2015届高考数学第一轮基础巩固训练题25

合集下载

2015届高考数学一轮总复习 11-1算法与框图

2015届高考数学一轮总复习 11-1算法与框图

2015届高考数学一轮总复习 11-1算法与框图基础巩固强化一、选择题1.阅读如图的程序框图,如果输出的函数值在区间[14,12]内,则输入的实数x 的取值范围是( )A .(-∞,-2]B .[-2,-1]C .[-1,2]D .[2,+∞) [答案] B[解析] 若x ∉[-2,2],则f (x )=2∉[14,12],不合题意;当x ∈[-2,2]时,f (x )=2x ∈[14,12],得x ∈[-2,-1],故选B.2.(文)如图是求x 1,x 2,…,x 10的乘积S 的程序框图,图中空白框中应填入的内容为( )A .S =S *(n +1)B .S =S *x n +1C .S =S *nD .S =S *x n [答案] D[解析] 由循环结构的特点知图中空白的处理框中表示前10个数的连乘积,故选D.(理)下图是求样本x 1,x 2,…,x 10的平均数x -的程序框图,图中空白框中应填入的内容为( )A .S =S +x nB .S =S +x nnC .S =S +nD .S =S +1n[答案] A[解析] n =n +1控制循环,n =10时,跳出循环,w =s n ,即w =s10,据题意w =x 1+x 2+…+x 1010,即x -,∴处理框中应是求x 1,x 2,…,x 10的和S ,故应填S =S +x n .3.(文)(2013·安徽)如图所示,程序框图(算法流程图)的输出结果是( )A.34B.16C.1112D.2524 [答案] C[解析] 第一次循环,s =0+12=12,n =4;第二次循环,s =12+14=34,n =6;第三次循环,s =34+16=1112,n =8.因为8<8不成立,故输出s =1112. (理)(2013·长春一模、武昌区联考)阅读程序框图,输出的结果s 的值为( )A .0 B.32C. 3 D .-32[答案] C[解析] 本题是求数列{sin n π3}前2013项的和,数列是32,32,0,-32,-32,0,32,32,0,-32,-32,0,…具有周期性,周期为6且每个周期内6项的和为0,故前2013项求和得32+32+0= 3. 4.(文)如图所示,程序框图的功能是( )A .求数列{1n }的前10项和(n ∈N *)B .求数列{12n }的前10项和(n ∈N *)C .求数列{1n }的前11项和(n ∈N *)D .求数列{12n }的前11项和(n ∈N *)[答案] B[解析] 依题意得,第一次运行,S =12,n =4,k =2;第二次运行,S =12+14,n =6,k =3……第九次运行,S =12+14+…+118,n =20,k =10;第十次运行,S =12+14+…+118+120,n =22,k =11.此时结束循环,故程序框图的功能是计算数列{12n}的前10项和,选B.(理)(2012·山西四校联考)执行如图所示的程序框图后,输出的值为4,则p 的取值范围是( )A.78<p ≤1516 B .p >1516 C.78≤p <1516 D.34<p ≤78 [答案] D[解析] 依题意得,数列{12n }的前2项和小于p ,前3项和不小于p .又数列{12n }的前2、3项和分别等于12+14=34、12+14+18=78,因此p 的取值范围是34<p ≤78,选D.5.(2013·潍坊模拟)运行如图所示的程序框图,若输出结果为137,则判断框中应该填的条件是( )A .k >5B .k >6C .k >7D .k >8[答案] B[解析] 据题意令S =1+11×2+12×3+…+1k ×(k +1)=1+(1-12)+(12-13)+…+(1k -1k +1)=2-1k +1,令2-1k +1=137,解得k =6,故判断框应填入k >6. 6.(2013·豫西五校联考)执行如图所示的程序框图,则输出的λ是( )A .-4B .-2C .0D .-2或0 [答案] B[解析] λa +b =(λ+4,-3λ-2),依题意,若λa +b 与b 垂直,则有(λa +b )·b =4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa +b 与b 平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图,输出的λ是-2,选B.[点评] 本题中条件虽然是满足平行或垂直关系时,输出λ,但因为λ初值为-4,λ=λ+1,所以当λ=-2时,两向量垂直,输出λ=-2后即结束循环.二、填空题7.已知函数y =⎩⎪⎨⎪⎧log 2x , x ≥2,2-x , x <2.如图表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写________;②处应填写________.[答案] x <2,y =log 2x[解析] 根据分段函数解析式及程序框图知,当满足x <2时,执行y =2-x ,故判断框中条件为x <2,不满足条件x <2,即x ≥2时,y =log 2x ,故②中为y =log 2x .8.(2013·临沂模拟)执行如图所示的程序框图,若输入x =10,则输出y 的值为________.[答案] -54[解析] 当x =10时,y =4,此时|y -x |=6>1,不合条件,当x =4时,y =1,不满足|y -x |<1,故重新赋值x =1,此时y =-12,仍不满足|y -x |<1,再赋值x =-12,此时y =-54,∵|(-54)-(-12)|=34<1成立,∴跳出循环,输出y 的值-54后结束. 9.(2013·湖南)执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为________.[答案] 9[解析] a =1,b =2,第一次循环,a =a +b =1+2=3; 第二次循环,a =a +b =3+2=5; 第三次循环,a =a +b =5+2=7; 第四次循环,a =a +b =7+2=9. 因为9>8,所以输出a =9.10.(2012·广东理,13)执行如下图所示的程序框图,若输入n 的值为8,则输出s 的值为________.[答案] 8[解析] 程序运行过程如下:开始→n =8,i =2,k =1,S =1,作判断i <n 成立,执行循环体,S =11×(1×2)=2,i =2+2=4,k =1+1=2,再判断i <n 仍成立,再执行循环体,S =12×(2×4)=4,i =4+2=6,k =2+1=3,此时,i <n 仍然成立,第三次执行循环体,S =13×(4×6)=8,i =6+2=8,k =3+1=4,此时不满足i <n ,跳出循环,输出S 的值8后结束.能力拓展提升一、选择题11.(文)如果执行如图的程序框图,那么输出的值是( )A .2014B .-1C.12D .2[答案] B[解析] 程序运行过程依次为:k =0<2014→S =11-2=-1,k =1<2014→S =11-(-1)=12,k =2<2014→S =11-12=2,k =3,故S 的值依次循环取值-1,12,2,周期为3,因为2014=671×3+1,故最后输出结果为S =-1.[点评] 遇到这种数值较大,循环次数较多的情形,可将数值变小,∵2014能被3整除,故可取k <6,k <3来检验输出结果.你能指出条件改为k <32014时输出的结果吗?(理)(2013·西安质检)按如图所示的算法框图运算,若输出k =2,则输入x 的取值范围是( )A .19≤x <200B .x <19C .19<x <200D .x ≥200[答案] A[解析] 由框图可知,输出k =2,需满足⎩⎪⎨⎪⎧10x +10<2010,10(10x +10)+10≥2010, 解得19≤x <200,故选A.12.(文)(2013·临沂一模)若执行如下图所示的框图,输入x 1=1,x 2=2,x 3=3,x -=2,则输出的数等于( )A.13B.23C.23D .1[答案] C[解析] 算法的功能是求解三个数的方差,输出的是S =(1-2)2+(2-2)2+(3-2)23=23.(理)(2012· 陕西文,5)下图是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入( )A .q =N MB .q =MNC .q =NM +ND .q =MM +N[答案] D[解析] 本题考查了循环结构的程序框图在实际问题中的应用.由框图知M 为及格人数,N 为不及格人数,所以及格率q =MM +N.[点评] 对于在空白框中填写判断条件或处理计算语句,一定要结合实际的背景要求,同时要养成再检验一遍的习惯.二、填空题13.(文)阅读下面的程序框图,运行相应的程序,输出的结果为________.[答案]138[解析] 运行过程为:x =1,y =1,z =2→x =1,y =2,z =3→x =2,y =3,z =5→x =3,y =5,z =8→x =5,y =8,z =13→x =8,y =13,z =21→输出y x =138.(理)(2012·浙江理,12)若某程序框图如图所示,则该程序运行后输出的值是________.[答案]1120[解析] 这是一个循环结构程序框图,控制循环的条件i >5,由于i 初值为1,故需循环5次. 开始→T =1,i =1,T =11=1,i =1+1=2,此时i >5不成立,第二次执行循环体,T =12,i =2+1=3,i >5仍不成立,第三次执行循环体,T =123=16,i =3+1=4,i >5仍不成立,第四次执行循环体T =164=124,i =4+1=5,i >5仍不成立,第五次执行循环体,T =1245=1120,i =5+1=6,i >5成立,跳出循环,输出T 的值1120后结束.14.(文)(2013·惠州调研)阅读如图所示的程序框图.若输入n =5,则输出k 的值为________.[答案] 3[解析] 执行程序框图可得,n =5,k =0;n =16,k =1;n =49,k =2;n =148,k =3;n =148×3+1>150,循环结束,故输出的k 值为3.(理)(2013·广州调研)执行如图所示的程序框图,则输出S 的值是________.[答案] 3018[解析] 由题意,a 1=1×cos π2+1=1,a 2=2×cos 2π2+1=-1,a 3=3×cos 3π2+1=1,a 4=4×cos4π2+1=5,a 5=5×cos 5π2+1=1,a 6=6×cos 6π2+1=-5,a 7=7×cos 7π2+1=1,a 8=8×cos 8π2+1=9,…,a 2010=-2009,a 2011=1,a 2012=2013,故输出的S =a 1+a 2+…+a 2012=503-(1+5+9+…+2009)+503+(5+9+13+…+2013)=503-1+503+2013=3018.考纲要求1.了解算法的含义及算法的思想.2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义. 补充说明 1.算法的要求(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且在有限步后能得出结果.2.对图形符号的几点说明①终端框(起止框)是任何流程不可少的,表明程序的开始和结束. ②输入和输出可用在算法中任何需要输入、输出的位置. ③算法中间要处理数据或计算,可分别写在不同的处理框内.④当算法要求你对两个不同的结果进行判断时,判断条件要写在判断框内. ⑤一个算法步骤到另一个算法步骤用流程线连结.⑥如果一个流程图需要分开来画.要在断开处画上连结点,并标出连结的号码. 3.画流程图的规则 ①使用标准的框图符号.②框图一般按从上到下、从左到右的方向画.③除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的唯一符号.④在图形符号内描述的语言要非常简练清楚.4.程序框图分为顺序结构、条件结构和循环结构,任何算法都可以由这三种基本逻辑结构来构成.顺序结构是最简单的算法结构.语句与语句之间,框与框之间按从上到下、从左到右的顺序运行.条件结构是指在算法中需要对条件作出判断,根据条件是否成立而选择不同流向的算法结构.根据指定条件,决定是否重复执行某些步骤的控制结构称为循环结构.反复执行的处理步骤为循环体.常见的循环结构有当型循环和直到型循环.(1)当型(while型)循环结构如图所示,它的功能是当给定的条件P1成立时,执行循环体即语句序列A,执行完后,再判断条件P1是否成立,如果仍然成立,再执行循环体,如此反复执行循环体,直到某一次条件不成立时跳出循环.(2)直到型(until)循环结构直到型循环一般用于预先难以知道循环次数,通过设置某个条件满足时退出循环.如图所示,它的功能是先执行循环体,即语句序列A,然后判断给定的条件P2是否成立,如果条件P2不成立,则再执行循环体,然后再对条件P2作判断,如果条件P2仍然不成立,又执行循环体……如此反复执行循环体,直到给定的条件P2成立时跳出循环.解决程序框图问题时应注意:①不要混淆处理框和输入框.②注意区分条件结构和循环结构.③注意区分当型循环和直到型循环.④循环结构中要正确控制循环次数.⑤要注意各个框的顺序.编程时,先从总体上把握整个问题分哪几大步骤,分块写出算法,再用程序语言表达,最后组合到一块.在画程序框图时首先要进行结构的选择.若所要解决的问题不需要分情况讨论,只用顺序结构就能解决;若所要解决的问题要分若干种情况讨论时,就必须引入条件结构;若所要解决的问题要进行许多重复的步骤,且这些步骤之间又有相同的规律时,就必须引入变量,应用循环结构.当型循环语句中,要注意WHILE与WEND的配对.5.算法语句(1)输入语句①“提示内容”提示用户输入什么样的信息.②变量是指程序在运行时其值可以变化的量.③输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式.④提示内容与变量之间用分号“;”隔开,可以一次为一个或多个变量赋值,若输入多个变量,变量与变量之间用“,”隔开.(2)输出语句①“提示内容”提示用户输出什么样的信息.②表达式是指程序要输出的数据.③输出语句可以输出常量、变量或表达式的值以及字符.(3)赋值语句用来表明赋给某一个变量一个具体的确定值的语句叫做赋值语句.①赋值号左边只能是变量名字,而不是表达式.②赋值号左右不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.③不能利用赋值语句进行代数式的演算.④赋值语句中的“=”号,称为赋值号.赋值号与数学中的等号的意义不同.赋值号左边的变量如果原来没有值,则在执行赋值语句后获得一个值,如果原已有值,则执行该语句后,以赋值号右边的表达式的值代替该变量的原值.⑤对于一个变量可以多次赋值,变量总是取最后赋出的值.⑥一个赋值语句只能给一个变量赋值,不能出现两个或多个“=”.⑦“表达式”可以是一个数据、常量和算式,如果“表达式”是一个算式时,赋值语句的作用是先计算出“=”右边表达式的值,然后将该值赋给“=”左边的变量.(4)条件语句的嵌套在某些较为复杂的算法中,有时需要按条件要求执行某一语句(特别是ELSE后的语句)后,继续按照另一条件进行判断,这时可以再利用条件语句完成这一要求,这就形成了条件语句的嵌套,其一般形式是:IF条件1THEN语句序列1;ELSEIF条件2THEN语句序列2;ELSE语句序列3;END IFEND IF编写嵌套条件语句、可分块处理.识读程序时,可用文字缩进来表示嵌套的层次.(5)两种循环语句格式的区别在WHILE语句中,是当条件满足时执行循环体,而在UNTIL语句中,是当条件不满足时执行循环体.当型循环先判断后执行,直到型循环先执行后判断.6.辗转相除法与更相减损术(1)用两数中较大的数减去较小的数,再用所得差和较小数构成新的一对数,再用大数减小数,以同样的操作一直做下去,直到所得的两数相等为止,这个数就是这两个数的最大公约数.这个方法称为“更相减损术”,用它编写的算法称为“等值算法”.更相减损术求最大公约数的程序设计如下:INPUT a,bWHILE a< >bIF a>b THENa=a-bELSEb=b-aEND IFWENDPRINT aEND(2)古希腊求两个正整数的最大公约数的方法是辗转相除法:用较大的数除以较小的数所得的余数和较小的数构成新的一对数,继续做上面的除法,直到大数被小数除尽,这个较小的数就是最大公约数.据此编写的算法,也称为“欧几里得算法”.对于正整数a与b(a>b),总能找到整数q和r(0≤r<b)使得a=bq+r成立,这个算式称为带余除法.通常记作r=aMODb.辗转相除法的程序框图.7.秦九韶算法(1)对于n 次多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0改写成如下形式:f (x )=(…((a n x +a n -1)x +a n -2)x +…+a 1)x +a 0求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值.这样通过一次式的反复运算,逐步得出高次多项式的值的方法称为秦九韶算法.令⎩⎪⎨⎪⎧v 0=a n ,v k =v k -1x +a n -k其中k =1,2,…,n 就得到了一个递推关系.这个递推关系是一个反复执行的步骤,可用循环语句来实现.(2)程序框图:8.进位制(1)进位制是人们为了计数和运算方便而约定的记数系统.“满十进一”就是十进制,“满二进一”就是二进制,“满k 进一”就是k 进制,k 进制的基数是k ,因此k 进制需要使用k 个数字.(2)若k 是一个大于1的整数,以k 为基数的k 进制数可以表示为一串数字连写在一起的形式: a n a n -1…a 1a 0(k )(0<a n <k,0≤a n -1,…,a 1,a 0<k )其中右下角括号内的数字k 表明此数是k 进制数,十进制的基数不标注. (3)十进制数与k 进制数可以相互转换①把k 进制数化为十进制数的方法是:先把这个k 进制数写成用各位上的数字与k 的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.如a n a n -1…a 2a 1a 0(k )=a n ×k n +a n -1×k n -1+…+a 2×k 2+a 1×k +a 0.其中要注意的是,k 的幂的最高次数应是该k 进制的位数减去1,然后逐个减小1,最后是0次幂.②将十进制化为k 进制数的方法叫除k 取余法.即用k 连续去除该十进制数或所得的商,直到商是零为止,然后把每次所得的余数倒着排成一个数,就是相应的k 进制数.例如,把十进制数化为二进制数的方法是除2取余法.9.流程图由一些图形符号和文字说明构成的表示事件发生、发展的过程(或解决问题的过程、或工序)的图示称为流程图.工序流程图又称统筹图,常见的一种画法是:将一个工作或工程从头至尾依先后顺序分为若干道工序(即所谓自顶向下),每一道工序用矩形框表示,并在该矩形框内注明此工序的名称或代号,两相邻工序之间用流程线相连.有时为合理安排工程进度,还在每道工序框上注明完成该工序所需时间.10.结构图描述系统结构的图示称为结构图.常见的有知识结构图,组织结构图,建筑结构图,布局结构图等.画结构图的的过程与方法:首先,你要对所画结构图的每一部分有一个深刻的理解和透彻的掌握,从头到尾抓住主要脉络进行分解.然后将每一步分解进行归纳与提炼,形成一个个要素点,并将其逐一地写在矩形框内.最后按其内在的逻辑顺序将它们排列起来并用线段相连,这样就画成了结构图.连线一般按从上到下、从左到右的方向表示要素间的从属关系或逻辑的先后顺序.备选习题1.阅读下边的程序框图,运行相应的程序,若输入x的值为-4,则输出y的值为()A.0.5 B.1C.2 D.4[答案] C[解析]输入x=-4,∵|-4|>3,∴x=|-4-3|=7.∵7>3,∴x=|7-3|=4.∵4>3,∴x =|4-3|=1.∵1<3,∴y =2x =21=2.2.如图是计算1+13+15+…+129的一个程序框图,则图中①处应填写的语句是( )A .i ≤15B .i >15C .i >16D .i ≤16[答案] B[解析] ∵s =0,n =1,i =1,∴s =0+11=1,n =1+2=3,i =1+1=2;∵s =1,n =3,∴s =1+13,n =3+2=5,i =2+1=3;∵s =1+13,n =5,∴s =1+13+15,n =5+2=7,i =3+1=4;∵s =1+13+15,n =7,∴s =1+13+15+17,n =7+2=9,i =4+1=5;….故当S =1+13+15+…+129时,i =16,故图中①处应填写的语句是“i >15”.3.如图所示是一算法的程序框图,若此程序运行结果为S =720,则在判断框中应填入关于k 的判断条件是( )A.k≥6? B.k≥7?C.k≥8? D.k≥9?[答案] C[解析]第一次运行结果为S=10,k=9;第二次运行结果为S=90,k=8;第三次运行结果为S=720,k=7.满足判断框的条件时执行循环,故判断条件是k≥8?.故选C.[失误与防范]本题易错的地方是:①弄清楚计数变量k与累乘变量S的变化规律.②注意S=S×k与k=k-1的顺序.③弄清满足条件时结束循环还是不满足条件时结束循环.4.(2012·安徽理,3)如图所示,程序框图(算法流程图)的输出结果是()C.5D.8[答案] B[解析] 由x =1,y =1→x =2,y =2→x =4,y =3→x =8,y =4→结束(输出y =4).[点评] 对循环次数较少的问题可以依次写出,对循环次数较多的应考虑是否具有周期性.5.(2012·新课标全国,6)如果执行下边的程序框图,输入正整数N (N ≥2)和实数a 1、a 2、…、a N ,输出A 、B ,则( )A .A +B 为a 1,a 2,…,a N 的和B.A +B 2为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数[分析] 这是一个循环结构程序框图,有三个判断条件,通过赋值语句x =a k ,依次将a i (i =1,2,…,N )的值赋给x 后,第一个判断条件“x >A ”,满足时A 取x 的值,因此循环结束后,A 是a 1,a 2,…,a N 中的最大值;第二个判断条件“x <B ”满足时B 取x 的值,因此循环结束后B 取a 1,a 2,…,a N 中的最小值;第三个判断条件“k ≥N ”,控制循环的结束,即当k =N 时循环结束,让x 能取遍a 1,a 2,…,a N 中的每一个值.[答案] C[解析] 随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A 、B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A 、B 分别是这N 个数中的最大数与最小数,故选C.[点评]在读取循环结构的框图时,要注意每一次循环之后变量的变化,并能通过循环中止的条件确定好循环次数,避免在判断时,出现多一次循环与少一次循环的错误.。

2015届高考数学一轮总复习 9-4线面、面面平行的判定与性质

2015届高考数学一轮总复习 9-4线面、面面平行的判定与性质

2015届高考数学一轮总复习9-4线面、面面平行的判定与性质基础巩固强化一、选择题1.(2013·吉安一中)已知a、b是异面直线,直线c∥直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线[答案] C[解析]c与b可能相交,可能异面,但不可能平行.假若c∥b,∵c∥a,∴a∥b,则与a、b 异面矛盾.2.(文)已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案] C[解析]如图在正方体ABCD-A1B1C1D1中,取平面ADD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.(理)(2013·浙江金华十校期末)设α是空间中的一个平面,l,m,n是三条不同的直线,则下列命题中正确的是()A.若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥αB.若m⊂α,n⊥α,l⊥n,则l∥mC.若l∥m,m⊥α,n⊥α,则l∥nD.若l⊥m,l⊥n,则n∥m[答案] C[解析]m⊂α,n⊂α,l⊥m,l⊥n,需要m与n相交才有l⊥α,A错误;若m⊂α,n⊥α,l⊥n,l与m可能平行、相交,也可能异面,B错误;若l⊥m,l⊥n,n与m可能平行、相交,也可能异面,D错误.3.(文)(2013·浙江嘉兴一模)已知α,β是空间中两个不同平面,m,n是空间中两条不同直线,则下列命题中错误的是()A.若m∥n,m⊥α,则n⊥αB.若m∥α,α∩β=n,则m∥nC.若m⊥α,m⊥β,则α∥βD.若m⊥α,m⊂β,则α⊥β[答案] B[解析]选项B中不能判定m∥n,m与n的位置关系还有可能为异面.(理)已知m、n是两条直线,α、β是两个平面,给出下列命题:①若n⊥α,n⊥β,则α∥β;②若平面α上有不共线的三点到平面β的距离相等,则α∥β;③若n、m为异面直线,n⊂α,n∥β,m⊂β,m∥α,则α∥β.其中正确命题的个数是()A.3个B.2个C.1个D.0个[答案] B[解析]垂直于同一直线的两个平面平行,故①正确;对于②,若平面α上的三点在平面β的异侧,则它们相交,故②错;根据线面平行的性质定理和面面平行的判定定理,可知③正确.4.(2013·聊城东阿一中摸底)若直线m,n和平面α,β,则下列四个命题中,正确的是() A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α[答案] D[解析]选项A中,两条直线同时平行于同一个平面,则两直线的位置关系有相交、平行、异面三种;选项B中,只有m,n相交时成立;选项C中,只有m垂直于交线时成立,故选D.5.(文)设a、b是两条不同的直线,α、β是两个不同的平面,则下列命题错误的是()A.若a⊥α,b∥α,则a⊥bB.若a⊥α,b∥a,b⊂β,则α⊥βC.若a⊥α,b⊥β,α∥β,则a∥bD.若a∥α,a∥β,则α∥β[答案] D[解析]对于选项D,可能会出现α∥β或α与β相交.故选项D错误.[点评]对于A,过b作平面δ∩α=b1,则∵b∥α,∴b∥b1,∵a⊥α,∴a⊥b1,∴a⊥b;对于B,∵a⊥α,b∥a,∴b⊥α,∵b⊂β,∴α⊥β;对于C,∵a⊥α,α∥β,∴a⊥β,又∵b⊥β,∴a∥b.(理)对于平面α和共面的直线m、n,下列命题是真命题的是()A.若m,n与α所成的角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案] D[解析]正三棱锥P-ABC的侧棱P A、PB与底面成角相等,但P A与PB相交应排除A;若m ∥α,n∥α,则m与n平行或相交,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.6.(2013·湖北天门一模)给出下列命题,其中正确的两个命题是()①直线上有两点到平面的距离相等,则此直线与平面平行;②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面;③直线m⊥平面α,直线n⊥直线m,则n∥α;④a,b是异面直线,则存在唯一的平面α,使它与a,b都平行且与a,b的距离相等.A.①与②B.②与③C.③与④ D.②与④[答案] D[解析]直线上有两点到平面的距离相等,则此直线可能与平面平行,也可能和平面相交;直线m⊥平面α,直线m⊥直线n,则直线n可能平行于平面α,也可能在平面α内,因此①③为假命题.二、填空题7.正方体ABCD-A1B1C1D1的棱长为1cm,过AC作平行于对角线BD1的截面,则截面面积为________.[答案]64cm2[解析]如图,截面ACE∥BD1,平面BDD1∩平面ACE=EF,其中F为AC与BD的交点,∴E为DD1的中点,易求S△ACE=64cm2.8.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线;②若平面α∥平面β,则平面α内任意一条直线m∥平面β;③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面β;④若平面α内的三点A、B、C到平面β的距离相等,则α∥β.其中正确命题的序号为________.[答案]②[解析]①中,互相平行的两条直线的射影可能重合,①错误;②正确;③中,平面α与平面β不一定垂直,所以直线n就不一定垂直于平面β,③错误;④中,若平面α内的三点A、B、C在一条直线上,则平面α与平面β可以相交,④错误.9.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列命题:①若m∥α,n∥α,m∥β,n∥β,则α∥β;②若α⊥γ,β⊥γ,α∩β=m,n⊂γ,则m⊥n;③若m⊥α,α⊥β,m∥n,则n∥β;④若n∥α,n∥β,α∩β=m,那么m∥n.其中正确命题的序号是________.[答案]②④[解析]命题①中,直线m、n不一定相交,即命题①不正确;命题②中,垂直于同一个平面的两个平面的位置关系可以平行或相交,若相交,其交线必与第三个平面垂直,∴m⊥γ,又n⊂γ,∴m⊥n,即命题②正确;若m∥n,m⊥α,则n⊥α,又α⊥β,则n∥β或n⊂β,即命题③不正确;由线面平行的判定与性质定理可知命题④正确.则正确命题的序号为②④.三、解答题10.(文)(2012·辽宁文,18)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M、N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A ′-MNC 的体积(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高).[分析] (1)欲证MN ∥平面A ′ACC ′,须在平面A ′ACC ′内找到一条直线与MN 平行,由于M 、N 分别为A ′B ,B ′C ′的中点,B ′C ′与平面A ′ACC ′相交,又M 为直三棱柱侧面ABB ′A ′的对角线A ′B 的中点,从而M 为AB ′的中点,故MN 为△AB ′C ′的中位线,得证.(2)欲求三棱锥A ′-MNC 的体积,注意到直三棱柱的特殊性和点M 、N 为中点,可考虑哪一个面作为底面有利于问题的解决,视A ′MC 为底面,则S △A ′MC =12S △A ′BC ,∴V A ′-MNC =12V N -A ′BC ,又V N -A ′BC =V A ′-NBC ,易知A ′N 为三棱锥A ′-NBC 的高,于是易得待求体积.[解析] (1)证明:连接AB ′,AC ′,由题意知,ABB ′A ′为平行四边形,所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′.(2)连接BN ,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,∴A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N -A ′BC =12V A ′-NBC =16.[点评] 本题考查了线面平行的证明,锥体的体积两方面的问题,对于(1)还可以利用面面平行(平面MPN ∥平面A ′ACC ′,其中P 为A ′B ′的中点)来证明;(2)还可利用割补法求解.(理)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求四面体B -DEF 的体积.[解析] (1)证明:设AC 与BD 交于点G ,联结EG 、GH . 则G 为AC 中点,∵H 是BC 中点,∴GH 綊12AB ,又∵EF 綊12AB ,∴四边形EFHG 为平行四边形.∴FH ∥EG . 又EG ⊂平面EDB ,而FH ⊄平面EDB , ∴FH ∥平面EDB .(2)证明:∵EF ∥AB ,EF ⊥FB .∴AB ⊥FB . 又四边形ABCD 为正方形,∴AB ⊥BC ,又FB ∩BC =B ,∴AB ⊥平面BFC . ∵FH ⊂平面BFC ,∴AB ⊥FH .又∵FB =FC ,H 是BC 中点,∴FH ⊥BC . 又AB ∩BC =B ,∴FH ⊥平面ABCD ,∴FH ⊥AC . 又EG ∥FH ,∴EG ⊥AC ,又AC ⊥BD ,BD ∩EG =G ,∴AC ⊥平面EDB . (3)∵EF ⊥BF ,BF ⊥FC 且EF ∩FC =F ,∴BF ⊥平面CDEF , 即BF ⊥平面DEF .∴BF 为四面体B —DEF 的高. 又∵BC =AB =2,∴BF =FC = 2.四边形CDEF 为直角梯形,且EF =1,CD =2. ∴S △DEF =12(1+2)×2-12×2×2=22∴V B —DEF =13×22×2=13.能力拓展提升11.(2013·盐城模拟)如图,P 为▱ABCD 所在平面外一点,M ,N 分别为AB ,PC 的中点,平面P AD ∩平面PBC =l .(1)判断BC 与l 的位置关系,并证明你的结论; (2)判断MN 与平面P AD 的位置关系,并证明你的结论. [解析] (1)结论:BC ∥l ,因为AD ∥BC ,BC ⊄平面P AD ,AD ⊂平面P AD , 所以BC ∥平面P AD .又因为BC ⊂平面PBC ,平面P AD ∩平面PBC =l , 所以BC ∥l .(2)结论:MN ∥平面P AD .设Q为CD的中点,如右图所示,连接NQ,MQ,则NQ∥PD,MQ∥AD.又因为NQ∩MQ=Q,所以平面MNQ∥平面P AD.又因为MN⊂平面MNQ,所以MN∥平面P AD.[点评]本题(1)将线面平行的判定定理和性质定理交替使用,实现了线线平行的证明;本题(2)巧妙地将线面平行的证明转化为面面平行,进而由面面平行的性质,得出结论的证明.12.(文)(2013·北京丰台期末)如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥BC,点M,N分别为A1C1与A1B的中点.(1)求证:MN∥平面BCC1B1;(2)求证:平面A1BC⊥平面A1ABB1.[证明](1)连接BC1,∵点M,N分别为A1C1与A1B的中点,∴MN∥BC1.∵MN⊄平面BCC1B1,BC1⊂平面BCC1B1,∴MN∥平面BCC1B1.(2)∵AA1⊥平面ABC,BC⊂平面ABC,∴AA1⊥BC.又∵AB⊥BC,AA1∩AB=A,∴BC⊥平面A1ABB1.∵BC⊂平面A1BC,∴平面A1BC⊥平面A1ABB1.(理)(2013·北京四中期中)如图,在正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=a.(1)求证:AD⊥B1D;(2)求证:A1C∥平面AB1D;(3)求三棱锥C-AB1D的体积.[解析](1)证明:∵ABC-A1B1C1是正三棱柱,∴BB1⊥平面ABC,∵AD⊂平面ABC.∴AD⊥BB1.又∵△ABC是正三角形,D是BC的中点,∴AD⊥BC.又∵BC∩BB1=B,∴AD⊥平面B1BCC1.又∵B1D⊂平面B1BCC1,∴AD⊥B1D.(2)证明:连接A1B,设A1B∩AB1=E,连接DE.∵AA1=AB,∴四边形A1ABB1是正方形,∴E是A1B的中点,又∵D是BC的中点,∴DE∥A1C.∵DE⊂平面AB1D,A1C⊄平面AB1D,∴A 1C ∥平面AB 1D .(3)解:VC -AB 1D =VB 1-ADC =13S △ADC ·|BB 1|=324a 3.13.(文)(2013·长春三校调研)如图,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥CD ,∠DAB =90°,P A ⊥底面ABCD ,且P A =AD =DC =12AB =1,M 是PB 的中点.(1)求证:AM =CM ;(2)若N 是PC 的中点,求证:DN ∥平面AMC . [解析] (1)在直角梯形ABCD 中,AD =DC =12AB =1,∴AC =2,BC =2,∴BC ⊥AC ,又P A ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥P A , 又P A ∩AC =A ,∴BC ⊥平面P AC , ∴BC ⊥PC .在Rt △P AB 中,M 为PB 的中点,则AM =12PB ,在Rt △PBC 中,M 为PB 的中点,则CM =12PB ,∴AM =CM .(2)如图,连接DB 交AC 于点F , ∵DC 綊12AB ,∴DF =12FB .取PM 的中点G ,连接DG ,FM ,则DG ∥FM , 又DG ⊄平面AMC ,FM ⊂平面AMC , ∴DG ∥平面AMC .连接GN ,则GN ∥MC ,∴GN ∥平面AMC , 又GN ∩DG =G ,∴平面DNG ∥平面AMC , 又DN ⊂平面DNG ,∴DN ∥平面AMC .(理)(2013·山东)如图,四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥P A ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.(1)求证:CE ∥平面P AD ; (2)求证:平面EFG ⊥平面EMN .[解析] (1)解法一:取P A 的中点H ,连接EH ,DH . 因为E 为PB 的中点,所以EH ∥AB ,EH =12AB .又AB ∥CD ,CD =12AB ,所以EH ∥CD ,EH =CD .因此四边形DCEH 是平行四边形.所以CE ∥DH . 又DH ⊂平面P AD ,CE ⊄平面P AD , 因此CE ∥平面P AD . 解法二:连接CF .因为F 为AB 的中点,所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD .又CF ⊄平面P AD ,所以CF ∥平面P AD .因为E 、F 分别为PB 、AB 的中点,所以EF ∥P A . 又EF ⊄平面P AD ,所以EF ∥平面P AD . 因为CF ∩EF =F ,故平面CEF ∥平面P AD . 又CE ⊂平面CEF ,所以CE ∥平面P AD . (2)证明:因为E 、F 分别为PB 、AB 的中点, 所以EF ∥P A .又AB ⊥P A ,所以AB ⊥EF . 同理可证AB ⊥FG .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG , 因此AB ⊥平面EFG .又M 、N 分别为PD 、PC 的中点, 所以MN ∥CD .又AB ∥CD ,所以MN ∥AB . 因此MN ⊥平面EFG . 又MN ⊂平面EMN , 所以平面EFG ⊥平面EMN . 14.(文)(2013·徐州模拟)如图所示,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.[解析]存在点E,且E为AB的中点.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1.∵AB的中点为E,连接EF,则EF∥AB1.B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.(理)(2013·南昌一模)如图,多面体ABC-A1B1C1中,三角形ABC是边长为4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.(1)若O是AB的中点,求证:OC1⊥A1B1;(2)在线段AB1上是否存在一点D,使得CD∥平面A1B1C1?若存在,确定点D的位置;若不存在,请说明理由.[解析] (1)取线段A 1B 1的中点E ,连接OE ,C 1E ,CO ,已知等边三角形ABC 的边长为4,AA 1=BB 1=2CC 1=4,AA 1⊥平面ABC ,AA 1∥BB 1∥CC 1,∴四边形AA 1B 1B 是正方形,OE ⊥AB ,CO ⊥AB . ∵CO ∩OE =O , ∴AB ⊥平面EOCC 1,又A 1B 1∥AB ,OC 1⊂平面EOCC 1,∴OC 1⊥A 1B 1. (2)设OE ∩AB 1=D ,连接CD ,则点D 是AB 1的中点, ∴ED ∥AA 1,ED =12AA 1,又∵CC 1∥AA 1,CC 1=12AA 1,∴四边形CC 1ED 是平行四边形, ∴CD ∥C 1E ,∴CD ∥平面A 1B 1C 1,即存在点D ,使得CD ∥平面A 1B 1C 1,且点D 是AB 1的中点.考纲要求1.认识和理解空间中线面平行的有关性质与判定.2.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. 补充说明1.探索性问题的一般分析步骤: 第一步,假设结论成立.第二步,把结论当作条件与已知条件结合,经过推理论证探求应具备的条件. 第三步,给出明确答案,并予以证明. 2.注意事项证明线面平行时,一定要指出直线在平面外;用判定定理证明二面平行时,一定要指出两直线相交;备选习题1.设两个平面α、β,直线l ,下列三个条件:①l ⊥α;②l ∥β;③α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确命题的个数为( )A .3B .2C .1D .0[答案] C [解析]⎭⎪⎬⎪⎫l ⊥αl ∥β⇒α⊥β; ⎭⎪⎬⎪⎫α⊥βl ⊥α⇒/ l ∥β,此时可能l ⊂β,⎭⎪⎬⎪⎫l ∥βα⊥β⇒/l ⊥α,此时l 与α还可能平行、斜交,故选C.2.如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AB 、CC 1的中点,在平面ADD 1A 1内且与平面D 1EF 平行的直线( )A .不存在B .有1条C .有2条D .有无数条 [答案] D[解析] 由题设知平面ADD 1A 1与平面D 1EF 有公共点D 1,由平面的基本性质3知必有过该点的公共直线l ,在平面ADD 1A 1内与l 平行的直线有无数条,且它们都不在平面D 1EF 内,由线面平行的判定定理知它们都与平面D 1EF 平行,故选D.3.下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是______(写出所有符合要求的图形序号).[答案] ①③[解析] 如图①,∵MN ∥AD ,NP ∥AC ,∴平面MNP ∥平面ADBC ,∴AB ∥平面MNP . 如图②,假设AB ∥平面MNP ,设BD ∩MP =Q ,则NQ 为平面ABD 与平面MNP 的交线,∴AB ∥NQ ,∵N 为AD 的中点,∴Q 为BD 的中点,但由M 、P 分别为棱的中点知,Q 为BD 的14分点,矛盾,∴AB 平面MNP .如图③,∵BD 綊AC ,∴四边形ABDC 为平行四边形,∴AB ∥CD ,又∵M 、P 为棱的中点,∴MP ∥CD ,∴AB ∥MP ,从而可得AB ∥平面MNP . 如图④,假设AB ∥平面MNP ,并设直线AC ∩平面MNP =D ,则有AB ∥MD ,∵M 为BC 中点,∴D 为AC 中点,这样平面MND ∥平面AB ,显然与题设条件不符,∴AB 平面MNP .。

2015届高考数学一轮总复习 5-1平面向量的概念与线性运算

2015届高考数学一轮总复习 5-1平面向量的概念与线性运算

2015届高考数学一轮总复习 5-1平面向量的概念与线性运算基础巩固强化一、选择题1.(文)(2014·南通中学月考)设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( ) A.P A →+PB →=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB →+PC →=0[答案] B[解析] 如图,根据向量加法的几何意义,BC →+BA →=2BP →⇔P 是AC 的中点,故P A →+PC →=0.(理)已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( )A.23B.43 C .-3 D .0[答案] D[解析] CD →=AD →-AC →,DB →=AB →-AD →.∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →.∴32CD →=AB →-AC →,∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0.2.(2012·四川理,7)设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a |=|b |[答案] C[解析] 本小题考查共线向量、单位向量、向量的模等基本概念.因a |a |表示与a 同向的单位向量,b |b |表示与b 同向的单位向量,要使a |a |=b|b |成立,则必须a 与b 同向共线,所以由a =2b 可得出a |a |=b |b |.[点评] a =-b 时,a 与b 方向相反;a ∥b 时,a 与b 方向相同或相反.因此A 、B 、D 都不能推出a |a |=b |b |.3.(2013·长春调研)已知向量a =(2,1),b =(x ,-2),若a ∥b ,则a +b 等于( ) A .(-2,-1) B .(2,1) C .(3,-1) D .(-3,1)[答案] A[解析] 由a ∥b 可得2×(-2)-1×x =0,故x =-4,所以a +b =(-2,-1),故选A.4.(2013·辽宁五校联考)设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=( )A .2B .4C .6D .8 [答案] A[解析] 由|AB →+AC →|=|AB →-AC →|两边平方得AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即AB →·AC→=0,所以AB →⊥AC →,∴AM 为Rt △ABC 斜边BC 上的中线,又由BC →2=16得|BC →|=4,所以|AM →|=2. 5.设OA →=e 1,OB →=e 2,若e 1与e 2不共线,且点P 在线段AB 上,|APPB |=4,如图所示,则OP →=( )A.15e 1-25e 2B.25e 1+15e 2C.15e 1+45e 2D.25e 1-15e 2 [答案] C[解析] AP →=4PB →,∴AB →=AP →+PB →=5PB →, OP →=OB →+BP →=OB →-15AB →=OB →-15(OB →-OA →)=45OB →+15OA →=15e 1+45e 2.6.(2013·湖南衡阳八中月考)向量a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则λ满足( ) A .λ<-53B .λ>-53C .λ>-53且λ≠0D .λ<-53且λ≠-5[答案] C[解析] 当λ=0时,a 与a +λb 平行,其夹角为0°,∴λ≠0,由a 与a +λb 的夹角为锐角,可得a ·(a +λb )=(1,2)·(1+λ,2+λ)=3λ+5>0,解得λ>-53,综上可得λ的取值范围为λ>-53且λ≠0,故应选C.二、填空题7.(文)已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. [答案] 1[解析] a -2b =(3,1)-2(0,-1)=(3,3) ,因为a -2b 与c 平行,所以3×3-3k =0, 所以k =1.(理)已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________.[答案] (-2,-1)[解析] 设点B 的坐标为(x ,y ),则有AB →=(x -2,y -3),BC →=(-x,1-y ),因为AB →=-2BC →,所以⎩⎪⎨⎪⎧x -2=2x ,y -3=-2(1-y ),解得x =-2,y =-1.8.(2013·新课标Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. [答案] 2[解析] ∵正方形ABCD 中,AB ⊥AD ,∴AB →·AD →=0, ∵E 为CD 的中点,∴AE →=12AB →+AD →,BD →=AD →-AB →,∴AE →·BD →=(12AB →+AD →)·(AD →-AB →)=-12|AB →|2+|AD →|2=-12×22+22=2.9.(文)在△ABC 中,AB =2AC =2,AB →·AC →=-1,若AO →=x 1AB →+x 2AC →(O 是△ABC 的外心),则x 1+x 2的值为________.[答案]136[解析] O 为△ABC 的外心,AO →=x 1AB →+x 2AC →,AO →·AB →=x 1AB →·AB →+x 2AC →·AB →,由向量数量积的几何意义,AO →·AB →=12|AB →|2=2,∴4x 1-x 2=2,①又AO →·AC →=x 1AB →·AC →+x 2AC →·AC →,∴-x 1+x 2=12,②联立①②,解得x 1=56,x 2=43,∴x 1+x 2=136.(理)(2013·保定调研)已知两点A (1,0),B (1,1),O 为坐标原点,点C 在第二象限,且∠AOC =135°,设OC →=-OA →+λOB →(λ∈R ),则λ的值为________.[答案] 12[解析] 由∠AOC =135°知,点C 在射线y =-x (x <0)上,设点C 的坐标为(a ,-a ),a <0,则有(a ,-a )=(-1+λ,λ),得a =-1+λ,-a =λ,消掉a 得λ=12.10.(2013·广东中山一模)在平行四边形ABCD 中,E ,F 分别是CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.[答案] 43[解析]如图,设AB →=a ,AD →=b , 则AC →=AB →+AD →=a +b , AF →=AB →+BF →=a +12b ,AE →=AD →+DE →=12a +b ,∴AE →+AF →=32(a +b )=32AC →,即AC →=23AE →+23AF →.∴λ=μ=23,λ+μ=43.能力拓展提升一、选择题11.(2013·哈尔滨四校统考)在△ABC 中,N 是AC 边一点,且AN →=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.19B.13 C .1 D .3 [答案] B [解析]如图,因为AN →=12NC →,所以AN →=13AC →,AP →=mAB →+29AC →=mAB →+23AN →,因为B 、P 、N 三点共线,所以m +23=1,所以m =13,选B.12.(文)(2013·山西大学附中)已知△ABC 是边长为2的等边三角形,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R ,若BQ →·CP →=-32,则λ=( )A.1±102B.34 C.1±22D.12[答案] D[解析] BQ →·CP →=(BA →+AQ →)(CA →+AP →)=BA →·CA →+BA →·AP →+AQ →·CA →+AQ →·AP →=BA →·CA →-λBA →·BA →-(1-λ)CA →·CA →+λ(1-λ)BA →·CA →=2(-λ2+λ+1)-4λ-4(1-λ) =-2λ2+2λ-2=-32,∴λ=12.(理)(2012·宁夏银川一中二模)已知向量AB →=(2,x -1),CD →=(1,-y )(xy >0),且AB →∥CD →,则2x +1y的最小值等于( ) A .2 B .4 C .8 D .16 [答案] C[解析] 因为AB →∥CD →,所以2(-y )-(x -1)=0,即x +2y =1,所以(2x +1y )=(2x +1y )(x +2y )=4+4y x +xy≥4+24y x ·x y =8(当且仅当x =12,y =14时等号成立).故选C.13.(文)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=( )A.23B.13 C .-13D .-23[答案] A[解析] 由于AD →=2DB →,得CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,结合CD →=13CA →+λCB →,知λ=23. (理)(2013·保定模拟)如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则x ·y x +y的值为( )A .3 B.13 C .2 D.12[分析] 由M 、N 、G 三点共线知,存在实数λ、μ使AG →=λAM →+μAN →,结合条件AM →=xAB →,AN →=yAC →,可将AG →用AB →,AC →表示,又G 为△ABC 的重心,AG →用AB →,AC →表示的表示式唯一,可求得x ,y 的关系式.[答案] B[解析] 法1:由点G 是△ABC 的重心,知GA →+GB →+GC →=0,得-AG →+(AB →-AG →)+(AC →-AG →)=0,则AG →=13(AB →+AC →).又M 、N 、G 三点共线(A 不在直线MN 上),于是存在λ,μ∈R ,使得AG →=λAM →+μAN →(且λ+μ=1),则AG →=λx AB →+μy AC →=13(AB →+AC →),所以⎩⎪⎨⎪⎧λ+μ=1,λx =μy =13,于是得1x +1y =3,所以x ·y x +y =11x +1y=13.法2:特殊化法,利用等边三角形,过重心作平行于底边BC 的直线,易得x ·y x +y =13.二、填空题14.(2012·吉林省延吉市质检)已知:|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R +),则m n=________.[答案] 3[解析] 如图,设mOA →=OF →,nOB →=OE →,则OC →=OF →+OE →,∵∠AOC =30°,∴|OC →|·cos30°=|OF →|=m |OA →|=m , |OC →|·sin30°=|OE →|=n |OB →|=3n ,两式相除得:m 3n =|OC →|cos30°|OC →|sin30°=1tan30°=3,∴m n =3.15.(2013·浙江余姚中学)在△ABC 所在的平面内有一点P ,满足P A →+PB →+PC →=AB →,则△PBC与△ABC 的面积之比是________.[答案] 23[解析] P A →+PB →+PC →=AB →⇒P A →+PC →+PB →-AB →=0⇒P A →+PC →+P A →=0⇒2P A →=CP →,所以P 是AC 的三等分点,所以△PBC 与△ABC 的面积之比是23.三、解答题16.(文)已知a =(2x -y +1,x +y -2),b =(2,-2), (1)当x 、y 为何值时,a 与b 共线?(2)是否存在实数x 、y ,使得a ⊥b ,且|a |=|b |?若存在,求出xy 的值;若不存在,说明理由. [解析] (1)∵a 与b 共线, ∴存在非零实数λ使得a =λb ,∴⎩⎪⎨⎪⎧2x -y +1=2λ,x +y -2=-2λ,⇒⎩⎪⎨⎪⎧x =13,y ∈R .(2)由a ⊥b ⇒(2x -y +1)×2+(x +y -2)×(-2)=0⇒x -2y +3=0.① 由|a |=|b |⇒(2x -y +1)2+(x +y -2)2=8.②由①②解得⎩⎪⎨⎪⎧x =-1,y =1,或⎩⎨⎧x =53,y =73.∴xy =-1或xy =359.(理)已知点O (0,0)、A (1,2)、B (4,5),向量OP →=OA →+tAB →.(1)t 为何值时,点P 在x 轴上? (2)t 为何值时,点P 在第二象限?(3)四边形ABPO 能否为平行四边形?若能,求出t 的值;若不能,说明理由. (4)求点P 的轨迹方程.[解析] ∵OP →=OA →+tAB →=(1,2)+t (3,3) =(1+3t,2+3t ),∴P (1+3t,2+3t ). (1)∵P 在x 轴上,∴2+3t =0即t =-23.(2)由题意得⎩⎪⎨⎪⎧1+3t <0,2+3t >0.∴-23<t <-13.(3)∵AB →=(3,3),OP →=(1+3t,2+3t ). 若四边形ABPO 为平行四边形,则AB →=OP →,∴⎩⎪⎨⎪⎧1+3t =3,2+3t =3.而上述方程组无解, ∴四边形ABPO 不可能为平行四边形.(4)∵OP →=(1+3t,2+3t ),设OP →=(x ,y ),则⎩⎪⎨⎪⎧x =1+3t ,y =2+3t .∴x -y +1=0为所求点P 的轨迹方程.考纲要求1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义. 3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义. 5.掌握向量数乘的运算及其意义,理解两个向量共线的含义. 6.了解向量线性运算的性质及其几何意义. 补充说明1.向量共线的应用中注意事项(1)向量共线的充要条件中,只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)设OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1. 2.“数形结合”思想数形结合是求解向量问题的基本方法.向量加法、减法的几何意义,充分体现了数形结合思想. 3.方程思想在向量中的应用在向量的平行与垂直、向量的共线、向量的长度与夹角等问题中,常常要依据条件列方程求解.利用共线条件和平面向量基本定理,是应用的难点.备选习题1.设平面内有四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b +d ,则四边形ABCD 为( )A .菱形B .梯形11 C .矩形D .平行四边形 [答案] D[解析] 解法一:设AC 的中点为G ,则OB →+OD →=b +d =a +c =OA →+OC →=2OG →,∴G 为BD 的中点,∴四边形ABCD 的两对角线互相平分,∴四边形ABCD 为平行四边形.解法二:AB →=OB →-OA →=b -a ,CD →=OD →-OC →=d -c =-(b -a )=-AB →,∴AB 綊CD ,∴四边形ABCD 为平行四边形.2.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为( )A .梯形B .平行四边形C .菱形D .矩形 [答案] A[解析] 由已知得AD →=AB →+BC →+CD →=-8a -2b ,故AD →=2BC →,由共线向量知识知AD ∥BC ,且|AD |=2|BC |,故四边形ABCD 为梯形,所以选A.3.已知向量a 、b 不共线,若向量a +λb 与b +λa 的方向相反,则λ=________.[答案] -1[解析] 由条件知存在负数μ,a +λb =μ(b +λa ),∴(1-λμ)a +(λ-μ)b =0,∵a 与b 不共线,∴⎩⎪⎨⎪⎧ 1-λμ=0,λ-μ=0.∴⎩⎪⎨⎪⎧λ2=1,λ=μ. ∵μ<0,∴λ=-1.。

2015届高考数学一轮总复习 阶段性测试题1(集合与常用逻辑用语)

2015届高考数学一轮总复习 阶段性测试题1(集合与常用逻辑用语)

阶段性测试题一(集合与常用逻辑用语)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·甘肃临夏中学、金昌市二中期中)设集合A={x|x>1},B={x|x(x-2)<0},则A∩B 等于()A.{x|x>2}B.{x|0<x<2}C.{x|1<x<2} D.{x|0<x<1}[答案] C[解析]∵B={x|x(x-2)<0}={x|0<x<2},∴A∩B={x|1<x<2}.(理)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知全集U=R,集合M={x|x2-x=0},N={x|x=2n+1,n∈Z},则M∩N为()A.{0} B.{1}C.{0,1} D.∅[答案] B[解析]∵M={x|x2-x=0}={0,1},N={x|x=2n+1,n∈Z}中的元素是奇数,∴M∩N={1},选B.2.(2014·威海期中)已知集合A={-1,1},B={m|m=x+y,x∈A,y∈A},则集合B等于() A.{-2,2} B.{-2,0,2}C.{-2,0} D.{0}[答案] B[解析]∵x∈A,y∈A,A={-1,1},m=x+y,∴m的取值为-2,0,2,即B={-2,0,2},故选B.3.(2014·山西曲沃中学期中)集合A={x|(x-1)(x+2)≤0},B={x|x<0},则A∪B=()A.(-∞,0] B.(-∞,1]C.[1,2] D.[1,+∞)[答案] B[解析]∵A={x|-2≤x≤1},B={x|x<0},∴A∪B={x|x≤1},故选B.4.(文)(2014·山东省德州市期中)若U={1,2,3,4,5,6},M={1,2,4},N={2,3,6},则∁U(M∪N)=()A.{1,2,3} B.{5}C.{1,3,4} D.{2}[答案] B[解析] ∵U ={1,2,3,4,5,6},M ∪N ={1,2,3,4,6}, ∴∁U (M ∩N )={5}.(理)(2014·文登市期中)已知集合A ={x |log 4x <1},B ={x |x ≥2},则A ∩(∁R B )=( ) A .(-∞,2) B .(0,2) C .(-∞,2] D .[2,4)[答案] B[解析] ∵A ={x |log 4x <1}={x |0<x <4},B ={x |x ≥2},∴∁R B ={x |x <2},所以A ∩∁R B =(0,2),故选B.5.(文)(2014·福州市八县联考)命题“有些实数的绝对值是正数”的否定是( ) A .∀x ∈R ,|x |>0 B .∃x 0∈R ,|x 0|>0 C .∀x ∈R ,|x |≤0 D .∃x 0∈R ,|x 0|≤0[答案] C[解析] 由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.(理)(2014·甘肃临夏中学期中)命题“存在x ∈Z ,使x 2+2x +m ≤0成立”的否定是( ) A .存在x ∈Z ,使x 2+2x +m >0 B .不存在x ∈Z ,使x 2+2x +m >0 C .对于任意x ∈Z ,都有x 2+2x +m ≤0 D .对于任意x ∈Z ,都有x 2+2x +m >0 [答案] D[解析] 特称命题的否定是全称命题.6.(文)(2014·河北冀州中学期中)下列命题中的真命题是( ) A .∃x ∈R ,使得sin x +cos x =32B .∀x ∈(0,+∞),e x >x +1C .∃x ∈(-∞,0),2x <3xD .∀x ∈(0,π),sin x >cos x [答案] B[解析] ∵sin x +cos x =2sin(x +π4)∈[-2,2],32>2,∴不存在x ∈R ,使sin x +cos x =32成立,故A 错;令f (x )=e x -x -1(x ≥0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,∴f (x )在[0,+∞)上单调递增,又f (0)=0,∴x >0时,f (x )>0恒成立,即e x >x +1对∀x ∈(0,+∞)都成立,故B 正确;在同一坐标系内作出y =2x 与y =3x 的图象知,C 错误;当x =π4时,sin x =22=cos x ,∴D 错误,故选B.(理)(2014·山东省德州市期中)下面命题中,假命题是( ) A .∀x ∈R,3x >0B .∃α,β∈R ,使sin(α+β)=sin α+sin βC .∃m ∈R ,使f (x )=mxm 2+2m 是幂函数,且在(0,+∞)上单调递增D .命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1>3x ” [答案] D[解析] 由指数函数性质知,对任意x ∈R ,都有3x >0,故A 真;当α=π3,β=2π时,sin(α+β)=sin α+sin β成立;故B 真;要使f (x )=mxm 2+2m 为幂函数,应有m =1,∴f (x )=x 3,显然此函数在(0,+∞)上单调递增,故C 真;D 为假命题,“>”的否定应为“≤”.7.(文)(2014·甘肃省金昌市二中期中)a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(x a +b )·(x b -a )为一次函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] ∵f (x )=(x a +b )·(x b -a )=x 2a ·b +x (|b |2-|a |2)-a ·b ,当f (x )为一次函数时,a ·b =0且|b |2-|a |2≠0,∴a ⊥b ,当a ⊥b 时,f (x )未必是一次函数,因为此时可能有|a |=|b |,故选B.(理)(2014·江西临川十中期中)已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则“m =1”是“(a -m b )⊥a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] C[解析] ∵|a |=1,|b |=2,〈a ,b 〉=60°,∴a ·b =1×2×cos60°=1,(a -m b )⊥a ⇔(a -m b )·a =0⇔|a |2-m a ·b =0⇔m =1,故选C.8.(2014·江西都昌一中月考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,4},集合B ={2,4,5},则右图中的阴影部分表示( )A .{2,4}B .{1,3}C .{5}D .{2,3,4,5} [答案] C[解析] 阴影部分在集合B 中,不在集合A 中,故阴影部分为B ∩(∁U A )={2,4,5}∩{1,5,6}={5},故选C.9.(2014·华安、连城、永安、漳平一中,龙海二中,泉港一中六校联考)已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若α⊥β,α⊥γ,则β∥γC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,m ⊥β,则α∥β [答案] D[解析] m ∥α,n ∥α时,m 与n 可平行,也可相交或异面,故A 错误;由正方体相邻三个面可知,α⊥β,α⊥γ时,β与γ可能相交,故B 错;当α∩β=l ,m ⊄α,m ⊄β,m ∥l 时,m ∥α,m ∥β,故C 错,故选D.10.(2014甘肃临夏中学期中)已知函数f (x )=x +b cos x ,其中b 为常数.那么“b =0”是“f (x )为奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] C[解析] 当b =0时,f (x )=x 为奇函数,故满足充分性;当f (x )为奇函数时,f (-x )=-f (x ),∴-x +b cos x =-x -b cos x ,从而2b cos x =0,∵此式对任意x ∈R 都成立,∴b =0,故满足必要性,选C.11.(2014·海南省文昌市检测)下列命题中是假命题...的是( ) A .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点C .∃α,β∈R ,使cos(α+β)=cos α+sin βD .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 [答案] D[解析] ∵f (x )为幂函数,∴m -1=1,∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A 真;∵y =ln 2x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a =0有解,即f (x )有零点,故B真;当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真;当φ=π2时,f (x )=sin(2x +φ)=cos2x为偶函数,故D 为假命题.12.(2014·黄冈中学检测)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“理想集合”,则下列集合是“理想集合”的是( )A .M ={(x ,y )|y =1x }B .M ={(x ,y )|y =cos x }C .M ={(x ,y )|y =x 2-2x +2}D .M ={(x ,y )|y =log 2(x -1)} [答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0知OA ⊥OB ,由理想集合的定义知,对函数y =f (x )图象上任一点A ,在图象上存在点B ,使OA ⊥OB ,对于函数y =1x ,图象上点A (1,1),图象上不存在点B ,使OA ⊥OB ;对于函数y =x 2-2x +2图象上的点A (1,1),在其图象上也不存在点B ,使OA ⊥OB ;对于函数y =log 2(x -1)图象上的点A (2,0),在其图象上不存在点B ,使OA ⊥OB ;而对于函数y =cos x ,无论在其图象上何处取点A ,总能在其位于区间[-π2,π2]的图象上找到点B ,使OA ⊥OB ,故选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(文)(2014·高州四中质量检测)已知函数f (x )=x 2+mx +1,若命题“∃x 0>0,f (x 0)<0”为真,则m 的取值范围是________.[答案] (-∞,-2)[解析] 由条件知⎩⎪⎨⎪⎧-m 2>0,m 2-4>0,∴m <-2.(理)(2014·福州市八县联考)已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题且p ∨q 为真命题,则m 的取值范围是________.[答案] m ≤-2或-1<m <2[解析] p :m ≤-1,q :-2<m <2,∵p ∧q 为假命题且p ∨q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2,当p 真q 假时,m ≤-2,∴m 的取值范围是m ≤-2或-1<m <2.14.(文)(2014·安徽程集中学期中)以下四个命题:①在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =a cos B ,则B =π4;②设a ,b 是两个非零向量且|a ·b |=|a ||b |,则存在实数λ,使得b =λa ;③方程sin x -x =0在实数范围内的解有且仅有一个;④a ,b ∈R 且a 3-3b >b 3-3a ,则a >b ;其中正确的是________.[答案] ①②③④[解析] ∵b sin A =a cos B ,∴sin B sin A =sin A cos B ,∵sin A ≠0,∴sin B =cos B ,∵B ∈(0,π),∴B =π4,故①正确; ∵|a ·b |=||a |·|b |·cos 〈a ,b 〉|=|a |·|b |,∴|cos 〈a ,b 〉|=1,∴a 与b 同向或反向,∴存在实数λ,使b =λa ,故②正确;由于函数y =sin x 的图象与直线y =x 有且仅有一个交点,故③正确;∵(a 3-3b )-(b 3-3a )=(a 3-b 3)+3(a -b )=(a -b )(a 2+ab +b 2+3)>0,∵a 2+ab +b 2+3>0,∴a -b >0,∴a >b ,故④正确.(理)(2014·屯溪一中期中)下列几个结论:①“x <-1”是“x <-2”的充分不必要条件; ②⎠⎛01(e x +sin x )d x =e -cos1;③已知a >0,b >0,a +b =2,则y =1a +4b 的最小值为92;④若点(a,9)在函数y =3x 的图象上,则tan a π3的值为-3;⑤函数f (x )=2sin(2x -π3)-1的对称中心为(k π2+π6,0)(k ∈Z )其中正确的是________.(写出所有正确命题的序号) [答案] ②③④[解析] x <-1⇒/ x <-2,x <-2⇒x <-1,故①错误;⎠⎛01(e x +sin x )d x =(e x -cos x )|10=e -cos1,故②正确;∵a >0,b >0,a +b =2,∴y =1a +4b =12(a +b )(1a +4b )=12(5+b a +4a b )≥12(5+2b a ·4a b )=92,等号在⎩⎪⎨⎪⎧b a =4a b ,a +b =2,即a =23,b =43时成立,故③正确;∵(a,9)在函数y =3x 的图象上,∴3a =9,∴a=2,∴tan 2π3=-tan π3=-3,故④正确;f (x )=2sin(2x -π3)-1的对称中心不落在x 轴上,故⑤错.正确答案为②③④.15.(2013·福建文,16)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2), 那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,B =N *;②A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}; ③A ={x |0<x <1},B =R .其中,“保序同构”的集合对的序号是________.(写出所有“保序同构”的集合对的序号) [答案] ①②③[解析] 由(1)知T 是定义域为S 的函数y =f (x )的值域;由(2)知f (x )为增函数,因此对于集合A 、B ,只要能够找到一个增函数y =f (x ),其定义域为A ,值域为B 即可.对于①,A =N ,B =N *,可取f (x )=x +1,(x ∈A );对于②,A ={x |-1≤x ≤3},B ={x |-8≤x ≤10},可取f (x )=92x -72(x ∈A );对于③,A ={x |0<x <1},B =R ,可取f (x )=tan(x -12)π(x ∈A ).16.(文)(2014·合肥八中联考)给出下列四个命题: ①∃α,β∈R ,α>β,使得tan α<tan β;②若f (x )是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(π4,π2),则f (sin θ)>f (cos θ);③在△ABC 中,“A >π6”是“sin A >12”的充要条件;④若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=3,其中所有正确命题的序号是________.[答案] ①④[解析] ①当α=3π4,β=π3时,tan α<0<tan β,∴①为真命题;∵f (x )是[-1,1]上的偶函数,在[-1,0]上单调递增,∴在[0,1]上单调递减,又θ∈(π4,π2),∴1>sin θ>cos θ>22,从而f (sin θ)<f (cos θ),∴②为假命题;③当A =5π6时,A >π6成立,但sin A =12,∴③为假命题;④由条件知f ′(1)=12,f (1)=12×1+2=52,∴f (1)+f ′(1)=3,∴④为真命题.(理)(2014·银川九中一模)给出下列命题: ①已知a ,b 都是正数,且a +1b +1>ab,则a <b ;②已知f ′(x )是f (x )的导函数,若∀x ∈R ,f ′(x )≥0,则f (1)<f (2)一定成立; ③命题“∃x ∈R ,使得x 2-2x +1<0”的否定是真命题; ④“x ≤1且y ≤1”是“x +y ≤2”的充要条件.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案] ①②③[解析] ①∵a ,b 是正数,∴a +1>0,b +1>0,∵a +1b +1>ab ,∴b (a +1)>a (b +1),∴b >a ,即a <b ,∴①正确;②∵对任意x ∈R ,f ′(x )≥0,∴f (x )在R 上为增函数, ∴f (1)<f (2),∴②正确;③“∃x ∈R ,使得x 2-2x +1<0”的否定为“∀x ∈R ,x 2-2x +1≥0”,∵x ∈R 时,x 2-2x +1=(x -1)2≥0成立,∴③正确;④当x ≤1且y ≤1时,x +y ≤2成立;当x =3,y =-2时,满足x +y ≤2,∴由“x +y ≤2”推不出“x ≤1且y ≤1”,∴④错误.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·福州市八县联考)A ={x |x 2-2x -8<0},B ={x |x 2+2x -3>0},C ={x |x 2-3ax +2a 2<0},(1)求A ∩B ;(2)试求实数a 的取值范围,使C ⊆(A ∩B ).[解析] (1)依题意得:A ={x |-2<x <4},B ={x |x >1或x <-3}, ∴A ∩B ={x |1<x <4}.(2)①当a =0时,C =∅,符合C ⊆(A ∩B ); ②当a >0时,C ={x |a <x <2a },要使C ⊆(A ∩B ),则⎩⎪⎨⎪⎧a ≥12a ≤4,解得1≤a ≤2;③当a <0时,C ={x |2a <x <a },∵a <0,C ⊆(A ∩B )不可能成立,∴a <0不符合题设. ∴综上所述得:1≤a ≤2或a =0.(理)(2014·甘肃临夏中学期中)记函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B ;(2)若C ={x |x 2+4x +4-p 2<0,p >0},且C ⊆(A ∩B ),求实数p 的取值范围.[解析] (1)由条件知,x 2-x -2>0,∴A ={x |x <-1,或x >2},由g (x )有意义得3-|x |≥0,所以B ={x |-3≤x ≤3},∴A ∩B ={x |-3≤x <-1,或2<x ≤3};(2)∵C ={x |x 2+4x +4-p 2<0}(p >0),∴C ={x |-2-p <x <-2+p }, ∵C ⊆(A ∩B ),∴-2-p ≥-3,且-2+p ≤-1, ∴0<p ≤1,∴实数p 的取值范围是{p |0<p ≤1}.18.(本小题满分12分)(2014·山东省菏泽市期中)已知命题p :关于x 的不等式|x -1|>m -1的解集为R ,命题q :函数f (x )=(5-2m )x 是R 上的增函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.[解析] 不等式|x -1|>m -1的解集为R ,须m -1<0,即p 是真命题时,m <1; 函数f (x )=(5-2m )x 是R 上的增函数,须5-2m >1,即q 是真命题时,m <2. ∵p 或q 为真命题,p 且q 为假命题, ∴p 、q 中一个为真命题,另一个为假命题. (1)当p 真,q 假时,m <1且m ≥2,此时无解; (2)当p 假,q 真时,m ≥1且m <2,此时1≤m <2, 因此1≤m <2.19.(本小题满分12分)(文)(2014·灵宝实验高中月考)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0且綈p 是綈q 的必要不充分条件,求实数a 的取值范围.[解析] 由x 2-4ax +3a 2<0及a <0得,3a <x <a , ∴p :3a <x <a ;由x 2+2x -8>0得,x <-4或x >2,∴q :x <-4或x >2.∵綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件,∴a ≤-4.(理)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)设命题p :实数x 满足(x -a )(x -3a )<0,其中a >0,命题q :实数x 满足x -3x -2≤0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若綈p 是綈q 的充分不必要条件,求实数a 的取值范围. [解析] (1)∵a =1,∴不等式化为(x -1)(x -3)<0,∴1<x <3; 由x -3x -2≤0得,2<x ≤3,∵p ∧q 为真,∴2<x <3. (2)∵綈p 是綈q 的充分不必要条件, ∴q 是p 的充分不必要条件,又q :2<x ≤3,p :a <x <3a ,∴⎩⎪⎨⎪⎧a ≤2,3a >3,∴1<a ≤2.20.(本小题满分12分)(2014·马鞍山二中期中)设命题p :f (x )=2x -m 在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(綈p )∧q 为真,试求实数m 的取值范围.[解析] 对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1,对命题q :|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3, ∴m 2+5m -3≥3⇒m ≥1或m ≤-6. 若(綈p )∧q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧m >1,m ≥1或m ≤-6,∴m >1. 21.(本小题满分12分)(2014·河北冀州中学期中)设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集.(1)求A ∩B ;(2)若C ⊆∁R A ,求a 的取值范围.[解析] (1)由于-x 2-2x +8>0,解得A =(-4,2),又y =x +1x +1=(x +1)+1x +1-1,当x +1>0时,y ≥2(x +1)·1x +1-1=1;当x +1<0时,y ≤-2(x +1)·1x +1-1=-3.∴B =(-∞,-3]∪[1,+∞), ∴A ∩B =(-4,-3]∪[1,2). (2)∵∁R A =(-∞,-4]∪[2,+∞), 由(ax -1a)(x +4)≤0,知a ≠0,当a >0时,由(ax -1a )(x +4)≤0,得C =[-4,1a 2],不满足C ⊆∁R A ;当a <0时,由(ax -1a )(x +4)≤0,得C =(-∞,-4]∪[1a 2,+∞),欲使C ⊆∁R A ,则1a 2≥2,解得:-22≤a <0或0<a ≤22, 又a <0,所以-22≤a <0, 综上所述,所求a 的取值范围是[-22,0). 22.(本小题满分14分)(2014·九江市七校第一次联考)“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因.暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其他因素的条件下,某段下水道的排水量V (单位:立方米/小时)是杂物垃圾密度x (单位:千克/立方米)的函数.当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数.(1)当0≤x ≤2时,求函数V (x )的表达式;(2)当垃圾杂物密度x 为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)f (x )=x ·V (x )可以达到最大,求出这个最大值.[解析] 当0.2≤x ≤2时,排水量V 是垃圾杂物密度x 的一次函数,设为V (x )=mx +n ,将(0.2,90),(2,0)代入得V (x )=-50x +100,V (x )=⎩⎪⎨⎪⎧90(0≤x ≤0.2),-50x +100(0.2<x ≤2).(2)f (x )=x ·V (x )=⎩⎪⎨⎪⎧90x (0≤x ≤0.2),-50x (x -2)(0.2<x ≤2).当0≤x ≤0.2时,f (x )=90x ,最大值为1.8千克/小时; 当0.2≤x ≤2时,f (x )=50x (2-x )≤50, 当x =1时,f (x )取到最大值50,所以,当杂物垃圾密度x =1千克/立方米,f (x )取得最大值50千克/小时.。

广东省实验中学2015届高三数学第一次阶段考试试题 理(含解析)新人教A版

广东省实验中学2015届高三数学第一次阶段考试试题 理(含解析)新人教A版

广东省实验中学2015届高三第一次阶段考试数学(理)试题(解析版)【试卷综析】这套试题基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,体现了稳中求进的精神.,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习 方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移. 一.选择题(5*8=40分)1.设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},则A ∩B 的子集的个数是( )A .4B .3C .2D .1【知识点】交集及其运算;子集与真子集.A1【答案解析】A 解析:∵集合A ={(x ,y )|x 24+y 216=1},∴x 24+y 216=1为椭圆和指数函数y =3x 图象,如图,可知其有两个不同交点,记为A 1、A 2,则A∩B 的子集应为∅,{A 1},{A 2},{A 1,A 2}共四种,故选A .【思路点拨】由题意集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},画出A ,B 集合所表示的图象,看图象的交点,判断A∩B 的子集的个数. 【题文】2. 22log sinlog cos1212ππ+的值为( )A .-2B .–l C.12D .1 【知识点】对数的运算性质.B7 【答案解析】A 解析:====﹣2.故选A .【思路点拨】利用对数的运算法则进行计算即可.先结合对数运算法则:log a (MN )=log a M+log a N ,利用二倍角的正弦公式将两个对数式的和化成一个以2为底的对数的形式,再计算即得.【题文】3.已知x ,y ∈R ,则“1x y +=”是“14xy ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【知识点】必要条件、充分条件与充要条件的判断.A2 【答案解析】A 解析:∵x,y ∈R ,当1x y +=时,y=1﹣x ,∴xy=x(1﹣x )=x ﹣x 2=2111424x ,∴充分性成立; 当xy≤时,如x=y=0,x+y=0≠1,∴必要性不成立;∴“1x y +=”是“14xy ≤”的充分不必要条件.故选:A . 【思路点拨】由1x y +=,推出14xy ≤,判定充分性成立;由14xy ≤,不能得出1x y +=,判定必要性不成立即可. 【题文】4.已知函数cos21()sin 2x f x x-=,则有( )A .函数()f x 的图像关于直线2x π=对称 B .函数()f x 的图像关关于点(,0)2π对称C .函数()f x 的最小正周期为2πD .函数()f x 在区间(0,)π内单调递减【知识点】函数y=Asin (ωx+φ)的图象变换.C4【答案解析】B 解析:∵cos21()sin 2x f x x-==∴函数f (x )不是轴对称图形,∴A 不正确; ∵函数f (x )的最小正周期为π,∴C 不正确; ∵函数在区间(0,)π不单调,∴D 不正确; ∵函数f (x )的对称中心为()k ∈Z ,∴函数f (x )的图象关关于点(,0)2π对称正确,故选B .【思路点拨】分析函数cos21()sin 2x f x x-=性质,要先利用公式化成正弦型、余弦型或正切型函数的标准形式,然后再研究性质. 【题文】5.已知0<a<b<l .则( ) A.11b a > B. 11()()22a b < C. 22(lg )(lg )a b < D.11lg lg a b > 【知识点】不等式的基本性质.E1【答案解析】D 解析:∵0<a <b <1,∴,可得; ;(lga )2>(lgb )2;lga <lgb <0,可得.综上可知:只有D 正确.故选:D .【思路点拨】利用不等式的基本性质和指数函数、对数函数的单调性即可得出.【题文】6.已知函数 2()2cos f x x x =+,若 '()f x 是 ()f x 的导函数,则函数 '()f x 在原点附近的图象大致是( )A B C D【知识点】函数的图象.B8【答案解析】A 解析:函数f (x )=x 2+2cosx ,∴f′(x )=2x ﹣2sinx=2(x ﹣sinx ), f′(﹣x )=﹣2x+2sinx=﹣(2x ﹣2sinx )=﹣f′(x ),导函数是奇函数, ∵x∈(0,),x >sinx >0,∴B、C 、D 不正确.故选:A .【思路点拨】由题可得f′(x )=2x ﹣2sinx ,判断导函数的奇偶性,利用特殊值的函数值推出结果即可.【题文】7.已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩ ,若对任意的R x ∈,不等式23()4f x m m≤-恒成立,则实数m 的取值范围是( ) 111.(,].(,][1,).[1,).[,1]444A B C D -∞--∞-+∞+∞-【知识点】分段函数的应用.B1【答案解析】B 解析:对于函数f (x )=,当x≤1时,f (x )=﹣(x ﹣)2+;当x >1时,f (x )=<0.则函数f (x )的最大值为.则要使不等式f (x )≤m 2﹣m 恒成立, 则m 2﹣m 恒成立,即m 或m≥1.故选B .【思路点拨】求出分段函数的最大值,把不等式f (x )≤m 2﹣m 恒成立转化为m 2﹣m 大于等于f (x )的最大值恒成立,然后求解不等式得到实数m 的取值范围. 【题文】8.已知关于x 的方程cos xk x=在(0,)+∞有且仅有两根,记为,()αβαβ<,则下列的四个命题正确的是( ) A .2sin 22cosααα= B .2cos 22sin ααα= C .2sin 22sin βββ=- D .2cos 22sin βββ=-【知识点】余弦函数的图象.C3【答案解析】C 解析:∵cos xk x=,∴|cosx|=kx, ∴要使方程cos xk x=(k >0)在(0,+∞)上有两个不同的解,则y=|cosx|的图象与直线y=kx (k >0)在(0,+∞)上 有且仅有两个公共点,所以直线y=kx 与y=|cosx|在(,π)内相切,且切于点(β,﹣cosβ),此时y=|cosx|=﹣cosx .∴切线的斜率为sinβ=,∴βsinβ=﹣cosβ,∴2βsinβsinβ=2sinβcosβ,∴sin 2β=﹣2βsin 2β,故选:C .【思路点拨】将方程cos xk x=转化为|cosx|=kx ,作出两个函数的图象,利用数形结合,以及导数的几何意义即可得到结论.二.填空题(6*5=30分)(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答。

2015届高考数学一轮总复习 3-4定积分与微积分基本定理

2015届高考数学一轮总复习 3-4定积分与微积分基本定理

2015届高考数学一轮总复习 3-4定积分与微积分基本定理基础巩固强化一、选择题1.(2013·山东济南一模)设a =⎠⎛121x d x ,b =⎠⎛131x d x ,c =⎠⎛151xd x ,则下列关系式成立的是( )A.a 2<b 3<c5 B.b 3<a 2<c 5 C.c 5<a 2<b 3 D.a 2<c 5<b 3[答案] C[解析] ∵a =⎠⎛121x d x =ln2,b =⎠⎛131x d x =ln3,c =⎠⎛151xd x =ln5,∴a 2=12ln2=ln 2,b 3=13ln3=ln 33,c 5=15ln5=ln 55,而55<2<33,∴c 5<a 2<b 3,选C. 2.(2012·深圳第一次调研)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2B.4π3 C.2π2 D.2π3 [答案] B[解析] 依题意得,区域M 的面积等于2⎠⎛0πsin x d x =-2cos x |π0=4,圆O 的面积等于π×π2=π3,因此点A 落在区域M 内的概率是4π3,选B.3.(2013·湖北理,7)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln5 B .8+25ln 113C .4+25ln5D .4+50ln2[答案] C[解析] 由于v (t )=7-3t +251+t ,且汽车停止时速度为0,因此由v (t )=0可解得t =4, 即汽车从刹车到停止共用4s. 该汽车在此期间所行驶的距离s =⎠⎛04(7-3t +251+t )d t =[7t -3t 22+25ln(t +1)]|40 =4+25ln5(m).4.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2π B .3π C.3π2 D .π[答案] A [解析] 如图,S =∫2π0(1-cos x )d x =(x -sin x )|2π0=2π.[点评] 此题可利用余弦函数的对称性①②③④面积相等解决,但若把积分区间改为⎝⎛⎭⎫π6,π,则对称性就无能为力了.5.(2013·安徽联考)设函数f (x )=(x -1)x (x +1),则满足⎠⎛0a f ′(x )d x =0的实数a 有________个.( )A .3B .2C .1D .0 [答案] C[解析] ∵⎠⎛0a f ′(x )d x =f (a )-f (0)=0,∴a =0或1或-1,又由积分性质知a >0,故a =1,选C.6.(2013·保定调研)已知函数f (x )=⎩⎪⎨⎪⎧x +1(-1≤x ≤0)cos x (0<x ≤π2),( )A.12 B .1 C .2 D.32[答案] D [解析]二、填空题 7.(2013·济宁一模)如图,长方形的四个顶点为O (0,0),A (2,0),B (2,4),C (0,4).曲线y =ax 2经过点B ,现将一质点随机投入正方形OABC 中,则质点落在图中阴影区域的概率是________. [答案] 23[解析] ∵y =ax 2过点B (2,4),∴a =1, ∴所求概率为1-⎠⎛02x 2d x 2×4=23.8.(2013·湖南省五市十校联考)⎠⎛01(e x +x )d x =________.[答案] e -12[解析] ⎠⎛01(e x +x )d x =(e x +12x 2)|10=e +12-1=e -12.9.(2013·滨州一模)设a =⎠⎛0πsin x d x ,则二项式(a x -1x)6展开式的常数项等于________.[答案] -160[解析] a =⎠⎛0πsin x d x =-cos x |π0=2,T r +1=C r 6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r 26-r C r 6x 3-r , ∵T r +1为常数项,∴3-r =0,∴r =3,∴常数项为(-1)3×23×C 36=-160.10.(2013·北京东城区检测)图中阴影部分的面积等于________.[答案] 1[解析] 由题知所求面积为⎠⎛013x 2d x =x 3|10=1.能力拓展提升一、选择题11.(2013·长春一模)与定积分∫3π01-cos x d x 相等的是( ) A.2∫3π0sin x 2d x B.2∫3π0|sin x2|d x C .|2∫3π0sin x 2d x | D .以上结论都不对[答案] B[解析] ∵1-cos x =2sin 2x 2,∴∫3π01-cos x d x =∫3π2|sin x 2|d x =2∫3π0|sin x2|d x . 12.(2013·日照一模)设(1x +x 2)3的展开式中的常数项为a ,则直线y =ax 与直线y =x 2围成图形的面积为( )A.272 B .9 C.92 D.274[答案] C[解析] (1x +x 2)3,即(x 2+1x )3的通项T r +1=C r 3(x 2)3-r (1x)r =C r 3x 6-3r,令6-3r =0,得r =2,∴常数项为3.则直线y =3x 与曲线y =x 2围成图形的面积为S =⎠⎛03(3x -x 2)d x =(32x 2-13x 3)|30=92.故选C. 13.(2013·山西诊断)若函数,则f (2012)=( )A .1B .2 C.43 D.53[答案] C [解析]二、填空题14.(2013·江西省七校联考)已知数列{a n }的前n 项和为S n ,且a n =∫n +1n1xd x (n ∈N *),则S 100=________.[答案] ln101[解析] 依题意,a n =ln x |n +1n =ln(n +1)-ln n ,因此S 100=(ln2-ln1)+(ln3-ln2)+…+(ln101-ln100)=ln101.15.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________. [答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y 2=2x ,y =4-x .解得两交点A (2,2)、B (8,-4),选y 作为积分变量,x =y 22、x =4-y三、解答题16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,求a 的值.[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0). ∴S 阴影=⎠⎛a0[0-(-x 3+ax 2)]d x=(14x 4-13ax 3)|0a =112a 4=112, ∵a <0,∴a =-1.考纲要求了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,了解微积分基本定理的含义.补充说明1.掌握本节内容需熟记微积分基本定理及积分的三条性质;明确曲边梯形面积(只取正值)与定积分(任意实数)的关系.抓住三个考点:定积分的计算,已知定积分求参数值,定积分的应用.2.用定义求定积分的一般方法是: ①均匀分割:n 等分区间[a ,b ]; ②近似代替:取点ξi ∈[x i -1,x i ]; ③求和:∑i =1nf (ξi )·b -a n;④取极限:⎠⎛abf (x )d x =li m n →∞∑i =1nf (ξi )·b -an .3.由两条直线x =a 、x =b (a <b )、两条曲线y =f (x )、y =g (x )(f (x )≥g (x ))围成的平面图形的面积: S =⎠⎛ab [f (x )-g (x )]d x (如图).4.本节重点体会数形结合思想,无限逼近的极限思想. 备选习题1.设集合P ={x |⎠⎛0x (3t 2-10t +6)d t =0,x >0},则集合P 的非空子集个数是( )A .2B .3C .7D .8 [答案] B[解析] 依题意得⎠⎛0x (3t 2-10t +6)d t =(t 3-5t 2+6t )|x 0=x 3-5x 2+6x =0,由此解得x =0或x =2或x =3.又x >0,因此集合P ={2,3},集合P 的非空子集的个数是22-1=3,选B.2. ( ) A .0 B.π4 C .2 D .4[答案] C[解析]3.设f (x )=⎠⎛0x (1-t )3d t ,则f (x )的展开式中x 的系数是( )A .-1B .1C .-4D .4[答案] B[解析] f (x )=⎠⎛0x (1-t )3d t =-14(1-t )4|x 0=14-14(1-x )4,故展开式中x 的系数为-14×(-C 14)=1,故选B.4.(2013·郑州二测)等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12[答案] C[解析] 因为S 3=⎠⎛034x d x =2x 2|30=18,所以6q +6q 2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.5.(2012·太原模拟)已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1[答案] A[解析] 由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1e ln x d x =(x ln x -x )|e 1=(elne -e)-(1×ln1-1)=1.6.(2014·河源龙川一中月考)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点,则所投的点落在叶形图内部的概率是( )A.12B.16 C.14 D.13[答案] D[解析] 依题意知,题中的正方形区域的面积为12=1,阴影区域的面积等于⎠⎛01(x -x 2)d x =(23x32 -13x 3)|10=13,因此所投的点落在叶形图内部的概率等于13,选D.。

2015届高考数学(理)一轮复习单元卷:函数的奇偶性及周期性、(苏教版)

2015届高考数学(理)一轮复习单元卷:函数的奇偶性及周期性、(苏教版)

函数的奇偶性及周期性第Ⅰ组:全员必做题1.x 为实数,[x ]表示不超过x 的最大整数,则函数f (x )=x -[x ]的最小正周期是________. 2.(2013·湖南高考改编)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于________.3.(2014·长春三校调研)已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.4.已知函数f (x )=x |x |-2x ,则下列结论正确的是________.(填写序号) ①f (x )是偶函数,递增区间是(0,+∞) ②f (x )是偶函数,递减区间是(-∞,1) ③f (x )是奇函数,递减区间是(-1,1) ④f (x )是奇函数,递增区间是(-∞,0)5.(2014·南京摸底)已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 12,则f (-4)的值是________.6.若偶函数y =f (x )为R 上的周期为6的周期函数,且满足f (x )=(x +1)(x -a )(-3≤x ≤3),则f (-6)等于________.7.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝⎛⎭⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.8.(2012·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________. 9.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ), 当0≤x ≤1时,f (x )=x . (1)求f (3)的值;(2)当-4≤x ≤4时,求f (x )的图像与x 轴所围成图形的面积.10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.第Ⅱ组:重点选做题1.(2013·南京二模)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧3x -1, x ≤0,f (x -1)-f (x -2), x >0,则f (2 016)=________.2.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎭⎫121-x,则:①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增; ③函数f (x )的最大值是1,最小值是0; ④当x ∈(3,4)时,f (x )=⎝⎛⎭⎫12x -3.其中所有正确命题的序号是________.答 案第Ⅰ组:全员必做题1.解析:如图,当x ∈[0,1)时,画出函数图像,再左右扩展知f (x )为周期函数. 答案:12.解析:由已知可得,-f (1)+g (1)=2, f (1)+g (1)=4,两式相加解得,g (1)=3. 答案:33.解析:根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=x x 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2- [1+h (a )]=2-f (a )=2-23=43.答案:434.解析:将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图像,如图,观察图像可知,函数f (x )的图像关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.答案:③5.解析:因为f (x )是R 上的奇函数, 所以f (-4)=-f (4)=-412=-2.答案:-26.解析:∵y =f (x )为偶函数,且f (x )=(x +1)(x -a )(-3≤x ≤3), ∴f (x )=x 2+(1-a )x -a,1-a =0. ∴a =1.f (x )=(x +1)(x -1)(-3≤x ≤3). f (-6)=f (-6+6)=f (0)=-1. 答案:-17.解析:在f (x )-g (x )=⎝⎛⎭⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.于是解得f (x )=2-x -2x 2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1). 答案:f (1)>g (0)>g (-1)8.解析:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a +2b =-2. ①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10. 答案:-109.解:(1)由f (x +2)=-f (x )得, f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,所以f (3)=f (3-4)=-f (1)=-1.(2)由f (x )是奇函数与f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).故知函数y =f (x )的图像关于直线x =1对称.又0≤x ≤1时,f (x )=x ,且f (x )的图像关于原点成中心对称,则-1≤x ≤0时,f (x )=x ,则f (x )的图像如图所示.当-4≤x ≤4时,设f (x )的图像与x 轴围成的图形面积为S , 则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4. 10.解:(1)设x <0,则-x >0, 所以f (-x )=-(-x )2+2(-x ) =-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图像知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3]. 第Ⅱ组:重点选做题1.解析:x >0时,f (x )=f (x -1)-f (x -2),f (x +1)=f (x )-f (x -1),相加得f (x +1)=-f (x -2),即f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),进而f (2 016)=f (336×6)=f (0)=3-1=13. 答案:132.解析:由已知条件:f (x +2)=f (x ), 则y =f (x )是以2为周期的周期函数,①正确; 当-1≤x ≤0时0≤-x ≤1, f (x )=f (-x )=⎝⎛⎭⎫121+x, 函数y =f (x )的图像如图所示:当3<x <4时,-1<x -4<0,f (x )=f (x -4)=⎝⎛⎭⎫12x -3,因此②④正确,③不正确. 答案:①②④。

2015届高考数学一轮总复习 1-1集合

2015届高考数学一轮总复习 1-1集合

2015届高考数学一轮总复习 1-1集合课后强化作业基础巩固强化一、选择题1.(文)集合A ={-1,0,1},B ={y |y =cos x ,x ∈A },则A ∩B =( ) A .{0} B .{1} C .{0,1} D .{-1,0,1}[答案] B[解析] ∵cos0=1,cos(-1)=cos1,∴B ={1,cos1}, ∴A ∩B ={1}.(理)(2013·江苏南通一模)集合A ={-1,0,1},B ={y |y =e x ,x ∈A },则A ∩B =( ) A .{0} B .{1} C .{0,1} D .{-1,0,1}[答案] B[解析] ∵x ∈A ,∴B ={1e,1,e},∴A ∩B ={1}.故选B.2.(文)(2013·广东佛山一模)设全集U ={x ∈N *|x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{2,4}C .{2,5}D .{1,5}[答案] B[解析] 由题意易得U ={1,2,3,4,5},A ∪B ={1,3,5},所以∁U (A ∪B )={2,4}.故选B. (理)已知U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={2,4,5},则∁U (A ∪B )=( ) A .{6,8} B .{5,7} C .{4,6,7} D .{1,3,5,6,8}[答案] A[解析] ∵A ={1,3,5,7},B ={2,4,5},∴A ∪B ={1,2,3,4,5,7},又U ={1,2,3,4,5,6,7,8}, ∴∁U (A ∪B )={6,8}.3.(文)设U =R ,M ={x |x 2-2x >0},则∁U M =( ) A .[0,2]B .(0,2)C .(-∞,0)∪(2,+∞)D .(-∞,0]∪[2,+∞)[答案] A[解析] 由x 2-2x >0得x >2或x <0. ∴∁U M =[0,2].(理)设集合A ={x |y =3x -x 2},B ={y |y =2x ,x >1},则A ∩B 为( ) A .[0,3]B .(2,3]C.[3,+∞) D.[1,3][答案] B[解析]由3x-x2≥0得,0≤x≤3,∴A=[0,3],∵x>1,∴y=2x>2,∴B=(2,+∞),∴A∩B=(2,3].4.已知集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q等于()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}[答案] B[解析]根据题意P∩Q={0},所以log2a=0,解得a=1从而b=0,可得P∪Q={3,0,1},故选B.5.(文)(2012·浙江)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁R B)=() A.(1,4) B.(3,4)C.(1,3) D.(1,2)∪(3,4)[答案] B[解析]本题考查了集合的运算.∵x2-2x-3≤0,∴-1≤x≤3,∴∁R B={x|x<-1或x>3}.∴A∩(∁R B)={x|3<x<4}.(理)(2013·辽宁大连一模)已知集合A={x|x2-2x≤0},B={x|x≥a},若A∪B=B,则实数a的取值范围是()A.(-∞,0) B.(-∞,0]C.(0,+∞) D.[0,+∞)[答案] B[解析]易知A={x|0≤x≤2}.∵A∪B=B,∴A⊆B,∴a∈(-∞,0],故选B.6.(2013·山东潍坊一模)已知R为全集,A={x|(1-x)·(x+2)≤0},则∁R A=()A.{x|x<-2,或x>1} B.{x|x≤-2,或x≥1}C.{x|-2<x<1} D.{x|-2≤x≤1}[答案] C[解析]∵(1-x)(x+2)≤0,即(x-1)(x+2)≥0,∴x≤-2或x≥1.∴A={x|x≤-2,或x≥1}.∴∁R A={x|-2<x<1},故选C.二、填空题7.已知集合A ={(x ,y )|x 、y 为实数,且x 2+y 2=1},B ={(x ,y )|x 、y 为实数,且y =-x +1},则A ∩B 的元素个数为________.[答案] 2[解析] 集合A 表示圆x 2+y 2=1上的所有的点,集合B 表示直线y =-x +1上的所有的点,故A ∩B 表示圆与直线的交点.由于直线与圆相交,故这样的点有两个.8.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =________. [答案] {(0,1),(-1,2)}[解析] A 、B 都表示点集,A ∩B 即是由集合A 中落在直线x +y -1=0上的所有点组成的集合,将A 中点的坐标代入直线方程检验知,A ∩B ={(0,1),(-1,2)}.9.若A ={x |22x -1≤14},B ={x |log 116x ≥12},实数集R 为全集,则(∁R A )∩B =________.[答案] {x |0<x ≤14}[解析] 由22x -1≤14得,x ≤-12,由log 116 x ≥12得,0<x ≤14,∴(∁R A )∩B ={x |x >-12}∩{x |0<x ≤14}={x |0<x ≤14}.三、解答题10.已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }. (1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来; (3)若A 中至多有一个元素,求a 的取值范围.[解析] 集合A 是方程ax 2-3x +2=0在实数范围内的解组成的集合.(1)A 是空集,即方程ax 2-3x +2=0无解,得⎩⎪⎨⎪⎧a ≠0,Δ=(-3)2-8a <0,∴a >98, 即实数a 的取值范围是(98,+∞).(2)当a =0时,方程只有一解23,此时A 中只有一个元素23;当a ≠0时,应有Δ=0,∴a =98,此时方程有两个相等的实数根,A 中只有一个元素43,∴当a =0或a =98时,A 中只有一个元素,分别是23和43.(3)A 中至多有一个元素,包括A 是空集和A 中只有一个元素两种情况,根据(1),(2)的结果,得a =0或a ≥98,即a 的取值范围是{a |a =0或a ≥98}.能力拓展提升一、选择题11.已知A 、B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9}[答案] D[解析] 由题意知,A 中有3和9,若A 中有7或5,则∁U B 中无7和5,即B 中有7或5,则与A ∩B ={3}矛盾,故选D.12.(2013·青岛一模)设A ,B 是两个非空集合,定义运算A ×B ={x |x ∈A ∪B ,且x ∉A ∩B },已知A ={x |y =2x -x 2},B ={y |y =2x ,x >0},则A ×B =( )A .[0,1]∪(2,+∞)B .[0,1)∪(2,+∞)C .[0,1]D .[0,2][答案] A[解析] 由2x -x 2≥0解得0≤x ≤2,则A =[0,2]. 又B ={y |y =2x ,x >0}=(1,+∞), ∴A ×B =[0,1]∪(2,+∞),故选A.13.(2014·巢湖质检)设集合A ={x |x 24+3y 24=1},B ={y |y =x 2},则A ∩B =( )A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}[答案] B[解析] A ={x |-2≤x ≤2},B ={y |y ≥0}, ∴A ∩B ={x |0≤x ≤2}=[0,2]. 二、填空题14.(文)(2013·湘潭模拟)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.[答案] 1[解析] ∵3∈B ,又a 2+4≥4,∴a +2=3,∴a =1.(理)已知集合A ={0,2,a 2},B ={1,a },若A ∪B ={0,1,2,4},则实数a 的值为________. [答案] 2[解析] ∵A ∪B ={0,1,2,4},∴a =4或a 2=4,若a =4,则a 2=16,但16∉A ∪B , ∴a 2=4,∴a =±2,又-2∉A ∪B ,∴a =2.15.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.[答案] {2,4,6,8}[解析] A ∪B ={x ∈N *|lg x <1}={1,2,3,4,5,6,7,8,9},A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4}={1,3,5,7,9},∴B ={2,4,6,8}.三、解答题16.(文)(2013·衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.[解析] (1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2}, ∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2}, ∵B ∪A =A ,∴B ⊆A , ∴B =∅或B ={2}.当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3.综上所述,所求a 的取值范围是{a |a ≥3}.(理)设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.[解析] 假设A ∩B ≠∅,则方程组⎩⎪⎨⎪⎧y =2x -1,y =ax 2-ax +a ,有正整数解,消去y 得, ax 2-(a +2)x +a +1=0.(*)由Δ≥0,有(a +2)2-4a (a +1)≥0, 解得-233≤a ≤233.因a 为非零整数,∴a =±1,当a =-1时,代入(*),解得x =0或x =-1, 而x ∈N *.故a ≠-1.当a =1时,代入(*),解得x =1或x =2,符合题意. 故存在a =1,使得A ∩B ≠∅, 此时A ∩B ={(1,1),(2,3)}.考纲要求1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集. (2)在具体情境中,了解全集与空集的含义. 3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集. (3)能使用韦恩图(Venn)表达集合的关系及运算. 补充说明1.把握集合问题“解题技巧”:准确理解集合中元素的属性,会用数轴、V enn 图和几何图形直观表示集合,掌握集合的关系与运算定义,用好集合的性质,恰当的对新定义进行翻译是解决集合问题的关键.2.牢记一条性质若集合A 中含有n 个元素,则A 的子集有2n 个,A 的真子集有2n -1个. 3.防范两个“易错点”(1)注意空集在解题中的应用,防止遗漏空集而导致失误.(2)对于含参数的两集合具有包含关系时,端点的取舍是易错点,对端点要单独考虑. 备选习题1.(2013·广东理,1)设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =( ) A .{0} B .{0,2} C .{-2,0} D .{-2,0,2}[答案] D[解析] M ={0,-2},N ={0,2},∴M ∪N ={-2,0,2}.2.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( )A.13 B.23 C.112 D.512[答案] C[解析] 此题虽新定义了“长度”概念,但题意不难理解,只要求出M ∩N ,然后再求一个式子的最小值即可;如何求M ∩N 呢?若真这样理解的话,就走弯路了.其实,根本用不着求M ∩N ;集合M 的“长度”是34,由于m 是一个变量,因此,这个长度为34的区间可以在区间[0,1]上随意移动;同理,集合N 的长度为13且也可以在区间[0,1]上随意移动;两区间的移动又互不影响,因此M ∩N 的“长度”的最小值即为13-⎝⎛⎫1-34=112,故选C. [点评] 1.该题立意新颖,背景公平.对考生的思维能力和分析解决问题能力有较高的区分度. 2.解答新定义题型,一定要先弄清新定义所提供的信息的含义,进行必要的提炼加工,等价转化为学过的知识,然后利用已掌握知识方法加以解答.3.集合M ={x ||x -2|-1=0},集合N ={x |x 2-3|x |+2=0},集合P ={x |x 2+5x +6≤0,x ∈Z },全集为U ,则图中阴影部分表示的集合是( )A .{-1,1}B .{2,-2}C .{3,-3}D .∅[答案] C[解析] ∵M ={1,3},N ={1,2,-1,-2},P ={-2,-3},∴M ∩N ={1},N ∩P ={-2}, 故阴影部分表示的集合为{3,-3}.[点评] 阴影部分在集合M 、P 中,不在集合N 中,抓住这个要点是解题的关键.4.设集合A ={3,5,7,9},B ={3,4,6,8},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( ) A .3个 B .4个 C .5个 D .6个[答案] D[解析] U =A ∪B ={3,4,5,6,7,8,9},A ∩B ={3}, ∴∁U (A ∩B )={4,5,6,7,8,9},故选D.5.设集合A ={x |12<2x <2},B ={x |lg x >-1},则A ∪B =( )A .{x |x >-1}B .{x |-1<x <1}C .{x |x >110}D .{x |-1<x <10或x >10}[答案] A[解析] 先求集合A 、B ,再求A ∪B ,∵12<2x <2,即2-1<2x <21,结合y =2x 的单调性知-1<x <1,∴A ={x |-1<x <1},由lg x >-1得x >110,∴B ={x |x >110},∴A ∪B ={x |x >-1}.。

2015届高考数学一轮总复习 2-7一次函数、二次函数及复合函数

2015届高考数学一轮总复习 2-7一次函数、二次函数及复合函数

2015届高考数学一轮总复习 2-7一次函数、二次函数及复合函数基础巩固强化一、选择题1.(文)如果函数f (x )=x 2+bx +c 对任意的实数x 都有f (12+x )=f (12-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)[答案] D[解析] 因为f (12+x )=f (12-x ),所以二次函数f (x )的图象关于直线x =12对称,故f (2)=f (-1),又该函数在(-∞,12)上递减,所以f (0)<f (-1)<f (-2),即f (0)<f (2)<f (-2).(理)若函数f (x )=(m -1)x 2+(m 2-1)x +1是偶函数,则在区间(-∞,0]上 f (x )( ) A .可能是增函数,也可能是常数函数 B .是增函数 C .是常数函数 D .是减函数 [答案] A[解析] ∵f (x )为偶函数, ∴一次项系数m 2-1=0,∴m =±1.若m =1,则f (x )=1,为常数函数;若m =-1,则f (x )=-2x 2+1在(-∞,0]上为增函数.2.(文)(2012·辽宁大连24中期中)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A .(0,34]B .(0,34)C .[0,34]D .[0,34)[答案] D[解析] ①当m =0时,y =mx -1mx 2+4mx +3=-13,定义域为R ;②当m ≠0时,若函数y =mx -1mx 2+4mx +3的定义域为R ,则∀x ∈R ,mx 2+4mx +3≠0.由mx 2+4mx +3≠0⇒⎩⎪⎨⎪⎧m ≠0,Δ<0,⇒0<m <34.综上①②得0≤m <34,故选D.(理)(2012·北京朝阳区期中)已知函数f (x )=ax 2+2ax +4(0<a <3),其图象上两点的横坐标x 1、x 2满足x 1<x 2,且x 1+x 2=1-a ,则有( )A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .f (x 1)、f (x 2)的大小不确定 [答案] C[解析] f (x 1)-f (x 2)=(ax 21+2ax 1+4)-(ax 22+2ax 2+4)=a (x 1-x 2)(x 1+x 2+2).又x 1<x 2,且x 1+x 2=1-a ,∴a (x 1-x 2)·(x 1+x 2+2)=a (x 1-x 2)(1-a +2)=a (3-a )(x 1-x 2)<0,即f (x 1)-f (x 2)<0,故选C.3.(2013·烟台期中)某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( )A .45.606B .45.6C .45.56D .45.51[答案] B[解析] 依题意可设甲销售x 辆,则乙销售(15-x )辆, ∴总利润S =5.06x -0.15x 2+2(15-x ) =-0.15x 2+3.06x +30(x ≥0). ∴当x =10时,S max =45.6(万元).4.(2013·温州模拟)方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( ) A .(-235,+∞)B .(1,+∞)C .[-235,1]D .(-∞,-235)[答案] C[解析] 令f (x )=x 2+ax -2,由条件知,f (1)·f (5)≤0或⎩⎪⎨⎪⎧Δ=a 2+8>0,1<-a 2<5,f (1)=a -1>0,f (5)=5a +23>0.∴-235≤a ≤1.5.(文)函数f (x )=ax 2+bx +c 与其导函数f ′(x )在同一坐标系内的图象可能是( )[答案] C[解析] 若二次函数f (x )的图象开口向上,则导函数f ′(x )为增函数,排除A ;同理由f (x )图象开口向下,导函数f ′(x )为减函数,排除D ;又f (x )单调增时,f ′(x )在相应区间内恒有f ′(x )≥0,排除B ,故选C.(理)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )[答案] D[解析] 若a <0,则只能是A 或B 选项,A 中-b2a <0,∴b <0,从而c >0,与A 图不符;B 中-b2a>0,∴b >0,∴c <0,与B 图不符.若a >0,则抛物线开口向上,只能是C 或D 选项,当b >0时,有c >0与C 、D 图不符,当b <0时,有c <0,此时-b2a>0,f (0)=c <0,故选D. 6.(文)已知方程|x |-ax -1=0仅有一个负根,则a 的取值范围是( ) A .a <1B .a ≤1C .a >1D .a ≥1[答案] D[解析] 数形结合判断.(理)若方程2ax 2-x -1=0在(0,1)内恰有一解,则a 的取值范围为( ) A .a <-1 B .a >1 C .-1<a <1 D .0≤a <1[答案] B[解析] 令f (x )=2ax 2-x -1,当a =0时显然不适合题意. ∵f (0)=-1<0,f (1)=2a -2,∴由f (1)>0得a >1,又当f (1)=0,即a =1时,2x 2-x -1=0两根x 1=1,x 2=-12不合题意,故选B.二、填空题7.(文)设函数f (x )=x 2+(2a -1)x +4,若x 1<x 2,x 1+x 2=0时,有f (x 1)>f (x 2),则实数a 的取值范围是________.[答案] a <12[解析] 由题意得1-2a 2>0,得a <12.(理)已知关于x 的函数f (x )=x 2-2x -3,若f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)等于________. [答案] -3[解析] ∵二次函数f (x )=x 2-2x -3中,a =1,b =-2,c =-3,∴由f (x 1)=f (x 2)得,x 1+x 22=-b2a=1, 所以x 1+x 2=2,则f (x 1+x 2)=f (2)=-3.8.(2012·上海)已知y =f (x )是奇函数.若g (x )=f (x )+2且g (1)=1,则g (-1)=________. [答案] 3[解析] 本题考查了奇函数的定义及函数值的求法. ∵f (x )为奇函数,∴f (-1)=-f (1),∵g (1)=f (1)+2 ①,g (-1)=f (-1)+2 ②, ∴①+②得g (1)+g (-1)=4, ∴g (-1)=4-g (1)=3.[点评] 抓住已知条件f (x )的奇函数是解决本题的关键.9.(2013·盐城模拟)若关于x 的不等式2-x 2>|x -a |至少有一个负数解,则实数a 的取值范围是________.[答案] (-94,2)[解析] y =2-x 2是开口向下的抛物线,y =|x -a |是与x 轴交于(a,0)点的“V 字形”折线,显然当a =2时,y =2-x 2(x <0)的图象都在折线下方,由2-x 2=x -a 得x 2+x -a -2=0,由Δ=1+4a +8=0得a =-94,此时y =x -a 与y =2-x 2(x <0)相切,故-94<a <2.三、解答题10.若函数y =lg(3-4x +x 2)的定义域为M .当x ∈M 时,求f (x )=2x +2-3×4x 的最值及相应的x的值.[解析] 要使函数y =lg(3-4x +x 2)有意义,应有3-4x +x 2>0, 解得x <1或x >3,∴M ={x <1或x >3}. f (x )=2x +2-3×4x =4×2x -3×(2x )2,令2x =t ,∵x <1或x >3,∴t >8或0<t <2. ∴y =4t -3t 2=-3(t -23)2+43(t >8或0<t <2),由二次函数性质可知, 当0<t <2时,f (x )∈(-4,43];当t >8时,f (x )∈(-∞,-160); 当2x =t =23,即x =log 223时,y =43.综上可知,当x =log 223时,f (x )取到最大值为43,无最小值.能力拓展提升一、选择题11.(文)(2013·郑州第一次质量预测)图中阴影部分的面积S 是关于h 的函数(0≤h ≤H ),则该函数的大致图象是( )[答案] B[解析] 由题图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B.(理)(2013·长春调研)若直角坐标平面内的两个不同点M ,N 满足条件: ①M ,N 都在函数y =f (x )的图象上; ②M ,N 关于原点对称.则称点对[M ,N ]为函数y =f (x )的一对“友好点对”.(注:点对[M ,N ]与[N ,M ]为同一“友好点对”)已知函数f (x )=⎩⎪⎨⎪⎧log 3x (x >0),-x 2-4x (x ≤0),此函数的“友好点对”有( )A .0对B .1对C .2对D .3对 [答案] C[解析] 由题意,当x >0时,将f (x )=log 3x (x >0)的图象关于原点对称后可知g (x )=-log 3(-x )(x <0)的图象与f (x )=-x 2-4x (x <0)的图象存在两个交点,故“友好点对”的个数为2,故选C.12.(2013·辽宁理,11)已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8,设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16D .a 2+2a -16[答案] B[解析] ∵f (x )-g (x )=2x 2-4ax +2a 2-8=2[x -(a -2)][x -(a +2)], ∴H 1(x )=⎩⎪⎨⎪⎧f (x ),x ∈(-∞,a -2],g (x ),x ∈(a -2,a +2),f (x ),x ∈[a +2,+∞).H 2(x )=⎩⎪⎨⎪⎧g (x ),x ∈(-∞,a -2],f (x ),x ∈(a -2,a +2),g (x ),x ∈[a +2,+∞).可求得H 1(x )的最小值A =f (a +2)=-4a -4,H 2(x )的最大值B =g (a -2)=-4a +12,∴A -B =-16.故选B.[点评] 令f (x )=g (x )可得x 1=a -2,x 2=a +2在同一坐标系中画出y =f (x )与y =g (x )的图象,由图象易知A 为f (a -2)与f (a +2)中的较小值,B 为f (a -2)与f (a +2)中的较大值,故只需比较f (a -2)与f (a +2)的大小即可.13.(文)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”.那么函数的解析式为y =2x 2+1,值域为{5,19,1}的“孪生函数”共有( )A .4个B .6个C .8个D .9个[答案] D[解析] 由2x 2+1=1得x =0; 由2x 2+1=5得x =±2, 由2x 2+1=19得x =±3,要使函数的值域为{5,19,1},则上述三类x 的值都要至少有一个,因此x =0必须有,x =±2可以有一个,也可以有2个,共有三种情形,对于它的每一种情形,都对应x =±3的三种情形,即定义域可以是{0,2,3},{0,2,-3},{0,2,3,-3},{0,-2,3},{0,-2,-3},{0,-2,3,-3},{0,2,-2,3},{0,2,-2,-3},{0,2,-2,3,-3}共9种,故选D.(理)已知f (x )=(x -a )(x -b )-2(a <b ),并且α、β是方程f (x )=0的两个根(α<β),则实数a 、b 、α、β的大小关系可能是( )A .α<a <b <βB .a <α<β<bC .a <α<b <βD .α<a <β<b [答案] A[解析] 设g (x )=(x -a )(x -b ),则f (x )=g (x )-2,分别作出这两个函数的图象,如图所示,可得α<a <b <β,故选A.二、填空题14.(2013·惠州调研)已知函数f (x )=⎩⎪⎨⎪⎧x 2+12ax -2,x ≤1a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则正数a 的取值范围是________.[答案] 1<a ≤2[解析] 由题意,得12+12a -2≤a 1-a ,则a ≤2,又f (x )=a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.15.已知函数f (x )的自变量的取值区间为A ,若其值域也为A ,则称区间A 为f (x )的保值区间.函数f (x )=x 2的形如[n ,+∞)(n ∈(0,+∞))的保值区间是________.[答案] [1,+∞)[解析] 因为f (x )=x 2在[n ,+∞)(n ∈(0,+∞))上单调递增,所以f (x )在[n ,+∞)上的值域为[f (n ),+∞),若[n ,+∞)是f (x )的保值区间,则f (n )=n 2=n ,解得n =1.三、解答题16.(文)如图所示:图1是定义在R 上的二次函数f (x )的部分图象,图2是函数g (x )=log a (x +b )的部分图象.(1)分别求出函数f (x )和g (x )的解析式;(2)如果函数y =g [f (x )]在区间[1,m )上单调递减,求m 的取值范围.[解析] (1)由图1得,二次函数f (x )的顶点坐标为(1,2),故可设函数f (x )=a (x -1)2+2, 又函数f (x )的图象过点(0,0),故a =-2, 整理得f (x )=-2x 2+4x .由图2得,函数g (x )=log a (x +b )的图象过点(0,0)和(1,1),故有⎩⎪⎨⎪⎧ log a b =0,log a (1+b )=1,∴⎩⎪⎨⎪⎧a =2,b =1,∴g (x )=log 2(x +1)(x >-1).(2)由(1)得y =g [f (x )]=log 2(-2x 2+4x +1)是由y =log 2t 和t =-2x 2+4x +1复合而成的函数,而y =log 2t 在定义域上单调递增,要使函数y =g [f (x )]在区间[1,m )上单调递减,必须t =-2x 2+4x +1在区间[1,m )上单调递减,且有t >0恒成立.由t =0得x =2±62,又t 的图象的对称轴为x =1.所以满足条件的m 的取值范围为1<m ≤2+62.(理)(2012·成都诊断)已知二次函数f (x )=x 2+2bx +c (b 、c ∈R ). (1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b 、c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2)、(0,1)内,求实数b 的取值范围.[解析] (1)由题意可知,x 1、x 2是方程f (x )=0的两个根.由韦达定理得,⎩⎪⎨⎪⎧x 1+x 2=-2b ,x 1x 2=c .即⎩⎪⎨⎪⎧-2b =0,c =-1. ∴b =0,c =-1.(2)由题知,f (1)=1+2b +c =0,∴c =-1-2b . 记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1, 则⎩⎪⎨⎪⎧g (-3)=5-7b >0,g (-2)=1-5b <0,g (0)=-1-b <0,g (1)=b +1>0,⇒15<b <57, 即b 的取值范围为(15,57).考纲要求理解二次函数的概念及图象特征,掌握二次函数的最值及性质.补充说明1.熟练掌握二次函数的三种形式的解析式及其适用条件,准确把握三个二次之间的关系,明确二次函数在闭区间上最值的讨论方法,熟悉二次函数图象的对称轴、顶点、配方方法,在解决问题过程中自觉运用数形结合思想、分类讨论思想是突破二次函数问题的关键.备选习题1.(2013·太原模拟)已知函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则函数f(x)的大致图象为()[答案] B[解析]由f(x)为奇函数,排除A;由x=0时,f(0)的值唯一排除C;由x≥0时,f(x)=3x+m单调递增排除D,故选B.2.已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有()A.10个B.9个C.8个D.1个[答案] A[解析]由y=f(x)与y=|lg x|图象(如图)可知,选A.3.(2012·浙江宁波模拟)函数f(x)的定义域为(-∞,1)∪(1,+∞),且f(x+1)为奇函数,当x>1时,f(x)=2x2-12x+16,则直线y=2与函数f(x)图象的所有交点的横坐标之和是() A.1B.2C.4D.5[答案] D[解析]该函数图象与直线y=2有三个交点(x1,2),(x2,2),(x3,2),x1=-1,x2+x3=6(其中(x2,2),(x3,2)关于直线x=3对称),则横坐标之和为5.4.已知命题p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,命题q :函数y =(2a -1)x 为减函数,若“p 且q ”为真命题,则实数a 的取值范围是( )A .(-∞,23] B .(0,12) C .(12,23] D .(12,1) [答案] C[解析] 命题p 等价于3a 2≤1,即a ≤23.命题q :由函数y =(2a -1)x 为减函数得:0<2a -1<1,即12<a <1.因为“p 且q ”为真命题,所以p 和q 均为真命题,所以12<a ≤23,因此选C. 5.已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间.[分析] (1)求二次函数f (x )在闭区间上的最值,应考虑对称轴与闭区间的位置关系.其最值必在顶点和区间端点获得.(2)若f (x )在区间A 上单调,则对称轴必在相应的开区间外.(3)利用复合函数单调性同增异减判断.[解析] (1)a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )min =f (2)=-1,f (x )max =f (-4)=35.(2)f (x )=x 2+2ax +3=(x +a )2+3-a 2,要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,∴a ≥4或a ≤-6.(3)a =1时,f (x )=x 2+2x +3=(x +1)2+2,f (|x |)=(|x |+1)2+2.令t =|x |(-4≤x ≤6),则0≤t ≤6,∵t =|x |在[-4,0]上单调递减,在[0,6]上单调递增,y =(t +1)2+2在[0,6]上单调递增,∴f (|x |)在[-4,0]上单调递减,在[0,6]上单调递增.。

2015届高考数学一轮总复习10-8离散型随机变量及其概率分布课后强化作业(新人教A版)

2015届高考数学一轮总复习10-8离散型随机变量及其概率分布课后强化作业(新人教A版)

【走向高考】2015届高考数学一轮总复习 10-8离散型随机变量及其概率分布课后强化作业 新人教A 版基础巩固强化一、选择题1.某机械零件加工由2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品的概率彼此无关,那么产品的合格率是( )A .ab -a -b +1B .1-a -bC .1-abD .1-2ab [答案] A[解析] 由于第一道工序与第二道工序出废品的概率彼此无关,故产品的合格率为p =(1-a )(1-b )=ab -a -b +1.2.(2013·揭阳二模)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( )A.12B.14 C.16 D.18 [答案] A[解析] A 与B 相互独立,∴P (B |A )=P (B )=12.3.已知随机变量ξ满足条件ξ~B (n ,p ),且E (ξ)=12,D (ξ)=125,则n 与p 的值分别为( )A .16与45B .20与25C .15与45D .12与35[答案] C[解析] ∵ξ~B (n ,p ),∴E (ξ)=np =12,D (ξ)=np (1-p )=125,∴n =15,p =45.4.(2013·济南模拟)位于直角坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向为向左或向右,并且向左移动的概率为13,向右移动的概率为23,则质点P移动五次后位于点(1,0)的概率是( )A.4243B.8243 C.40243 D.80243 [答案] D[解析] 依题意得,质点P 移动五次后位于点(1,0),则这五次移动中必有两次向左移动,另三次向右移动,因此所求的概率等于C 25·(13)2·(23)3=80243,选D. 5.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为67,则口袋中白球的个数为( ) A .3 B .4 C .5 D .2 [答案] A[解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 27-x C 27=(7-x )(6-x )42,P (ξ=1)=C 1x ·C 17-xC 27=x (7-x )21, P (ξ=2)=C 2xC 27=x (x -1)42,∴0×(7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=67,∴x =3.6.设两个相互独立事件A 、B 都不发生的概率为19,则A 与B 都发生的概率的取值范围是( )A .[0,89]B .[19,59]C .[23,89]D .[0,49][答案] D[解析] 设事件A 、B 发生的概率分别为P (A )=x ,P (B )=y ,则P (A -B -)=P (A -)·P (B -)=(1-x )·(1-y )=19⇒1+xy =19+x +y ≥19+2xy .当且仅当x =y 时取“=”,∴xy ≤23或xy ≥43(舍),∴0≤xy ≤49.∴P (AB )=P (A )·P (B )=xy ∈[0,49].二、填空题7.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数是3的倍数”为事件A ,“两颗骰子的点数和大于8”为事件B ,则P (B |A )=________.[答案]512[解析] 因为“红骰子向上的点数是3的倍数”的事件为A ,“两颗骰子的点数和大于8”的事件为B ,用枚举法可知A 包含的基本事件为12个,A 、B 同时发生的基本事件为5个,即(3,6),(6,3),(6,4),(6,5),(6,6).所以P (B |A )=512. 8.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.[答案] ⎣⎡⎦⎤-13,13 [解析] 由条件知,⎩⎪⎨⎪⎧P (ξ=x 3)+P (ξ=x 1)=2P (ξ=x 2),P (ξ=x 1)+P (ξ=x 2)+P (ξ=x 3)=1. ∴P (ξ=x 2)=13,∵P (ξ=x i )≥0,∴公差d 取值满足-13≤d ≤13.9.(2013·临沂模拟)随机变量X 的分布列如下:其中a ,b ,c [答案] 23[解析] 由条件知,⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,∴a +c =23,∴P (|X |=1)=P (X =1)+P (X =-1)=a +c =23.三、解答题10.(2012·广东理,17)某班50位学生期中考试数学成绩的频率分布直方图如下图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.[分析] (1)利用频率和为1,可求X 值;(2)先确定各部分人数,再确定ξ取值,利用组合知识,用古典概型求ξ的分布列,再求数学期望.[解析] (1)图中x 所在组为[80,90)即第五组,∵由频率分布直方图的性质知,10×(0.054+x +0.01+3×0.006)=1, ∴x =0.018.(2)成绩不低于80分的学生所占的频率为, f =10×(0.018+0.006)=0.24.所以成绩不低于80分的学生有:50f =50×0.24=12人; 成绩不低于90分的学生人数为:50×10×0.006=3人, 所以ξ的取值为0,1,2. P (ξ=0)=C 29C 212=611,P (ξ=1)=C 19×C 13C 212=922,P (ξ=2)=C 23C 212=122.所以ξ的分布列为:所以ξ的数学期望E (ξ)=0×611+1×922+2×122=12.能力拓展提升11.(2013·江西理,18)小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.[解析] (1)从8个点中任取两点为向量终点的不同取法共有C 28=28种. X =0时,两向量夹角为直角,共有8种情形, 所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形. 所以X 的分布列为:E (X )=(-2)×114+(-1)×514+0×27+1×27=-314.12.(2013·山东烟台一模)从参加某次高三数学摸底考试的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.(1)补全这个频率分布直方图,并估计本次考试的平均分;(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X 表示抽取结束后的总得分,求X 的分布列和数学期望.[解析] (1)设分数在[70,80)内的频率为x ,根据频率分布直方图,则有(0.01+0.015×2+0.025+0.005)×10+x =1,可得x =0.3,所以频率分布直方图如图所示.平均分为:x -=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.(2)学生成绩在[40,70)的有(0.01+0.015×2)×10×60=24人,在[70,100]的有(0.03+0.025+0.005)×10×60=36人,并且X 的所有可能取值是0,1,2.则P (X =0)=C 224C 260=46295;P (X =1)=C 124C 136C 260=144295;P (X =2)=C 236C 260=105295.所以X 的分布列为∴E (X )=0×46295+1×144295+2×105295=354295.13.(2013·北京理,16)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) [解析] 设A i 表示事件“此人于3月i 日到达该市”(i =1,2,…,13), 根据题意,P (A i )=113,且A i ∩A j =∅(i ≠j ).(1)设B 为事件“此人到达当日空气重度污染”,则B =A 5∪A 8, 所以P (B )=P (A 5∪A 8)=P (A 5)+P (A 8)=213.(2)由题意可知,X 的所有可能取值为0,1,2,且 P (X =1)=P (A 3∪A 6∪A 7∪A 11) =P (A 3)+P (A 6)+P (A 7)+P (A 11)=413,P (X =2)=P (A 1∪A 2∪A 12∪A 13) =P (A 1)+P (A 2)+P (A 12)+P (A 13)=413, P (X =0)=1-P (X =1)-P (X =2)=513.所以X 的分布列为:故X 的期望E (X )=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.14.(2013·北京海淀期末)某公司准备将100万元资金投入代理销售业务,现有A ,B 两个项目可供选择:(1)投资A 项目一年后获得的利润X 1(万元)的概率分布列如下表所示:且X 1的数学期望E (X 1)(2)投资B 项目一年后获得的利润X 2(万元)与B 项目产品价格的调整有关,B 项目产品价格根据销售情况在4月和8月决定是否需要调整,两次调整相互独立且在4月和8月进行价格调整的概率分别为p (0<p <1)和1-p .经专家测算评估:B 项目产品价格一年内调整次数X (次)与X 2的关系如下表所示:(1)求a ,b 的值; (2)求X 2的分布列;(3)若E (X 1)<E (X 2),则选择投资B 项目,求此时p 的取值范围.[解析] (1)由题意得⎩⎪⎨⎪⎧a +0.4+b =1,11a +12×0.4+17b =12,解得a =0.5,b =0.1.(2)X 2的可能取值为4.12,11.76,20.40. P (X 2=4.12)=(1-p )[1-(1-p )]=p (1-p ), P (X 2=11.76)=p [1-(1-p )]+(1-p )(1-p ) =p 2+(1-p )2, P (X 2=20.40)=p (1-p ). 所以X 2的分布列为(3)由(2)可得E (X 2)=4.12p (1-p )+11.76[p 2+(1-p )2]+20.40p (1-p )=-p 2+p +11.76. 因为E (X 1)<E (X 2),所以12<-p 2+p +11.76, 所以0.4<p <0.6.当选择投资B 项目时,p 的取值范围是(0.4,0.6). 考纲要求1.理解取有限个值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.2.理解超几何分布及其导出过程,并能进行简单的应用. 3.了解条件概率和两个事件相互独立的概念.4.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. 补充说明1.解决概率问题的步骤第一步,确定事件的性质:古典概型、互斥事件、相互独立事件、独立重复试验,把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生等等. 第三步,运用公式求概率 古典概型P (A )=m n;互斥事件P (A ∪B )=P (A )+P (B ); 条件概率P (B |A )=P (AB )P (A ); 独立事件P (AB )=P (A )P (B );n 次独立重复试验:P (X =k )=C k n p k (1-p )n -k. 2.n 次独立重复试验中,事件A 恰好发生k 次的概率P (X =k )=C k n P k (1-P )n -k ,k =0,1,2,…,n ,恰好为二项式[(1-P )+P ]n 展开式中的第k +1项.备选习题1.(2013·山西模拟)某人抛掷一枚硬币,出现正反面的概率都是12,构造数列{a n },使得a n =⎩⎪⎨⎪⎧1 (第n 次抛掷时出现正面)-1 (第n 次抛掷时出现反面),记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.14D.12[答案] C[解析] “S 4=2”的含义是a 1,a 2,a 3,a 4中有3个等于1,一个等于-1,即4次抛掷硬币中有3次出现正面,∴所求概率P =C 34·(12)3·12=14. 2.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以的比分获胜的概率为( )A.827B.6481C.49D.89[答案] A[解析] 设甲胜为事件A ,则P (A )=23,P (A )=13,∵甲以的比分获胜,∴甲前三局比赛中胜2局,第四局胜,故所求概率为P =C 23·(23)2·13·23=827.3.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( )A.35B.34C.12D.310[答案] C[解析] 解法1:由于取后不放回,故在第一次取到白球的条件下,口袋中还有2白2黑4个球,从中任取一球,则取到白球的概率为P =24=12.解法2:设A =“第一次取到白球”,B =“第二次取到白球”,则AB 表示“两次都取到白球”.由条件知:P (A )=35,P (AB )=C 23C 25=310,∴P (B |A )=P (AB )P (A )=31035=12.4.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(1)求检验次数为4的概率;(2)设检验次数为ξ,求ξ的分布列和数学期望.[解析] (1)记“在4次检验中,前3次检验中有1次得到次品,第4次检验得到次品”为事件A ,则检验次数为4的概率P (A )=C 12C 25C 37·1C 14=17.(2)ξ的可能值为2,3,4,5,6,其中P (ξ=2)=C 22C 27=121,P (ξ=3)=C 12C 15C 27·1C 15=221,P (ξ=4)=P (A )=17,P (ξ=5)=C 12C 35C 47·1C 13+C 55C 57=521,P (ξ=6)=C 12C 45C 57=1021.ξ的分布列为ξ的期望E(ξ)=2×121+3×221+4×321+5×521+6×1021=5.[点评]要特别注意P(ξ=5)的情形,一种可能是前四次检验中有一次得到次品第五次为次品;另一种可能是前五次都是正品则余下的两件必都是次品.这是它与其他情形不同的地方.。

2015届高考数学一轮总复习 9-7用向量方法证明平行与垂直

2015届高考数学一轮总复习 9-7用向量方法证明平行与垂直

2015届高考数学一轮总复习 9-7用向量方法证明平行与垂直基础巩固强化一、选择题1.已知正方体ABCD -A 1B 1C 1D 1中,E 为侧面BCC 1B 1的中心.若AE →=zAA 1→+xAB →+yAD →,则x+y +z 的值为( )A .1 B.32 C .2 D.34[答案] C[解析] ∵AE →=AB →+BE →=AB →+12AA 1→+12AD →.∴x +y +z =1+12+12=2.2.(2012·银川质检)若直线l 1、l 2的方向向量分别为a =(2,4,-4),b =(-6,9,6),则( ) A .l 1∥l 2 B .l 1⊥l 2C .l 1与l 2相交但不垂直D .以上均不正确 [答案] B[解析] ∵a ·b =2×(-6)+4×9+(-4)×6=0, ∴a ⊥b ,∴l 1⊥l 2.3.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E 、F 分别是BC 、AD 的中点,则AE →·AF →的值为( )A .a 2 B.12a 2C.14a 2D.34a 2 [答案] C[解析] AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14(a 2cos60°+a 2cos60°)=14a 2.故选C.4.已知二面角α-l -β的大小为60°,点B 、C 在棱l 上,A ∈α,D ∈β,AB ⊥l ,CD ⊥l ,AB =2,BC =1,CD =3,则AD 的长为( )A.14B.13 C .2 2 D .2 5 [答案] C[解析] 由条件知|AB →|=2,|BC →|=1,|CD →|=3,AB →⊥BC →,BC →⊥CD →,〈AB →,CD →〉=120°,AD →=AB→+BC →+CD →,∴|AD →|2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2BC →·CD →+2AB →·CD →=4+1+9+2×2×3×cos120°=8, ∴|AD →|=2 2.5.平面α经过三点A (-1,0,1)、B (1,1,2),C (2,-1,0),则下列向量中与平面α的法向量不垂直的是( )A.⎝⎛⎭⎫12,-1,-1B .(6,-2,-2)C .(4,2,2)D .(-1,1,4) [答案] D[解析] 设平面α的法向量为n ,则n ⊥AB →,n ⊥AC →,n ⊥BC →,所有与AB →(或AC →、BC →)平行的向量或可用AB →与AC →线性表示的向量都与n 垂直,故选D.6.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°[答案] C[解析] 由条件知,CA →·AB →=0,AB →·BD →=0, CD →=CA →+AB →+ BD →.∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos 〈CA →,BD →〉 =116+96cos 〈CA →,BD →〉=(217)2, ∴cos 〈CA →,BD →〉=-12,∴〈CA →,BD →〉=120°,所以二面角的大小为60°. 二、填空题 7.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.[答案] 1[解析] 以D 1为原点,直线D 1A 1、D 1C 1、D 1D 为x 轴、y 轴、z 轴建立空间直角坐标系,则A (1,0,1),B (1,1,1),B 1(1,1,0),设DF =t ,CE =k ,则D 1F =1-t ,∴F (0,0,1-t ),E (k,1,1),要使B 1E ⊥平面ABF ,易知AB ⊥B 1E ,故只要B 1E ⊥AF 即可,∵AF →=(-1,0,-t ),B 1E →=(k -1,0,1),∴AF →·B 1E →=1-k -t =0,∴k +t =1,即CE +DF =1.8.如图,在平行四边形ABCD 中,AB →·BD →=0,2AB →2+BD →2=4,若将其沿BD 折成直二面角A -BD -C ,则三棱锥A -BCD 的外接球的体积为________.[答案] 43π[解析] 因为AB ⊥BD ,二面角A -BD -C 是直二面角,所以AB ⊥平面BCD ,∴AB ⊥BC ,AD ⊥DC .故△ABC ,△ADC 均为直角三角形.取AC 的中点M ,则MA =MC =MD =MB ,故点M 即为三棱锥A -BCD 的外接球的球心.由2AB →2+BD →2=4⇒AB →2+BD →2+CD →2=AC →2=4,∴AC =2,∴R =1.故所求球的体积为V =43π.9.(2012·厦门质检)已知a =(2,-1,2),b =(2,2,1),则以a 、b 为邻边的平行四边形的面积为________.[答案] 65[解析] |a |=22+(-1)2+22=3, |b |=22+22+12=3,a ·b =2×2+(-1)×2+2×1=4,∴cos 〈a ,b 〉=a ·b |a ||b |=49,sin 〈a ,b 〉=659,S 平行四边形=|a ||b |·sin〈a ,b 〉=65.三、解答题 10.如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1.(1)求证:平面P AC ⊥平面PCD ;(2)在棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,请确定E 点的位置;若不存在,请说明理由.[解析] (1)证明:∵P A ⊥平面ABCD ,∴PB 与平面ABCD 所成的角为∠PBA =45°.∴AB =1, 由∠ABC =∠BAD =90°,易得CD =AC =2,∴AC ⊥CD . 又∵P A ⊥CD ,P A ∩AC =A ,∴CD ⊥平面P AC ,又CD ⊂平面PCD , ∴平面P AC ⊥平面PCD .(2)分别以AB 、AD 、AP 为x 轴、y 轴、z 轴建立空间直角坐标系.∴P (0,0,1),C (1,1,0),D (0,2,0),设E (0,y ,z ),则PE →=(0,y ,z -1),PD →=(0,2,-1).∵PE →∥PD →,∴y ·(-1)-2(z -1)=0① ∵AD →=(0,2,0)是平面P AB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面P AB .∴CE →⊥AD →.∴(-1,y -1,z )·(0,2,0)=0,∴y =1. 将y =1代入①,得z =12.∴E 是PD 的中点,∴存在E 点使CE ∥平面P AB ,此时E 为PD 的中点.能力拓展提升11.(2013·杭州模拟)直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解析](1)证明:设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |且a ·b =b ·c =c ·a =0, ∴CE →=b +12c ,A ′D →=-c +12b -12a∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D . (2)AC ′→=-a +c ,CE →=b +12c ,∴|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·(b +12c )=12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010.即异面直线CE 与AC ′所成角的余弦值为1010. 12.如图,已知AB⊥平面ACD ,DE ∥AB ,△ACD 是正三角形,AD =DE =2AB ,且F 是CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE . [证明] 证法一:(1)取CE 的中点P ,连接FP 、BP , ∵F 为CD 的中点, ∴FP ∥DE ,且FP =12DE .又AB ∥DE ,且AB =12DE ,∴AB ∥FP ,且AB =FP ,∴四边形ABPF 为平行四边形,∴AF ∥BP . 又∵AF ⊄平面BCE ,BP ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为正三角形,∴AF ⊥CD .∵AB ⊥平面ACD ,DE ∥AB ,∴DE ⊥平面ACD , 又AF ⊂平面ACD ,∴DE ⊥AF .又AF ⊥CD ,CD ∩DE =D ,∴AF ⊥平面CDE . 又BP ∥AF ,∴BP ⊥平面CDE .又∵BP ⊂平面BCE ,∴平面BCE ⊥平面CDE .证法二:设AD =DE =2AB =2a ,建立如图所示的坐标系A -xyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).∵F 为CD 的中点,∴F (32a ,32a,0).(1)AF →=(32a ,32a,0),BE →=(a ,3a ,a ),BC →=(2a,0,-a ),∴AF →=12(BE →+BC →),∵AF ⊄平面BCE ,∴AF ∥平面BCE .(2)∵AF →=(32a ,32a,0),CD →=(-a ,3a,0),ED →=(0,0,-2a ),∴AF →·CD →=0,AF →·ED →=0,∴AF →⊥CD →,AF →⊥ED →,∴AF ⊥CD ,AF ⊥ED . 又CD ∩DE =D ,∴AF ⊥平面CDE . 又AF ∥平面BCE ,∴平面BCE ⊥平面CDE . 13.(2013·泰安适应性训练)如图,平面P AC ⊥平面ABC ,△ABC 是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为P A ,PB ,AC 的中点,AC =16,P A =PC =10.(1)设G 是OC 的中点,证明:FG ∥平面BOE ;(2)证明在△ABO 内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离. [解析] (1)证明:如图,连接OP ,以点O 为坐标原点,分别以OB 、OC 、OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系O -xyz ,由条件知,OA =OC =8,PO =6,OB =8,则O (0,0,0),A (0,-8,0),B (8,0,0),C (0,8,0),P (0,0,6),E (0,-4,3),F (4,0,3),G (0,4,0).因为OB →=(8,0,0),OE →=(0,-4,3), 所以平面BOE 的法向量n =(0,3,4), 由FG →=(-4,4,-3),得n ·FG →=0. 又直线FG 不在平面BOE 内, 所以FG ∥平面BOE .(2)设点M 的坐标为(x 0,y 0,0), 则FM →=(x 0-4,y 0,-3).要使FM ⊥平面BOE ,只需FM →∥n , 因此x 0=4,y 0=-94,即点M 的坐标是(4,-94,0).在平面直角坐标系xOy 中,△AOB 的内部区域可表示为不等式组⎩⎪⎨⎪⎧x >0,y <0,x -y <8.经检验,点M 的坐标满足上述不等式组,所以在△AOB 内存在一点M ,使FM ⊥平面BOE . 由点M 的坐标得点M 到OA ,OB 的距离分别为4,94.14.(2013·上海浦东新区质检)四棱锥P -ABCD 的底面是平行四边形,平面P AB ⊥平面ABCD ,P A =PB =AB =12AD ,∠BAD =60°,E 、F 分别为AD 、PC 的中点.(1)求证:EF ∥平面P AB ; (2)求证:EF ⊥平面PBD ; (3)求二面角D -P A -B 的余弦值.[解析] (1)证明:△ABD 中,AD =2AB ,∠BAD =60°, 由余弦定理得,BD 2=AB 2+AD 2-2AB ×AD ×cos60°=AD 2-AB 2, ∴BD ⊥AB ,∵平面P AB ⊥平面ABCD ,BD ⊥AB ,∴DB ⊥平面P AB ,以B 为原点,直线BA 、BD 分别为x 轴、y 轴建立空间直角坐标系如图,令AB =2,则A (2,0,0),D (0,23,0),P (1,0,3),C (-2,23,0),∴EF →=12(AP →+DC →)=12(-3,0,3)=32(-3,0,1),又平面P AB 的法向量n 2=(0,1,0), ∴EF →·n 2=0,∵EF ⊄平面P AB ,∴EF ∥平面P AB .(2)证明:BD →=(0,23,0),BP →=(1,0,3),∵EF →·BD →=0,EF →·BP →=0,∴EF ⊥BD ,EF ⊥BP ,∴EF ⊥平面PBD .(3)解:设平面P AD 的法向量为n 1=(x 1,y 1,z 1),AP →=(-1,0,3),AD →=(-2,23,0), 则⎩⎪⎨⎪⎧n 1·AP →=-x +3z =0,n 1·AD →=-2x +23y =0,令x =3,所以n 1=(3,1,1), 平面P AB 的法向量n 2=(0,1,0), ∴cos 〈n 1,n 2〉=15, ∴二面角D -P A -B的余弦值为55.考纲要求理解直线的方向向量与平面向量的法向量.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).补充说明1.用向量解决立体几何问题基本思考方向(1)求两点间距离或某一线段长度,用向量的模解决;(2)解决线线平行、面面平行、线面垂直、共线问题,一般考虑共线向量定理; (3)解决线线垂直、面面垂直、线面平行,可考虑转化为向量的数量积为零. (4)解决线面平行、面面平行可以考虑平面向量基本定理.2.证明线面平行和垂直问题,可以用综合几何方法,也可以用向量几何方法.用向量法的关键在于选取基向量或建立坐标系,再用共线向量定理或共面向量定理及两向量平行与垂直的条件,通过向量运算解决.备选习题1.在正三棱柱ABC -A 1B 1C 1中,H 、F 分别为AB 、CC 1的中点,各棱长都是4. (1)求证CH ∥平面F A 1B . (2)求证平面ABB 1A 1⊥平面F A 1B .(3)设E 为BB 1上一点,试确定E 的位置,使HE ⊥BC 1.[解析] 在正三棱柱中,∵H 为AB 中点,∴CH ⊥AB ,过H 作HM ⊥AB 交A 1B 1于M ,分别以直线AB 、HC 、HM 为x 轴、y 轴、z 轴建立空间直角坐标系,则B (2,0,0),C (0,23,0),F (0,23,2),A (-2,0,0),A 1(-2,0,4),C 1(0,23,4).(1)证明:∵HC →=(0,23,0),F A 1→=(-2,-23,2),BF →=(-2,23,2),∴HC →=12(BF →-F A 1→), ∵BF →与F A 1→不共线,∴HC →∥平面F A 1B ,∵HC ⊄平面F A 1B ,∴HC ∥平面F A 1B .(2)证明:平面ABB 1A 1的一个法向量为n 1=HC →=(0,23,0),设平面F A 1B 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BF →=0,n ·F A 1→=0,∴⎩⎨⎧ -2x +23y +2z =0,-2x -23y +2z =0,∴⎩⎪⎨⎪⎧z =x ,y =0. 令x =1得n =(1,0,1),∵n ·n 1=0,∴n ⊥n 1,∴平面ABB 1A 1⊥平面F A 1B.(3)∵E 在BB 1上,∴设E (2,0,t ),(t >0),则HE →=(2,0,t ),BC 1→=(-2,23,4),∵HE ⊥BC 1,∴HE →·BC 1→=-4+4t =0,∴t =1,∴E 是BB 1上靠近B 点的四等分点(或BE =14BB 1). 2.如图,已知矩形ABCD ,P A ⊥平面ABCD ,M 、N 、R 分别是AB 、PC 、CD 的中点.求证:(1)直线AR ∥平面PMC ;(2)直线MN ⊥直线AB .[证明] 证法1:(1)连接CM ,∵ABCD 为矩形,R 、M 分别为AB 、CD 的中点,∴MA 綊CR ,∴AMCR 为平行四边形,∴CM ∥AR ,又∵AR ⊄平面PMC ,∴AR ∥平面PMC .(2)连接MR 、NR ,在矩形ABCD 中,AB ⊥AD ,P A ⊥平面AC ,∴P A ⊥AB ,AB ⊥平面P AD ,∵MR ∥AD ,NR ∥PD ,∴平面PDA ∥平面NRM ,∴AB ⊥平面NRM ,则AB ⊥MN .证法2:(1)以A 为原点,AB 、AD 、AP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设AB =a ,AD =b ,AP =c ,则B (a,0,0),D (0,b,0),P (0,0,c ),C (a ,b,0),∵M 、N 、P 分别为AB 、PC 、CD 的中点,∴M (a 2,0,0),N (a 2,b 2,c 2),R (a 2,b,0),∴AR →=(a 2,b,0),PM →=(a 2,0,-c ),MC →=(a 2,b,0),设AR →=λPM →+μMC →, ⎩⎪⎨⎪⎧ a 2λ+a 2μ=a 2,bμ=b ,-cλ=0.∴⎩⎪⎨⎪⎧ λ=0,μ=1.∴AR →=MC →,∴AR ∥MC , ∵AR ⊄平面PMC ,∴AR ∥平面PMC . (2)MN →=(0,b 2,c 2),AB →=(a,0,0), ∵MN →·AB →=0,∴MN →⊥AB →,∴MN ⊥AB .3.(2013·辽宁六校联考)在三棱锥P-ABC中,△P AC和△PBC是边长为2的等边三角形,AB=2,O是AB的中点.(1)在棱P A上求一点M,使得OM∥平面PBC;(2)求证:平面P AB⊥平面ABC.[解析]解法一:(1)当M为棱P A的中点时,OM∥平面PBC.证明如下:∵M,O分别为P A,AB的中点,∴OM∥PB.又PB⊂平面PBC,OM⊄平面PBC,∴OM∥平面PBC.(2)连接OC,OP.∵AC=CB=2,O为AB的中点,AB=2,∴OC⊥AB,OC=1.同理,PO⊥AB,PO=1.又PC=2,∴PC2=OC2+PO2=2,∴∠POC=90°,∴PO⊥OC.∵AB∩OC=O,∴PO⊥平面ABC.∵PO⊂平面P AB,∴平面P AB⊥平面ABC.解法二:设P A →=a ,PB →=b ,PC →=c ,则由条件知|a |=|b |=|c |=2,a ·c =b ·c =1, 在△P AB 中,P A =PB =2,AB =2,∴P A ⊥PB ,∴a ·b =0.(1)设PM →=λa ,则OM →=PM →-PO →=λa -12(a +b )=(λ-12)a -12b , ∵OM ∥平面PBC ,∴存在实数s ,k ,使OM →=s b +k c ,∴s b +k c =(λ-12)a -12b , 由平面向量基本定理知,λ=12,s =-12,k =0, ∴M 为P A 的中点.(2)PO →=12(a +b ), ∵PO →·AC →=12(a +b )·(c -a ) =12(a ·c +b ·c -|a |2-a ·b )=0, PO →·AB →=12(a +b )·(b -a )=12(|b |2-|a |2)=0, ∴PO →⊥AC →,PO →⊥AB →, ∴PO →是平面ABC 的法向量,又PO ⊂平面P AB ,∴平面P AB ⊥平面ABC .。

2015届高考数学一轮总复习 2-1函数及其表示

2015届高考数学一轮总复习 2-1函数及其表示

2015届高考数学一轮总复习 2-1函数及其表示基础巩固强化一、选择题1.(文)若函数f (x )的定义域是[0,4],则函数g (x )=f (2x )x 的定义域是( )A .[0,2]B .(0,2)C .(0,2]D .[0,2)[答案] C[解析] ∵⎩⎪⎨⎪⎧0≤2x ≤4,x ≠0.∴0<x ≤2,故选C.(理)(2013·湖北荆门期末)函数f (x )=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( )A .(-∞,-4]∪(2,+∞)B .(-4,0)∪(0,1)C .[-4,0)∪(0,1]D .[-4,0)∪(0,1) [答案] D[解析] 要使函数f (x )有意义,必须且只需⎩⎨⎧x≠0,x 2-3x +2≥0,x 2-3x +2+-x 2-3x +4>0,解得-4≤x <0或0<x <1.故选D.2.(文)(2012·江西文,3)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1.则f (f (3))=( )A.15 B .3 C.23 D.139[答案] D[解析] 本题考查分段函数求值问题, 由条件知f (3)=23,f (f (3))=f (23)=(23)2+1=139.(理)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,f (x -3),x >0,则f (2014)等于( )A .-1B .1C .-3D .3[答案] C[解析] f (2014)=f (2011)=f (2008)=……=f (1)=f (-2)=2×(-2)+1=-3.3.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12 B.45 C .2 D .9[答案] C[解析] ∵f (0)=20+1=2,f (f (0))=4a , ∴22+2a =4a ,∴a =2.4.(2013·银川模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3) [答案] A[解析] 由题意知f (1)=3,故原不等式可化为⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3,或⎩⎪⎨⎪⎧x <0,x +6>3,解之得-3<x <1或x >3, ∴原不等式的解集为(-3,1)∪(3,+∞),故选A. 5.(文)函数f (x )=22x -2的值域是( )A .(-∞,-1)B .(-1,0)∪(0,+∞)C .(-1,+∞)D .(-∞,-1)∪(0,+∞)[答案] D [解析]1f (x )=2x -1-1>-1,结合反比例函数的图象可知f (x )∈(-∞,-1)∪(0,+∞). (理)若函数y =f (x )的值域是[12,3],则函数F (x )=f (x )+1f (x )的值域是( )A .[12,3]B .[2,103]C .[52,103]D .[3,103][答案] B[解析] 令t =f (x ),则12≤t ≤3,由函数g (t )=t +1t 在区间[12,1]上是减函数,在[1,3]上是增函数,且g (12)=52,g (1)=2,g (3)=103,可得值域为[2,103],选B.6.a 、b 为实数,集合M ={ba ,1},N ={a,0},f 是M 到N 的映射,f (x )=x ,则a +b 的值为( )A .-1B .0C .1D .±1 [答案] C[解析] ∵f (x )=x ,∴f (1)=1=a ,若f (b a )=1,则有ba =1,与集合元素的互异性矛盾,∴f (ba )=0,∴b =0,∴a +b =1.二、填空题 7.(文)函数y =16-x -x 2的定义域是________.[答案] (-3,2)[解析] 由6-x -x 2>0,得x 2+x -6<0, 即{x |-3<x <2}.(理)(2013·福州模拟)函数f (x )=(x +1)2x +1-1-x 的定义域为________.[答案] (-∞,-1)∪(-1,1][解析] ∵要使函数f (x )=(x +1)2x +1-1-x 有意义,∴⎩⎪⎨⎪⎧ 1-x ≥0,x +1≠0,∴⎩⎪⎨⎪⎧x ≤1,x ≠-1,∴函数f (x )的定义域为{x |x ≤1,且x ≠-1}.[失误与防范] 本题若将函数f (x )的解析式化简为f (x )=(x +1)-1-x 后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x 的取值范围.防范错误的有效方法是每一步变形时观察一下是否为等价变换,否则应附加限制条件保持等价. 8.(文)如果函数f (x )=1-x 21+x 2,那么f (1)+f (2)+…f (2012)+f (12)+f (13)+…+f (12012)的值为________.[答案] 0[解析] 由于f (x )+f (1x )=1-x21+x 2+1-(1x )21+(1x)2=1-x 21+x 2+x 2-1x 2+1=0,f (1)=0,故该式值为0.(理)规定记号“⊕”表示一种运算,且a ⊕b =ab +a +b +1,其中a 、b 是正实数,已知1⊕k =4,则函数f (x )=k ⊕x 的值域是________.[答案] (2,+∞)[解析] 1⊕k =k +k +2=4,解之得k =1,∴f (x )=x +x +2,由于“⊕”的运算对象是正实数,故x >0,∴f (x )>2.9.(2012·辽宁辽南协作体期中)已知f (x -2)=⎩⎪⎨⎪⎧1+x 2, x >2,2-x , x ≤2,则f (1)=________.[答案] 10[解析] f (1)=f (3-2)=1+32=10. 三、解答题10.(2012·北京海淀期中)某工厂生产某种产品,每日的成本C (单位:元)与日产量x (单位:t)满足函数关系式C =10 000+20x ,每日的销售额R (单位:元)与日产量x 的函数关系式为R =⎩⎪⎨⎪⎧-130x 3+ax 2+290x ,0<x <120,20 400,x ≥120.已知每日的利润y =R -C ,且当x =30时,y =-100. (1)求a 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. [解析] (1)∵当x =30时,y =-100,∴-100=-130×303+a ×302+270×30-10 000,∴a =3.(2)当0<x <120时,y =-130x 3+3x 2+270x -10 000.令y ′=-110x 2+6x +270=0,可得:x 1=90,x 2=-30(舍去),所以当x ∈(0,90)时,原函数是增函数,当x ∈(90,120)时,原函数是减函数. ∴当x =90时,y 取得极大值14 300. 当x ≥120时,y =10 400-20x ≤8 000.所以当日产量为90t 时,每日的利润可以达到最大值14 300元.能力拓展提升一、选择题11.(文)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0.若f (1)+f (a )=2,则a 的值为( )A .1B .2C .4D .4或1 [答案] C[解析] ∵f (1)=0,∴f (a )=2,∴log 2a =2(a >0)或2a =2(a ≤0),解得a =4或a =1(舍),故选C.(理)函数f (x )=⎩⎪⎨⎪⎧sin (πx 2) (-1<x <0),e x -1 (x ≥0).若f (1)+f (a )=2,则a 的所有可能值为( )A .1B .1,-22C .-22D .1,22[答案] B [解析] f (1)=1,当a ≥0时,f (a )=e a -1,∴1+e a -1=2,∴a =1,当-1<a <0时,f (a )=sin(πa 2), ∴1+sin(πa 2)=2, ∴πa 2=π2+2k π(k ∈Z ),∵-1<a <0,∴a =-22,故选B. 12.已知f (x )=⎩⎪⎨⎪⎧(3-a )x -4a (x <1),log a x (x ≥1).是(-∞,+∞)上的增函数,那么a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .[35,3)D .(1,3)[答案] D[解析] 解法1:由f (x )在R 上是增函数,∴f (x )在[1,+∞)上单增,由对数函数单调性知a >1,① 又由f (x )在(-∞,1)上单增,∴3-a >0,∴a <3,②又由于f (x )在R 上是增函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最大值3-5a 要小于等于f (x )在[1,+∞)上的最小值0,才能保证单调区间的要求,∴3-5a ≤0,即a ≥35,③由①②③可得1<a <3.解法2:令a 分别等于35、0、1,即可排除A 、B 、C ,故选D.[点评] f (x )在R 上是增函数,a 的取值不仅要保证f (x )在(-∞,1)上和[1,+∞)上都是增函数,还要保证x 1<1,x 2≥1时,有f (x 1)<f (x 2).二、填空题[答案] -1或1[解析]14.(2013·四川省内江市第一次模拟)设函数f (x )=|x |x +bx +c ,则下列命题中正确命题的序号有________.①函数f (x )在R 上有最小值;②当b >0时,函数在R 上是单调增函数; ③函数f (x )的图象关于点(0,c )对称;④当b <0时,方程f (x )=0有三个不同实数根的充要重要条件是b 2>4|c |; ⑤方程f (x )=0可能有四个不同实数根. [答案] ②③④[解析] f (x )=⎩⎪⎨⎪⎧x 2+bx +c (x ≥0)-x 2+bx +c (x <0)取b =0知,①⑤错; 容易判断②,③正确;b <0时,方程f (x )=0有三个不同实数根,等价于c -b 24<0且c +b 24>0,∴b 2>4c 且b 2>-4c ,∴b 2>4|c |,故填②、③、④.三、解答题15.(文)函数f (x )=x 2+x -14.(1)若定义域为[0,3],求f (x )的值域;(2)若f (x )的值域为[-12,116],且定义域为[a ,b ],求b -a 的最大值.[解析] ∵f (x )=(x +12)2-12,∴对称轴为x =-12.(1)∵3≥x ≥0>-12,∴f (x )的值域为[f (0),f (3)], 即[-14,474];(2)∵x =-12时,f (x )=-12是f (x )的最小值,∴x =-12∈[a ,b ],令x 2+x -14=116,得x 1=-54,x 2=14,根据f (x )的图象知当a =-54,b =14时,b -a 取最大值14-(-54)=32.(理)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1. (1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域. [解析] (1)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=0,∴c =0,即f (x )=ax 2+bx . 又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得⎩⎨⎧a =12,b =12.∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12(x 2-32)2-18, 当x 2=32时,y 取最小值-18.∴函数y =f (x 2-2)的值域为[-18,+∞).16.(文)某地区预计2014年的前x 个月内对某种商品的需求总量f (x )(万件)与月份x 的近似关系式是f (x )=175x (x +1)(19-x ),x ∈N *,1≤x ≤12,求:(1)2014年的第x 月的需求量g (x )(万件)与月份x 的函数关系式. (2)求第几个月需求量g (x )最大.[解析](1)第x月的需求量为g(x)=f(x)-f(x-1)=175x(x+1)(19-x)-175(x-1)x(20-x)=125x(13-x).(2)g(x)=125(-x 2+13x)=-125[42.25-(x-6.5)2],因此当x=6或7时g(x)最大.第6、7月需求量最大.(理)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系如图所示:该商品在30天内日销售量Q(件)与时间t(天)之间的关系如表所示:(1)根据提供的图象,写出该商品每件的销售价格P与时间t的函数关系式;(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t,Q)的对应点,并确定日销售量Q 与时间t的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *),-t +100 (25≤t ≤30,t ∈N *). (2)图略,Q =40-t (t ∈N *). (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *),t 2-140t +4000 (25≤t ≤30,t ∈N *). 即y =⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *),(t -70)2-900 (25≤t ≤30,t ∈N *). 若0<t <25(t ∈N *), 则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125. 由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大.考纲要求1.了解构成函数的要素;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. 3.了解简单的分段函数,并能简单地应用. 4.会求一些简单函数的定义域.5.了解求函数值域的方法,会求一些简单函数的值域. 6.会求一些简单函数的解析式. 补充说明1.掌握几类题型:求定义域,分段函数求值、解不等式,已知分段函数值求自变量的值及函数的图象变换.2.函数的定义域是一个集合,应该用集合或区间表示,有几段时,要用“∪”连接,函数解析式是几个代数式的和时,定义域是使各部分有意义的x 的集合的交集.3.了解求函数解析式的常见类型及方法 (1)配凑法当已知函数表达式比较简单时,可直接应用此法.即根据具体解析式凑出复合变量的形式,从而求出解析式.(2)换元法已知f [g (x )]是关于x 的函数,即f [g (x )]=F (x ),求f (x )的解析式,通常令g (x )=t ,由此能解出x =φ(t ).将x =φ(t )代入f [g (x )]=F (x )中,求得f (t )的解析式,再用x 替换t ,便得f (x )的解析式.注意,换元后要确定新元t 的取值范围.[例1] 已知f (2x +1)=lg x ,求f (x )的解析式.[解析] 令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)待定系数法若已知函数的结构形式,则可用此法.[例2] (2012·德州模拟)设二次函数f (x )满足f (x -2)=f (-x -2)且图象在y 轴上的截距为1,在x 轴上截得的线段长为22,求f (x )的解析式.[解析] ∵二次函数f (x )满足f (x -2)=f (-x -2), ∴f (x )的图象关于直线x =-2对称, 故可设f (x )=a (x +2)2+c , ∵f (x )的图象在y 轴上的截距为1, ∴f (0)=1,∴4a +c =1,①又f (x )的图象在x 轴上截得线段长为22,∴-2+2与-2-2是方程a (x +2)2+c =0的两根, ∴2a +c =0②由①、②解得,a =12,c =-1,∴f (x )=12(x +2)2-1,即f (x )=12x 2+2x +1.(4)消元法已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其它未知量,如f (-x )、f ⎝⎛⎭⎫1x 等,必须根据已知等式再构造其它等式组成方程组,通过解方程组求出f (x ).[例3] 已知函数f (x )满足条件:f (x )+2f (-x )=x ,则f (x )=________.[分析] 由于难以判断f (x )是何种类型的函数,故不可能先设出f (x )的表达式,但如果把条件中的x 换成-x ,即得f (-x )+2f (x )=-x ,把f (x )、f (-x )作为一个整体量,实际上得到了这两个量的方程组.[解析] 用-x 代换条件方程中的x 得f (-x )+2f (x )=-x ,把它与原条件式联立.⎩⎪⎨⎪⎧f (x )+2f (-x )=x , ①f (-x )+2f (x )=-x . ② ②×2-①得,f (x )=-x . [答案] -x[点评] 充分抓住已知条件式的结构特征,运用x 取值的任意性获得②式是解决此题的关键.若已知2f (x )-f (-1x )=2x -1,你会求f (x )吗?(5)赋值法此类解法的依据是:如果一个函数关系式中的变量对某个范围内的一切值都成立,则对该范围内的某些特殊值必成立,结合题设条件的结构特点,给变量适当取值,从而使问题简单化、具体化,进而获解.[例4] 已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). [解析] 令a =0,则f (-b )=f (0)-b (-b +1)=1+b (b -1)=b 2-b +1 再令-b =x 得:f (x )=x 2+x +1.[点评] 赋值法的关键环节是“赋值”,赋值的方法灵活多样,既要照顾到已知条件的运用和待求结论的产生,又要考虑所给关系式的结构特点.如本题另解:令b =a ,则1=f (0)=f (a )-a (2a -a +1) =f (a )-a (a +1)=f (a )-a 2-a , ∴f (a )=a 2+a +1,∴f (x )=x 2+x +1. (6)转化法已知f (x )在某个区间上的表达式及f (x )具有某种性质(如奇偶性、对称性等),求f (x )在另一个区间上的表达式,常用转化法求解.[例5] 已知函数f (x )对任意实数x 均有f (x )=kf (x +2),其中常数k 为负数,且f (x )在区间[0,2]上有表达式f (x )=x (x -2).(1)求f (-1),f (2.5)的值;(2)写出f (x )在[-3,3]上的表达式,并讨论函数f (x )在[-3,3]上的单调性.[解析] (1)由f (-1)=kf (1),f (2.5)=1k f (12)知需求f (12)和f (1),f (1)=-1,f (12)=12×(12-2)=-34,∴f (-1)=-k ,f (2.5)=-34k(2)∵0≤x ≤2时,f (x )=x (x -2), 设-2≤x <0,则0≤x +2<2, ∴f (x )=kf (x +2)=k (x +2)x ; 设-3≤x <-2,则-1≤x +2<0, ∴f (x )=kf (x +2)=k 2(x +4)(x +2); 设2<x ≤3,则0<x -2≤1, ∵f (x )=kf (x +2),∴f (x -2)=kf (x ), ∴f (x )=1k f (x -2)=1k(x -2)(x -4).综上可知,f (x )=⎩⎪⎨⎪⎧k 2(x +2)(x +4) -3≤x <-2,kx (x +2) -2≤x <0,x (x -2) 0≤x ≤2,1k (x -2)(x -4) 2<x ≤3.∵k <0,∴由二次函数的知识知:f (x )在[-3,-2)上是增函数,在[-2,-1)上是增函数,在[-1,0)上是减函数,在[0,1)上是减函数,在[1,2]上是增函数,在(2,3]上是增函数,又各区间都可以是闭区间,∴f (x )在[-3,-1]上是增函数,在[-1,1]上是减函数,在[1,3]上是增函数.[点评] 可用导数讨论单调性. 备选习题1.值域为{2,5,10},对应关系为y =x 2+1的函数个数为( ) A .1 B .8 C .27 D .39[答案] C[解析] 本题的关键是寻找满足条件的定义域有多少种情况.当y =2,即x 2=1时,x =1,-1或±1有三种情况,同理当y =5,10时,x 的值各有三种情况,由分步乘法计数原理知,共有3×3×3=27种可能.故选C.2.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如下图所示,则函数g (x )=a x +b 的图象是()[答案] A[解析] ∵f (x )=(x -a )(x -b )的两个零点为a 和b 且a >b ,由图象知0<a <1,b <-1,∴g (x )=a x+b 单调减,且g (0)=1+b <0,故选A.3.函数f (x )=|log 12 x |的定义域是[a ,b ],值域为[0,2],对于区间[m ,n ],称n -m 为区间[m ,n ]的长度,则[a ,b ]长度的最小值为( )A.154 B .3 C .4 D.34[答案] D[解析] 令f (x )=0得,x =1,令f (x )=2得,log 12 x =±2,∴x =14或4,∴当a =14,b =1时满足值域为[0,2],故选D.4.设函数f (x )=⎩⎪⎨⎪⎧21-x -1 (x <1),lg x (x ≥1).若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由条件知,⎩⎪⎨⎪⎧ x 0<1,21-x 0-1>1,或⎩⎪⎨⎪⎧x 0≥1,lg x 0>1.∴x 0<0或x 0>10.5.(2012·东北三校二模)函数y =x ln(-x )与y =x ln x 的图象关于( ) A .直线y =x 对称 B .x 轴对称 C .y 轴对称 D .原点对称[答案] D[解析] 若点(m ,n )在函数y =x ln x 的图象上,则n =m ln m ,所以-n =-m ln[-(-m )],可知点(-m ,-n )在函数y =x ln(-x )的图象上,反之亦然,而点(m ,n )与点(-m ,-n )关于原点对称,所以函数y =x ln x 与y =x ln(-x )的图象关于原点对称,故选D.6.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,过点P 作垂直于平面BB 1D 1D 的直线,与正方体表面相交于M 、N .设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] B[解析] 解法1:取AA 1、CC 1的中点E 、F ,EF 交BD 1于O ,则EF ∥AC ,∵AC ⊥BD ,AC ⊥BB 1, ∴AC ⊥平面BDD 1B 1,∴EF ⊥平面BDD 1B 1, ∴平面BED 1F ⊥平面BDD 1B 1,过点P 作MN ∥EF ,则MN ⊥平面BDD 1B 1, MN 交BE 、BF 于M 、N ,则BP BO =MN EF ,∴MN =EF BO·BP ,不难看出当P 在BO 上时,y 是x 的一次增函数, 当P 在OD 1上时,y 是x 的一次减函数,故选B.解法2:连接AC ,A 1C 1,则MN ∥AC ∥A 1C 1,当且仅当P 为BD 1的中点O 时,MN =AC 取得最大值,故答案A ,C 错,又当P 为BO 中点时,MN =12AC ,故答案D 错,所以选B.7.已知函数f (x )的值域为[0,4],(x ∈[-2,2]),函数g (x )=ax -1,x ∈[-2,2],∀x 1∈[-2,2],总∃x 0∈[-2,2],使得g (x 0)=f (x 1)成立,则实数a 的取值范围是______.[答案] ⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫52,+∞ [解析] 只需要函数f (x )的值域是函数g (x )值域的子集即可. (1)当a >0时,g (x )=ax -1单调递增,∵x ∈[-2,2],∴-2a -1≤g (x )≤2a -1,要使条件成立,只需⎩⎪⎨⎪⎧-2a -1≤02a -1≥4,∴a ≥52.(2)当a <0时,g (x )=ax -1单调递减.∵x ∈[-2,2],∴2a -1≤g (x )≤-2a -1,要使条件成立,只需⎩⎪⎨⎪⎧2a -1≤0-2a -1≥4,∴⎩⎨⎧a ≤12a ≤-52,∴a ≤-52.综上,a 的取值范围是⎝⎛⎦⎤-∞,-52∪⎣⎡⎭⎫52,+∞. 8.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x 元(7≤x ≤10)时,一年的产量为(11-x )2万件,若该企业所生产的产品全部售出,则称该企业正常生产,但为了保护环境,用于治理污染的费用与产量成正比,比例系数为常数a (1≤a ≤3).(1)求该企业正常生产一年的利润L (x )与出厂价x 的函数关系式;(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润. [解析] (1)依题意,L (x )=(x -3)(11-x )2-a (11-x )2=(x -3-a )(11-x )2,x ∈[7,10].(2)因为L ′(x )=(11-x )2-2(x -3-a )·(11-x )=(11-x )(11-x -2x +6+2a )=(11-x )(17+2a -3x ).由L ′(x )=0,得x =11∉[7,10]或x =17+2a3.因为1≤a ≤3, 所以193≤17+2a 3≤233.①当193≤17+2a 3≤7,即1≤a ≤2时,L ′(x )在[7,10]上恒为负,则L (x )在[7,10]上为减函数,所以L (x )max =L (7)=16(4-a ).②当7<17+2a 3≤233,即2<a ≤3时,L (x )max =L (17+2a 3)=427(8-a )3. 当1≤a ≤2时,在每件产品出厂价为7元时,年利润最大,为16(4-a )万元.当2<a ≤3时,在每件产品出厂价为17+2a 3元时,年利润最大,为427(8-a )3万元.。

2015届高考数学(理)一轮专题复习特训:三角函数(人教A版)

2015届高考数学(理)一轮专题复习特训:三角函数(人教A版)

2015届高考数学(理)一轮专题复习特训:三角函数一、选择题 错误!未指定书签。

1.(山东省德州市平原一中2014届高三9月月考数学(理)试题)点P(tan α,cos α)在第三象限,则角α的终边在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B2错误!未指定书签。

.(山东师大附中2014届高三第一次模拟考试数学试题)已知tan 2x =,则2sin 1x += ( )A .0B .95C .43D .53【答案】B 3.(山东省德州市平原一中2014届高三9月月考数学(理)试题)如果sinx+cosx=15,且0<x<π,那么tanx 的值是 ( )A .-43B .-43或-34C .-34D .43或-34【答案】 ( ) A .4错误!未指定书签。

.(山东省德州市平原一中2014届高三9月月考数学(理)试题)sin(1920)-的值为 ( )A .B .12-CD .12【答案】A错误!未指定书签。

5.(山东省烟台市莱州一中2014届高三10月阶段测试数学试题(理))点P 从(1,0)出发,沿单位圆221x y +=逆时针方向运动23π弧长到达Q 点,则Q 的坐标为 ( )A .12⎛- ⎝⎭B .12⎛⎫- ⎪ ⎪⎝⎭C .1,2⎛- ⎝⎭D .12⎛⎫ ⎪ ⎪⎝⎭【答案】 ( ) A .6错误!未指定书签。

.(山东省烟台市莱州一中2014届高三10月阶段测试数学试题(理))已知3sin cos ,cos sin 842ππααααα=<<-且,则的值是( )A .12B .12-C .14-D .12±【答案】 B .7错误!未指定书签。

.(山东省桓台第二中学2014届高三第二次阶段性测试数学试题)已知sin cos αα-=,α∈(0,π),则tan α= ( ) A .-1 B.2-C.2D .1 【答案】A错误!未指定书签。

高考数学一轮复习测试卷2-人教版高三全册数学试题

高考数学一轮复习测试卷2-人教版高三全册数学试题

2015届高三一轮复习测试卷二文科数学考查X 围:集合、逻辑、函数、导数、复数、圆锥曲线、概率第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.) 1.复数z=ii++-23 的共轭复数是( ) A .2+i B .2-i C .-1+i D .-1-i 2.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 3.下列命题中,真命题是 ( )A .2,x R x x ∀∈≥ B .命题“若21,1x x ==则”的逆命题C .2,x R x x ∃∈≥ D .命题“若,sin sin x y x y ≠≠则”的逆否命题4.函数21()4ln(1)f x x x =+-+的定义域为( )(A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-5.已知()1-x f =x x 62+,则()x f 的表达式是( )A .542-+x xB .782++x xC .322-+x xD .1062-+x x 6.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( ).A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)7.设a =log 0.50.8,b =log 1.10.8,c =1.10.8,则a ,b ,c 的大小关系为( ). A .a <b <c B .b <a <c C .b <c <a D .a <c <b8.函数()()14214xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪+<⎩则f (log 23)等于().A .1 B.18 C.116D.1249.函数13y x x =-的图象大致为().10. 与椭圆1422=+y x 共焦点且过点P )1,2(的双曲线方程是:( ) A .1422=-y x B .1222=-y x C .13322=-y x D .1222=-y x 11.“a =-1”是“函数2()21f x ax x =+-只有一个零点”的( ) A .充分必要条件 B .充分不必要条件C .必要不充分条件D .非充分必要条件12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有( )A.10个B.9个C.8个D.1个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.将答案填在答题卷相应位置上.13.已知2x =5y=10,则1x +1y=________.14.设函数()3cos 1f x x x =+,若()11f a =,则()f a -=15.设抛物线的顶点在原点,其焦点F 在x 轴上,抛物线上的点(2,)P k 与点F 的距离为3,则抛物线方程为。

2015届高考数学一轮总复习 3-1导数的概念及运算

2015届高考数学一轮总复习 3-1导数的概念及运算

2015届高考数学一轮总复习 3-1导数的概念及运算基础巩固强化一、选择题1.(文)(2012·烟台调研)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .-2C .-12D.12[答案] B[解析] ∵f ′(x )=(x -1)-(x +1)(x -1)2=-2(x -1)2, ∴f ′(3)=-12,由条件知,-12×(-a )=-1,∴a =-2.(理)(2012·山西省联合模拟)曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( )A .2B .-2 C.12 D .-12[答案] A[解析] ∵y ′=1+ln x ,∴y ′|x =e =1+lne =2, ∴-1a×2=-1,∴a =2,选A.2.(2013·河北教学质量监测)若函数f (x )=2x +ln x ,且f ′(a )=0,则2a ln2a =( ) A .1 B .-1 C .-ln2 D .ln2[答案] B[解析] f ′(x )=2x ln2+1x ,由f ′(a )=2a ln2+1a =0,得2a ln2=-1a ,则a ·2a ·ln2=-1,即2a ln2a=-1.3.(2013·乌鲁木齐一中月考)已知点P 在曲线y =4e x +1上,α为曲线在P 处的切线的倾斜角,则α的取值范围为( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)[答案] D[解析] y ′=-4e x (e x +1)2=-4e xe 2x +2e x +1=-4e x+1e x +2≥-1,故-1≤tan α<0,又α∈[0,π),所以3π4≤α<π.4.(文)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1[答案] B[解析] 设切点(a ,-12a +ln a ),y ′=-12+1x,∴-12+1a =12,a =1,故切点(1,-12)在直线y =12x +b 上,有-12=12+b ,∴b =-1.(理)已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( )A .A >B >C B .A >C >B C .B >A >CD .C >B >A [答案] A[解析] 记M (a ,f (a )),N (a +1,f (a +1)),则由于B =f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率;C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.所以,A >B >C .5.(文)若函数f (x )=x 2+bx +c 的图象的顶点在第二象限,则函数f ′(x )的图象是( )[答案] C[解析] 由题意可知⎝⎛⎭⎫-b 2,4c -b 24在第二象限,∴⎩⎨⎧-b2<0,4c -b 24>0.∴b >0,又f ′(x )=2x +b ,故选C.(理)(2013·山东东营一模)设曲线y =sin x 上任一点(x ,y )处切线的斜率为g (x ),则函数y =x 2g (x )的部分图象可以为( )[答案] C[解析] 根据题意得g (x )=cos x ,∴y =x 2g (x )=x 2cos x 为偶函数. 又x =0时,y =0,故选C.6.(2013·杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或-38C .-74或-2564D .-74或7[答案] A[解析] 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32, 当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.本题常犯的错误是,不对点(1,0)的位置作出判断,直接由y =x 3,得出y ′|x =1=3,再由y =ax 2+154x -9,得y ′|x =1=2a +154=3求出a =-38,错选B. 二、填空题7.(文)(2013·广东理,10)若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =________. [答案] -1[解析] y ′=k +1x,y ′|x =1=k +1=0,∴k =-1.(理)(2013·湖北黄冈一模)已知函数f (x )=x (x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________. [答案] -120[解析] f ′(x )=(x -1)(x -2)(x -3)(x -4)(x -5)+x [(x -1)(x -2)(x -3)(x -4x )(x -5)]′, ∴f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120.8.(文)(2013·广州一模)已知函数f (x )=f ′(π2)sin x +cos x ,则f (π4)=________.[答案] 0[解析] 由条件知,f ′(x )=f ′(π2)cos x -sin x .∴f ′(π2)=-1,∴f (x )=-sin x +cos x ,∴f (π4)=0.(理)(2013·江西理,13)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. [答案] 2[解析] ∵f (e x )=x +e x , ∴f (x )=x +ln x ,f ′(x )=1+1x ,∴f ′(1)=1+1=2.9.(2013·贵阳一模)曲线y =ln x 在与x 轴交点处的切线方程为________. [答案] x -y -1=0[解析] 由y =ln x 得,y ′=1x ,∴y ′|x =1=1,∴曲线y =ln x 在与x 轴交点(1,0)处的切线方程为y =x -1,即x -y -1=0.三、解答题10.(文)已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程. [解析] y =13x 3+43,则y ′=x 2.(1)由题意可知点P (2,4)为切点, y ′|x =2=22=4,所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0. (2)由题意可知点P (2,4)不一定为切点,故设切点为(x 0,13x 30+43), y ′|x =x 0=x 20,1342所以4-(13x 30+43)=x 20(2-x 0), x 30-3x 20+4=0⇔(x 30+1)-3(x 20-1)=0⇔(x 0+1)(x 20-4x 0+4)=0.解得x 0=-1或x 0=2, 即切点为(-1,1)或(2,4).所以曲线过点P (2,4)的切线方程为x -y +2=0或4x -y -4=0.(理)(2014·高州月考)设函数y =ax 3+bx 2+cx +d 的图象与y 轴交点为P ,且曲线在P 点处的切线方程为12x -y -4=0. 若函数在x =2处取得极值0,试确定函数的解析式.[解析] ∵y =ax 3+bx 2+cx +d 的图象与y 轴的交点为P (0,d ),又曲线在点P 处的切线方程为y =12x -4,P 点坐标适合方程,从而d =-4; 又切线斜率k =12,故在x =0处的导数y ′|x =0=12而y ′|x =0=c ,从而c =12; 又函数在x =2处取得极值0,所以⎩⎪⎨⎪⎧ y ′|x =2=0,f (2)=0.即⎩⎪⎨⎪⎧12a +4b +12=0,8a +4b +20=0. 解得a =2,b =-9,所以所求函数解析式为y =2x 3-9x 2+12x -4.能力拓展提升一、选择题11.(文)(2013·宁波期末)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212[答案] D[解析] ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8),∴f ′(x )=(x -a 1)(x -a 2)…(x -a 8)+x ·[(x -a 1)(x -a 2)…(x -a 8)]′, ∴f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.(理)(2013·武汉中学月考)已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P处的切线与x 轴交点的横坐标为x n ,则log 2013x 1+log 2013x 2+…+log 2013x 2012的值为( )A .1B .-1C .2013D .-2013[答案] B[解析] f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =nn +1, ∴x 1·x 2·…·x 2012=12×23×34×…×20112012×20122013=12013,则log 2013x 1+log 2013x 2+…+log 2013x 2012=log 2013(x 1·x 2·…·x 2012)=log 201312013=-1.12.(2013·山东理,11)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M ,若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316B.38C.233D.433[答案] D[解析] 由已知抛物线x 2=2py (p >0)的焦点为A (0,p 2),双曲线x 23-y 2=1的右焦点为B (2,0),渐近线方程为y =±33x .设M (x 0,y 0),则y 0=x 202p ,由k MA =k AB 得x 202p -p 2x 0=p 2-2,(1)由y =x 22p 知,y ′=x p ,则y ′|x =x 0=x 0p =33,代入(1)式中消去x 0并解之得p =433.13.(2013·潍南二模)若曲线f (x )=13ax 3+12bx 2+cx +d (a ,b ,c >0)上存在斜率为0的切线,则f ′(1)b -1的取值范围是( )A .(1,+∞)B .[1,+∞)C .(2,+∞)D .[2,+∞)[答案] A[解析] 因为函数f ′(x )=ax 2+bx +c ,函数f (x )图象上不存在斜率为0的切线,也就是f ′(x )=0无解,故Δ=b 2-4ac <0,即ac >b 24,所以a +c b ≥2ac b >2b 24b=1,即f ′(1)b -1=a +cb的取值范围是(1,+∞).14.(文)已知函数f (x )=x p +qx +r ,f (1)=6,f ′(1)=5,f ′(0)=3,a n =1f (n ),n ∈N +,则数列{a n }的前n 项和是( )A.n n +1B.n n +2C.n +12n +4D.n 2n +4[解析] ∵f ′(x )=px p -1+q ,由条件知⎩⎪⎨⎪⎧ 1+q +r =6,p +q =5,q =3.∴⎩⎪⎨⎪⎧p =2,q =3,r =2.∴f (x )=x 2+3x +2.∴a n =1f (n )=1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2∴{a n }的前n 项和为S n =a 1+a 2+…+a n =⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2=12-1n +2=n 2n +4.(理)定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,若函数g (x )=x ,h (x )=ln(x +1),φ(x )=x 3-1的“新驻点”分别为α、β、γ,则α、β、γ的大小关系为( )A .α>β>γB .β>α>γC .γ>α>βD .β>γ>α[答案] C[解析] 由g (x )=g ′(x )得,x =1,∴α=1,由h (x )=h ′(x )得,ln(x +1)=1x +1,故知1<x +1<2,∴0<x <1,即0<β<1,由φ(x )=φ′(x )得,x 3-1=3x 2,∴x 2(x -3)=1, ∴x >3,故γ>3,∴γ>α>β. [点评] 对于ln(x +1)=1x +1,假如0<x +1<1,则ln(x +1)<0,1x +1>1矛盾;假如x +1≥2,则1x +1≤12,即ln(x +1)≤12,∴x +1≤e ,∴x ≤e -1与x ≥-1矛盾.二、填空题15.(文)若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. [答案] (-∞,0)[解析] 由题意,可知f ′(x )=3ax 2+1x ,又因为存在垂直于y 轴的切线,所以3ax 2+1x =0⇒a =-13x 3(x >0)⇒a ∈(-∞,0). (理)设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )为奇函数,则φ=________. [答案] π6[解析] f ′(x )=-3sin(3x +φ), 由条件知cos(3x +φ)-3sin(3x +φ)=2sin ⎝⎛⎭⎫π6-3x -φ=-2sin ⎝⎛⎭⎫3x +φ-π6为奇函数,且0<φ<π,∴φ=π6.16.求下列函数的导数: (1)y =15x 5-43x 3+3x 2+2;(2)y =(3x 3-4x )(2x +1); (3)y =3x e x -2x +e ; (4)y =ln x x 2+1;(5)y =x cos x -sin x ; (6)(理)y =cos 32x +e x ; (7)(理)y =lg 1-x 2.[解析] 可利用导数公式和导数运算法则求导. (1)y ′=⎝⎛⎭⎫15x 5′-⎝⎛⎭⎫43x 3′+(3x 2)′+(2)′ =x 4-4x 2+6x .(2)∵y =(3x 3-4x )(2x +1)=6x 4+3x 3-8x 2-4x , ∴y ′=24x 3+9x 2-16x -4,或y ′=(3x 3-4x )′(2x +1)+(3x 3-4x )(2x +1)′ =(9x 2-4)(2x +1)+(3x 3-4x )·2 =24x 3+9x 2-16x -4.(3)y ′=(3x e x )′-(2x )′+(e)′=(3x )′e x +3x (e x )′-(2x )′=3x ln3·e x +3x e x -2x ln2 =(ln3+1)·(3e)x -2x ln2.(4)y ′=(ln x )′(x 2+1)-ln x ·(x 2+1)′(x 2+1)2=1x ·(x 2+1)-ln x ·2x (x 2+1)2=x 2+1-2x 2·ln x x (x 2+1)2. (5)y ′=(x cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . (6)(理)y ′=3cos 22x ·(cos2x )′+e x =-6sin2x ·cos 22x +e x .(7)(理)y ′=⎝⎛⎭⎫12lg (1-x 2)′=12·lge 1-x 2·(1-x 2)′ =x lge x 2-1.考纲要求1.了解导数概念的实际背景.2.理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1x 的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 补充说明1.注意一个区别——曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点;走出一个误区——直线与曲线相切不一定仅有一个公共点,除切点外还可以有其他公共点.2.准确理解导数及其几何意义思考题 函数f (x )=|x |(1+x )在点x =0处是否有导数?若有,求出来,若没有,说明理由.[解析] f (x )=⎩⎪⎨⎪⎧x +x 2(x ≥0),-x -x 2(x <0).的图象如图所示,显然在点x =0处曲线的切线不存在, 故f (x )在x =0处导数不存在.3.注意f ′(x 0)与(f (x 0))′的区别,f ′(x 0)是f ′(x )在x =x 0时的函数值,而(f (x 0))′=0. 备选习题1.二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,则函数y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 [答案] C[解析] 由题意可设f (x )=ax 2+bx ,f ′(x )=2ax +b ,由于f ′(x )图象是过第一、二、三象限的一条直线,故2a >0,b >0,则f (x )=a (x +b 2a )2-b 24a ,顶点(-b 2a ,-b 24a)在第三象限,故选C.2.已知y =tan x ,x ∈⎝⎛⎭⎫0,π2,当y ′=2时,x 等于( ) A.π3 B.23π C.π4 D.π6[解析] y ′=(tan x )′=⎝⎛⎭⎫sin x cos x ′=cos 2x +sin 2x cos 2x =1cos 2x =2,∴cos 2x =12,∴cos x =±22, ∵x ∈⎝⎛⎭⎫0,π2,∴x =π4. 3.已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l 与直线3x -y +2=0平行,若数列{1f (n )}的前n 项和为S n ,则S 2014的值为( )A.20122013B.20132014C.20142015D.20112012 [答案] C[解析] ∵f (x )=x 2+bx ,∴f ′(x )=2x +b , 由条件知f ′(1)=3,∴b =1.∴f (x )=x 2+x ,∴1f (n )=1n 2+n =1n -1n +1,∴S n =(1-12)+(12-13)+…+(1n -1n +1)=n n +1, ∴S 2014=20142015.4.函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图象大致为( )[答案] A[解析] ∵f (x )=x cos x , ∴f ′(x )=cos x -x sin x ,∴f ′(-x )=f ′(x ),∴f ′(x )为偶函数,排除C ; ∵f ′(0)=1,排除D ;由f ′⎝⎛⎭⎫π2=-π2<0,f ′(2π)=1>0,排除B ,故选A. 5.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2 B .0 C .钝角 D .锐角[答案] C[解析] y ′|==(e x sin x +e x cos x )|==e 4(sin4+cos4)=2e 4sin(4+π)<0,故倾斜角为钝角,选C.6.(2013·大连模拟)若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( )A .1 B. 2 C.22 D. 3[答案] B[解析] 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1. 得x 0=1或x 0=-12(舍). ∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2. 7.(2013·黄山三校联考)已知函数f (x )的导函数为f ′(x ),且满足f (x )=3x 2+2xf ′(2),则f ′(5)=________.[答案] 6[解析] f ′(x )=6x +2f ′(2),将x =2代入得f ′(2)=12+2f ′(2),即f ′(2)=-12, 故f ′(x )=6x -24,所以f ′(5)=6.8.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是________.[答案] 2n +1-2 [解析] ∵y =x n (1-x ),∴y ′=(x n )′(1-x )+(1-x )′·x n =n ·x n -1(1-x )-x n . f ′(2)=-n ·2n -1-2n =(-n -2)·2n -1. 在点x =2处点的纵坐标为y =-2n .∴切线方程为y +2n =(-n -2)·2n -1(x -2). 令x =0得,y =(n +1)·2n ,∴a n =(n +1)·2n ,∴数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为2(2n-1)2-1=2n +1-2. 9.(2013·宁波四中月考)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是________(把你认为正确的序号都填上).①f (x )=sin x +cos x; ②f (x )=ln x -2x ;③f (x )=-x 3+2x -1; ④f (x )=x e x .[答案] ①②③[解析] 对于①,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin(x +π4)<0在区间(0,π2)上恒成立;②中,f ′(x )=1x -2(x >0),f ″(x )=-1x 2<0在区间(0,π2)上恒成立;③中,f ′(x )=-3x 2+2,f ″(x )=-6x 在区间(0,π2)上恒小于0.故①②③为凸函数.④中,f ′(x )=e x +x e x ,f ″(x )=2e x +x e x =e x (x +2)>0在区间(0,π2)上恒成立,故④中函数不是凸函数.。

【高考聚焦】2015届高考数学(理)一轮复习题库(梳理自测+重点突破+能力提升):5.2等差数列及其前n项和]

【高考聚焦】2015届高考数学(理)一轮复习题库(梳理自测+重点突破+能力提升):5.2等差数列及其前n项和]

第2课时等差数列及其前n项和1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.[对应学生用书P83]【梳理自测】一、等差数列的概念1.在等差数列{a n}中,已知a1=1,a2+a3=14,则a4+a5+a6等于( )A.40 B.51C.43 D.452.在等差数列{a n}中,a1+a2=4,a7+a8=28,则数列的通项公式a n为( )A.2n B.2n+1C.2n-1 D.2n+23.设{a n}为等差数列,公差d=-2,S n为其前n项和,若S10=S11,则a1=( ) A.18 B.20C.22 D.244.若等差数列{a n}的前三项依次为a,2a+1,4a+2,则它的第五项为________.答案:1.B 2.C 3.B 4.4◆以上题目主要考查了以下内容:(1)等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义的表达式为a n+1-a n =d . (2)等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项且A =a +b2.(3)通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么通项公式为a n =a 1+(n -1)d ,n ∈N *. (4)前n 项和公式:S n =na 1+n (n -1)d 2=(a 1+a n )n2.二、等差数列的性质1.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( )A .14B .21C .28D .352.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案:1.C 2.60◆以上题目主要考查了以下内容:(1)通项公式的推广:a n =a m +(n -m)d(n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.【指点迷津】1.一个常数a n -a n -1=d(n≥2且n∈N *)恒成立,d 为常数即公差. 2.一个中项任何两个数a 与b 有且只有一个等差中项A =a +b2.3.二个函数a n =dn +(a 1-d)(d≠0)是关于n 的一次函数.S n =d 2n 2+(a 1-d 2)n(d≠0)是关于n 的二次函数.(n∈N *).4.两种设法①定义法:a ,a +d ,a +2d ,…;②对称法:…,a -d ,a ,a +d ,…或…,a -3d ,a -d ,a +d ,a +3d ,…. 5.4种方法——等差数列的判断方法①定义法;②等差中项法;③通项公式法;④前n 项和公式法.[对应学生用书P 83]考向一 等差数列基本量的计算(1)(2014·郑州市高三质检)等差数列{a n }的前7项和等于前2项和,若a 1=1,a k +a 4=0,则k =________.(2)(2014·石家庄市高三质检)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n=100,则n 的值为( )A .8B .9C .10D .11【审题视点】 在等差数列{a n }的a n ,S n ,a 1,d ,n 的五个量中,知其三,求其二. 【典例精讲】 (1)设数列{a n }的公差为d ,依题意得7×1+7×62d =2+d ,解得d =-14,则a k +a 4=2+(k +2)×(-14)=0,由此解得k =6. (2)由S n -S n -3=51得,a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10,选择C .【答案】 (1)6 (2)C【类题通法】 ①此类问题的通法是把条件转化为a 1与d 的方程(组),进而可求其它问题.②结合性质求解,可简化计算.1.(2014·荆州市高三调研)公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,且S 10=60,则S 20=( )A .80B .160C .320D .640解析:选C .设数列{a n }的公差为d ,d ≠0,则a 24=a 3a 7=(a 4-d)(a 4+3d),d =2a 43=23(a 1+3d),∴d =-23a 1,∵S 10=10(a 1+a 10)2=5(2a 1+9d)=10a 1+45(-23a 1)=-20a 1=60,∴a 1=-3,d =2,∴S 20=320.考向二 等差数列的判定或证明(2014·江南十校联考)若数列{a n }满足:a 1=23,a 2=2,3(a n +1-2a n +a n -1)=2.(1)证明:数列{a n +1-a n }是等差数列;(2)求使1a 1+1a 2+1a 3+…+1a n >52成立的最小的正整数n.【审题视点】 由题设条件构造(a n +1-a n )-(a n -a n -1)的值,并累加求和. 【典例精讲】 (1)证明:由3(a n +1-2a n +a n -1)=2可得 a n +1-2a n +a n -1=23,即(a n +1-a n )-(a n -a n -1)=23,∴数列{a n +1-a n }是以a 2-a 1=43为首项,23为公差的等差数列.(2)由(1)知a n +1-a n =43+23(n -1)=23(n +1),于是累加求和得:a n =a 1+23(2+3+…+n)=13n(n +1),∴1a 1+1a 2+…+1a n= 3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =3·⎝ ⎛⎭⎪⎫1-1n +1>52∴n >5 n 的最小值为6.【类题通法】 等差数列的判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.2.已知S n 为等差数列{a n }的前n 项和,b n =S n n (n∈N *).求证:数列{b n }是等差数列.证明:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d ,∴b n =S n n =a 1+12(n -1)d .法一:b n +1-b n =a 1+12nd -a 1-12(n -1)d =d2(常数),∴数列{b n }是等差数列.法二:b n +1=a 1+12nd ,b n +2=a 1+12(n +1)d ,∴b n +2+b n =a 1+12(n +1)d +a 1+12(n -1)d=2a 1+nd =2b n +1. ∴数列{b n }是等差数列.考向三 等差数列的性质及应用(1)(2014·辽宁省五校联考)设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 013(a 4-1)=1,(a 2 010-1)3+2 013(a 2 010-1)=-1,则下列结论中正确的是( )A .S 2 013=2 013,a 2 010<a 4B .S 2 013=2 013,a 2 010>a 4C .S 2 013=2 012,a 2 010≤a 4D .S 2 013=2 012,a 2 010≥a 4(2)(2014·武汉市高三联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21【审题视点】 (1)S 2 013=2 013×(a 1+a 2 013)2=2 013×(a 4+a 2 010)2.(2)求S n 为n 的二次函数,求最值.【典例精讲】 (1)设f (x )=x 3+2 013x ,显然f (x )为奇函数和增函数,由已知得f (a 4-1)=-f (a 2 010-1),所以f (a 4-1)=f (-a 2 010+1),a 4-1=-a 2 010+1,a 4+a 2 010=2,S 2 013=2 013(a 1+a 2 013)2=2 013,显然1>-1,即f (a 4-1)>f (a 2 010-1),又f (x )为增函数,故a 4-1>a 2 010-1,即a 4>a 2 010.(2)a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.【答案】 (1)A (2)C【类题通法】 (1)本题的解题关键是将性质m +n =p +q ⇒a m +a n =a p +a q 与前n 项和公式S n =n (a 1+a n )2结合在一起,采用整体思想,简化解题过程.(2)等差数列的最值的处理方法:①利用S n =an 2+bn 转化为二次函数最值时要注意n 的取值. ②若{a n }是等差数列,求其前n 项和的最值时, (ⅰ)若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ≥0,a n +1<0,前n 项和S n 最大.(ⅱ)若a 1<0,d >0,且满足⎩⎪⎨⎪⎧a n ≤0a n +1>0,前n 项和S n 最小.3.(2014·深圳市高三调研)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:选C .∵⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0a 5>0,∴⎩⎪⎨⎪⎧a 5>0a 6<0,∴S n 的最大值为S 5.[对应学生用书P 85]有关等差数列的规范答题(2013·高考浙江卷)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【审题视点】 (1)用a 1,d 把a 2,a 3表示出来,利用a 1,2a 2+2,5a 3成等比数列列方程即可解出d ,进而根据等差数列的通项公式写出a n .(2)根据(1)及d <0确定数列的通项公式,确定a n 的符号,以去掉绝对值符号,这需要对n 的取值范围进行分类讨论.【思维流程】由等差数列建立关于d 的方程,求d.当n ≤11时,a n ≥0,是原等差数列求和.当n ≥12时,是两个等差数列求和总结S n 公式.【规范解答】 (1)由题意得,a 1·5a 3=(2a 2+2)2,由a 1=10,{a n }为公差为d 的等差数列得,d 2-3d -4=0,2分解得d =-1或d =4.所以a n =-n +11(n∈N *)或a n =4n +6(n ∈N *).4分 (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11, 所以当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n=-12n 2+212n ;8分当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.12分综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧-12n 2+212n , n ≤11,12n 2-212n +110,n ≥12.14分【规范建议】 (1)不能盲目认为|a 1|,|a 2|,…|a n |是等差数列,要分段研究. (2)当n ≤11时,是求S n ,而不是求S 11. (3)讨论n ≤11和n ≥12后,要有总结结论.1.(2013·高考安徽卷)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .2解析:选A .借助等差数列前n 项和公式及通项公式的性质,计算数列的公差,进而得到a 9的值.由等差数列性质及前n 项和公式,得S 8=8(a 1+a 8)2=4(a 3+a 6)=4a 3,所以a 6=0.又a 7=-2,所以公差d =-2,所以a 9=a 7+2d =-6.2.(2013·高考全国新课标卷)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C .可以先求出首项和公差,再利用等差数列的求和公式和通项公式求解. ∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.3.(2013·高考广东卷)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 解析:可以利用通项公式,把a 3+a 8,3a 5+a 7都用a 1,d 表示出来,进行整体代换;也可以利用a n =a m +(n -m)d 把a 3+a 8,3a 5+a 7都用a 3,d 表示出来,进行整体代换.方法一:a 3+a 8=2a 1+9d =10,3a 5+a 7=4a 1+18d =2(2a 1+9d)=2×10=20.方法二:a 3+a 8=2a 3+5d =10,3a 5+a 7=4a 3+10d =2(2a 3+5d)=2×10=20. 答案:204.(2013·高考全国大纲卷)等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.解析:设{a n }的公差为d.由S 3=a 22,得3a 2=a 22,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得,S 22=S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d)2=(a 2-d)(4a 2+2d).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d)2=(3-d)(12+2d),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.。

2015届高考数学大一轮复习 抛物线及其性质精品试题 文(含2014模拟试题)

2015届高考数学大一轮复习 抛物线及其性质精品试题 文(含2014模拟试题)

精品题库试题文数1.(河北省衡水中学2014届高三下学期二调) 已知等边的顶点F是抛物线的焦点,顶点B在抛物线的准线l上且⊥l, 则点A的位置()A. 在开口内B. 在上C. 在开口外D. 与值有关[解析] 1.设交于点C,因为轴,所以,因为,所以,,因为轴,所以点A的坐标为,所以点A在抛物线上.2.(安徽省合肥市2014届高三第二次教学质量检测) 抛物线的焦点坐标为()A. B. C. D.[解析] 2.因为,所以,焦点坐标为.3.(广东省汕头市2014届高三三月高考模拟)已知双曲线的离心率为3,且它有一个焦点与抛物线的焦点相同,那么双曲线的渐近线方程为()[解析] 3.设双曲线的方程为,抛物线的焦点为,由题意知,解得,双曲线方程为,所以双曲线的渐近线方程为..4.(山西省太原市2014届高三模拟考试)设为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则的取值范围是A.(0,2)B.[0,2] C.(2, +∞)D.[2, +∞)[解析] 4.因为以为圆心,为半径的圆和抛物线的准线相交,所以,由抛物线的定义可知,得.5.(江西省重点中学协作体2014届高三第一次联考)抛物线绕轴旋转一周形成一个如图所示的旋转体, 在此旋转体内水平放入一个正方体, 使正方体的一个面恰好与旋转体的开口面平齐, 则此正方体的棱长是()A.1 B.2 C.3 D.[解析] 5.作过正方体的两条相对侧棱的截面图如图,设正方体的棱长,则底面对角线,所以点的横坐标等于,代入抛物线,得,当时,,所以,解得.6.(吉林省实验中学2014届高三年级第一次模拟考试) 已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值( )A. 2B. 3C.D.[解析] 6.因为抛物线的方程为,所以焦点坐标, 准线方程为,因为点到的距离为等于点到的距离,如图所示,当,,三点共线时,折线段之和最小,其小值等于点点到的距离.7.(山东省青岛市2014届高三第一次模拟考试) 抛物线的焦点坐标为A. B. C. D.[解析] 7.因为,所以焦点为.8.(江西省红色六校2014届高三第二次联考) 设集合,则等于()A. B.C. D.[解析] 8.因为,,所以.9.(福建省福州市2014届高三毕业班质检) 如图, 直线y=m与抛物线y2=4x交于点A,与圆(x-1) 2+y2=4的实线部分交于点B, F为抛物线的焦点,则三角形ABF的周长的取值范围是( )A. (2,4)B. (4,6)C. [2,4]D. [4,6][解析] 9.抛物线的准线,焦点,由抛物线的定义知,所以的周长为,由抛物线和圆联立得交点的横坐标为,所以,,的周长范围为.10.(辽宁省大连市高三第一次模拟考试)已知两点均在焦点为的抛物线上,若,线段的中点到直线的距离为1,则的值为()A.1 B.1或3 C.2 D.2或6[解析] 10.由抛物线的定义知,所以,又因为线段的中点到直线的距离为,即,解得或.11.(湖北省武汉市2014届高三2月份调研测试) 抛物线C1:x2=2py(p>0)的焦点与双曲线C2:-y2=1的左焦点的连线交C1于第二象限内的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=[解析] 11.抛物线的焦点为,双曲线的右焦点为(2,0) ,渐近线方程为,由得,故,由、、三点共线得.12.(北京市东城区2013-2014学年度第二学期教学检测) 已知双曲线:的离心率为2. 若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为C. D.A. B.[解析] 12.由题意知,所以渐近线方程为,抛物线的焦点为,所以,得,.13.(吉林省长春市2014届高中毕业班第二次调研测试) 抛物线到焦点的距离为,则实数的值为A.B.C. D.[解析] 13.由抛物线方程及点可知,抛物线,排除,,又到焦点的距离为,且该抛物线准线方程为,所以,解得.14.(福建省政和一中、周宁一中2014届高三第四次联考)已知双曲线的一条渐近线为,且右焦点与抛物线的焦点重合,则常数的值为( )A. B. C. D.[解析] 14.由题意可知,因为右焦点与抛物线的焦点重合,所以15.(河北衡水中学2014届高三上学期第五次调研)已知双曲线C1:(a> 0,b> 0)的焦距是实轴长的2倍. 若抛物线C2:(p> 0) 的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()A.x2=y B.x2=y C.x2=8y D.x2=16y[解析] 15.由题意得,所以双曲线的渐近线为,由抛物线的焦点到距离,得16.(河南省郑州市2014届高中毕业班第一次质量预测) 已知抛物线,过其焦点且斜率为-1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为-2,则该抛物线的准线方程为A.x=l B. C. D.[解析] 16.设直线,与联立得,由题意知17.(吉林市普通高中2013—2014学年度高中毕业班上学期期末复习检测)已知等边的顶点F是抛物线的焦点,顶点B在抛物线的准线l上且⊥l, 则点A的位置A. 在开口内B. 在上C. 在开口外D. 与值有关[解析] 17.设交于点C,因为轴,所以,因为,所以,,因为轴,所以点A的坐标为,所以点A在抛物线上.18.(山东省济宁市2014届高三上学期期末考试)M是抛物线上一点,且在x轴上方,F是抛物线的焦点,若直线FM的倾斜角为,则A. 2B. 3C. 4D. 6[解析] 18.因为直线的方程为,所以与联立得,解得和(舍),所以19.(江苏省南京市、盐城市2014届高三第二次模拟) 在平面直角坐标系xOy中,双曲线-=1(a>0,b>0) 的两条渐近线与抛物线y2=4x的准线相交于A,B两点.若△AOB的面积为2,则双曲线的离心率为▲.[解析] 19. 由题意抛物线的准线为,分别在和中令得点A、B的纵坐标为,故,所以,得20.(重庆市名校联盟2014届高三联合考试)已知抛物线上一点A到焦点的距离等于6,, 则A到原点的距离为____[解析] 20.设点的坐标为,由抛物线的定义可知,代入中得,所以点A的坐标为,所以.21.(江西省红色六校2014届高三第二次联考) 已知抛物线的焦点为,过点,且斜率为的直线交抛物线于A, B两点,其中第一象限内的交点为A,则.[解析] 21.设因为抛物线的焦点为,所以直线的方程为,与联立消去得,因为点A在第一象限,所以,,因此.22.(天津市蓟县邦均中学2014届高三第一次模拟考试) 抛物线的焦点坐标为。

江西省高考数学一轮复习 导数及其应用(含积分)备考试题

江西省高考数学一轮复习 导数及其应用(含积分)备考试题

江西省2015届高三数学一轮复习备考试题导数及其应用(含积分)一、选择题1、(2014年江西高考)若12()2(),f x x f x dx =+⎰则1()f x dx =⎰A.1-B.13-C.13 D.12、(2013年江西高考)若22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰则123S S S 的大小关系为 A.123S S S << B.213S S S << C.231S S S << D.321S S S <<3、(乐安一中2015届高三上学期开学考试)定义在(0,)+∞上的单调递减函数()f x ,若()f x 的导函数存在且满足'()()f x x f x >,则下列不等式成立的是( ) A .3(2)2(3)f f < B .3(4)4(3)f f < C .2(3)3(4)f f < D .(2)2(1)f f <4、(南昌二中2015届高三上学期第一次考)定义在R 上的可导函数)(x f ,当),1(+∞∈x 时,0)1)(()()1(''>--⋅-x x f x f x 恒成立,若)2(f a =, )3(21f b =, )2(121f c -=,则c b a ,,的大小关系是( )A .b a c <<B .c b a <<C .c a b <<D .b c a <<5、(南昌三中2015届高三上学期第一次月考)设()ln f x x x =,若0'()2f x =,则0x =( ) A. 2e B. e C.ln 22D. ln 26、(南昌市八一中学2015届高三8月月考)已知函数f (x )在R 上满足f (1+x )=2f (1﹣x )﹣x 2+3x+1,则曲线y=f (x )在点(1,f (1))处的切线方程是学科网( ) A . x ﹣y ﹣2=0 B . x ﹣y=0 C . 3x+y ﹣2=0 D . 3x ﹣y ﹣2=0 7、(南昌市新建二中2015届高三9月月考)设()f x 是定义在R 上的可导函数,且满足()()f x f x '>,对任意的正数a ,下面不等式恒成立的是( ).A.()(0)af a e f <B.()(0)af a e f > C.(0)()a f f a e <D .(0)()af f a e> 8、(遂川中学2015届高三上学期第一次月考)由直线3x π=-,3x π=,0y =与曲线cos y x =所围成的封闭图形的面积为( )A .12B .1C .32D . 39、(南昌三中2014届高三第七次考试)已知二次函数2()1f x ax bx =++的导函数为'()f x ,且'(0)f >0,()f x 的图象与x 轴恰有一个交点,则'(1)(0)f f 的最小值为 ( ) A .3 B .32 C .2 D .5210、(吉安一中2014届高三下学期第一次模拟)设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A. 4B. 14-C. 2D. 12-二、填空题1、(2014年江西高考)若曲线xy e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________.2、(2013年江西高考)设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)xf =3、(2012年江西高考)计算定积分121(sin )x x dx -+=⎰___________。

2015届高考数学一轮总复习 7-3简单的线性规划问题

2015届高考数学一轮总复习 7-3简单的线性规划问题

则目标函数 z=4x+y 的最大值为________.
如图,满足条件的可行域为三角形区域(图中阴影部分),故 z=4x+y 在 P(2,3)处取得最大值, 最大值为 11. 三、解答题 10.(文)某公司准备进行两种组合投资,稳健型组合投资每份由金融投资 20 万元,房地产投资 30 万元组成;进取型组合投资每份由金融投资 40 万元,房地产投资 30 万元组成.已知每份稳健型 组合投资每年可获利 10 万元,每份进取型组合投资每年可获利 15 万元.若可作投资用的资金中, 金融投资不超过 160 万元,房地产投资不超过 180 万元,那么这两种组合投资各应注入多少份,才 能使一年获利总额最多? [解析] 设稳健型投资 x 份,进取型投资 y 份,利润总额为 z(单位:10 万元,则目标函数为 z 20x+40y≤160, =x+1.5y(单位:10 万元),线性约束条件为:30x+30y≤180, x≥0,y≥0x∈N,y∈N,
2 2
→ → 则OM· ON的最大值为(
)
B.2 2
C. 3
D.2 3
[答案] B [解析]
→ → → 如图, 点 N 在图中阴影部分区域内, 当 O, M, N 共线, 且|ON|=2 时, OM· ON最大, 此时 N( 2, → → 2),OM· ON=(1,1)· ( 2, 2)=2 2,故选 B. x+y-3≤0, 12.(文)(2012· 福建文,10)若直线 y=2x 上存在点(x,y)满足约束条件x-2y-3≤0, x≥m,
x+y=3000, 由 得 x=2000,y=1000,即点 B 的坐标为(2000,1000),故当甲项目投资 0.24x+0.36y=840,
2000 万元,乙项目投资 1000 万元时,GDP 增长得最多. 能力拓展提升 一、选择题 11.(2013· 东北师大附中二模)O 为坐标原点,点 M 的坐标为(1,1),若点 N(x,y)的坐标满足 x +y ≤4, 2x-y>0, y>0, A. 2

2015届高考数学一轮复习 二元一次不等式(组)及简单的线性规划问题跟踪检测 理(含解析)新人教A版

2015届高考数学一轮复习 二元一次不等式(组)及简单的线性规划问题跟踪检测 理(含解析)新人教A版

课时跟踪检测(三十八) 二元一次不等式(组)及简单的线性规划问题第Ⅰ组:全员必做题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.已知实数对(x ,y )满足⎩⎪⎨⎪⎧x ≤2,y ≥1,x -y ≥0,则2x +y 取最小值时的最优解是( )A .6B .3C .(2,2)D .(1,1)3.(2013·湖南五市十校联合检测)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z =2x +3y +1的最大值为( )A .11B .10C .9D .8.54.(2013·全国卷Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3).若z =2x +y 的最小值为1,则a =( )A.14 B.12 C .1D .25.(2014·辽宁六校联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤a x +y ≥8,x ≥6且不等式x +2y ≤14恒成立,则实数a 的取值范围是( )A .[8,10]B .[8,9]C .[6,9]D .[6,10]6.(2014·安徽“江南十校”联考)若不等式组⎩⎪⎨⎪⎧x -y +2≥0ax +y -2≤0表示y ≥0的平面区域的面积为3,则实数a 的值是________.7.(2013·广东高考)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.8.(2014·郑州质检)若x ,y 满足条件⎩⎪⎨⎪⎧3x -5y +6≥0,2x +3y -15≤0,y ≥0当且仅当x =y =3时,z =ax-y 取得最小值,则实数a 的取值范围是________.9.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =4x -3y ,求z 的最大值; (2)设z =yx,求z 的最小值.10.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 第Ⅱ组:重点选做题1.(2013·北京高考)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0 表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫-∞,13 C.⎝⎛⎭⎫-∞,-23 D. ⎝⎛⎭⎫-∞,-53 2.(2014·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.答 案第Ⅰ组:全员必做题1.选B 根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24.2.选D 约束条件表示的可行域如图中阴影三角形,令z =2x +y ,y =-2x +z ,作初始直线l 0:y =-2x ,作与l 0平行的直线l ,则直线经过点(1,1)时,(2x +y )min =3.3.选B 由约束条件可画出可行域,平移参照直线2x +3y +1=0可知,在可行域的顶点(3,1)处,目标函数z =2x +3y +1取得最大值,z max =2×3+3×1+1=10.4.选B 由已知约束条件,作出可行域如图中△ABC 内部及边界部分,由目标函数z =2x +y 的几何意义为直线l :y =-2x +z 在y 轴上的截距,知当直线l 过可行域内的点B (1,-2a )时,目标函数z =2x +y 的最小值为1,则2-2a =1,a =12,故选B.5.选A 不等式组表示的平面区域如图中阴影部分所示,显然a ≥8,否则可行域无意义.由图可知x +2y 在点(6,a -6)处取得最大值2a -6,由2a -6≤14得,a ≤10,故选A.6.解析:作出可行域,如图中阴影部分所示,区域面积S =12×⎝⎛⎭⎫2a +2×2=3,解得a =2.答案:27.解析:解决本题的关键是要读懂数学语言,x 0,y 0∈Z ,说明x 0,y 0是整数,作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.答案:68.解析:画出可行域,如图,直线3x -5y +6=0与2x +3y -15=0交于点M (3,3),由目标函数z =ax -y ,得y =ax -z ,纵截距为-z ,当z 最小时,-z 最大.欲使纵截距-z 最大,则-23<a <35.答案:⎝⎛⎭⎫-23,35 9.解:(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示. 由z =4x -3y ,得y =43x -z3.求z =4x -3y 的最大值,相当于求直线y =43x -z 3在y 轴上的截距-z3的最小值.平移直线y =43x 知,当直线y =43x -z 3过点B 时,-z3最小,z 最大.由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2). 故z max =4×5-3×2=14. (2)∵z =y x =y -0x -0.∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.10.解:(1)依题意每天生产的伞兵个数为100-x -y , 所以利润w =5x +6y +3(100-x -y )=2x +3y +300. (2)约束条件为⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w 有最大值.由⎩⎪⎨⎪⎧ x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最,最大为利润550元. 第Ⅱ组:重点选做题1.选C 问题等价于直线x -2y =2与不等式组所表示的平面区域存在公共点,由于点(-m ,m )不可能在第一和第三象限,而直线x -2y =2经过第一、三、四象限,则点(-m ,m )只能在第四象限,可得m <0,不等式组所表示的平面区域如图中阴影部分所示,要使直线x -2y =2与阴影部分有公共点,则点(-m ,m )在直线x -2y -2=0的下方,由于坐标原点使得x -2y -2<0,故-m -2m -2>0,即m <-23.2.解析:∵x +2y +3x +1=1+2(y +1)x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0,∴可作出可行域,知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0-(-1)3a -(-1)=13a +1=14⇒a =1. 答案:1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识改变命运第3讲圆与圆的方程基础巩固题组 (建议用时:40分钟)一、选择题1. (2014·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ).A .x 2+y 2=2B .x 2+y 2= 2C .x 2+y 2=1D .x 2+y 2=4解析 AB 的中点坐标为(0,0), |AB |=[1-(-1)]2+(-1-1)2=22,∴圆的方程为x 2+y 2=2. 答案 A2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限解析 圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,则a <0,b >0.直线y =-1a x -b a ,k =-1a >0,-ba >0,直线不经过第四象限. 答案 D3.(2014·镇安中学模拟)圆心在y 轴上且过点(3,1)的圆与x 轴相切,则该圆的方程是( ).A .x 2+y 2+10y =0B .x 2+y 2-10y =0C .x 2+y 2+10x =0D .x 2+y 2-10x =0解析 设圆心为(0,b ),半径为r ,则r =|b |,知识改变命运∴圆的方程为x 2+(y -b )2=b 2,∵点(3,1)在圆上, ∴9+(1-b )2=b 2,解得b =5, ∴圆的方程为x 2+y 2-10y =0. 答案 B4.两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a 的取值范围是( ).A.⎝ ⎛⎭⎪⎫-15,1B.⎝ ⎛⎭⎪⎫-∞,-15∪(1,+∞) C.⎣⎢⎡⎭⎪⎫-15,1 D.⎝ ⎛⎦⎥⎤-∞,-15∪[1,+∞) 解析 联立⎩⎪⎨⎪⎧y =x +2a ,y =2x +a ,解得P (a,3a ),∴(a -1)2+(3a -1)2<4,∴-15<a <1,故应选A. 答案 A5.(2014·西交大附中模拟)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ).A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+ (y +1)2=1.知识改变命运答案 A 二、填空题6.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-1(x -1),即x+y -1=0. 答案 x +y -1=07.(2014·南京调研)已知直线l :x -y +4=0与圆C :(x -1)2+(y -1) 2=2,则圆C 上各点到l 的距离的最小值为______.解析 由题意得C 上各点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去半径,即|1-1+4|2-2= 2.答案28.若圆x 2+(y -1)2=1上任意一点(x ,y )都使不等式x +y +m ≥0恒成立,则实数m 的取值范围是________.解析 据题意圆x 2+(y -1)2=1上所有的点都在直线x +y +m =0的右上方,所以有⎩⎪⎨⎪⎧1+m ≥0,|1+m |2≥1.解得m ≥-1+ 2.故m 的取值范围是[-1+2,+∞). 答案 [-1+2,+∞) 三、解答题9.求适合下列条件的圆的方程:(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).知识改变命运解 (1)法一 设圆的标准方程为(x -a )2+(y -b )2=r 2, 则有⎩⎪⎨⎪⎧b =-4a ,(3-a )2+(-2-b )2=r 2,|a +b -1|2=r ,解得a =1,b =-4,r =2 2. ∴圆的方程为(x -1)2+(y +4)2=8.法二 过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).∴半径r =(1-3)2+(-4+2)2=22, ∴所求圆的方程为(x -1)2+(y +4)2=8.(2)法一 设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎨⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.∴所求圆的方程为x 2+y 2-2x -4y -95=0. 法二 由A (1,12),B (7,10),得AB 的中点坐标为(4,11),k AB =-13, 则AB 的垂直平分线方程为3x -y -1=0. 同理得AC 的垂直平分线方程为x +y -3=0. 联立⎩⎨⎧ 3x -y -1=0,x +y -3=0得⎩⎨⎧x =1,y =2,即圆心坐标为(1,2),半径r =(1-1)2+(2-12)2=10. ∴所求圆的方程为(x -1)2+(y -2)2=100.10.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹. 解知识改变命运如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42. 从而⎩⎨⎧x 0=x +3,y 0=y -4.N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上时的情况).能力提升题组 (建议用时:25分钟)一、选择题1.(2014·鹰潭模拟)已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( ).A .8B .-4C .6D .无法确定解析 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝ ⎛⎭⎪⎫-m 2,0,即-m 2+3=0,∴m =6.答案 C2.(2014·西安中学模拟)已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点F 的距离为5,则以M 为圆心且与y 轴相切的圆的方程为( ).知识改变命运A .(x -1)2+(y -4)2=1B .(x -1)2+(y +4)2=1C .(x -1)2+(y -4)2=16D .(x -1)2+(y +4)2=16解析 抛物线的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,准线方程为x =-p 2,所以|MF |=1-⎝ ⎛⎭⎪⎫-p 2=5,解得p =8,即抛物线方程为y 2=16x ,又m 2=16,m >0,所以m =4,即M (1,4),所以半径为1,所以圆的方程为(x -1)2+(y -4)2=1. 答案 A 二、填空题3.已知平面区域⎩⎨⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆,又△OPQ 为直角三角形,故其圆心为斜边PQ 的中点(2,1),半径为|PQ |2=5,∴圆C 的方程为(x -2)2+(y -1)2=5. 答案 (x -2)2+(y -1)2=5 三、解答题4.已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P ,Q 两点,且OP ⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径. 解 法一 将x =3-2y , 代入方程x 2+y 2+x -6y +m =0, 得5y 2-20y +12+m =0. 设P (x 1,y 1),Q (x 2,y 2), 则y 1,y 2满足条件:知识改变命运y 1+y 2=4,y 1y 2=12+m5. ∵OP ⊥OQ ,∴x 1x 2+y 1y 2=0. 而x 1=3-2y 1,x 2=3-2y 2.∵x 1x 2=9-6(y 1+y 2)+4y 1y 2=-27+4m5.故-27+4m 5+12+m5=0,解得m =3, 此时Δ=202-4×5×(12+m )=20(8-m )>0,圆心坐标为⎝ ⎛⎭⎪⎫-12,3,半径r=52.法二 如图所示,设弦PQ 中点为M ,且圆x 2+y 2+x -6y +m =0的圆心为O 1⎝ ⎛⎭⎪⎫-12,3,设M (x 0,y 0),P (x 1,y 1),Q (x 2,y 2), 由法一知,y 1+y 2=4,x 1+x 2=-2, ∴x 0=x 1+x 22=-1,y 0=y 1+y 22=2. 即M 的坐标为(-1,2).则以PQ 为直径的圆可设为(x +1)2+(y -2)2=r 21.∵OP ⊥OQ ,∴点O 在以PQ 为直径的圆上.∴(0+1)2+(0-2)2=r 21,即r 21=5,|MQ |2=r 21.在Rt △O 1MQ 中,|O 1Q |2=|O 1M |2+|MQ |2. ∴1+(-6)2-4m 4=⎝ ⎛⎭⎪⎫-12+12+(3-2)2+5. ∴m =3,∴圆心坐标为⎝ ⎛⎭⎪⎫-12,3,半径r =52.知识改变命运。

相关文档
最新文档