 ,正确.故选:D.3.解:原式= ﹣ =0.故选:B.4.解:A、当 n=2 时, =2,是整数;B、当 n=8 时, =4,是整数;C、当 n=32 时, =8,是整数;D、当 n=40 时, = =4 ,不是整数;故选:D.5.解:从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,大正方形的边长是 + =4+2 , 留下部分(即阴影部分)的面积是(4+2 )2﹣16﹣24=16+16+24﹣16﹣24=16 (cm2).故选:A .6.解:原式=×=11 / 14word 版 学=.故选:A. 7.解:∵a=2+ ,b=2﹣ ,∴a+b=4,ab=4﹣3=1, ∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14. 故选:B. 8.解:原式===.故选:B.9.解:∵与 =2 的和等于 3 ,∴=3 ﹣2 = ,故 a+1=3,则 a=2.故选:C.二.填空题10.解:原式=3 ﹣4 + =0.故答案为:0.11.解:原式=[( +2)( ﹣2)]2020•( =(3﹣4)2020•( ﹣2)﹣2)= ﹣2.故答案为 ﹣2.12.解:原式=5 +10﹣3﹣2 =7+3 ,故答案为:7+3 . 三.解答题13.解:(1)原式=﹣4 ;12 / 14初中数word 版 学初中数(2)原式=2 + ﹣ +=3 + .14.解:(1)原式= ﹣2 +3=2 ;(2)原式=﹣ +1=2 ﹣ +1 = +1; (3)原式=﹣2 +2=2 ﹣2 +2 =2;(4)原式=5﹣4 +4+5﹣5 =9﹣4 . 15.解:∵a= ﹣ ,b= + , ∴a+b=( ﹣ )+( + )=2 ,ab=( ﹣ )( + )=2,(1) +=====12; (2)a2b+ab2 =ab(a+b) =2×2 =4 .13 / 14word 版 学16.解:(1)∵a== ,b==2 ,∴长方形的周长是:2(a+b)=2( +2 )=;(2)设正方形的边长为 x,则有 x2=ab,∴x= === ,∴正方形的周长是 4x=12 .初中数14 / 14。
人教版八年级数学下册16.1二次根式同步练习 含答案

人教版八年级数学下册16.1二次根式同步练习一.选择题1.下列各式一定是二次根式的是()A.B.C.D.(a+b)2 2.已知是二次根式,则a的值不能是()A.B.3.14 C.﹣2 D.6 3.使代数式有意义的x的取值范围是()A.x≥﹣1 B.x>﹣1 C.x≥1D.x>1 4.若有意义,则x满足条件是()A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣3 5.若x=2能使下列二次根式有意义,则这个二次根式可以是()A.B.C.D.6.设x、y为实数,且y=+﹣4,则|x﹣y|的值是()A.2 B.4 C.6 D.8 二.填空题7.若有意义,那么x满足的条件是.8.若代数式有意义,则x的取值范围是.9.设x、y为实数,且y=4++,则x﹣y的值是.10.若实数x,y满足,则y x的值为.11.已知x,y为实数,y=,则x+8y=.三.解答题12.若实数a、b满足,求a+b的平方根.13.已知x、y都是实数,且y=+﹣3,求(x+y)2020的平方根.14.已知=b+1(1)求a的值;(2)求a2﹣b2的平方根.15.已知,(1)求a+b的值;(2)求7x+y2020的值.16.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.参考答案一.选择题1.解:A、﹣9<0,它不是二次根式,故本选项不合题意;B、它开3次方,该式子不是二次根式,故本选项不合题意;C、x取任意实数,x2+1≥1,是二次根式,故本选项符合题意;D、(a+b)2没有开平方,该式子不是二次根式,故本选项不合题意.故选:C.2.解:是二次根式,则a的值应该是非负数,即a≥0,故a的值不可能是负数,故选:C.3.解:使代数式有意义,则x﹣1≥0,解得,x≥1,故选:C.4.解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.5.解:当x=2时,A、x﹣3=2﹣3=﹣1<0,无意义,不合题意;B、1﹣x=1﹣2=﹣1<0,无意义,不合题意;C、3+x=5>0,有意义,符合题意;D、﹣2x=﹣2×2=﹣4<0,无意义,符合题意;故选:C.6.解:要使有意义,必须x﹣2≥0,数学要使有意义,必须2﹣x≥0,解得,x=2,则y=﹣4,∴|x﹣y|=|2+(﹣4)|=6,故选:C.二.填空题7.解:要使有意义,则1﹣x≥0,解得,x≤1,故答案为:x≤1.8.解:∵代数式有意义,∴x﹣2≠0且x﹣1≥0且x﹣1≠4,解得x≥1且x≠2或5,∴x的取值范围是x≥1且x≠2或5,故答案为:x≥1且x≠2或5.9.解:根据题意得5﹣x≥0且x﹣5≥0,∴x=5,当x=5时,y=4,∴x﹣y=5﹣4=1.故答案为1.10.解:根据题意知,.所以y=﹣,所以y x=(﹣)2=2.故答案是:2.11.解:根据题意得x2﹣16≥0且16﹣x2≥0,解得x2=16,∴x=4或x=﹣4,而x﹣4≠0,∴x=﹣4,当x=﹣4时,y==﹣,∴x+8y=﹣4+8×(﹣)=﹣5.故答案为﹣5.三.解答题12.解:∵,∴,∴b=4,把b=4代入上式得a=2,∴a+b=2+4=6,∴a+b的平方根为.13.解:∵y=+﹣3,∴4﹣2x≥0,2x﹣4≥0,∴y=﹣3,∴(x+y)2020=(2﹣3)2020=1,∴(x+y)2020的平方根是:±1.14.解:(1)∵,有意义,∴,解得:a=5;(2)由(1)知:b+1=0,解得:b=﹣1,则a2﹣b2=52﹣(﹣1)2=24,则平方根是:.15.解:(1)由题意可知:,解得:a+b=2020.(2)由于×=0,∴∴解得:∴7x+y2020=14+1=15.16.解:(1)由题意得,x﹣2020≥0,2020﹣x≥0,解得,x=2020,则y=﹣2019,数学∴x+y=2020﹣2019=1,∵1的平方根是±1,∴x+y的平方根±1;(2)由题意得,a+2+a+5=0,解得,a=﹣,则a+2=﹣+2=﹣,∴x=(﹣)2=.。
人教版八年级下册数学 16.1 二次根式 同步练习(含答案)

2 3 = 22 3 = 12 (1)
−2 3 = (−2)2 3 = 12 (2)
2 3 = −2 3
(3)
2 = −2
(4)
A. (1) B. (2) C. (3) D. (4)
21. 若 x − y + y2 − 4 y + 4 = 0 ,求 xy 的值。
2/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根 22. 当 a 取什么值时,代数式 2a +1 +1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:
(1).3 2y ( x 0)
3x
(2).
x5
x
(
−1
x +1)
(
x
1)3/6Fra bibliotek知识像烛光,能照亮一个人,也能照亮无数的人。--培根
24. 已知 x2 − 3x +1 = 0 ,求
x2
+
1 x2
−
2
的值。
25. 已知 a, b 为实数,且 1+ a − (b −1) 1− b = 0 ,求 a2005 − b2006 的值。
B. (1− a) 1− a
C. (a −1) 1− a
D. (1− a) a −1
18. 能使等式 x = x 成立的 x 的取值范围是(
)
x−2 x−2
A. x 2 B. x 0 C. x 2 D. x 2
19. 计算: (2a −1)2 + (1− 2a)2 的值是(
)
A. 0 B. 4a − 2 C. 2 − 4a D. 2 − 4a 或 4a − 2 20. 下面的推导中开始出错的步骤是( )
新人教版八年级下册二次根式(全章)习题及答案

二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()23123224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。
22. 当a取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
16.2 二次根式的乘除1. 当0a ≤,0b__________=。
人教版八年级数学下册 16.1二次根式 同步练习(包含答案)

16.1二次根式 同步练习◆随堂检测1、下列各式中,一定是二次根式的是( )AB C D 2在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≥C .3x >-D .3x ≥-3、当x =____________.4、那么m 、n 应满足的条件是_____________.51a b ++互为相反数,求()5a b +的值是多少?6、化简|a -2|+2)2(a -的结果是( )A .4-2aB .0C .24-aD .47、下列各式中,一定能成立的是( )A .22)5.2()5.2(=-B .22)(a a =C 1x =-D 3x =+8、已知x <y ,化简2)(y x x y ---为_______.9、若a a =2,则a _________;若a a -=2,则a ________.10、当4a <-时,求|2-2)2(a +|的值是多少?●拓展提高1x 的值有( )A .0个B .1个C .2个D .3个2P (,)a b 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、函数2y x =-中,自变量x 的取值范围是_____________. 4、实数5-_________.5.6、若ABC V 的三边长分别为,,a b c ,其中a 和b 269b b -=-,求边长c 的取值范围是多少?7、已知,a b 为两个连续整数,且a b <,则____a b +=. (注意:,a b 为两个连续整数,故,a b 只有一组值符合条件)8、若,x y 为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .-1C .2D .-2(提示:如果两个或几个非负数的和等于零,那么它们均为零)参考答案随堂检测1、C. ∵210a +>, C.而A 中根指数不是2;B 中被开方数小于0,无意义;D 中被开方数a 二次根式.2、D. 在实数范围内有意义,∵30x +≥,∵3x ≥-,故选D.3、-1,0. 0≥,且当10x +=0=,∵当x =-1时,二次根式0.4、2,2m n ≥=. ∵2,0n m n =-≥,即2,2m n ≥=.5、解:1a b ++互为相反数,10a b ++=.0≥且10a b ++≥,∵30a b --=且10a b ++=.6、A. ∵2)2(a -有意义,∴20a ->,∴原式=(2)242a a a --+-=-,故选A.7、A. ∵只有A 选项不含代数字母,等式总成立.故选A.8、0. ∵x <y ()x y x y =--=-+,∴原式=()0y x x y ---+=.9、0≥,0≤ ∵当a a =2时,0≥得0a ≥;a =-时,0 得0a -≥,即0a ≤.10、解:当4a <-时,220a +<-<(2)2a a =-+=--, ∴|2-2)2(a +|=|2-(2)a --|=|4a +|=(4)4a a -+=--.解得1,2a b ==-. ∵()555(12)(1)1a b +=-=-=-.●拓展提高1、B. ∵2(4)0x --≤,∵只有当4x =B.2、C. ∵0a -≥,且0ab >,∵0a <且0b <,则点P (,)a b 在应是第三象限,故选C.3、4x ≤且2x ≠. ∵函数y =中,自变量x 满足40x -≥且20x -≠,解得4x ≤且2x ≠.4、2. ∵22253<<,∵23<<,∵32-<<-,∵253<<,∵5 的整数部分是2.5、解:由题意得,40a +≥,且920a -≥,且20a -≥,∵0a =,∵原式=2-3=-1.62(3)0b -=,∵20a -=且30b -=, ∵2a =,且3b =. 又∵ABC V 中,a b c a b -<<+,∵15c <<.7、5 ∵22273<<,且2和3是连续整数,∵23<<,∵2,3a b ==,∵5a b +=.8、B ∵20x ++=,∵20x +=,且,20y -=∵2,2x y =-=,∵()2009200920092112x y ⎛⎫-⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭.故选B.。
人教版八年级数学下册 第十六章 二次根式 同步练习

八年级数学下册(第十六章)基础知识整理理与习题训练知识要点一 二次根式的概念1.下列式子一定是二次根式的是( ) A.x B 35 C.22-x D.22+x2.若二次根式42-x 在实数范围内有意义,则x 的取值范围是( )A.x>2B.x≥2C.x<2D. x=23. 下列式子①8,②22+x ,③5-,④16,⑤34,⑥1-a 、其中一定是二次根式的有( )A.6个B.5个C.4个D.3个4.若a a 1+是一个二次根式,则a =_________.5.当a 取何值时,下列各式在实数范国内有意义? (1)a 310- (2)2)2(--a (3).21-a (4).a a -++33 知识要点二 二次根式的性质6.化简)5(2-的结果是( )A.5B.-5C.士5D.257.如果2)2(-a =2-a ,那么( )A.a<2B.a≤2C.a>2D.a≥28.下列各式计算结果正确的是( ) A.2)32(=6 B.)4(2-=-4 C.)16(2=4 D.2)53(-=459.计算:2)52(-=__________. 10.42=__________8.02=__________ 02= __________ )3(2-=__________ )32(2-= __________ (1)根据计算结果,回答:a 2一定等于a 吗?你发现其中的规律了吗?请你把得到的规律描述出来.(2)利用你总结的规律,计算: 3.15)-π(2知识要点三 二次根式的乘除1.下列根式是最简二次根式的是( ) A.31 B.3.0 C.3 D.20 12.化简二次根式7×)5(2-的结果为( ) A.-57 B.57 C.士57 D.3513.等式1-x ・1+x =12-x 成立的条件是( )A.x≥1B.x≥-1C.-1≤x≤1D.x≥1或x≥-114.(1)计算12×3的值是__________;(2)计算a 18・a 2(a≥0)的结果是__________.15.计算315×5的结果是___________. 16.计算并化简下列各式: (1).521×312÷321 (2).y 3×x 12÷432xy x(3).a b 3÷)23(-×235b a ab b (4).21223×15143÷7-知识要点四 二次根式的加减17.下列二次根式中,与3是同类二次根式的是( ) A.18 B.31 C.24 D.3.0 18.计算5253-的结果是( ) A.5 B.25 C.35 D.619.计算:8+2=__________.20.若a ,b 为有理数,且12-27+2=a+b 3,则a+b =_________.21.计算: (1)18222372+-(2))2313(1221+-(3).32212021253--+ (4))2718(1231682--+-知识要点五二次根式的综合运算22.下列计算:(1)2)2(=2,(2)2)2(-=2,(3)2)32(-=12,(4)(32+)×(32-)=1,其中结果正确的个数为( )A.1B.2C.3D.423.对于任意的正数m ,n ,定义运算※为:m ※n= )n ≥(m n m -<n)(m n m +计算(3※2)×(8※12)的结果为( )A.2-46B.2C.25D.2024.计算: (1)3×)32278(+ (2)3÷1221×8-(3) 3÷)12485(+ (4)2)15()347)(347(---+25. 已知a =23-,b =23+,求下列各式的值:(1)b a b a 22+ (2)b a 2221-26. 观察下列等式: ①12)12)(12(12121-=-+-=+ ②23)23)(23(23231-=-+-=+ ③;...34)34)(34(34341-=-+-=+ 回答下列问题:(1)利用你观察到的规律,化简22231+=__________. (2)计算100991...231321211++++++++参考答案。
(人教版)八年级数学下册16.1二次根式同步练习(解析版)含答案

16.1二次根式同步练习参考答案与试题解析一.选择题1.选C2.解:当x=﹣3时,=,故此数据不合题意;当x=﹣1时,=,故此数据不合题意;当x=0时,=,故此数据不合题意;当x=2时,=0,故此数据符合题意;故选:D.3.解:(a≥0)是非负数,故选:D.4.解:由题意得,a+2≥0,a≠0,解得,a≥﹣2且a≠0,故选:D.二.填空题5.解:平方,得a﹣1=4.解得a=5,故答案为:5.6.解:=4,∵是正整数,∴3n是一个完全平方数.∴n的最小整数值为3.故答案为:3.7.解:因为2=,2==,所以此列数为:,,,,…,则第100个数是:=10.故答案是:10.8.解:∵中被开放数4>0且含有“”,∴是二次根式.∴小红的说法错误.故答案为:错.9.解:根据题意,得,解得x≥﹣1且x≠0.三.解答题10.解:由题意知:20≤x≤30,又因为x,y均为整数,所以x﹣20,30﹣x均需是一个整数的平方,所以x﹣20=1,30﹣x=1,故x只以取21或29,当x=21时,y=4,x+y的值为25;当x=29时,y=4,x+y的值为33.故x+y的值为25或33.11.解:∵是整数,∴18﹣n≥0,且18﹣n是完全平方数,∴①18﹣n=1,即n=17;②18﹣n=4,即n=14;③18﹣n=9,即n=9;④18﹣n=16,即n=2;⑤18﹣n=0,即n=18;综上所述,自然数n的值可以是17、14、9、2、18.12.解:∵为二次根式,∴x的取值范围是:x﹣3≠0.13.解:n个式子是,一定是二次根式,理由如下:的被开方数是非负数,是二次根式.14.解:∵y=﹣﹣2016,∴x﹣2017≥0且2017﹣x≥0,∴x≥2017且x≤2017,∴x=2017,y=﹣2016,∴x+y=2017﹣2016=1,∴x+y的平方根是±1.15.。
新人教版初中数学八年级下册同步练习第16章二次根式17章勾股定理(附答案)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______. 3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).第十七章勾股定理测试1 勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ).2(A)4 (B)6 (C)8 (D)108.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ).(A)150cm2 (B)200cm2(C)225cm2(D)无法计算三、解答题9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC 的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;图②(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图③测试2 勾股定理(二)学习要求掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km .3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.3题图4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .4题图二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ).5题图(A)5m (B)7m (C)8m(D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).6题图 (A)212(B)310(C)56 (D)58三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为____ __米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A 相对的上底面B 点,则蚂蚁爬的最短路线长约为______( 取3)二、解答题:11.长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m .12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD =3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______.二、选择题6.已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ). (A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ).(A)7(B)7或41 (C)24 (D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10-及13的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.12.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE 为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4(C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形(C)一定是直角三角形 (D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.17.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案第十七章 勾股定理测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,3; (4)1,2.3.52. 4.52,5. 5.132cm . 6.A . 7.B . 8.C .9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)63; (5)12.10.B . 11..5 12.4. 13..31014.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3.测试2 勾股定理(二)1.13或.119 2.5. 3.2. 4.10.5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试3 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3.13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB15.128,2n-1.测试4 勾股定理的逆定理1.直角,逆定理.2.互逆命题,逆命题.3.(1)(2)(3).4.①锐角;②直角;③钝角.5.90°.6.直角.7.24.提示:7<a<9,∴a=8.8.13,直角三角形.提示:7<c<17.9.D.10.C.11.C.112.CD=9.13..514.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数)第十七章勾股定理全章测试一、填空题1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.2.若等边三角形的边长为2,则它的面积为______.3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.3题图4.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC =60米,则点A到岸边BC的距离是______米.4题图5.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8cm,CA=6cm,则点O到三边AB,AC和BC的距离分别等于______cm.5题图6.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.6题图7.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.8.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.8题图二、选择题9.下列三角形中,是直角三角形的是( )(A)三角形的三边满足关系a +b =c (B)三角形的三边比为1∶2∶3(C)三角形的一边等于另一边的一半 (D)三角形的三边为9,40,4110.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ).10题图(A)450a 元 (B)225a 元(C)150a 元 (D)300a 元11.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ).(A)2(B)3 (C)22 (D)3212.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则AC +BC 等于( ).(A)5(B)135 (C)1313 (D)59三、解答题13.已知:如图,△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足,求AD 的长.14.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD =10m,求这块草地的面积.15.△ABC中,AB=AC=4,点P在BC边上运动,猜想AP2+PB·PC的值是否随点P位置的变化而变化,并证明你的猜想.16.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要多长?如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要多长?18.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.图1 图2 图3(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.19.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案第十七章 勾股定理全章测试1.8. 2..3 3..10 4.30. 5.2.6.3.提示:设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6, CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程.7.26或.2658.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △.9.D . 10.C 11.C . 12.B13..2172 提示:作CE ⊥AB 于E 可得,5,3==BE CE 由勾股定理得,72=BC 由三角形面积公式计算AD 长.14.150m 2.提示:延长BC ,AD 交于E .15.提示:过A 作AH ⊥BC 于HAP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH )=AH 2+PH 2+BH 2-PH 2=AH 2+BH 2=AB 2=16.16.14或4.17.10; .16922n +18.(1)略; (2)定值, 12;(3)不是定值,.10226,1028,268+++19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:54=AD ,得△ABD 的周长为.m )5420(+.③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,图3 由勾股定理得:325 x ,得△ABD 的周长为.m 380。
人教版八年级数学下册第16章 二次根式 同步训练 含答案解析

人教版八年级数学下册第16章二次根式同步训练含答案解析一.选择题(共8小题)1.将化简,正确的结果是()A.B.C.D.2.已知:a=,b=,则a与b的关系是()A.a﹣b=0 B.a+b=0 C.ab=1 D.a2=b23.下列计算正确的是()A.B.C.D.4.若u,ν满足v=++,那么u2﹣uv+v2=()A.B.C.D.5.在化简时,甲、乙两位同学的解答如下,那么两人的解法()甲:===乙:===A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错6.如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k 7.在、、、、中,最简二次根式有()A.1个B.2个C.3个D.4个8.已知x为实数,化简的结果为()A.B.C.D.二.填空题(共5小题)9.已知最简二次根式与是同类二次根式,则a的值为.10.如果(a,b为有理数),则a=,b=.11.已知:x=,y=.那么+=.12.我们在二次根式的化简过程中得知:=﹣1,=﹣,=﹣,……,则(+++…+)(+1)=.13.观察下列一组等式的化简然后解答后面的问题:==﹣1;==;==2﹣(1)在计算结果中找出规律=(n表示大于0的自然数)(2)通过上述化简过程,可知﹣﹣(天“>”、“<”或“=”);三.解答题(共6小题)14.计算:(1)(2﹣6+3)÷2;(2)(2+5)(2﹣5)﹣(﹣)2.15.已知:y=+,求代数式的值.16.先化简再求值(1)已知:y>+2,求+5﹣3x的值.(3)已知a=,求的值.17.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:==;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:;③应用:计算.18.观察下列各式:;;…,请你猜想:(1)=,=.(2)计算(请写出推导过程):(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.19.若=•,求(x+1)的值.参考答案与试题解析一.选择题(共8小题)1.将化简,正确的结果是()A.B.C.D.【分析】根据二次根式的性质化简即可.【解答】解:==10,故选:A.2.已知:a=,b=,则a与b的关系是()A.a﹣b=0 B.a+b=0 C.ab=1 D.a2=b2【分析】先分母有理化求出a、b,再分别代入求出ab、a+b、a﹣b、a2、b2,求出每个式子的值,即可得出选项.【解答】解:分母有理化,可得a=2+,b=2﹣,∴a﹣b=(2+)﹣(2﹣)=2,故A选项错误;a+b=(2+)+(2﹣)=4,故B选项错误;ab=(2+)×(2﹣)=4﹣3=1,故C选项正确;∵a2=(2+)2=4+4+3=7+4,b2=(2﹣)2=4﹣4+3=7﹣4,∴a2≠b2,故D选项错误;故选:C.3.下列计算正确的是()A.B.C.D.【分析】根据二次根式的性质和运算法则逐一计算可得.【解答】解:A.=|﹣2|=2,此选项计算错误;B.=×=,此选项错误;C.与不是同类二次根式,不能合并,此选项错误;D.÷=,此选项计算正确;故选:D.4.若u,ν满足v=++,那么u2﹣uv+v2=()A.B.C.D.【分析】依据与互为相反数,它们都是非负数,即可得到2u=v,代入等式即可得到u和v的值,进而得出结论.【解答】解:由题可得,与互为相反数,又∵它们都是非负数,∴==0,∴2u=v,∴v=0+0+=,∴u=,∴u2﹣uv+v2=﹣+=,故选:D.5.在化简时,甲、乙两位同学的解答如下,那么两人的解法()甲:===乙:===A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错【分析】分别对甲和乙的过程进行判断,注意分母有理化时要判断≠.【解答】解:甲同学在计算时,将分子和分母都乘以(﹣),而﹣是有可能等于0,此时变形后分式没有意义,所以甲同学的解法错误;乙同学的解法正确;故选:B.6.如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【分析】求出k的范围,化简二次根式得出|k﹣6|﹣|2k﹣5|,根据绝对值性质得出6﹣k﹣(2k﹣5),求出即可.【解答】解:∵一个三角形的三边长分别为、k、,∴﹣<k<+,∴3<k<4,﹣|2k﹣5|,=﹣|2k﹣5|,=6﹣k﹣(2k﹣5),=﹣3k+11,=11﹣3k,故选:D.7.在、、、、中,最简二次根式有()A.1个B.2个C.3个D.4个【分析】根据最简二次根式的定义直接求解.【解答】解:在、、、、中,最简二次根式为、.故选:B.8.已知x为实数,化简的结果为()A.B.C.D.【分析】根据二次根式的性质进行化简:=﹣x,=﹣,代入后合并同类二次根式即可.【解答】解:原式=﹣x﹣x•(﹣)=﹣x+=(1﹣x).故选:C.二.填空题(共5小题)9.已知最简二次根式与是同类二次根式,则a的值为 2 .【分析】几个二次根式化简成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.所以根据题意的2a+1=5解出a的值即可.【解答】解:依题意得:2a+1=5解得:a=2故答案为:210.如果(a,b为有理数),则a= 6 ,b= 4 .【分析】先计算出(2+)2,再根据可得答案.【解答】解:∵(2+)2=4+4+2=6+4,∴a=6、b=4.故答案为:6、4.11.已知:x=,y=.那么+=98 .【分析】把x与y分母有理化得到结果,原式通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:∵x==5﹣2,y==5+2,∴原式===98,故答案为:9812.我们在二次根式的化简过程中得知:=﹣1,=﹣,=﹣,……,则(+++…+)(+1)=2019 .【分析】先分母有理化,然后合并后利用平方差公式计算.【解答】解:原式=(﹣1+﹣+﹣+…+﹣)(+1)=(﹣1)(+1)=2020﹣1=2019.故答案为2019.13.观察下列一组等式的化简然后解答后面的问题:==﹣1;==;==2﹣(1)在计算结果中找出规律=﹣(n表示大于0的自然数)(2)通过上述化简过程,可知﹣>﹣(天“>”、“<”或“=”);【分析】(1)根据题目中的例子可以解答本题;(2)根据分子有理化可以解答本题.【解答】解:(1)==,故答案为:;(2)∵,,∴,故答案为:>.三.解答题(共6小题)14.计算:(1)(2﹣6+3)÷2;(2)(2+5)(2﹣5)﹣(﹣)2.【分析】(1)先计算括号,再计算除法即可;(2)利用乘法公式计算即可;【解答】解:(1)(2﹣6+3)÷2;=(4﹣2+12)÷2=14÷2=7(2)(2+5)(2﹣5)﹣(﹣)2.=(2)2﹣(5)2﹣(5﹣2+2)=20﹣50﹣(7﹣2)═﹣37+2.15.已知:y=+,求代数式的值.【分析】根据已知和二次根式的性质求出x、y的值,把原式根据二次根式的性质进行化简,把x、y的值代入化简后的式子计算即可.【解答】解:1﹣8x≥0,x≤8x﹣1≥0,x≥,∴x=,y=,∴原式=+==1.16.先化简再求值(1)已知:y>+2,求+5﹣3x的值.(2)已知a=,求的值.【分析】(1)根据二次根式被开方数的非负性,可得x的值,从而得y的范围,从而可将要求的式子化简求解;(2)先对已知条件利用分母有理化进行化简,再对要求的式子进行化简,最后将a的值代入计算即可.【解答】解:(1)根据题意得,≥0,≥0,3x﹣2≥0,2﹣3x≥0∴x=∵y>+2∴y>2∴+5﹣3x=+5﹣3×=﹣1+5﹣2=2,∴+5﹣3x的值为2.(2)∵a===2﹣<1,∴=﹣=a+3﹣=a+3+=2﹣+3+2+=7,∴的值为7.17.观察下列各式:=1+﹣=1;=1+﹣=1;=1+﹣=1,…请你根据以上三个等式提供的信息解答下列问题①猜想:=1+﹣=1;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:计算.【分析】①直接利用利用已知条件才想得出答案;②直接利用已知条件规律用n(n为正整数)表示的等式即可;③利用发现的规律将原式变形得出答案.【解答】解:①猜想:=1+﹣=1;故答案为:1+﹣,1;②归纳:根据你的观察,猜想,写出一个用n(n为正整数)表示的等式:=1+﹣=;③应用:===1+﹣=1.18.观察下列各式:;;…,请你猜想:(1)=5,=6.(2)计算(请写出推导过程):(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来.【分析】认真观察,可发现根号内第一个数和第二个数的分母相差为2,结果为第一个数和第二个数的分母和的一半与第二个数的算术平方根的积.【解答】解:(1),;(2);(3)(n≥1).19.若=•,求(x+1)的值.【分析】根据负数没有平方根求出x的范围,化简原式即可.【解答】解:∵=•,∴99﹣x≥0,x﹣99≥0,解得:x=99,则原式=(x+1)===10.。
【人教版】八年级数学下第十六章《二次根式》课时作业同步练习(含答案)

第十六章二次根式16.1二次根式第1课时二次根式的概念01基础题知识点1二次根式的定义1.下列式子不是二次根式的是( B )A. 5B.3-πC.0.5D.1 32.下列各式中,一定是二次根式的是( C )A.-7B.3mC.1+x2D.2x3.已知a是二次根式,则a的值可以是( C )A.-2 B.-1C.2 D.-54.若-3x是二次根式,则x的值可以为答案不唯一,如:-1(写出一个即可).知识点2二次根式有意义的条件5.x取下列各数中的哪个数时,二次根式x-3有意义(D)A.-2 B.0C.2 D.46.(2017·广安)要使二次根式2x-4在实数范围内有意义,则x的取值范围是(B)A.x>2 B.x≥2C.x<2 D.x=27.当x是怎样的实数时,下列各式在实数范围内有意义?(1)-x;解:由-x≥0,得x≤0.(2)2x+6;解:由2x+6≥0,得x≥-3.(3)x2;解:由x2≥0,得x为全体实数.(4)14-3x;解:由4-3x>0,得x<43.(5) x -4x -3. 解:由⎩⎪⎨⎪⎧x -4≥0,x -3≠0 得x ≥4.知识点3 二次根式的实际应用8.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为(B)A .1 dm B. 2 dmC. 6 dm D .3 dm9.若一个长方形的面积为10 cm 2,它的长与宽的比为5∶1,则它的长为,02 中档题10.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有(A ) A .1个B .2个C .3个D .4个11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C) A .x ≥12B .x ≤12C .x =12D .x ≠12 12.使式子1x +3+4-3x 在实数范围内有意义的整数x 有(C ) A .5个B .3个C .4个D .2个13.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A) A .第一象限B .第二象限C .第三象限D .第四象限 14.使式子-(x -5)2有意义的未知数x 的值有1个.15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.16.要使二次根式2-3x 有意义,则x 的最大值是23. 17.当x 是怎样的实数时,下列各式在实数范围内有意义? (1)32x -1; 解:x>12.(2)21-x;解:x≥0且x≠1.(3)1-|x|;解:-1≤x≤1.(4)x-3+4-x.解:3≤x≤4.03综合题18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.解:∵3a-6≥0,2-a≥0,∴a=2,b=4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.∴此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 a ≥0(a ≥0)1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3.2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.知识点2 (a )2=a (a ≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5 (2)3.4(3)16= (4)x ≥0). 4.计算:( 2 018)2=2__018.5.计算:(1)(0.8)2;解:原式=0.8.(2)(-34)2; 解:原式=34.(3)(52)2;解:原式=25×2=50.(4)(-26)2.解:原式=4×6=24.知识点3 a 2=a (a ≥0)6.计算(-5)2的结果是(B )A .-5B .5C .-25D .257.已知二次根式x 2的值为3,那么x 的值是(D)A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2=3a .9.计算:(1)49;解:原式=7.(2)(-5)2;解:原式=5.(3)(-13)2; 解:原式=13.(4)6-2. 解:原式=16.知识点4 代数式10.下列式子不是代数式的是(C )A .3xB .3xC .x>3D .x -311.下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个02 中档题12.下列运算正确的是(A ) A .-(-6)2=-6B .(-3)2=9C .(-16)2=±16D .-(-5)2=-2513.若a <1,化简(a -1)2-1的结果是(D )A .a -2B .2-aC .aD .-a14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616.化简:(2-5)217.在实数范围内分解因式:x 2-5 18.若等式(x -2)2=(x -2)2成立,则x 的取值范围是x ≥2.19.若a 2=3,b =2,且ab <0,则a -b =-7.20.计算:(1)-2(-18)2; 解:原式=-2×18=-14.(2)4×10-4;解:原式=2×10-2.(3)(23)2-(42)2;解:原式=12-32=-20.(4)(213)2+(-213)2. 解:原式=213+213 =423.21.比较211与35的大小.解:∵(211)2=22×(11)2=44,(35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a=-2时,原式=-2+|-2+1|=-2+1=-1;当a=3时,原式=3+|3+1|=3+4=7.03综合题23.有如下一串二次根式:①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式;(3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.解:(1)①原式=9=3.②原式=225=15.③原式= 1 225=35.④原式= 3 969=63.(2)第⑤个二次根式为1012-202=99.(3)第个二次根式为(4n2+1)2-(4n)2.化简:(4n2+1)2-(4n)2=(4n2-4n+1)(4n2+4n+1)=(2n-1)2(2n+1)2=(2n-1)(2n+1).16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是(B )A . 5B . 6C .2 3D .3 22.下列各等式成立的是(D ) A .45×25=8 5 B .53×42=20 5C .43×32=7 5D .53×42=20 63.下列二次根式中,与2的积为无理数的是(B )A .12B .12C .18D .32 4.计算:8×12=2. 5.计算:26×(-36)=-36.6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的面积为2.7.计算下列各题:(1)3×5; (2)125×15; 解:原式=15. 解:原式=25=5.(3)(-32)×27; (4)3xy·1y. 解:原式=-62×7 解:原式=3x.=-614.知识点2 ab =a·b (a ≥0,b ≥0)8.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×99.(2017·益阳)下列各式化简后的结果是32的结果是( C )A . 6B .12C .18D .3610.化简(-2)2×8×3的结果是(D )A .224B .-224C .-4 6D .4 611.化简:(1)100×36=60;(2)2y312.化简:(1)4×225;解:原式=4×225=2×15=30.(2)300;解:原式=10 3.(3)16y;解:原式=4y.(4)9x2y5z.解:原式=3xy2yz.13.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.02中档题14.50·a的值是一个整数,则正整数a的最小值是(B)A.1 B.2 C.3 D.515.已知m=(-33)×(-221),则有(A)A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-5 16.若点P(a,b)在第三象限内,化简a2b2的结果是ab.17.计算:(1) 75×20×12;解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);=28 2.(3) -32×45×2;解:原式=-3×16×2 2=-96 2.(4)200a 5b 4c 3(a >0,c >0). 解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16df ,其中v 表示车速(单位:km /h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数,在某次交通事故调查中,测得d =20 m ,f =1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km /h )解:当d =20 m ,f =1.2时,v =16df =16×20×1.2=1624=326≈78.38.答:肇事汽车的车速大约是78.38 km /h .19.一个底面为30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm ,铁桶的底面边长是多少厘米? 解:设铁桶的底面边长为x cm ,则x 2×10=30×30×20,x 2=30×30×2,x =30×30×2=30 2.答:铁桶的底面边长是30 2 cm.03 综合题20. (教材P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a 、b 、c.记:p =a +b +c 2,则三角形的面积S =p (p -a )(p -b )(p -c ),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB =7 m ,AC =5 m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,∴p =a +b +c 2=7+5+82=10. ∴S =p (p -a )(p -b )(p -c )=10×(10-7)×(10-5)×(10-8)=10×3×5×2=10 3.∴李大爷这块菜地的面积为10 3 m 2.第2课时 二次根式的除法01 基础题知识点1 a b =a b (a ≥0,b >0)1.计算:10÷2=(A ) A . 5B .5C .52D .102 2.计算23÷32的结果是(B ) A .1B .23C .32D .以上答案都不对 3.下列运算正确的是(D )A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 4.计算:123=2. 5.计算:(1)40÷5; (2)322; 解:原式=8=2 2. 解:原式=4.(3)45÷215; (4)2a 3b ab(a>0). 解:原式= 6. 解:原式=2a.知识点2a b =a b(a ≥0,b >0) 6.下列各式成立的是(A ) A .-3-5=35=35 B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于(C ) A .2B . 2C .22D .12 8.如果(x -1x -2)2=x -1x -2,那么x 的取值范围是(D )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >2或x ≤19.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A .13B .0.3C . 3D .2011.把下列二次根式化为最简二次根式:(1) 2.5;解:原式=52=102.(2)85; 解:原式=2510.(3)122; 解:原式=232= 3.(4)2340. 解:原式=232×20=13×20=13×25 =530.02 中档题12.下列各式计算正确的是(C ) A .483=16B .311÷323=1C .3663=22D .54a 2b 6a =9ab 13.计算113÷213÷125的结果是(A ) A .27 5B .27C . 2D .27 14.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有3个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为16.不等式22x -6>0的解集是x >2 17.化简或计算:(1)0.9×121100×0.36; 解:原式=9×12136×10=32×11262×10=336110 =336×1010=111020.(2) 12÷27×(-18);解:原式=-12×1827 =-4×3×2×93×9=-2 2.(3)27×123; 解:原式=3×9×123 =3×2 3=6 3.(4)12x÷25y. 解:原式=(1÷25)12x÷y =5212xy y 2 =53xy y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD ,∴AC =2S △ABC BC =2183=26(cm ),CD =2S △ABC AB =21833=236(cm ).03 综合题19.阅读下面的解题过程,根据要求回答下列问题. 化简:a b -a b 3-2ab 2+a 2ba (b<a<0).解:原式=a b -a b (b -a )2a ①=a (b -a )b -a ba ② =a·1a ab ③=ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②;(2)错误的原因是什么?(3)请你写出正确的解法.解:(2)∵b<a ,∴b -a<0.∴(b -a)2的算术平方根为a -b.(3)原式=a b -a b (b -a )2a=a b -a ·(a -b)ba=-a·(-1aab) =ab.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.(2016·巴中)下列二次根式中,与3可以合并的是(B )A .18B .13C .24D .0.32.下列各个运算中,能合并成一个根式的是(B ) A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.若最简二次根式2x +1和4x -3能合并,则x 的值为(C )A .-12B .34C .2D .54.若m 与18可以合并,则m 的最小正整数值是(D )A .18B .8C .4D .2知识点2 二次根式的加减5.(2016·桂林)计算35-25的结果是(A ) A . 5B .2 5C .3 5D .6 6.下列计算正确的是(A )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 27.计算27-1318-48的结果是(C ) A .1 B .-1C .-3- 2D .2- 3 8.计算2+(2-1)的结果是(A)A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,.11.计算: (1)23-32; 解:原式=(2-12) 3 =332.(2)16x +64x ;=(4+8)x=12x.(3) 125-25+45;解:原式=55-25+3 5 =6 5.(4)(2017·黄冈)27-6-1 3.解:原式=33-6-3 3=833- 6.02中档题12.若x与2可以合并,则x可以是(A) A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是(B) A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是(B)A.3+ 2B. 3C.33 D.3- 2习题解析15.若a,b均为有理数,且8+18+18=a+b2,则a=0,b=214.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为18.计算:解:原式=32+23-22-3 3=(32-22)+(23-33)=2- 3.(2) b 12b 3+b 248b ; 解:原式=2b 23b +4b 23b=6b 23b.(3)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(4) 34(2-27)-12(3-2). 解:原式=342-943-123+122 =(34+12)2-(94+12)3 =542-114 3.19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位). 解:原式=3-433-3+4 3 =833 ≈83×1.732 ≈4.62.03 综合题20.若a ,b 都是正整数,且a <b ,a 与b 是可以合并的二次根式,是否存在a ,b ,使a +b =75?若存在,请求出a ,b 的值;若不存在,请说明理由.解:∵a 与b 是可以合并的二次根式,a +b =75,∴a +b =75=5 3.∵a<b ,∴当a=3,则b=48;当a=12,则b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算1.化简2(2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算(12-3)÷3的结果是(D )A .-1B .- 3C . 3D .13.(2017·南京)计算:12+8×64.(2017·青岛)计算:(24+16)×6=13.5.计算:40+55 6.计算: (1)3(5-2);解:原式=15- 6.(2)(24+18)÷2;解:原式=23+3.(3)(2+3)(2+2);解:原式=8+5 2.(4)(m +2n)(m -3n).解:原式=m -mn -6n.知识点2 二次根式与乘法公式 7.(2017·天津)计算:(4+7)(4-7)的结果等于9.8.(2016·包头)计算:613-(3+1)2=-4. 9.计算: (1)(2-12)2;解:原式=12.(2)(2+3)(2-3);解:原式=-1.(3)(5+32)2.解:原式=23+610.10.(2016·盐城)计算:(3-7)(3+7)+2(2-2).解:原式=9-7+22-2=2 2.02 中档题11.已知a =5+2,b =2-5,则a 2 018b 2 017的值为(B )A .5+2B .-5-2C .1D .-112.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是(C )A .14B .16C .8+5 2D .14+ 213.计算: (1)(1-22)(22+1);解:原式=-7.(2)12÷(34+233); 解:原式=12÷(3312+8312) =12÷11312=23×12113=2411.(3)(46-412+38)÷22;解:原式=(46-22+62)÷2 2 =(46+42)÷2 2=23+2.(4)24×13-4×18×(1-2)0.解:原式=26×33-4×24×1=22- 2= 2.14.计算:(1)(1-5)(5+1)+(5-1)2;解:原式=1-5+5+1-2 5=2-2 5.(2)(3+2-1)(3-2+1).解:原式=(3)2-(2-1)2=3-(2+1-22)=3-2-1+2 2=2 2.15. 已知a=7+2,b=7-2,求下列代数式的值:(1)ab2+ba2;(2)a2-2ab+b2;(3)a2-b2.解:由题意得a+b=(7+2)+(7-2)=27,a-b=(7+2)-(7-2)=4,ab=(7+2)(7-2)=(7)2-22=7-4=3.(1)原式=ab(b+a)=3×27=67.(2)原式=(a—b)2=42=16.(3)原式=(a+b)(a—b)=27×4=87.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)×( 2 018+1).解:(1)1n+1+n=n+1-n(n≥0).(2)原式=(2-1+3-2+4-3+…+ 2 017- 2 016+ 2 018- 2 017)×( 2 018+1) =(-1+ 2 018)( 2 018+1)=2 017.小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136; 解:原式=(6×13)2×6 =212=4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355) =-45÷3 5=-43.(3)72-322+218; 解:原式=62-322+6 2 =122-32 2 =212 2. (4)(25+3)×(25-3).解:原式=(25)2-(3)2=20-3=17.2.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53 =-6920 =-69×520×5=-95 5.(2)(6+10×15)×3;=32+15 2=18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115 =-348÷765=-3748×56 =-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2.解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.3.计算:(1)(2 018-3)0+|3-12|-63; 解:原式=1+23-3-2 3=-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32 =25-1.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=a 2b -ab 2=ab(a -b).当a =3+22,b =3-22时,原式=(3+22)(3-22)(3+22-3+22) =4 2.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值. 解:由题意,得2★3= 3. ∴7★(2★3)=7★3=7-3=2.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时, 原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2. 解:原式=2x (x +y )(x -y )·y(x +y) =2xy x -y . 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为正整数),则有a +b 2=m 2+2n 2+22mn ,∴a =m 2+2n 2,b =2mn.(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3),用含m ,n 的式子分别表示a ,b ,得a =m +3n ,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn. ∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2.∴a =7或13.章末复习(一) 二次根式01 基础题知识点1 二次根式的概念及性质1.(2016·黄冈)在函数y =x +4x中,自变量x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4且x ≠0D .x >0且x ≠-42.(2016·自贡)下列根式中,不是最简二次根式的是(B) A.10 B.8C. 6D. 23.若xy <0,则x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是(C )A .10B .15C .20D .255.(2017·十堰)下列运算正确的是(C )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=3 6.计算5÷5×15所得的结果是1. 7.计算:(1)(2017·湖州)2×(1-2)+8; 解:原式=2-22+2 2=2.(2)(43+36)÷23;解:原式=43÷23+36÷2 3=2+322.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)× 3 =522-3133. (4)(32-23)(32+23).=9×2-4×3=6.知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)解:d =50.243.14-25.123.14=16-8=4-2 2≈1.17.答:圆环的宽度d 约为1.17.02 中档题9.把-a -1a中根号外面的因式移到根号内的结果是(A ) A .-a B .- a C .--aD . a 10.已知x +1x =7,则x -1x的值为(C) A. 3B .±2C .± 3 D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.12.(2016·青岛)计算:32-82=2. 13.计算:(3+2)3×(3-2)3=-1. 14.已知x =5-12,则x 2+x +1=2. 15.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16. 16.计算: (1)(3+1)(3-1)-16+(12)-1; 解:原式=3-1-4+2=0.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.17.已知x=3+7,y=3-7,试求代数式3x2-5xy+3y2的值.解:当x=3+7,y=3-7时,3x2-5xy+3y2=3(x2-2xy+y2)+xy=3(x-y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数) 解:正方形壁画的边长分别为800 cm,450 cm.镶壁画所用的金彩带长为4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小明的金彩带不够用,197.96-120=77.96≈78(cm).故还需买约78 cm长的金彩带.03综合题19.已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,即a=22,b=5,c=3 2.(2)∵22+32=52>5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式姓名 班级 学号(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .( ) 2.3-2的倒数是3+2.( ) 3.2)1(-x =2)1(-x .( ) 4.ab 、31b a 3、bax 2-是同类二次根式.( ) 5.x 8,31,29x +都不是最简二次根式.---( ) (二)填空题:(每小题2分,共20分) 6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a= _. 8.a -12-a 的有理化因式是______. 9.当1<x <4时,|x -4|+122+-x x =______. 10.方程2(x -1)=x +1的解是______. 11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.12.比较大小:-721_____-341. 13.化简:(7-52)2000·(-7-52)2001=_____.14.若1+x +3-y =0,则(x -1)2+(y +3)2=______.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( ) (A )x 2 (B )-x2(C )-2x (D )2x 19.化简aa 3-(a <0)得…( )(A )a -(B )-a (C )-a -(D )a 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………( ) (A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2; 22.4x 4-4x 2+1. (五)计算题:(每小题6分,共24分) 23.(235+-)(235--); 24.1145--7114--732+;25.(a2mn-m ab mn +m nn m )÷a 2b 2mn ;26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.七、选作题:(每小题8分,共16分)28.当x =1-2时,求2222a x x a x x+-++222222a x x x a x x +-+-+221ax +的值.29.计算(25+1)(211++321++431++…+100991+).30.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xyy x +-2的值. 《二次根式》提高测试 答案(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( ) 【提示】2)2(-=|-2|=2.【答案】×.2.3-2的倒数是3+2.( ) 【提示】231-=4323-+=-(3+2).【答案】×.3.2)1(-x =2)1(-x .…( )【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4.ab 、31b a 3、bax 2-是同类二次根式.…( ) 【提示】31b a 3、b ax 2-化成最简二次根式后再判断.【答案】√. 5.x 8,31,29x +都不是最简二次根式.( )【答案】×.29x +是最简二次根式. (二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义.【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9. 7.化简-81527102÷31225a=_.【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用. 8.a -12-a 的有理化因式是____________.【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9.当1<x <4时,|x -4|+122+-x x =________________.【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数? x -4是负数,x -1是正数.【答案】3.10.方程2(x -1)=x +1的解是____________.【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22. 11.已知a 、b 、c 为正数,d 为负数,化简2222d c ab d c ab +-=______.【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12.比较大小:-721_________-341.【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小.13.化简:(7-52)2000·(-7-52)2001=______________.【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.【答案】40. 【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0【答案】D . 【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |. 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( ) (A )x 2 (B )-x 2(C )-2x (D )2x 【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19.化简aa 3-(a <0)得………………………………………………………………( )(A )a - (B )-a (C )-a - (D )a【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C .20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( ) (A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a --- 【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --.【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)在实数范围内因式分解:(每小题3分,共6分)21.9x 2-5y 2;【提示】用平方差公式分解,并注意到5y 2=2)5(y .【答案】(3x +5y )(3x -5y ). 22.4x 4-4x 2+1.【提示】先用完全平方公式,再用平方差公式分解.【答案】(2x +1)2(2x -1)2.(五)计算题:(每小题6分,共24分)23.(235+-)(235--);【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式. 【解】原式=(35-)2-2)2(=5-215+3-2=6-215.24.1145--7114--732+;【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.25.(a 2m n -m ab mn +m n n m )÷a 2b 2mn ; 【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a2m n -m ab mn +m n n m )·221b a nm=21b n m m n ⋅-mab 1nm m n ⋅+22b ma n n m n m ⋅=21b -ab 1+221b a =2221b a ab a +-.26.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=b a ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(六)求值:(每小题7分,共14分)27.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 28.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x -++-)(22222x a x x a x x -++-+221ax +=)11(2222a x x a x +--+-)11(22x x a x --++221a x +=x 1. 七、解答题:(每小题8分,共16分)29.计算(25+1)(211++321++431++…+100991+).【提示】先将每个部分分母有理化后,再计算. 【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--) =(25+1)[(12-)+(23-)+(34-)+…+(99100-)] =(25+1)(1100-) =9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法. 30.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xy y x +-2的值. 【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-x yy x +-2=2)(x y y x +-2)(xy y x - =|xy y x +|-|x y y x -|∵ x =41,y =21,∴ y x<x y .∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的。