(完整)高考数学填空题100题.

合集下载

高三数学百题训练

高三数学百题训练

高三数学百题训练一、填空题1.设集合A={x |x 2-a <0},B={x |x <2},若A ∩B=A ,则实数a 的取值范围是 .2.设P={(x ,y )||x |≤1,|y |≤1},Q={(x ,y )|(x -a )2+(y -a )2=1},若P ∩Q ≠φ,则a 的取值范围是 .3. 已知集合A={x |x 2-ax +a 2-19=0},B={x |1)85(log 22=+-x x },C={x |x 2+2x -8=0},如果A ∩B φ且A ∩C=φ,则实数a 的值为 .4.定义在(-≦,+≦)上的偶函数f (x )满足:f (x +1)=-f (x ),且在[-1,0]上是增函数,下面关于f (x )的判断:①f (x )是周期函数;②f (x )的图象关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上是减函数;⑤f (2)=f (0) 其中正确的判断是 (把你认为正确的判断的序号都填上).5.设f (x )是定义在R 上的偶函数,且f (x +2)=f (x ),当0≤x ≤1时,f (x )=x ,则当5≤x ≤6时,f (x )的表达式为 .6.函数f (x )=|56|log 221+-x x 的单调递增区间为 .7.函数f (x )定义域为R ,x 、y ∈R 时恒有f (xy )=f (x )+f (y ),若f (27+)+f (27-)=2,则f (1261()1261-++f )= . 8.已知函数f (x )=x 2+l g(x +12+x ),若f (a )=M ,则f (-a )等于 .9.已知奇函数f (x )和偶函数g(x )满足f (x )+g(x )=a x -a -x +2,且g(b )=a ,则f (a )= .10.已知函数f (x )的定义域是R ,对任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2,则f (x )在[-3,3]上的最大值为 ,最小值为 .11.对于每个实数x ,设f (x )是y =4x +1,y =x +2,y =-2x +4三个函数中的最小值,则f (x )的最大值是 .12.函数y =2log 22-x x 的最小值是 ;此时x 的值为 .13.如果函数y =x 2+ax -1在闭区间[0,3]上有最小值-2,那么a 的值是 .14.如果函数y =ax 2+2ax -1对于x ∈[1,3]上的图象都在x 轴下方,则a 的取值范围是 .15.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么|f (x +1)|<1的解集是 . 16.已知函数f (x )=l og 2(x +1),若-1<a <b <c ,且abc ≠0,则a a f )(、b b f )(、cc f )(的大小关系是 . 17.已知定义在R 上的函数y =f (x )满足下列三个条件:①对任意的x ∈R 都有f (x +4)=f (x );②对于任意的0≤1x <2x ≤2时,)()(21x f x f <;③y =f (x +2)的图象关于y 轴对称,则f (4.5),f (6.5),f (7)的大小关系是 .18.设奇函数f (x )在(0,+≦)上是增函数,若f (-2)=0,则不等式x 〃f (x )<0的解集是 . 19.已知函数f (x )=132-+x x ,函数y =g(x )的图象与函数y =f -1(x +1)的图象关于直线y =x 对称,则g(11)= . 20.设函数y =f (x )存在反函数y =g(x ),f (3)=-1,则函数y =g(x -1)的图象必经过点______. 21.已知f (x )=⎩⎨⎧≤>+--)6(3)6)(1(log 63x x x x ,若记f -1(x )为f (x )的反函数,且a =f -1(91),则f (a +4)= ___. 22.把函数y =11+x 的图象沿x 轴向右平移2个单位,再将所得图象关于y 轴对称后所得图象的解析式为 .23.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…a 2n =72,且a 1-a 2n =33,则该数列的公差d = . 24.某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个……,按照这种规律进行下去,6小时后细胞的存活数是 个。

高三数学新颖填空题集锦

高三数学新颖填空题集锦

y新颖填空题集锦1、阿诺卡塔游戏(如图)玩法:现有中间带孔的圆木片,这些圆木片以从大到 小的次序穿在一根竹竿A 上,现在的任务是将这堆圆 木片穿到其他一根竹竿(B 或C )上,但必须遵循如 下规则:1)圆木片只能一一搬动;2)大的木片只能放在小的木片下面; 3)搬动的次数尽可能少现有4块圆木片组成的阿诺卡塔,则至少移动15次能完成任务. 2、如图,测量河对岸的塔高AB 时,可以选与塔底B 在 同一水平面内的两个测点C 与D .测得00153030BCD BDC CD ∠=∠==,,米,并在点C 测得塔顶A 的仰角为060,则塔高3、已知12,,,n a a a ;12,,,n b b b (n 是正整数),令112n L b b b =+++ ,223L b b =+,n b ++ ,n n L b =. 某人用右图分析得到恒等式:1122n n a b a b a b +++= 11223a L c L c L +++ k k c L +n n c L ++ ,则k c =1k k a a --(2)k n ≤≤.4.已知(1,2),(3,4)A B ,直线1l :20,:0x l y ==和3:l x +3y 10-=. 设i P 是i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是32. 5、将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第21n-行;第61行中1的个数是 32 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 16、已知定义在区间[0,1]上的函数y=f(x)图象如右图所示对满足1201x x <<<的任意1x 、2x ,给出下列结论:(1)2121()()f x f x x x ->- (2)2112()()x f x x f x >⋅(3)1212()()()22f x f x x x f ++<其中正确结论序号是②③(把所有正确结论序号都填上)7、近几年来,在欧美等国家流行一种“数独”推理游戏,游戏规则如下:①在9×9的九宫格子中,分成9个3×3的小九宫格,用1到9这9个数字填满整个格子;②每一行与每一列都有1到9的数字,每个小九宫格里也有1到9的数字,并且一个数字在每行、每列及每个小九宫格里只能出现一次,既不能重复也不能少. 那么A 处应填入的数字为_____1_____;B 处应填入的数字为__ 3 _.8、按下列程序框图运算:规定:程序运行到“判断结果是否大于244”为1次运算.若x=5,则运算进行 4 次才停止;若运算进行)(*N k k ∈次才停止,则x 的取值范围是⎩⎨⎧++∈≥+∞∈=--]31,3(1x ,2k ),82(,16k 5kx k 时时 9、已知可导函数()f x 的导函数()f x '的图象如右图所示,给出下列四个结论: ①1x =是()f x 的极小值点;②()f x 在(,1)-∞上单调递减;③()f x 在(1,)+∞上单调递增;④()f x 在(0,2)上单调递减,其中正确的结论是 ④ .(写出所有正确结论的编号).10、图中一组函数图像,它们分别与其后所列的一个现实情境相匹配:① ② ③ ④情境A :一份30分钟前从冰箱里取出来,然后被放到微波炉里加热,最后放到餐桌上的食物的温度(将0时刻确定为食物从冰箱里被取出来的那一刻);情境B :一个1970年生产的留声机从它刚开始的售价到现在的价值(它被一个爱好者收藏,并且被保存得很好);情境C :从你刚开始放水洗澡,到你洗完后把它排掉这段时间浴缸里水的高度; 情境D :根据乘客人数,每辆公交车一趟营运的利润;其中情境A 、B 、C 、D 分别对应的图象是 ①③④② .输入NO11、在如图的表格中,每格填一个数字后,使每一横行成等差数列,每一纵行成等比数列,所有公比相等,则c b a ++的值为2712、某校对文明班级的评选设计了a ,b ,c ,d ,e 五个方面的多元评价指标,并通过经验公式样本ed c b a S 1++=来计算各班的综合得分,S 的值越高则评价效果越好.若某班在自测过程中各项指标显示出0<c <d <e <b <a ,则下阶段要把其中一个指标的值增加1个单位,而使得S 的值增加最多,那么该指标应为___c_____(填入a ,b ,c ,d ,e 中的某个字母). 13、如果函数f x ()在区间D 上是凸函数,那么对于区间D 内的任意x x x n 12,…有()()()f x f x f x n f x x x n n n 1212+++≤+++⎛⎝ ⎫⎭……,若y x =sin 在区间()0,π上是凸函数,那么根据上述结论,在△ABC 中sin sin sin A B C ++的最大值是_2________ 14、如图所示,已知D 是面积为1的△ABC 的边AB 上任一点,E 是 边AC 上任一点,连结DE ,F 是线段DE 上一点,连结BF,设1λ=ABAD ,2λ=AC AE ,3λ=DE DF ,且21132=-+λλλ,记△BDF 的面积为S =f(321,,λλλ), 则S 的最大值是8115、图1,2,3,4分别包含1,5,13和25个互不重叠的单位正方形,按同样的方式构造图形,则第n 个图包含__2221n n -+______个互不重叠的单位正方形。

高考数学选择、填空题专项训练(共40套)[附答案]

高考数学选择、填空题专项训练(共40套)[附答案]

三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

高三数学填空题练习试题集

高三数学填空题练习试题集

高三数学填空题练习试题答案及解析1.如图,已知是⊙的切线,是切点,直线交⊙于两点,是的中点,连接并延长交⊙于点,若,则.【答案】【解析】因为是⊙的切线,所以,在中,,则,,连接,则是等边三角形,过点A作,垂足为M,则,在中,,又,故,则.【考点】1、切线的性质;2、相交弦定理.2.复数满足,则复数的模等于__________.【答案】【解析】因为,所以因此复数的模等于.【考点】复数的模3.已知双曲线-=1的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为.【答案】-=1【解析】圆x2+y2-10x=0的圆心坐标为(5,0),∴c=5,又e==,∴a=,b2=c2-a2=20,∴双曲线标准方程为-=1.4.已知数列{an }为等差数列,若a1=-3,11a5=5a8,则使前n项和Sn取最小值的n=________.【答案】2【解析】∵a1=-3,11a5=5a8,∴d=2,∴Sn=n2-4n=(n-2)2-4,∴当n=2时,Sn最小.5.曲线在点(1,0)处的切线与坐标轴所围三角形的面积等于 .【答案】【解析】∵,∴,所以切线方程为:,∴三角形面积为.【考点】1.利用导数求切线方程;2.三角形的面积公式.6.已知函数是上的奇函数,时,,若对于任意,都有,则的值为 .【答案】【解析】因为,,所以.【考点】函数的基本性质7.运行右面框图输出的S是254,则①应为 .【答案】【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加的值,并输出满足循环的条件.∵,故①中应填.故选C.【考点】程序框图.8.已知圆M:x2+y2-2x-4y+1=0,则圆心M到直线(t为参数)的距离为.【答案】2.【解析】由题意易知圆的圆心,由直线的参数方程化为一般方程为,所以圆心到直线的距离为.【考点】直线的参数方程及点到直线的距离公式.9.已知,,则.【答案】【解析】由,得,,.【考点】同角三角函数的关系、两角和的正切公式.10.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为的数据丢失,则依据此图可得:(1)年龄组对应小矩形的高度为;(2)据此估计该市“四城同创”活动中志愿者年龄在的人数 .【答案】(1);(2)【解析】(1)设年龄组对应小矩形的高度为,依题意,,解得.(2)据此估计该市“四城同创”活动中志愿者年龄在的人数为:人.【考点】频率分布直方图.11.若a、b、c、d均为实数,使不等式都成立的一组值(a、b、c、d)是。

2023年上海高考数学真题及参考答案

2023年上海高考数学真题及参考答案

2023年上海高考数学真题及参考答案一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果.1.不等式12<-x 的解集为.2.已知()3,2-=a ,()2,1=b ,求=⋅b a .3.已知{}n a 为等比数列,且31=a ,2=q ,求=6S .4.已知3tan =α,求=α2tan .5.已知()⎩⎨⎧≤>=0,10,2x x x f x ,则()x f 的值域是.6.已知当i z +=1,则=⋅-z i 1.7.已知0422=--+m y y x 的面积为π,求=m .8.在ABC ∆中,6,5,4===c b a ,求=A sin .9.国内生产总值(GDP )是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP 稳步增长,第一季度和第四季度的GDP 分别为231和242,且四个季度GDP 的中位数与平均数相等,则2020年GDP 总额为.10.已知()()1001002210100100202320231x a x a x a a x x ++++=-++ ,其中R a a a ∈10021, ,若1000≤≤k 且N k ∈,当0<k a 时,k 的最大值时.11.公园修建斜坡,假设斜坡起点在水平面上,斜坡与水平面的夹角为θ,斜坡终点距离水平水平面的垂直高度为4米,游客每走一米消耗的体能为()θcos 025.1-,要使游客从斜坡底走到斜坡顶端所消耗的总体能最少,则=θ.12.空间内存在三点C B A 、、,满足1===BC AC AB ,在空间内取不同两点(不计顺序),使得这两点与C B A 、、可以组成正四棱锥,求方案数为.二、选择题(本题共4题,满分18分,13、14每题4分,15、16每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知{}{}32,21,,==Q P ,若{}Q x P x x M ∉∈=且,则=M ()A .{}1B .{}2C .{}21,D .{}321,,14.根据身高和体重散点图,下列说法正确的是()A .身高越高,体重越重B .身高越高,体重越轻C .身高与体重成正相关D .身高与体重成负相关15.设0>a ,函数x y sin =在区间[]a a 2,上的最小值为s ,在[]a a 3,2上的最小值为t ,当a 变化时,下列不可能的是()A .0>s 且0>tB .0>s 且0<tC .0<s 且0<t D .0<s 且0>t 16.在平面上,若曲线Γ具有下列性质:存在点M ,使得对于任意点Γ∈P ,都有Γ∈Q 使得1=⋅QM PM .则称曲线Γ为“自相关曲线”.现有如下两个命题:(1)任意椭圆都是“自相关曲线”.(2)存在双曲线是“自相关曲线”.则下列正确的是()A .(1)成立,(2)成立B .(1)成立,(2)不成立C .(1)不成立,(2)成立D .(1)不成立,(2)不成立三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.直四棱柱1111D C B A ABCD -,CD AB ∥,AD AB ⊥,2=AB ,3=AD ,4=DC .(1)求证:111D DCC B A 面⊥(2)若四棱柱1111D C B A ABCD -体积为36,求二面角A BD A --1的大小.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.函数()()()R c a ax cx a x x f ∈++++=,132.(1)当0=a 时,是否存在实数c ,使得()x f 为奇函数(2)函数()x f 的图象过点()3,1,且()x f 的图象与x 轴负半轴有两个不同交点,求实数c 的值及实数a 的取值范围.19.(本题满分14分)本题共有3个小题,第1小题满分2分,第2小题满分6分,第3小题满分8分.21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A 为小明取到的模型为红色外观,事件B 取到模型有棕色内饰.求:()B P 、()A B P /,并据此判断事件A 和事件B 是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及外观或内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:奖金额为一等奖600元,二等奖300元,三等奖150元;请你分析奖项对应的结果,设X 为奖金额,写出X 的分布列并求出X 的数学期望.红色外观蓝色外观棕色内饰128米色内饰2320.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知抛物线x y 42=Γ:,A 为第一象限内Γ上的一点,设A 的纵坐为a (0>a ).(1)若A 到Γ的准线距离为3,求a 的值;(2)若4=a ,B 为x 轴上的一点,且线段AB 的中点在Γ上,求点B 坐标和坐标原点O到AB 的距离;(3)直线3-=x l :,P 是第一象限Γ上异于A 的动点,直线P A 交l 于Q ,点H 为点P 在l 上的投影,若点A 满足性质“当点P 变化时,4>HQ 恒成立”,求a 的取值范围.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数()x x f ln =,过函数上的点()()11,a f a 作()x f y =的切线交y 轴于()20a ,,02>a ,过函数上的点()()22,a f a 作()x f y =的切线交y 轴于()30a ,,以此类推,直至0≤m a 时则停止操作,得到数列{}n a ,*∈N n m ,,m n ≤<1.(1)证明:1ln 1-=+n n a a ;(2)试比较1+n a 与2-n a 的大小;(3)若正整数3≥k ,是否存在k 使得k a a a ,,21依次成等差数列?若存在,求出k 的所有取值;若不存在,试说明理由.参考答案一、填空题1.()3,1;解析:3112112<<-⇒<-<-⇒<-x x x2.4;解析:已知42312=⨯+⨯-=⋅b a 3.189;解析:18996482412636=+++++=S 4.43-;解析:43916tan 1tan 22tan 2-=-=-=ααα5.[)∞+,1;解析:当0>x 时,12>=xy ,当0≤x 时,1=y ,故值域为[)∞+,16.5;解析:()i i i z i -=+⨯-=⋅-2111,521=-=⋅-i z i 7.3-;解析:()4222+=-+m y x ,由题意14=+m ,解得3-=m 8.47;解析:436521636252cos 222=⨯⨯-+=-+=bc a c b A ,∴47sin =A 9.946;解析:d c b a <<<,232=a ,241=d ,473=+=+c b d a ,∴946=+++d c b a 10.49;解析:()0202312023100100100<-+=-kkkkkk C C a ,依题意k 为奇数,∴kk -<10020232023,k k -<100,解得50<k ,∴49max =k 11.4140arccos;解析:所消耗的总体力()θθθθsin cos 41.4sin cos 025.14-=-=y ,()0sin cos 1.44sin cos cos 41.4sin 4222=-=--='θθθθθθy ,解得4140cos =θ,∴4140arccos=θ12.9;解析:以A 为尖,若ABC 为正四棱锥的侧面,有两种情况,若ABC 为正四棱锥的对角面,有一种情况,共三种情况;同理,以C B ,为尖,也各有三种情况,∴共9种二、选择题15.解析:1=a 时,A 可能;5.1=a 时,B 可能;2=a 时,C 可能;D 选项,若0<S ,则π>a 2,若0>t ,则[]a a 3,2的区间长度π<a ,同时02sin >a 且03sin >a ,所以()π,02∈a 且()π,03∈a ,与前面的π>a 2矛盾,故D 不可能.16.解析:(1)∵椭圆是封闭的,∴总可以找到满足题意的M 点;(2)∵点P 的任意性,∴+∞→maxPM,∵minQM是固定的,∴无法对任意的Γ∈P ,都存在Γ∈Q 使得1=⋅QM PM .三、解答题17.解:(1)取CD 中点E ,连接E D 1,E D B A 11∥,∴111D DCC B A 平面∥;(2)由题意可得,底面积为9,∴1341==BD AA ,,A 到BD 的距离1361332=⨯=d ,3132tan 1==d AA θ,∴3132arctan =θ,即二面角C BD A --1的大小为3132arctan.18.解:(1)当0=a 时,()12++=++=x cx x c x x x f ,∵x c x y +=为奇函数,∴()1++=xcx x f 不为奇函数,故不存在实数c ,使得()x f 为奇函数(2)()31231=+++=aca f ,∴1=c ,则()()01132=++++=ax x a x x f 即()01132=+++x a x ,∴()04132>-+=∆a 且两根之和()013<+-a ,∴31>a ,若0=+a x 即a x -=是方程()01132=+++x a x 的解,得21=a 或1-=a ,故实数a 的取值范围为31>a 且21≠a .13141516ACDB19.解:(1)()512532=+=B P ,()()()51282=+=⋂=A P B A P A B P ,()522528=+=A P ,()()()B P A P B A P ⋅==⋂252,∴事件A 和事件B 独立.(2)外观和内饰均为同色的概率15049225232221228=+++C C C C C ,外观和内饰都异色的概率25415024225121121318==+C C C C C ,仅外观或仅内饰同色的概率15077225131211218131121218=+++C C C C C C C C C .∴X 的分布列为⎪⎪⎪⎭⎫⎝⎛1507715049254150300600,期望为2711507715015049300254600=⨯+⨯+⨯(元)20.解:(1)准线为1-=x ,∴2=A x ,∴22==A y a ;(2)()4,4A ,设()0,b B ,线段AB 的中点为⎪⎭⎫⎝⎛+2,24b ,∴()b +=424,解得2-=b ,即()0,2-B ,∴直线AB 为0432=+-y x ,原点O 到AB 的距离13134134==d .(3)设⎪⎪⎭⎫ ⎝⎛p p P ,42,∵⎪⎪⎭⎫⎝⎛a a A ,42,∴直线()04=++-ap y p a x AP :∴()p H p a ap Q ,3,123-⎪⎪⎭⎫ ⎝⎛+--,,∴412122>++=-+-=p a p p p a ap HQ ,即()()2422->-a p 对()()+∞⋃∈,,0a a p 恒成立,当2=a 时,2≠p ,()()2422->-a p 成立;当02<-a 即2<a 时,()()2422->-a p 此时20<<a ∴a 的取值范围是(]2,0.21.解:(1)()xx f 1=',在()()n n a f a ,处的切线方程为,当0=x 时,1ln -=n a y ,即1ln 1-=+n n a a ;()n nn a x a a y -=-1ln (2)作差法:()1ln 21+-=--+n n n n a a a a ,设()1ln +-=x x x g ,则()11-='xx g 令()011=-='xx g ,解得1=x ;()100<<⇒>'x x g ;()10>⇒<'x x g ,∴()()01max ==g x g ,∴()0≤x g ,即21-≤+n n a a 当1=n a 时等号成立;(3)公差1ln 111--=-=---k k k k a a a a d ,设()1ln --=x x x h ,则()11-='xx h 令()011=-='xx h ,解得1=x ;()100<<⇒>'x x h ,此时()x h 单调递增;()10>⇒<'x x h ,此时()x h 单调递减,∴()()21max -==h x h ,即()2-≤x h ,∴2-≤d ,数列递减,∵0→x 时,()-∞→x h ,+∞→x 时,()-∞→x h ,∴1ln 11--=--k k a a d 最多两解,此时2-<d ,即最多三项成等差数列,3=k .。

历年高考数学真题(全国卷整理版)完整版完整版

历年高考数学真题(全国卷整理版)完整版完整版

参考公式:如果事件 A、B互斥,那么球的表面积公式P( A B) P( A) P(B)S 4R2如果事件 A、B相互独立,那么其中 R表示球的半径P(A B) P( A) P(B)球的体积公式如果事件 A 在一次试验中发生的概率是p ,那么V3R3n 次独立重复试验中事件 A 恰好发生k次的概率4其中 R 表示球的半径P n (k ) C n k p k (1 p)n k (k 0,1,2, n)普通高等学校招生全国统一考试一、选择题13i 1、复数i =1A 2+I B2-I C 1+2i D 1- 2i2、已知集合 A ={1.3.m },B={1,m} ,A B = A, 则 m=A0或3 B 0或3C1或3 D 1或33椭圆的中心在原点,焦距为 4 一条准线为 x=-4 ,则该椭圆的方程为A x2y2=1Bx2y2=1 16++12128C x2y2=1Dx2y28+12+=1 444已知正四棱柱ABCD- A 1B 1C1D1中,AB=2 ,CC1= 2 2 E 为 CC1的中点,则直线 AC 1与平面 BED 的距离为A2B3C2D1(5)已知等差数列{a n} 的前 n 项和为 S n, a5=5, S5=15,则数列的前100项和为10099(C)99101(A)(B)(D)100101101100(6)△ ABC 中, AB 边的高为 CD ,若a· b=0, |a|=1, |b|=2,则(A)(B)(C)(D)3(7)已知α为第二象限角,sinα+ sinβ =3,则 cos2α = 5555--(C) 9(D)3(A)3(B)9(8)已知 F1、 F2 为双曲线 C: x2-y2=2的左、右焦点,点P 在 C 上, |PF1|=|2PF2|,则 cos ∠F1PF2=1334(A) 4(B)5(C)4(D)51(9)已知 x=ln π, y=log52 ,z=e2,则(A)x < y< z(B)z<x<y(C)z < y< x(D)y < z< x(10) 已知函数y= x2-3x+c 的图像与 x 恰有两个公共点,则c=(A )-2 或 2 (B)-9 或 3 (C)-1 或 1 (D)-3 或 1(11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12 种( B)18 种( C)24 种( D)36 种7(12)正方形 ABCD 的边长为1,点 E 在边 AB 上,点 F 在边 BC 上, AE = BF =3。

2023高考数学填空题

2023高考数学填空题

2023高考数学填空题2023高考数学填空题第一章:数与式整数1.整数等于________的和减去________的和。

答案:0,0解析:整数的定义是包含正整数、负整数和0,因此整数可以看作是正整数的和减去负整数的和,加上0,所以答案是0。

2.表示负整数-8的绝对值为______。

答案:8解析:负整数的绝对值是对应正整数的数值,所以负8的绝对值是8。

有理数1.有理数的定义包括________和________。

答案:整数,分数解析:有理数包括整数和分数,整数可以是正整数、负整数和0。

2.-用分数表示为______。

答案:-3/2解析:-可以理解为-1和的和或差。

将转化为分数形式为1/2,所以-用分数表示为-3/2。

第二章:函数与方程一次函数1.一次函数的函数图像为直线,直线上任意两点的连线斜率为______。

答案:恒定不变解析:一次函数的函数图像为直线,直线上任意两点的连线斜率是恒定不变的。

2.函数y = 2x + 1的解为______。

答案:无数个解析:一次函数的解是指该函数对应的方程的解。

对于y = 2x + 1,由于存在无数个(x, y)点可以满足这个方程,所以解的个数是无限个。

二次函数1.二次函数的函数图像为______。

答案:抛物线解析:二次函数的函数图像为抛物线。

2.函数y = x^2 + 4x + 4的解为______。

答案:x = -2解析:解二次函数的方程可以使用因式分解、配方法或求根公式等方法。

对于y = x^2 + 4x + 4,可以对其进行因式分解得到(x + 2)(x + 2) = 0,即x + 2 = 0,解得x = -2。

高三数学填空题集锦(中高档难度,新颖题以及易错题目为主,较适合二轮练习时使用)

高三数学填空题集锦(中高档难度,新颖题以及易错题目为主,较适合二轮练习时使用)

记 f1 (n) f ( n) , fk 1( n) f [ f k ( n)]( k 1,2,3, ) , 则 f2007 (2006) 等于 ( ).
35.定义 f ( M ) (m, n, p) ,其中 M 是△ ABC 内一点, m 、 n 、 p 分别是△ MBC 、△
MCA 、 △ MAB 的 面 积 , 已 知 △ ABC 中 , AB AC 2 3 , BAC 30 ,
e
试将该命题类比到双曲线中,给出一个真命题:
23 、在平面直角坐标系 xOy ,已知平面区域 A {( x, y) | x y 1,且 x 0, y 0} ,则平面
区域 B {( x y, x y) | (x, y) A} 的面积为
24 、一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且 底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱
4.有下列说法正确的是
.
2 ①函数 f ( x) ln x 的零点所在的大致区间是( 2, 3);
x
②对于集合 A ,B ,命题:“ x A ,则 x B ”的否定形式为“ x A, x B ”;
11
(1 2 x )2
③函数 y
2
2x
与y 1
x 2 x 都是奇函数;
④函数 y ( x 1)2与 y 2x 1 在区间 [0, ) 上都是增函数
▲.
13.已知数列 { an } 的通项公式为 an
n ( 2)n ,则数列 { an } 成等比数列是数列 bn
{ bn } 的通
项公式为 bn n 的

条件(对充分性和必要性都要作出判断)
14.有一种计算机病毒可以通过电子邮件进行传播,如果第一轮被感染的计算机数是

全国统一高考数学练习卷及含答案 (1)

全国统一高考数学练习卷及含答案  (1)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、已知,2||,1||==b a 且)(b a -与a 垂直,则a 与b 的夹角是()A60B30C135D452、若直线l 上的一个点在平面α内,另一个点在平面α外,则直线l 与平面α的位置关系()A.l ⊂αB.l ⊄αC.l ∥αD.以上都不正确3、两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对4、等差数列}{n a 的前n 项和n n S n +=22,那么它的通项公式是()A、12-=n a n B、12+=n a n C、14-=n a n D、14+=n a n 5、曲线||x y =与1+=kx y 的交点情况是()A、最多有两个交点B、有两个交点C、仅有一个交点D、没有交点6、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ()A、}2223|{<<-<<-x x x 或B、RC、}23|{-<-x x D、}22|{<<x x 7、甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙两人下成和棋的概率为()(A)60%(B)30%(C)10%(D)50%8.如图,在正方形ABCD 中,E、F、G、H 是各边中点,O 是正方形中心,在A、E、B、F、C、G、D、H、O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个9.如图,正四面体ABCD 中,E 为AB 中点,F 为CD 的中点,则异面直线EF 与SA 所成的角为()A.90°B.60°C.45°D.30°10.如图,正三棱柱111C B A ABC -中,AB=1AA ,则1AC 与平面C C BB 11所成的角的正弦值为()A.22B.515C.46D.3611.抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为()A.0B.23C.2D.312.已知椭圆22221a y x =+(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a 的取值范围是()A.2230<<a B.2230<<a 或282>aC.223<a 或282>a D.282223<<a 二、填空题(共4小题,每小题5分;共计20分)1.方程log2|x|=x2-2的实根的个数为______.2.1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有______个,形状为六边形的面有______个.3.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.4.定义在R 上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:①f(x)是周期函数;②f(x)关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(2)=f(0),其中正确判断的序号为______(写出所有正确判断的序号).三、大题:(满分70分)1.如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.2.设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.3.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.4.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.5、如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC=∠PBC=90º(Ⅰ)证明:AB⊥PC(Ⅱ)若4PC =,且平面PAC ⊥平面PBC ,求三棱锥P ABC -体积。

高考数学填空题100题

高考数学填空题100题

江苏省高考数学填空题训练 100 题 江苏省高考数学填空题训练 高考数学填空题22010.31.设集合 A = {x} || x |< 4} , B = {x | x 4 x + 3 > 0} ,则集合 {x | x ∈ A 且 x A I B} = __________; 2.设 p ( x) = ax + 2 x + 1 ,若对任意实数 x , p ( x) > 0 恒成立,则实数 a 的取值范围是________________;23.已知 2 = 3 = m ,且a b1 1 + = 2 ,则实数 m 的值为______________; a b4.若 a > 0 , a2 3=4 ,则 log 2 a = ____________; 9 325.已知二次函数 f ( x ) = ax + bx 3 ( a ≠ 0 ) ,满足 f (2) = f ( 4) ,则 f (6) = ________; 6.已知 y = f (x ) 是定义在 R 上的奇函数,当 x ∈ (0 , +∞) 时, f ( x ) = 2 x 2 , 则方程 f ( x ) = 0 的解集是____________________;2 7.已知 f ( x ) = lg( x + 8 x 7) 在 ( m , m + 1) 上是增函数,则 m 的取值范围是________________;8.已知函数 f ( x ) = sin x + 5 x , x ∈ (1 , 1) ,如果 f (1 a ) + f (1 a 2 ) < 0 ,则 a 的取值范围是____________; 9.关于 x 的方程 5 =xa+3 有负数解,则实数 a 的取值范围是______________; 5a10. 已知函数 f (x ) 满足: 对任意实数 x1 ,x 2 , x1` < x 2 时, f ( x1 ) < f ( x 2 ) , f ( x1 + x 2 ) = f ( x1 ) f ( x 2 ) . 当 有 且 写出满足上述条件的一个函数: f (x ) = _____________; 11.定义在区间 (1 , 1) 内的函数 f (x ) 满足 2 f ( x ) f ( x ) = lg( x + 1) ,则 f (x ) = ______________; 12.函数 f ( x ) =x 2 + 2x + 2 ( x > 1 )的图像的最低点的坐标是______________; x +1 2 的最小值是___________; ab13.已知正数 a , b 满足 a + b = 1 ,则 ab +2 214.设实数 a , b , x , y 满足 a + b = 1 , x 2 + y 2 = 3 ,则 ax + by 的取值范围为______________; 15.不等式 ( x 2) x 2 2 x 3 ≥ 0 的解集是_________________; 16.不等式 x 2 | x | 6 < 0 ( x ∈ R )的解集是___________________; 17.已知 f ( x ) = 1 , x ≥ 0 ,则不等式 xf ( x ) + x ≤ 2 的解集是_________________; 1 , x < 018.若不等式x x+2 ≤ a ≤ 2 在 x ∈ (0 , 2] 上恒成立,则 a 的取值范围是___________; x +9 x2 log b ( 2 x 1)19.若 a > 1 , 0 < b < 1 ,且 a> 1 ,则实数 x 的取值范围是______________;20.实系数一元二次方程 x ax + 2b = 0 的两根分别在区间 (0 , 1) 和 (1 , 2) 上,2则 2a + 3b 的取值范围是_____________; 21. 若函数 f ( x) = 2 cos(ωx + ) + m 图像的一条对称轴为直线 x =π8, f 且π 则实数 m 的值等于____; = 1 , 822.函数 y = sin π 2 x 的单调递增区间是_______________________; 4 2 π 1 π , tan β = ,则 tan α + = __________; 5 4 4 4 4 sin α + cos α 3π ,α ∈ = ___________; ,2π ,则 5 sin α cos α 2 23.已知 tan(α + β ) =24.已知 sin (2π α ) =25.函数 y = 3 sin x + 20 0 + 5 cos x 10 0 的最大值是____________;()()26.若cos 2α 2 ,则 cos α + sin α 的值为___________; = π 2 sin α 4 1 3 , cos(α β ) = ,则 tan α tan β = ___________; 5 527.若 cos(α + β ) = 28.如果 | x |≤π4,那么函数 f ( x) = cos 2 x + sin x 的最小值是___________;29.函数 f ( x) = sin 2 x + 2 2 cosπ + x + 3 的最小值是___________; 4 r r30.已知向量 a = (1 , sin θ ) , b = (1 , cos θ ) ,则 | a + b | 的最大值为_________; 31.若非零向量 a 与 b 满足 | a + b |=| a b | ,则 a 与 b 的夹角大小为_________; 32.已知向量 a = (n , 1) , b = ( n , 1) ,若 2a b 与 b 垂直,则 | a |= _________; 33.在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c , 若 a = 1, B =rrrrrrrrrrrrrrrrπ4,△ ABC 的面积 S = 2 ,那么△ ABC 的外接圆直径为__________;34.复数 z1 = 3 + i , z 2 = 1 i ,则 z1 1 = __________; z235.若复数a + 3i ( a ∈ R , i 为虚数单位)是纯虚数,则实数 a 的值为_________; 1 + 2i36.若 z ∈ C ,且 | z + 2 2i |= 1 ,则 | z 2 2i | 的最小值是__________; 37.等差数列 {a n } 的前 n 项之和为 S n ,若 a17 = 10 a3 ,则 S19 的值为_________;38.已知数列 {a n } 中, a1 = 60 , a n +1 = a n + 3 ,那么 | a1 | + | a 2 | + L + | a30 | 的值为_________; 39.首项为 24 的等差数列,从第 10 项起为正数,则公差 d 的取值范围是_________; 40.已知一个等差数列的前五项之和是 120 ,后五项之和是 180 ,又各项之和是 360 ,则此数列共有______项; 40.已知数列 {a n } 的通项公式为 a n = n + 5 ,从 {a n } 中依次取出第 3 , 9 , 27 ,…, 3 ,…项,n按原来的顺序排成一个新的数列,则此数列的前 n 项和为______________; 41.在正项等比数列 {a n } 中, a1 , a 99 是方程 x 10 x + 16 = 0 的两个根,则 a 40 a50 a 60 的值为_______;242.数列 {a n } 中, a1 = 2 , a 2 = 1 ,2 1 1 = + (n ≥ 2) ,则其通项公式为 a n = __________; a n a n +1 a n 143.如果直线 l 与直线 x + y 1 = 0 关于 y 轴对称,那么直线 l 的方程是________________; 44.若平面上两点 A( 4 , 1) , B (3 , 1) ,直线 y = kx + 2 与线段 AB 恒有公共点,则 k 的取值范围是________; 45. 已知△ ABC 的顶点 A(1 , 4) , 若点 B 在 y 轴上, C 在直线 y = x 上, 点 则△ ABC 的周长的最小值是______;2 2 46.设过点 ( 2 , 2 2 ) 的直线的斜率为 k ,若 x + y = 4 上恰有三个点到直线 l 的距离等于 1 ,则 k 的值是__________; 47.直线 x y + 1 = 0 与 2 x 2 y 1 = 0 的两条切线,则该圆的面积等于_________; 48.已知 P ( x, y ) 为圆 ( x 2) 2 + y 2 = 1 上的动点,则 | 3 x + 4 y 3 | 的最大值为______; 49.已知圆 ( x 3) 2 + y 2 = 4 和过原点的直线 y = kx 的交点为 P 、 Q ,则 | OP | | OQ | 的值为________;50.已知 F1 、 F2 为椭圆x2 y2 + = 1 的两个焦点, P ( x0 , y 0 ) 为椭圆上一点, 100 36当 PF1 PF2 > 0 时, x 0 的取值范围为________________; 51.当 m 满足___________时,曲线x2 y2 x2 y2 + = 1 与曲线 + = 1 的焦距相等; 10 m 6 m 5m 9mx2 y2 x2 y2 52.若椭圆 + = 1 ( m > n > 0 )和双曲线 = 1 ( a > 0 , b > 0 )有相同的焦点 F1 , F2 , m n a b点 P 是两条曲线的一个交点,则 | PF1 | | PF2 | 的值为__________; 53.若双曲线经过点 (6 ,1 3 ) ,且渐近线方程是 y = ± x ,则该双曲线方程是__________________; 354.一个动圆的圆心在抛物线 y 2 = 8 x 上,且动圆恒与直线 x + 2 = 0 相切,则此动圆必经过点__________; 55.过抛物线焦点 F 的直线与抛物线交于 A 、 B 两点,若 A 、 B 在抛物线准线上的射影分别为 A1 、 B1 , 则 ∠A1 FB1 = ___________;56.长度为 a 的线段 AB 的两个端点 A 、 B 都在抛物线 y = 2 px ( p > 0 , a > 2 p )上滑动,2则线段 AB 的中点 M 到 y 轴的最短距离为___________; 57.已知直线 m 、 n 与平面 α 、 β ,给出下列三个命题: ①若 m ∥ α , n ∥ β ,则 m ∥ n ;②若 m ∥ α , n ⊥ α ,则 m ⊥ n ;③若 m ⊥ a , m ∥ β ,则 α ⊥ β . 以上命题中正确的是_____________; (写出所有正确命题序号) 58.已知一个平面与正方体的 12 条棱所成的角均为 θ ,则 sin θ = _________; 59.已知正四棱锥的体积为 12 ,底面对角线的长为 2 6 ,则侧面与底面所成二面角等于__________; 60.正三棱柱 ABC A1 B1C1 的各棱长都为 2 , E 、 F 分别是 AB 、 A1C1 的中点,则 EF 的长为________; 61.从 0 , 1 , 2 , 3 , 4 中每次取出不同的三个数字组成三位数,这些三位数的个位数之和为_________; 62.某小组有 4 个男同学和 3 个女同学,从这小组中选取 4 人去完成三项不同的工作,其中女同学至少 2 人, 每项工作至少 1 人,则不同的选派方法的种数为__________; 63.有 n 个球队参加单循环足球比赛,其中 2 个队各比赛了三场就退出了比赛,这两队之间未进行比赛, 这样到比赛结束共赛了 34 场,那么 n = ________; 64.一排共 8 个座位,安排甲,乙,丙三人按如下方式就座,每人左、右两边都有空位,且甲必须在乙、丙之间, 则不同的坐法共有__________种; 65.现有 6 个参加兴趣小组的名额,分给 4 个班级,每班至少 1 个,则不同的分配方案共___________种; 66.有 3 种不同的树苗需要种植在一条直道的一侧,相邻的两棵树不能是同一种树苗, 若第一棵种下的是甲种树苗,那么第 5 棵树又恰好是甲种树苗的种法共有__________种; 67.从集合 {1 , 2 , 3 , L , 20} 中选 3 个不同的数,使这 3 个数成递增的等差数列, 则这样的数列共有_______组; A 68.用 5 种不同的颜色给图中 A 、 B 、 C 、 D 四个区域涂色, D 规定每个区域只能涂一种颜色,相邻区域颜色不同, 则有_________种不同的涂色方法; 69.圆周上有 8 个等分圆周的点,以这些点为顶点的钝角三角形或锐角三角形共有________个; 70.某幢楼从二楼到三楼的楼梯共 10 级,上楼可以一步上一级,也可以一步上两级, 若规定从二楼到三楼用 8 步走完,则上楼的方法有___________种; 71. (1 + x ) 6 (1 x ) 4 展开式中 x 的系数是____________;3B C 1 72.若 3 x 的展开式中各项系数之和为 64 ,则展开式的常数项为____________; x 73. ( 2 x 1) = a 0 + a1 x + a 2 x + a 3 x + a 4 x + a 5 x ,则 | a1 | + | a 2 | + | a 3 | + | a 4 | + | a 5 |= ________;5 2 3 4 5n74.若 ( 2 x + 1)100= a 0 + a1 ( x 1) + a 2 ( x 1) 2 + L + a100 ( x 1)100 ,则 a1 + a 3 + a5 + L + a 99 = __________;75.盒中有 4 个白球, 5 个红球,从中任取 3 个球,则抽出 1 个白球和 2 个红球的概率是_________; 76.从 1 , 2 ,…, 9 这九个数中,随机取 2 个不同的数,则这两个数的和为偶数的概率是________; 77.设集合 I = {1, 2 , 3} , A I ,若把满足 M U A = I 的集合 M 叫做集合 A 的配集, 则 A = {1 , 2} 的配集有_______个;78.设 M 是一个非空集合, f 是一种运算,如果对于集合 M 中的任意两个元素 p , q ,实施运算 f 的结果 仍是集合 M 中的元素,那么说集合 M 对于运算 f 是“封闭”的,已知集合 M = {x | x = a + b 2 , a, b ∈ Q} , 若定义运算 f 分别为加法、减法、乘法和除法(除数不为零)四种运算, 则集合 M 对于运算 f 是“封闭”的有_______________________; (写出所有符合条件的运算名称)1 , x > 0 sgn x 79.的定义符号运算 sgn x = 0 , x = 0 ,则不等式 x + 2 > (2 x 1) 的解集是__________________; 1 , x < 0 80.我们将一系列值域相同的函数称为“同值函数”,已知 f ( x) = x 2 x + 2 , x ∈ [1 , 2] ,2试写出 f ( x) 的一个“同值函数”___________________; (除一次、二次函数外) 81.有些计算机对表达式的运算处理过程实行“后缀表达式”,运算符号紧跟在运算对象的后面, 按照从左到右的顺序运算,如表达式 3 * ( x 2) + 7 ,其运算为 3 , x , 2 ,—,*, 7 , + , 若计算机进行运算 (3 x) , x , 2 ,—,*, lg ,那么使此表达式有意义的 x 的范围为____________; 82.设 [ x] 表示不超过 x 的最大整数(例如: [5.5] = 5 , [ 5.5] = 6 , 则不等式 [ x] 2 5 [ x] + 6 ≤ 0 的解集为_______________________; 83.对任意 a , b ∈ R ,记 max{a, b} = a , a ≥ b . b , a < b则函数 f ( x ) = max{ x + 1 , x + 1} ( x ∈ R )的最小值是__________; 84.对于数列 {a n } ,定义数列 {a n +1 a n } 为数列 {a n } 的“差数列”.若 a1 = 2 , {a n } 的“差数列”的通项为 2 n , 则数列 {a n } 的前 n 项和 S n = _____________; 85.对于正整数 n ,定义一种满足下列性质的运算“*”: (1) 1 * 1 = 2 ; (2) ( n + 1) * 1 = n * 1 + 2 n +1 , 则用含 n 的代数式表示 n * 1 = _____________; 86.若 f ( n) 为 n + 1 ( n ∈ N * )的各位数字之和,如 14 + 1 = 197 , 1 + 9 + 7 = 17 ,则 f (14) = 17 .2 2f 1 (n) = f (n) , f 2 (n) = f ( f1 (n)) ,…, f k +1 (n) = f ( f k (n)) , k ∈ N * ,则 f 2008 (8) = __________;87.如果圆 x 2 + y 2 = k 2 至少覆盖函数 f ( x ) = 则 k 的取值范围是________________; 88.设 P ( x, y ) 是曲线3 sinπxk的图像的一个最大值与一个最小值,x2 + 25y2 = 1 上的点, F1 (4 , 0) , F2 (4 , 0) ,则 | PF1 | + | PF2 | 最大值是________; 989.已知 A(1 , 2) , B (3 , 4) ,直线 l1 : x = 0 , l 2 : y = 0 和 l 3 : x + 3 y 1 = 0 . 设 Pi 是 l i ( i = 1,2,3 )上与 A , B 两点距离平方和最小的点, 则△ P1 P2 P3 的面积是_________; 90.如右图将网格中的三条线段沿网格线上下或左右平移, 组成一个首尾相连的三角形, 则三条线段一共至少需要移动__________格; 91.已知集合 M = {x | x a = 0} , N = {x | ax 1 = 0} , 若 M I N = N ,则实数 a 的值是_____________; 92.对于任意的函数 y = f ( x ) ,在同一坐标系里, y = f ( x 1) 与 y = f (1 x ) 的图像关于__________对称; 93.若不等式 (a 2) x 2 + 2( a 2) x 4 < 0 对 x ∈ R 恒成立,则 a 的取值范围是_____________; 94.数列 1 , a , a , a ,…, a2 3 n 1,…的前 n 项和为___________________;095.在△ ABC 中, a = 5 , b = 8 , C = 60 ,则 BC CA 的值等于_________; 96.设平面向量 a = (2 , 1) , b = (λ , 1) ,若 a 与 b 的夹角为钝角,则 λ 的取值范围是_______________; 97.与圆 C : x 2 + ( y + 5) 2 = 3 相切且在坐标轴上截距相等的直线有________条; 98.某企业在今年年初贷款 a ,年利率为 r ,从今年末开始,每年末偿还一定金额,预计 5 年还清, 则每年应偿还的金额为________________; 99.过抛物线 y 2 = 2 px ( p 为常数且 p ≠ 0 )的焦点 F 作抛物线的弦 AB ,则 OA OB 等于_________; 100. (有关数列极限的题目) (1)计算: lim3 Cn = __________; n →∞ n 3 + 1rrrr(2)计算: lim3 n +1 2 n = ___________; n →∞ 3 n + 2 n +1(3)计算: lim1 n2 + 2 = ___________; (4)若 lim = 1 ,则常数 a = _________; n →∞ 1 + 2 + L + n n →∞ n( n + a n)(6)数列 (5) lim2 n C n + 2C n 2 = _________; n →∞ (n + 1) 2 1 的前 n 项和为 S n ,则 lim S n = _________; 2 n →∞ 4n 1(7)若常数 b 满足 | b |> 1 ,则 lim (8)设函数 f ( x ) =1 + b + b 2 + L + b n 1 = ___________; n →∞ bn1 ,点 A0 表示坐标原点,点 An ( n, f ( n)) ( n 为正整数) . 1+ x r r 若向量 a n = A0 A1 + A1 A2 + L + An 1 An , θ n 是 a n 与 i 的夹角(其中 i = (1 , 0) ) ,n →∞设 S n = tan θ1 + tan θ 2 + L + tan θ n ,则 lim S n = _________;江苏省高考数学填空题训练 100 题参考答案1. [1,3] ; 2. (1,+∞) ; 3. 6 ; 4. 3 ; 5. 3 ; . . . . . 9. (3,1) ; .xx6. {1,0,1} ; . 11. .7. [1,3] ; 8. (1, 2 ) ; . .10. 2 (不唯一,一般的 a , a > 1 均可) . ;2 1 lg(1 + x) + lg(1 x) ; 3 312. (0,2) ; 13. . .33 ; 14. [ 3 , 3 ] ; 15. {x | x ≥ 3 或 x = 1 }; 16. (3,3) ; 17. (∞,1] ; . . . . 421. 3 或 1 ; . 22. kπ + .18. .2 1 ,1 ; 19. ,1 ; 20. (2,9) ; . . 13 2 3π 7π (k ∈Z ) ; , kπ + 8 8 23. .3 1 1 1 1 2 ; 24. ; 25. 7 ; 26. ; 27. ; 28. ; 29. 2 2 2 ; 30. 6 ; . . . . . . . 22 7 2 2 232. 2 ; . 33. 5 2 ; . 34. 2 + i ; . 35. 6 ; 36. 3 ; 37. 95 ; . . . 38. 765 ; .31.90°; .39. ,3 ; 40. 5n + 3 1 ; 41. 64 ; 42. ; 43. x y + 1 = 0 ; 44. ( ∞,1] U ,+∞ ; . . . . . . 2 n 3 4 n8 3()2145. 34 ; .46.1 或 7 ; .47. .9π ; 48.8; . 3253. .49.5; .50. 10, . 5 7 5 7 U 2 ,10 ; 2 51. m < 5 或 6 < m < 9 ; 52. m a ; . .x2 a p y 2 = 1 ; 54. F (2,0) ; 55.90°; 56. ; . . . 9 257.②③; 58. . .3 π ; 59. ; 60. 5 ; 61.m<5 或 5<m<6 或 6<m<9; 62.792; 63.10; 64.8; . . . . . . 3 369.32; 70.28; 71. 8 ; . . . 72. 540 ; . 73.242; .65.10; 66.6; 67.90; 68.260; . . . . 74. . 3 33 5100 1 10 4 ; 75. ; 76. ;77.4; 78.加法、减法、乘法、除法; 79. x < x < 3 ; . . . . . 2 21 9 4 82. [ 2,4) ; 83.1; . . 84. 2 n ; . 85. 2 n+1 2 ; .80. y = log 2 x , x ∈ [ 2,32] ; 81. ( 2,3) ; . .86.11; 87. (∞,2) U ( 2,+∞) ; 88.10; 89. . . . .3 ;90.8; 91.0 或 1 或-1;92. x = 1 ;93.(-2,2]; . . . . 2 1, 94.1, . n 1 a , 1 a 100. . (1)a = 0, a = 1, a ≠ 0且 a ≠ 1.;95.-20;96.( . .1 ar (1 + r ) 5 3 2 , 2) ∪ (2 , + ∞) ;97.4; 98. ;99. p . . . 5 2 4 (1 + r ) 11 3 1 1 ; (2)3; (3)2; (4)2; (5) ; (6) ; (7) ; (8)1 6 2 2 b 1。

高考数学试卷(含答案解析)

高考数学试卷(含答案解析)

江苏省高考数学试卷一.填空题1.(5分)已知集合A={1, 2}, B={a, a2+3}.若A∩B={1}, 则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为, 则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.8.(5分)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=.10.(5分)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=.13.(5分)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD 上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx, sinx), =(3, ﹣), x ∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为, 两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.18.(16分)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l没入水中部分的长度.19.(16分)对于给定的正整数k, 若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立, 则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”, 又是“P(3)数列”, 证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0, b∈R)有极值, 且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a 的取值范围.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP ⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【必做题】25.如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k 次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2020•江苏)已知集合A={1, 2}, B={a, a2+3}.若A ∩B={1}, 则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1, 2}, B={a, a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法, 是基础题, 解题时要认真审题, 注意交集定义及性质的合理运用.2.(5分)(2020•江苏)已知复数z=(1+i)(1+2i), 其中i是虚数单位, 则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式, 考查了推理能力与计算能力, 属于基础题.3.(5分)(2020•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品, 产量分别为200, 400, 300, 100件.为检验产品的质量, 现用分层抽样的方法从以上所有的产品中抽取60件进行检验, 则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为, 再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件, 而抽取60辆进行检验, 抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致, 按照一定的比例, 即样本容量和总体容量的比值, 在各层中进行抽取.4.(5分)(2020•江苏)如图是一个算法流程图:若输入x的值为, 则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=, 不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图, 模拟程序是解决此类问题的常用方法, 注意解题方法的积累, 属于基础题.5.(5分)(2020•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式, 属于基础题6.(5分)(2020•江苏)如图, 在圆柱O1O2内有一个球O, 该球与圆柱的上、下底面及母线均相切, 记圆柱O1O2的体积为V1, 球O的体积为V2, 则的值是.【分析】设出球的半径, 求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R, 则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法, 考查空间想象能力以及计算能力.7.(5分)(2020•江苏)记函数f(x)=定义域为D.在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率是.【分析】求出函数的定义域, 结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0, 得﹣2≤x≤3,则D=[﹣2, 3],则在区间[﹣4, 5]上随机取一个数x, 则x∈D的概率P==, 故答案为:【点评】本题主要考查几何概型的概率公式的计算, 结合函数的定义域求出D, 以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2020•江苏)在平面直角坐标系xOy中, 双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q, 其焦点是F1, F2, 则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程, 得到P, Q坐标, 求出焦点坐标, 然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=, 双曲线渐近线方程为:y=x, 所以P(, ), Q(, ﹣), F1(﹣2, 0).F2(2, 0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用, 考查计算能力.9.(5分)(2020•江苏)等比数列{a n}的各项均为实数, 其前n项为S n, 已知S3=, S6=, 则a8=32.【分析】设等比数列{a n}的公比为q≠1, S3=, S6=, 可得=, =, 联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=, S6=, ∴=, =,解得a1=, q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式, 考查了推理能力与计算能力, 属于中档题.10.(5分)(2020•江苏)某公司一年购买某种货物600吨, 每次购买x吨, 运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小, 则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x, 利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用, 考查了推理能力与计算能力, 属于基础题.11.(5分)(2020•江苏)已知函数f(x)=x3﹣2x+e x﹣, 其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1, ] .【分析】求出f(x)的导数, 由基本不等式和二次函数的性质, 可得f(x)在R上递增;再由奇偶性的定义, 可得f(x)为奇函数, 原不等式即为2a2≤1﹣a, 运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1, ].【点评】本题考查函数的单调性和奇偶性的判断和应用, 注意运用导数和定义法, 考查转化思想的运用和二次不等式的解法, 考查运算能力, 属于中档题.12.(5分)(2020•江苏)如图, 在同一个平面内, 向量, , 的模分别为1, 1, , 与的夹角为α, 且tanα=7, 与的夹角为45°.若=m+n(m, n∈R), 则m+n=3.【分析】如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.可得cosα=, sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m, n ∈R), 即可得出.【解答】解:如图所示, 建立直角坐标系.A(1, 0).由与的夹角为α, 且tanα=7.∴cosα=, sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m, n∈R),∴=m﹣n, =0+n,解得n=, m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式, 考查了推理能力与计算能力, 属于中档题.13.(5分)(2020•江苏)在平面直角坐标系xOy中, A(﹣12, 0), B(0, 6), 点P在圆O:x2+y2=50上.若≤20, 则点P的横坐标的取值范围是[﹣5, 1] .【分析】根据题意, 设P(x0, y0), 由数量积的坐标计算公式化简变形可得2x0+y0+5≤0, 分析可得其表示表示直线2x+y+5≤0以及直线下方的区域, 联立直线与圆的方程可得交点的横坐标, 结合图形分析可得答案.【解答】解:根据题意, 设P(x0, y0), 则有x02+y02=50, =(﹣12﹣x0, ﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0, 表示直线2x+y+5≤0以及直线下方的区域,联立, 解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5, 1],故答案为:[﹣5, 1].【点评】本题考查数量积的运算以及直线与圆的位置关系, 关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2020•江苏)设f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n ∈N*}, 则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数, 在区间[0, 1)上, f(x)=, 其中集合D={x|x=, n∈N*}, 分析f(x)的图象与y=lgx图象交点的个数, 进而可得答案.【解答】解:∵在区间[0, 1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1, 2)上, f(x)=, 此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2, 3)上, f(x)的图象与y=lgx有且只有一个交点;区间[3, 4)上, f(x)的图象与y=lgx有且只有一个交点;区间[4, 5)上, f(x)的图象与y=lgx有且只有一个交点;区间[5, 6)上, f(x)的图象与y=lgx有且只有一个交点;区间[6, 7)上, f(x)的图象与y=lgx有且只有一个交点;区间[7, 8)上, f(x)的图象与y=lgx有且只有一个交点;区间[8, 9)上, f(x)的图象与y=lgx有且只有一个交点;在区间[9, +∞)上, f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断, 函数的图象和性质, 转化思想, 难度中档.二.解答题15.(14分)(2020•江苏)如图, 在三棱锥A﹣BCD中, AB⊥AD, BC⊥BD, 平面ABD⊥平面BCD, 点E、F(E与A、D不重合)分别在棱AD, BD上, 且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G, 连结FG、EG使得FG∥BC, 则EG∥AC, 利用线面垂直的性质定理可知FG⊥AD, 结合线面垂直的判定定理可知AD ⊥平面EFG, 从而可得结论.【解答】证明:(1)因为AB⊥AD, EF⊥AD, 且A、B、E、F四点共面, 所以AB∥EF,又因为EF⊊平面ABC, AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G, 连结FG、EG使得FG∥BC, 则EG∥AC,因为BC⊥BD, 所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD, 所以FG⊥AD,又因为AD⊥EF, 且EF∩FG=F,所以AD⊥平面EFG, 所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定, 考查空间想象能力, 考查转化思想, 涉及线面平行判定定理, 线面垂直的性质及判定定理, 注意解题方法的积累, 属于中档题.16.(14分)(2020•江苏)已知向量=(cosx, sinx), =(3, ﹣), x∈[0, π].(1)若∥, 求x的值;(2)记f(x)=, 求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣, 问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx, sinx), =(3, ﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0, π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0, π],∴x+∈[, ],∴﹣1≤cos(x+)≤,当x=0时, f(x)有最大值, 最大值3,当x=时, f(x)有最小值, 最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质, 属于基础题17.(14分)(2020•江苏)如图, 在平面直角坐标系xOy中, 椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2, 离心率为,两准线之间的距离为8.点P在椭圆E上, 且位于第一象限, 过点F1作直线PF1的垂线l1, 过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1, l2的交点Q在椭圆E上, 求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c, 由椭圆的准线方程x=±, 则2×=8, 即可求得a和c的值, 则b2=a2﹣c2=3, 即可求得椭圆方程;(2)设P点坐标, 分别求得直线PF2的斜率及直线PF1的斜率, 则即可求得l2及l1的斜率及方程, 联立求得Q点坐标, 由Q在椭圆方程, 求得y02=x02﹣1, 联立即可求得P点坐标;方法二:设P(m, n), 当m≠1时, =, =, 求得直线l1及l1的方程, 联立求得Q点坐标, 根据对称性可得=±n2, 联立椭圆方程, 即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==, 则a=2c, ①椭圆的准线方程x=±, 由2×=8, ②由①②解得:a=2, c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0, y0), 则直线PF2的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k2=﹣, 直线l2的方程y=﹣(x+1),联立, 解得:, 则Q(﹣x0, ), 由P, Q在椭圆上, P, Q的横坐标互为相反数, 纵坐标应相等, 则y0=,∴y02=x02﹣1,则, 解得:, 则,又P在第一象限, 所以P的坐标为:P(, ).方法二:设P(m, n), 由P在第一象限, 则m>0, n>0,当m=1时, 不存在, 解得:Q与F 1重合, 不满足题意,当m≠1时, =, =,由l 1⊥PF1, l2⊥PF2, 则=﹣, =﹣,直线l1的方程y=﹣(x+1), ①直线l2的方程y=﹣(x﹣1), ②联立解得:x=﹣m, 则Q(﹣m, ),由Q在椭圆方程, 由对称性可得:=±n2,即m2﹣n2=1, 或m2+n2=1,由P(m, n), 在椭圆方程, , 解得:, 或, 无解,又P在第一象限, 所以P的坐标为:P(, ).【点评】本题考查椭圆的标准方程, 直线与椭圆的位置关系, 考查直线的斜率公式, 考查数形结合思想, 考查计算能力, 属于中档题.18.(16分)(2020•江苏)如图, 水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm, 容器Ⅰ的底面对角线AC的长为10cm, 容器Ⅱ的两底面对角线EG, E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水, 水深均为12cm.现有一根玻璃棒l, 其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中, l的一端置于点A处, 另一端置于侧棱CC1上, 求l没入水中部分的长度;(2)将l放在容器Ⅱ中, l的一端置于点E处, 另一端置于侧棱GG1上, 求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 过N作NP∥MC, 交AC于点P, 推导出CC1⊥平面ABCD, CC1⊥AC, NP⊥AC, 求出MC=30cm, 推导出△ANP∽△AMC, 由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N, 过点N 作NP⊥EG, 交EG于点P, 过点E作EQ⊥E1G1, 交E1G1于点Q, 推导出EE1G1G为等腰梯形, 求出E1Q=24cm, E1E=40cm, 由正弦定理求出sin∠GEM=, 由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M, 玻璃棒与水面的交点为N, 在平面ACM中, 过N作NP∥MC, 交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱, ∴CC1⊥平面ABCD,又∵AC⊂平面ABCD, ∴CC1⊥AC, ∴NP⊥AC,∴NP=12cm, 且AM2=AC2+MC2, 解得MC=30cm,∵NP∥MC, ∴△ANP∽△AMC,∴=, , 得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M, 玻璃棒与水面的交点为N,在平面E1EGG1中, 过点N作NP⊥EG, 交EG于点P,过点E作EQ⊥E1G1, 交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台, ∴EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形, 画出平面E1EGG1的平面图,∵E1G1=62cm, EG=14cm, EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=, sin∠EGM=sin∠EE1G1=, cos,根据正弦定理得:=, ∴sin, cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=, ∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法, 考查空间中线线、线面、面面间的位置关系等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.19.(16分)(2020•江苏)对于给定的正整数k, 若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立, 则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n }既是“P (2)数列”, 又是“P (3)数列”, 证明:{a n }是等差数列.【分析】(1)由题意可知根据等差数列的性质, a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n , 根据“P (k )数列”的定义, 可得数列{a n }是“P (3)数列”;(2)由“P (k )数列”的定义, 则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , 变形整理即可求得2a n =a n ﹣1+a n +1, 即可证明数列{a n }是等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1, 公差为d, 则a n =a 1+(n ﹣1)d,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:由数列{a n }是“P (2)数列”则a n ﹣2+a n ﹣1+a n +1+a n +2=4a n , ① 数列{a n }是“P (3)数列”a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n , ②由①可知:a n ﹣3+a n ﹣2+a n +a n +1=4a n ﹣1, ③a n ﹣1+a n +a n +2+a n +3=4a n +1, ④由②﹣(③+④):﹣2a n =6a n ﹣4a n ﹣1﹣4a n +1,整理得:2a n =a n ﹣1+a n +1,∴数列{a n }是等差数列.【点评】本题考查等差数列的性质, 考查数列的新定义的性质, 考查数列的运算, 考查转化思想, 属于中档题.20.(16分)(2020•江苏)已知函数f (x )=x 3+ax 2+bx +1(a >0, b ∈R )有极值, 且导函数f′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式, 并写出定义域;(2)证明:b2>3a;(3)若f(x), f′(x)这两个函数的所有极值之和不小于﹣, 求a 的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b, 进而再求导可知g′(x)=6x+2a, 通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣, 从而f(﹣)=0, 整理可知b=+(a>0), 结合f(x)=x3+ax2+bx+1(a>0, b∈R)有极值可知f′(x)=0有两个不等的实根, 进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27), 结合a>3可知h(a)>0, 从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣, 利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2, 进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣, 因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b, g′(x)=6x+2a,令g′(x)=0, 解得x=﹣.由于当x>﹣时g′(x)>0, g(x)=f′(x)单调递增;当x<﹣时g′(x)<0, g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0, 即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0, b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0, 即a2﹣+>0, 解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3, 所以h(a)>0, 即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1, x2是y=f(x)的两个极值点, 则x1+x2=, x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x), f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3, 所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0, 解得a≤6,所以a的取值范围是(3, 6].【点评】本题考查利用导数研究函数的单调性、极值, 考查运算求解能力, 考查转化思想, 注意解题方法的积累, 属于难题.二.非选择题, 附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2020•江苏)如图, AB为半圆O的直径, 直线PC切半圆O于点C, AP⊥PC, P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB, 即可证明.【解答】证明:(1)∵直线PC切半圆O于点C, ∴∠ACP=∠ABC.∵AB为半圆O的直径, ∴∠ACB=90°.∵AP⊥PC, ∴∠APC=90°.∴∠PAC=90°﹣∠ACP, ∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理, 考查了推理能力与计算能力, 属于中档题.[选修4-2:矩阵与变换]22.(2020•江苏)已知矩阵A=, B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2, 求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律, 代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x, y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0, y0),则=, 即x0=2y, y0=x,∴x=y0, y=,∴, 即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换, 属于中档题.[选修4-4:坐标系与参数方程]23.(2020•江苏)在平面直角坐标系xOy中, 已知直线l的参数方程为(t为参数), 曲线C的参数方程为(s为参数).设P为曲线C上的动点, 求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程, 代入距离公式化简得出距离d关于参数s的函数, 从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时, d取得最小值=.【点评】本题考查了参数方程的应用, 属于基础题.[选修4-5:不等式选讲]24.(2020•江苏)已知a, b, c, d为实数, 且a2+b2=4, c2+d2=16, 证明ac+bd≤8.【分析】a2+b2=4, c2+d2=16, 令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.代入ac+bd化简, 利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2), 即可得出.【解答】证明:∵a2+b2=4, c2+d2=16,令a=2cosα, b=2sinα, c=4cosβ, d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64, 当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质, 考查了推理能力与计算能力, 属于中档题.【必做题】26.(2020•江苏)已知一个口袋有m个白球, n个黑球(m, n∈N*, n≥2), 这些球除颜色外全部相同.现将口袋中的球随机的逐个取出, 并放入如图所示的编号为1, 2, 3, …, m+n的抽屉内, 其中第k次取出的球放入编号为k的抽屉(k=1, 2, 3, …, m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, E(X)是X的数学期望, 证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球, 则p=p(A2)=P (A 2|A1)P(A1)+P(A2|)P(), 由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为, …, , P(x=)=,k=n, n+1, n+2, …, n+m, 从而E(X)=()=, 由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为, …, ,P(x=)=, k=n, n+1, n+2, …, n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率的求法, 考查离散型随机变量的分布列、数学期望等基础知识, 考查推理论证能力、运算求解能力、空间想象能力, 考查数形结合思想、化归与转化思想, 是中档题.25.(2020•江苏)如图, 在平行六面体ABCD﹣A1B1C1D1中, AA1⊥平面ABCD, 且AB=AD=2, AA1=, ∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内, 过A作Ax⊥AD, 由AA1⊥平面ABCD, 可得AA1⊥Ax, AA1⊥AD, 以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A, B, C, D, A1, C1的坐标, 进一步求出, , , 的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量, 再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值, 进一步得到正弦值.【解答】解:在平面ABCD内, 过A作Ax⊥AD,∵AA1⊥平面ABCD, AD、Ax⊂平面ABCD,∴AA1⊥Ax, AA1⊥AD,以A为坐标原点, 分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2, AA1=, ∠BAD=120°,∴A(0, 0, 0), B(), C(, 1, 0), D(0, 2, 0),A1(0, 0, ), C1().=(), =(), , .(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由, 得, 取x=, 得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为, 则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角, 训练了利用空间向量求空间角, 是中档题.。

(完整)高考数学填空题100题.

(完整)高考数学填空题100题.

江苏省高考数学填空题训练100题1.设集合}4|||}{<=x x A ,}034|{2>+-=x x x B ,则集合A x x ∈|{且=∉}B A x I __________; 2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________; 3.已知m ba ==32,且211=+ba ,则实数m 的值为______________; 4.若0>a ,9432=a,则=a 32log ____________; 5.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________; 6.已知)(x f y =是定义在R 上的奇函数,当),0(+∞∈x 时,22)(-=xx f , 则方程0)(=x f 的解集是____________________;7.已知)78lg()(2-+-=x x x f 在)1,(+m m 上是增函数,则m 的取值范围是________________;8.已知函数x x x f 5sin )(+=,)1,1(-∈x ,如果0)1()1(2<-+-a f a f ,则a 的取值范围是____________; 9.关于x 的方程aa x-+=535有负数解,则实数a 的取值范围是______________; 10.已知函数)(x f 满足:对任意实数1x ,2x ,当2`1x x <时,有)()(21x f x f <,且)()()(2121x f x f x x f ⋅=+.写出满足上述条件的一个函数:=)(x f _____________;11.定义在区间)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,则=)(x f ______________;12.函数122)(2+++=x x x x f (1->x )的图像的最低点的坐标是______________;13.已知正数a ,b 满足1=+b a ,则abab 2+的最小值是___________; 14.设实数a ,b ,x ,y 满足122=+b a ,322=+y x ,则by ax +的取值范围为______________;15.不等式032)2(2≥---x x x 的解集是_________________; 16.不等式06||2<--x x (R x ∈)的解集是___________________; 17.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式2)(≤+x x xf 的解集是_________________;18.若不等式2229xx a x x +≤≤+在]2,0(∈x 上恒成立,则a 的取值范围是___________; 19.若1>a ,10<<b ,且1)12(log >-x b a ,则实数x 的取值范围是______________;20.实系数一元二次方程022=+-b ax x 的两根分别在区间)1,0(和)2,1(上,则b a 32+的取值范围是_____________;21.若函数()m x x f ++=ϕωcos 2)(图像的一条对称轴为直线8π=x ,且18-=⎪⎭⎫⎝⎛πf ,则实数m 的值等于____; 22.函数⎪⎭⎫⎝⎛-=x y 24sin π的单调递增区间是_______________________; 23.已知52)tan(=+βα,414tan =⎪⎭⎫ ⎝⎛-πβ,则=⎪⎭⎫ ⎝⎛+4tan πα__________;24.已知()542sin =-απ,⎪⎭⎫⎝⎛∈ππα2,23,则=-+ααααcos sin cos sin ___________;25.函数()()010cos 520sin 3-++=x x y 的最大值是____________;26.若224sin 2cos -=⎪⎭⎫⎝⎛-παα,则ααsin cos +的值为___________; 27.若()51cos =+βα,()53cos =-βα,则=⋅βαtan tan ___________; 28.如果4||π≤x ,那么函数x x x f sin cos )(2+=的最小值是___________;29.函数34cos 222sin )(+⎪⎭⎫⎝⎛++=x x x f π的最小值是___________; 30.已知向量)sin ,1(θ=a ρ,)cos ,1(θ=b ρ,则||b a ρρ+的最大值为_________; 31.若非零向量a ρ与b ρ满足||||b a b a ρρρρ-=+,则a ρ与b ρ的夹角大小为_________; 32.已知向量)1,(n a =ρ,)1,(-=n b ρ,若b a ρρ-2与b ρ垂直,则=||a ρ_________;33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1=a ,4π=B ,△ABC 的面积2=S ,那么△ABC 的外接圆直径为__________;34.复数i z +=31,i z -=12,则=⋅211z z __________; 35.若复数iia 213++(R a ∈,i 为虚数单位)是纯虚数,则实数a 的值为_________; 36.若C z ∈,且1|22|=-+i z ,则|22|i z --的最小值是__________; 37.等差数列{}n a 的前n 项之和为n S ,若31710a a -=,则19S 的值为_________;38.已知数列{}n a 中,601-=a ,31+=+n n a a ,那么||||||3021a a a +++Λ的值为_________;39.首项为24-的等差数列,从第10项起为正数,则公差d 的取值范围是_________;40.已知一个等差数列的前五项之和是120,后五项之和是180,又各项之和是360,则此数列共有______项;40.已知数列{}n a 的通项公式为5+=n a n ,从{}n a 中依次取出第3,9,27,…,n3,…项,按原来的顺序排成一个新的数列,则此数列的前n 项和为______________;41.在正项等比数列{}n a 中,1a ,99a 是方程016102=+-x x 的两个根,则605040a a a ⋅⋅的值为_______;42.数列{}n a 中,21=a ,12=a ,11112-++=n n n a a a (2≥n ),则其通项公式为=n a __________; 43.如果直线l 与直线01=-+y x 关于y 轴对称,那么直线l 的方程是________________;44.若平面上两点)1,4(-A ,)1,3(-B ,直线2+=kx y 与线段AB 恒有公共点,则k 的取值范围是________; 45.已知△ABC 的顶点)4,1(A ,若点B 在y 轴上,点C 在直线x y =上,则△ABC 的周长的最小值是______;46.设过点)22,2(的直线的斜率为k ,若422=+y x 上恰有三个点到直线l 的距离等于1,则k 的值是__________;47.直线01=+-y x 与0122=--y x 的两条切线,则该圆的面积等于_________; 48.已知),(y x P 为圆1)2(22=+-y x 上的动点,则|343|-+y x 的最大值为______;49.已知圆4)3(22=+-y x 和过原点的直线kx y =的交点为P 、Q ,则||||OQ OP ⋅的值为________;50.已知1F 、2F 为椭圆13610022=+y x 的两个焦点,),(00y x P 为椭圆上一点, 当021>⋅PF PF 时,0x 的取值范围为________________;51.当m 满足___________时,曲线161022=-+-m y m x 与曲线19522=-+-my m x 的焦距相等; 52.若椭圆122=+n y m x (0>>n m )和双曲线122=-by a x (0>a ,0>b )有相同的焦点1F ,2F , 点P 是两条曲线的一个交点,则||||21PF PF ⋅的值为__________; 53.若双曲线经过点)3,6(,且渐近线方程是x y 31±=,则该双曲线方程是__________________;54.一个动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必经过点__________; 55.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为1A 、1B ,则=∠11FB A ___________;D CB A 56.长度为a 的线段AB 的两个端点A 、B 都在抛物线px y 22=(0>p ,p a 2>)上滑动,则线段AB 的中点M 到y 轴的最短距离为___________; 57.已知直线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥β,则m ∥n ;②若m ∥α,n ⊥α,则m ⊥n ;③若m ⊥a ,m ∥β,则α⊥β. 以上命题中正确的是_____________;(写出所有正确命题序号)58.已知一个平面与正方体的12条棱所成的角均为θ,则=θsin _________;59.已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成二面角等于__________; 60.正三棱柱111C B A ABC -的各棱长都为2,E 、F 分别是AB 、11C A 的中点,则EF 的长为________; 61.从0,1,2,3,4中每次取出不同的三个数字组成三位数,这些三位数的个位数之和为_________; 62.某小组有4个男同学和3个女同学,从这小组中选取4人去完成三项不同的工作,其中女同学至少2人,每项工作至少1人,则不同的选派方法的种数为__________;63.有n 个球队参加单循环足球比赛,其中2个队各比赛了三场就退出了比赛,这两队之间未进行比赛,这样到比赛结束共赛了34场,那么=n ________;64.一排共8个座位,安排甲,乙,丙三人按如下方式就座,每人左、右两边都有空位,且甲必须在乙、丙之间,则不同的坐法共有__________种;65.现有6个参加兴趣小组的名额,分给4个班级,每班至少1个,则不同的分配方案共___________种; 66.有3种不同的树苗需要种植在一条直道的一侧,相邻的两棵树不能是同一种树苗,若第一棵种下的是甲种树苗,那么第5棵树又恰好是甲种树苗的种法共有__________种; 67.从集合}20,,3,2,1{Λ中选3个不同的数,使这3个数成递增的等差数列,则这样的数列共有_______组; 68.用5种不同的颜色给图中A 、B 、C 、D 四个区域涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则有_________种不同的涂色方法;69.圆周上有8个等分圆周的点,以这些点为顶点的钝角三角形或锐角三角形共有________个; 70.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则上楼的方法有___________种;71.46)1()1(x x -+展开式中3x 的系数是____________;72.若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为____________;73.55443322105)12(x a x a x a x a x a a x +++++=-,则=++++||||||||||54321a a a a a ________;74.若1001002210100)1()1()1()12(-++-+-+=+x a x a x a a x Λ,则=++++99531a a a a Λ__________;75.盒中有4个白球,5个红球,从中任取3个球,则抽出1个白球和2个红球的概率是_________; 76.从1,2,…,9这九个数中,随机取2个不同的数,则这两个数的和为偶数的概率是________; 77.设集合}3,2,1{=I ,I A ⊆,若把满足I A M =Y 的集合M 叫做集合A 的配集,则}2,1{=A 的配集有_______个;78.设M 是一个非空集合,f 是一种运算,如果对于集合M 中的任意两个元素p ,q ,实施运算f 的结果仍是集合M 中的元素,那么说集合M 对于运算f 是“封闭”的,已知集合},,2|{Q b a b a x x M ∈+==, 若定义运算f 分别为加法、减法、乘法和除法(除数不为零)四种运算,则集合M 对于运算f 是“封闭”的有_______________________;(写出所有符合条件的运算名称)79.的定义符号运算⎪⎩⎪⎨⎧<-=>=0,10,00,1sgn x x x x ,则不等式xx x sgn )12(2->+的解集是__________________;80.我们将一系列值域相同的函数称为“同值函数”,已知22)(2+-=x x x f ,]2,1[-∈x ,试写出)(x f 的一个“同值函数”___________________;(除一次、二次函数外)81.有些计算机对表达式的运算处理过程实行“后缀表达式”,运算符号紧跟在运算对象的后面,按照从左到右的顺序运算,如表达式7)2(*3+-x ,其运算为3,x ,2,—,*,7,+,若计算机进行运算)3(x -,x ,2,—,*,lg ,那么使此表达式有意义的x 的范围为____________; 82.设][x 表示不超过x 的最大整数(例如:5]5.5[=,6]5.5[-=-,则不等式06][5][2≤+-x x 的解集为_______________________;83.对任意a ,R b ∈,记⎩⎨⎧<≥=b a b b a a b a ,,},max{ .则函数}1,1max{)(++-=x x x f (R x ∈)的最小值是__________;84.对于数列}{n a ,定义数列}{1n n a a -+为数列{}n a 的“差数列”.若21=a ,}{n a 的“差数列”的通项为n2,则数列{}n a 的前n 项和=n S _____________;85.对于正整数n ,定义一种满足下列性质的运算“*”:(1)21*1=;(2)121*1*)1(++=+n n n ,则用含n 的代数式表示=1*n _____________;86.若)(n f 为12+n (*N n ∈)的各位数字之和,如1971142=+,17791=++,则17)14(=f .)()(1n f n f =,))(()(12n f f n f =,…,))(()(1n f f n f k k =+,*N k ∈,则=)8(2008f __________;87.如果圆222k y x =+至少覆盖函数kxx f πsin3)(=的图像的一个最大值与一个最小值,则k 的取值范围是________________;88.设),(y x P 是曲线192522=+y x 上的点,)0,4(1-F ,)0,4(2F ,则||||21PF PF +最大值是________;89.已知)2,1(A ,)4,3(B ,直线0:1=x l ,0:2=y l 和013:3=-+y x l . 设i P 是i l (3,2,1=i )上与A ,B 两点距离平方和最小的点, 则△321P P P 的面积是_________;90.如右图将网格中的三条线段沿网格线上下或左右平移, 组成一个首尾相连的三角形,则三条线段一共至少需要移动__________格; 91.已知集合}0|{=-=a x x M ,}01|{=-=ax x N , 若N N M =I ,则实数a 的值是_____________;92.对于任意的函数)(x f y =,在同一坐标系里,)1(-=x f y 与)1(x f y -=的图像关于__________对称; 93.若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值范围是_____________; 94.数列1,a ,2a ,3a ,…,1-n a,…的前n 项和为___________________;95.在△ABC 中,5=a ,8=b ,060=C ,则CA BC ⋅的值等于_________;96.设平面向量)1,2(-=a ρ,)1,(-=λb ρ,若a ρ与b ρ的夹角为钝角,则λ的取值范围是_______________;97.与圆3)5(:22=++y x C 相切且在坐标轴上截距相等的直线有________条;98.某企业在今年年初贷款a ,年利率为r ,从今年末开始,每年末偿还一定金额,预计5年还清,则每年应偿还的金额为________________; 99.过抛物线px y 22=(p 为常数且0≠p )的焦点F 作抛物线的弦AB ,则⋅等于_________; 100.(有关数列极限的题目)(1)计算:=+∞→1lim 33n C n n __________; (2)计算:=+-++∞→112323lim n n nn n ___________; (3)计算:=++++∞→n n n Λ212lim 2___________;(4)若1)(1lim=-+∞→n a n n n ,则常数=a _________; (5)=++-∞→222)1(2lim n C C n n n n _________; (6)数列⎭⎬⎫⎩⎨⎧-1412n 的前n 项和为n S ,则=∞→n n S lim _________; (7)若常数b 满足1||>b ,则=++++-∞→n n n bb b b 121lim Λ___________; (8)设函数xx f +=11)(,点0A 表示坐标原点,点))(,(n f n A n (n 为正整数). 若向量n n n A A A A A A a 12110-+++=Λ,n θ是n a 与i ρ的夹角(其中)0,1(=i ρ),设n n S θθθtan tan tan 21+++=Λ,则=∞→n n S lim _________;江苏省高考数学填空题训练100题参考答案1.]3,1[; 2.),1(+∞; 3.6; 4.3; 5.3-; 6.}1,0,1{-; 7.]3,1[; 8.)2,1(; 9.)1,3(-; 10.x 2(不唯一,一般的xa ,1>a 均可); 11.)1lg(31)1lg(32x x -++; 12.)2,0(; 13.433; 14.]3,3[-; 15.3|{≥x x 或1-=x }; 16.)3,3(-; 17.]1,(-∞; 18.⎥⎦⎤⎢⎣⎡1,132; 19.⎪⎭⎫⎝⎛1,21; 20.)9,2(; 21.3-或1; 22.⎥⎦⎤⎢⎣⎡++87,83ππππk k (Z k ∈); 23.223; 24.71; 25.7; 26.21; 27.21; 28.221-; 29.222-; 30.6;31.90°; 32.2; 33.25; 34.i +2; 35.6-; 36.3; 37.95; 38.765;39.⎥⎦⎤ ⎝⎛3,38; 40.()13235-+nn ; 41.64; 42.n 2; 43.01=+-y x ; 44.⎪⎭⎫⎢⎣⎡+∞--∞,41]1,(Y ;45.34; 46.1或7; 47.329π; 48.8; 49.5; 50.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--10,275275,10Y ; 51.5<m 或96<<m ; 52.a m -; 53.1922=-y x ; 54.)0,2(F ; 55.90°; 56.2pa -; 57.②③; 58.33; 59.3π; 60.5; 61.m<5或5<m<6或6<m<9; 62.792; 63.10; 64.8; 65.10; 66.6; 67.90; 68.260; 69.32; 70.28; 71.8-; 72.540-; 73.242;74.215100-; 75.2110; 76.94;77.4; 78.加法、减法、乘法、除法; 79.⎭⎬⎫⎩⎨⎧<<--34333x x ;80.x y 2log =,]32,2[∈x ; 81.)3,2(; 82.)4,2[; 83.1; 84.n 2; 85.122n +-;86.11; 87.),2()2,(+∞--∞Y ; 88.10; 89.23;90.8; 91.0或1或-1;92.1=x ;93.(-2,2]; 94.⎪⎪⎪⎩⎪⎪⎪⎨⎧≠≠--==.10 ,11,1 ,1,0 ,1a a a a a a n且;95.-20;96.) , 2()2 , 21(∞+⋃-;97.4; 98.1)1()1(55-++r r ar ;99.243p -100.(1)61;(2)3;(3)2;(4)2;(5)23;(6)21;(7)11--b ;(8)1。

高考数学椭圆填空题题集(附答案)

高考数学椭圆填空题题集(附答案)

椭圆填空题11、(1)离心率e=35,一条准线方程为x=503的椭圆的标准方程为________________;(2)短轴端点与焦点间的距离等于5,一条准线的方程是y=254,且中心在原点的椭圆的方程为___________________。

2、(1)椭圆x y 22259+=1上有一点P 到右焦点的距离为1,则P 的坐标为_______; (2)AB 是过椭圆x y 2249131+=的左焦点的弦,且两端点A 、B 的横坐标之和为-7,则AB =____________。

3、椭圆的中心在原点,一个焦点为F (0,6),中心到准线的距离为10,则椭圆方程为___。

4、椭圆的中心在原点,短轴端点到焦点的距离是6,一条准线方程是y=9,则椭圆方程为_____________.5、已知椭圆()x y b -+=19122的一条准线方程是x=112,则b= 。

6、(1)已知椭圆x 24+y 2=1上点P 到右焦点F 的距离为32,则点P 到左准线的距离为______;(2)椭圆x y 225141+=上一点到左、右焦点的距离的比为1:3,则这点到左、右准线的距离分别为_______________。

7、(1)中心在原点,长半轴长与短半轴长的和为92,离心率为0.6的椭圆的方程为________;(2)对称轴是坐标轴,离心率等于32,且过点(2,0)的椭圆的方程是_______。

8、(1)短轴长为6,且过点(1,4)的椭圆标准方程是__________;(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是__________。

9、已知椭圆x a y a2222+=1的焦距为4,则这个椭圆的焦点在_____轴上,坐标是_____。

10、已知椭圆x m y 2241+=的离率为12,则m= 。

11、一个椭圆的中心在原点,焦点在x 轴上,离心率为36,一条准线为x=3,则该椭圆的方程是____.12、椭圆的一个焦点和短轴两端点连成三角形,这个三角形有一个角为120°,则该椭圆的离心率为____.13、椭圆的准线间的距离是焦距的2倍,则它的离心率为____。

2024年全国统一高考数学Ⅰ卷(带答案解析)

2024年全国统一高考数学Ⅰ卷(带答案解析)

2024年全国统一高考数学试卷(新高考Ⅰ)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上。

1.(5分)已知集合A={x|﹣5<x3<5},B={﹣3,﹣1,0,2,3},则A∩B=()A.{﹣1,0}B.{2,3}C.{﹣3,﹣1,0}D.{﹣1,0,2} 2.(5分)若=1+i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)已知向量=(0,1),=(2,x),若⊥(),则x=()A.﹣2B.﹣1C.1D.24.(5分)已知cos(α+β)=m,tanαtanβ=2,则cos(α﹣β)=()A.﹣3m B.﹣C.D.3m5.(5分)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为()A.2πB.3πC.6πD.9π6.(5分)已知函数为f(x)=在R上单调递增,则a的取值范围是()A.(﹣∞,0]B.[﹣1,0]C.[﹣1,1]D.[0,+∞)7.(5分)当x∈[0,2π]时,曲线y=sin x与y=2sin(3x﹣)的交点个数为()A.3B.4C.6D.88.(5分)已知函数为f(x)的定义域为R,f(x)>f(x﹣1)+f(x﹣2),且当x<3时,f(x)=x,则下列结论中一定正确的是()A.f(10)>100B.f(20)>1000C.f(10)<1000D.f(20)<10000二、选择题:本大题共3小题,每小题6分,共计18分。

每小题给出的四个选项中,有多项符合题目要求。

全部选对的得6分,选对但不全得部分分,有选错的得0分。

(多选)9.(6分)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值=2.1,样本方差s2=0.01,已知该种植区以往的亩收入X服从正态分布N(1.8,0.12),假设推动出口后的亩收入Y服从正态分布N(,s2),则()(若随机变量Z服从正态分布N(μ,σ2),则P(Z<μ+σ)≈0.8413)A.P(X>2)>0.2B.P(X>2)<0.5C.P(Y>2)>0.5D.P(Y>2)<0.8(多选)10.(6分)设函数f(x)=(x﹣1)2(x﹣4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f(x2)C.当1<x<2时,﹣4<f(2x﹣1)<0D.当﹣1<x<0时,f(2﹣x)>f(x)(多选)11.(6分)造型可以做成美丽的丝带,将其看作图中的曲线C的一部分,已知C过坐标原点O,且C上的点满足横坐标大于﹣2,到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为4,则()A.a=﹣2B.点(2,0)在C上C.C在第一象限的纵坐标的最大值为1D.当点(x0,y0)在C上时,y0≤三、填空题:本大题共3小题,每小题5分,共计15分。

高考数学选择、填空题专项汇编题(共40套)[附答案]

高考数学选择、填空题专项汇编题(共40套)[附答案]

三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。

高三数学:填空题汇总(含答案解析)

高三数学:填空题汇总(含答案解析)

1.已知O : x2y21y kx2上总存在点 P ,使得过点P 的O.若直线的两条切线互相垂直,则实数 k 的最小值为.【解】因为过点P的O 的两条切线互相垂直,所以点P 到圆心O的距离为2r 2 ,又因为直线y kx 2 上总存在这样的点P,所以圆心O到直线 y k x 2 的距离为2,则22 ,k ;k112 .(23x)50a0a1 x a2 x2a50x50,a0 ,a1, a2, a其中是常数,计算( a0a2a4a50 )2(a1a3a5a49 ) 2=.x 150【解】令得a1a1a2a50 2 3,令x 1 得a1a1a2a502350a50 )2a49 ) 25050( a0a2a4(a1a3a5232313.一个车间为了规定工作定额,需要确定加工零件所花费的时间,为此进行了 5 次试验,收集数据如下:由表中数据,求得线性回归方程y? 0.65 x a?,根据回归方程,预测加工70 个零件所花费的时间为分钟.【答案】1025.在等差数列a n中,若 a100 ,则有 a1 a2a n a1 a2a19 n( n19,且 n N ) 成立.类比上述性质,在等比数列b n中,若 b91,则存在的类似等式为_________________.【答案】b1b2b n b1b2b17 n (n17,且 n N )【解析】等差是加,等比就是乘,由已知,当 19 - n n 时, n10右边-左边等于an 1an 2....a19 n= 19 - 2n a100 ,所以原式成立,当n10时,左边- 右边等于a20 na21 n... a n 2n 19 a 10 0,所以原式成立当为等比数列时,猜想b 1b 2 b nb 1b 2b 17 n ( n 17,且 nN ),当17n n 时 , n 9时,右边/左边=......17 2 n1等式成立,当 17 nn 时 , 即 n9时,右边/左边b n 1b n 2b 17 n b 9=......2 n 171,等式成立。

高考数学三角函数与解三角真题训练100题含参考答案

高考数学三角函数与解三角真题训练100题含参考答案
(1)求 的解析式;
(2)求 在 上的单调增区间.
89.已知函数f(x)=2sin ωx cos ωx+ cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
90.已知向量 , , .
(1)求函数 的最小正周期及 取得最大值时对应的 的值;
(2)在锐角三角形 中,角 、 、 的对边为 、 、 ,若 , ,求三角形 面积的最大值并说明此时该三角形的形状.
A.90°B.60°C.45°D.30°
39.已知函数 的部分图像如图所示,将 图像上所有点的横坐标缩小到原来的 (纵坐标不变),所得图像对应的函数 解析式为()
A. B.
C. D.
40.函数 在 的图象大致为()
A. B.
C. D.
41.已知 , ,则 的值为
A. B. C. D.
42.已知 中,角 , , 所对的边分别为 , , .已知 , , 的面积 ,则 的外接圆的直径为()
19.如图,在扇形OAB中, ,半径OA=2,在 上取一点M,连接OM,过M点分别向线段OA,OB作垂线,垂足分别为E,F,得到一个四边形MEOF.设 ,则四边形MEOF的面积为()
A. B.
C. D.
20.设 , , 为同一平面内具有相同起点的任意三个非零向量,且满足 与 不共线,
, ,则 的值一定等于()
55.在 中, , , ,则 ________.
56.在锐角 中, , , 分别为角 , , 的对边,且 , ,则 面积的取值范围为______.
57.用列举法写出 __________.
58.在△ABC中,∠B=75°,∠C=60°,c=1,则最小边的边长为______________________ .

人教版高考数学模拟填空题专题训练100题含答案

人教版高考数学模拟填空题专题训练100题含答案

人教版高考数学模拟填空题专题训练100题含答案一、填空题1.若3y a b -与24x y a b +是同类项,则2x y -的值为______2.某班甲、乙两个同学在5次模拟测试中,数学的平均成绩都是142分,方差分别是2=5.2s 甲,29.5s =乙.在甲、乙两人中,成绩较稳定的是______. 3.3的相反数是_____________;3-的倒数等于_____________;立方等于它本身的数是_____________.4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均成绩都是9.0环,方差分别是2S =甲2220.65,0.55,0.50,0.45,S S S ===乙丁丙则射击成绩最稳定的是________(填“甲”“乙”“丙”或“丁”).5.已知△ABC 与△DEF 的相似比为2∶3.若△ABC 周长为12,则△DEF 周长为_____. 6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是20.75s =甲,20.65s =乙,20.40s =丙,20.45s =丁,则射箭成绩最稳定的是__.7.在Rt∶ABC 中,∶C =90°,若a =6,b =8,则c =________.8.用不带刻度的直尺和圆规作一个角等于已知角的示意图如图,则可说明=A O B AOB '''∠∠,其中判断COD C O D '''∆∆≌的依据是______.9.若式子111x --在实数范围内有意义,则x 的取值范围是__________. 10.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________. 11.若甲、乙两个街舞团的人数相同,平均身高相同,身高的方差分别为S 甲2=3.5,S 乙2=1.2,则身高更整齐的街舞团是______(填“甲”或“乙”).12.如图,▱ABCD 中,点E 、F 分别在边AD 、BC 上,且BE ∶DF ,若AE =3,则CF=________.13.计算2+(-3)的结果为______.14.计算:(﹣1)2021=______.15.如图,已知直线∶,∶1=120°,则∶的度数是_____°.16.倒数是它本身的数有____,相反数是它本身的数有______.17.如图,在Rt ABC △中,90ACB ∠=︒,D 是AB 的中点,若3CD =,则AB 的长度为__________.18.代数式38x -与3互为相反数,则x =______.19.若a ﹣b =3,ab =5,则7a +4b ﹣3ab ﹣6(56b +a ﹣ab )=_____. 20.如图,在等腰Rt ABC 中,90C ∠=︒,按以下步骤作图:∶分别以点B 和点C 为圆心,以大于12BC 的长为半径作圆,相交于点M 和点N ;∶作直线MN 交AB 于点.D 若6AC =,则BD =______.21.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x=﹣3,则3a+b=_____.22.若多项式3258x x x -+与多项式324210x mx x +-相加后,不含二次项,则m 的值是_______.23.现从-1,0,1,2,3五个数中随机抽出一个数记为m ,将抽出数的相邻较大偶数记为n ,则(m ,n )使得关于x 的不等式组212130x m n x -⎧≤-⎪⎨⎪-≤⎩有解的概率是________.24.若电影院中的5排2号记为(5,2),则7排3号记为__.25.如图,已知∶ABC 中,∶C =90°,则 _____.(请写出一条结论)26.在Rt △ABC 中,∶BAC=90°,AD∶BC ,垂足为点D ,如果AC=6,AB=8,那么AD 的长度为_____.27.已知x 的绝对值是偶数,且-3<x <5,则符合条件的所有x 的值的和是________. 28.(1)把等式3y-6x=2化为y kx b =+的形式为______________.(2)已知函数(2)5y m x m =-+-,如果它是一次函数,则m ________;若此函数为正比例函数,则m ________.29.已知等腰三角形的一条腰长是5,底边长是6,则底边上的高为_____. 30.关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.31.若关于x 的方程21(1)320m m x x ++-+=是一元二次方程,则m 的值是___. 32.若长方形的长是宽的3倍,面积是6,则它的宽是______.33.如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB AC =,27ABC ∠=︒,44BC cm =,则高AD 约为________cm .(结果精确到0.01cm ,参考数据:sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈).34.已知:如图,AC BC ⊥于C ,DE AC ⊥于E ,AD AB ⊥于A ,BC AE =.若10AB =,则AD =_________.35.大于-3且小于4的所有整数的积为___________,和为_______________;36.关于x的一元二次方程(a﹣2)x2﹣2x﹣4+a2=0有一个根是0,则a的值为_____.37.在第二象限到x轴距离为2,到y轴距离为5的点的坐标是___________.38.如图,在地面上离旗杆底部5米的A处,用测角仪测得旗杆顶端C的仰角为60,AD=米,则旗杆BC的高为________米.(结果保留根号)若测角仪的高度为 1.539.把5个棱长为3cm的立方体铅块熔化后,最多能制成___________个棱长为2cm 的立方体铅块.40.有一数值转换器,原理如图所示,若开始输入x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,请你探索第2020次输出的结果是___________.41.一个样本容量为20的样本中,最大值是37,最小值是6.若取组距为5,则可以分为___________组.42.已知一组数据4,13,24的权重分别为1,2,3,则这组数据的加权平均数是________.43.如图,将一块含有30︒角的直角三角板的两个顶点放在作业本两行线上.如果∠=︒,那么2128∠的度数是_______.44.某校400名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,结合表的信息,可得测试分数在69.5~79.5分数段的学生有________名.45.某超市招聘收银员一名,对三名应聘者进行了三项素质测试.下面是三名应聘者的素质测试成绩:公司根据实际需要, 对计算机、商品知识、语言三项测试成绩分别赋予权重4、3、2,则这三人中_______将被录用.46.如图,已知//AB DE ,75ABC ∠=︒,160CDE ∠=︒,则BCD ∠的度数为______________.47.在ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠交AC 于点D ,若点E 为BD 的中点,3CE =,则BE =______,AD =______.48.如图,在平面直角坐标系中,已知直线y =x +1和双曲线1y x=- ,在直线上取一点,记为A 1,过A 1作x 轴的垂线交双曲线于点B 1,过B 1作y 轴的垂线交直线于点A 2,过A 2作x 轴的垂线交双曲线于点B 2,过B 2作y 轴的垂线交直线于点A 3,…,依次进行下去,记点An 的横坐标为an ,若a 1=2,则a 2020=_____.49.根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .50.若20a b +=,则a b +=___________.51.等腰梯形的对角线互相垂直,两底之和为16,那么这个梯形的面积是______. 52.已知226a b ab +=,且0a b >>,则a b a b+-的值是____. 53.如图,在平面直角坐标系中,点A,B,C 的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;…照此规律重复下去,则点P2105的坐标为_______________.54.在平面直角坐标系中,将点P (-9,-5)以原点O 为旋转中心,顺时针旋转90︒,得到点P 1,则点P 1的坐标是___________55.观察下列数据:2-,52,103-,174,265-,…,它们是按一定规律排列的,则依照此规律,第9个数据是_______;56.如图,点A (x 1,y 1)、B (x 2,y 2)都在双曲线(0)k y x x =>上,且214-=x x ,122y y -=;分别过点A 、B 向x 轴、y 轴作垂线段,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析为_________.57.如图,在ABC 中,AB AC =,点A 在反比例函数()00x k xk y >=>,的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD △的面积等于1,则k 的值为______58.把三角形按如图所示的规律拼图案,其中第1个图案中有4个三角形,第2个图案中有6个三角形,第3个图案中有8个三角形,…按此规律排列下去,则第n 个图案中三角形的个数为________个.59.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.60.从2,6,8这三个数中任选两个组成两位数.在组成的所有两位数中任意抽取一个数,这个数恰好能被4整除的概率是_______.61.如图,,PA PB 切∶O 于,A B ,点C 在AB 上,DE 切∶O 于C ,10cm,PO =∶O 的半径为6cm ,则PDE △的周长是_________cm .62.著名的斐波那契数列1、2、3、5、8、13、21、…,其中的第9个数是_____. 63.二次函数2y ax bx =+的图象如图所示,若关于x 的一元二次方程20ax bx m ++=有实数根,则m 的最大值为______.64.如果|1|223(4)343n n x y x y x ----+是关于x 、y 的五次四项式,则n =_____________.65.﹣3.2的相反数是____,倒数是____,绝对值是_____.66.一次函数y =x +6的图象与坐标轴的交点坐标为____________________. 67.∶ABC 和∶FED 中,BE=FC ,∶A=∶D .当添加条件_________时(只需填写一个你认为正确的条件),就可得到∶ABC∶∶DFE ,依据是________.68.如图,在▱ABCD 中,已知∠D =130°,则∠B =___度.69.同一平面内,如果A ∠的两边与D ∠的两边分别平行,且D ∠比A ∠的2倍少30º,那么A ∠=___________º.70.下列语句表示的图形是(只填序号)∶过点O 的三条直线与另条一直线分别相交于点B 、C 、D 三点:_____. ∶以直线AB 上一点O 为顶点,在直线AB 的同侧画∶AOC 和∶BOD :_______. ∶过O 点的一条直线和以O 为端点两条射线与另一条直线分别相交于点B 、C 、D 三点:_________.71.已知∆ABC 的三个顶点为A (-1,-1),B (-1,3),C (-3,-3),将∆ABC 向右平移m (m>0)个单位后,∆ABC 某一边的中点恰好落在反比例函数12y x=(x>0)的图象上,则m 的值为_________.72.若平行四边形的周长为40cm ,对角线AC 、BD 相交于点O ,△BOC 的周长比△AOB 的周长大2cm ,则AB =____cm .73.如图,在平面直角坐标系中,DC=AB,OD=OB ,则点C 的坐标是____________.74.如图,90AOB ∠=︒,将Rt OAB 绕点O 按逆时针方向旋转至Rt OA B '',使点B 恰好落在边A B ''上.已知tan 2B =,5OB =,则BB '=__________.75.若整式(2x 2+mx ﹣12)﹣2(nx 2﹣3x +8)的结果中不含x 项,x 2项,则m 2+n 2=____. 76.下面是“作顶角为 120°的等腰三角形的外接圆”的尺规作图过程.已知:∶ABC ,AB =AC ,∶A =120°.求作:∶ABC 的外接圆.作法:(1)分别以点 B 和点 C 为圆心,AB 的长为半径作弧,两弧的一个交点为 O ;(2)连接 BO ;(3)以 O 为圆心,BO 为半径作∶O .∶O 即为所求作的圆.请回答:该尺规作图的依据是_______.77.函数2(1)1y x =-+向右平移1个单位的解析式为__________.78.从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1、2、3、4、5,6、7、…,当数到4019时对应的手指为_____;当第n 次数到无名指时,数到的数是_____(用含n 的代数式表示).79.如图,在正方形方格纸中,每个小的四边形都是相同的正方形,A B C D 、、、都在格点处,AB 与CD 相交于O ,则OA OC=______.80.若,则_____________________.81.定义运算“※”的运算法则为:6x y xy =-※,则(2)3-=※______.82.关于x 的方程220x x +-=的两个实数根为m ,n ,则2m n -=______. 83.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF 把纸片展平,再一次折叠纸片,使点A 落在EF 上的点'A 处,并使折痕经过点B ,得到折痕BM ,若矩形纸片的宽AB =BM 的长为____________.84.如图所示,两根竖直的电线杆AB 长为6,CD 长为3,AD 交BC 于点E ,则点E 到地面的距离EF 的长是 _________.85.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,……按照此规律继续下去,则S 2019的值为_____.86.“无偿献血,让你我血脉相连”,会宁县某中学有5名教师自愿献血,其中3人血型为O 型,2人血型为A 型,现从他们当中随机挑选2人参与献血,抽到的两人均为O 型血的概率为_________.87.如图,点P 在反比例函数(0)k y x x=>的图象上,连接OP ,作PA x ⊥轴于点A ,PB 为OPA 的中线,若PAB 的面积为1.5,则k 的值为______.88.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为_______.AC BD相交于点O,过点O作OE∶AC交AD于点89.如图,矩形ABCD的对角线,E,若AB=4,BC=8,则AE的长为__________.90.若4x2my n+1与-3x6y2是同类项,则m+n=______.91.如图,已知正方体的棱长为2,则正方体表面上从A1点到C点的最短距离为_______.92.如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有_____个点.参考答案:1.0【分析】根据同类项的定义求出x 、y ,再代入求出即可.【详解】解:∶3y a b -与24x y a b +是同类项,∶3=x +y ,y =2,解得:x =1,∶2x y -=212⨯-=0,故答案为:0.【点睛】本题考查了同类项的定义和求代数式的值,能根据同类项的定义求出x 、y 的值是解此题的关键.2.甲【分析】根据题意两人平均分相同,方差小的成绩更稳定即可得出结果.【详解】解:∵甲乙两人平均成绩都是142分,方差分别是2 5.2s =甲,29.5s =乙,∴22s s <甲乙,∴成绩比较稳定的是甲,故答案为:甲.【点睛】题目主要考查根据方差判断成绩的稳定性,理解当平均数相同时,方差越小,数据越稳定是解题关键. 3. 3- 13- 0,1-,1 【分析】根据只有符号不同的两个数互为相反数、乘积为1的两个数互为倒数、有理数的乘方求解即可.【详解】解:3的相反数是3-,3-的倒数等于13-,立方等于它本身的数是0,1-,1, 故答案为:3-;13-;0,1-,1. 【点睛】本题考查相反数、倒数的定义、有理数的乘方,理解相反数和倒数的定义是解答的关键.4.丁【分析】根据方差的意义可作出判断.【详解】解:∶平均成绩都相同,2222S S S S >>>甲乙丁丙,∶射击成绩最稳定的是丁.故答案为:丁.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.18【分析】由∶ABC 与∶DEF 相似,相似比为2:3,可求得其周长比为:2:3,然后由∶ABC 的周长是12,求得∶DEF 的周长.【详解】解:∶∶ABC 与∶DEF 相似,相似比为2∶3,∶周长比为2∶3,∶∶ABC 的周长是12,∶∶DEF 的周长是18.故答案为18.【点睛】此题考查了相似三角形的性质.此题比较简单,注意相似多边形的周长比等于相似比.6.丙【分析】根据方差的意义比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【详解】解:∶22220.750.650.450.40s s s s =>=>=>=甲乙丁丙 , 射箭成绩的平均数都是8.9环,∶丙的方差最小,∶射箭成绩最稳定的是:丙.故答案为:丙.【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键7.10【详解】根据勾股定理2223664100c a b =+=+=c 为三角形边长,故c=10.8.SSS【分析】观察作图过程,分别是以点O '为圆心,以OC (或OD )为半径作弧,再以C '为圆心,以CD 为半径作弧得到,根据全等三角形的判定定理可得结果【详解】解:由图可得∶A O B '''的得出过程如下:先以点O '为圆心,以OC (或OD )为半径作弧,再以C '为圆心,以CD 为半径作弧,两弧相交于点D连结O D ''并延长,得射线O B ''即得∶A O B '''由作图过程可知:在∶COD 与∶C O D '''中OD O D OC O C CD C D '''''=⎧'⎪=⎨⎪=⎩故COD C O D '''∆∆≌(SSS )故答案为:SSS【点睛】本题考查全等三角形的判定方法,解题的关键是能通过观察图形,理解作图过程 9.1x ≠【分析】由分式有意义的条件可得答案.【详解】解:由题意得:10,x -≠1,x ∴≠故答案为:1x ≠【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键. 10.40°【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∶等腰三角形的顶角为100︒∶这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.11.乙【分析】根据方差的定义,方差越小数据越稳定,判断是哪个街舞团即可.【详解】解:∶S 甲2=3.5>S 乙2=1.2,∶身高更整齐的街舞团是乙,故答案为乙.【点睛】此题主要考查了方差的意义和应用,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 12.3【分析】根据平行四边形的性质得出AD=BC,AD//BC,求出四边形BEDF 是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【详解】解:∶四边形ABCD 是平行四边形,∶AD =BC ,AD ∶BC ,∶BE ∶DF ,∶四边形BEDF 是平行四边形,∶DE =BF ,∶AD -DE =BC -BF ,∶AE =CF ,∶AE =3,∶CF =3.【点睛】本题主要考查平行四边形的性质及应用,熟练掌握性质是解题的关键. 13.-1【分析】根据绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值进行计算即可.【详解】解:2(3)1+-=-.故答案为:1-.【点睛】本题主要考查了有理数的加法,关键是掌握有理数的加法法则.14.-1【分析】根据有理数的乘方计算法则求解即可.【详解】解:()202111-=-,故答案为:-1.【点睛】本题主要考查了有理数的乘方运算,熟知相关计算法则是解题的关键. 15.60°【详解】试题分析:如图,根据平行线的性质:两直线平行,同位角相等,由∶可得∶1=∶3=120°,再根据∶2+∶3=180°,可求得∶2=60°.考点:平行线的性质,邻补角的意义16. 1± 0【分析】根据倒数和相反数的定义解答即可.【详解】∶1的倒数是1,-1的倒数是-1,∶倒数是它本身的数有±1;∶0的相反数是0,∶相反数是它本身的数有0.故答案为±1,0.【点睛】本题考查了倒数和相反数的定义,熟练掌握乘积为1的两个数互为倒数,只有符号不同的两个数是互为相反数是解答本题的关键.17.6【分析】由直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】Rt ABC △,90ACB ∠=︒,AB ∴是斜边又D 是AB 的中点 ∴132CD AB == 6AB ∴=【点睛】本题考查直角三角形斜边上的中线等于斜边的一半,解题的关键是熟练掌握直角三角形的性质.18.53【分析】根据相反数的定义得到38x -+3=0,通过解一元一次方程计算即可.【详解】解:由题意得38x -+3=0,解得x =53, 故答案为:53. 【点睛】此题考查了解一元一次方程,相反数的定义:只有符号不同的两个数是互为相反数,熟记定义是解题的关键.19.18【分析】先化简代数式,直接去括号合并同类项,再把已知数据代入计算即可.【详解】解:7a +4b ﹣3ab ﹣6(56b +a ﹣ab ) =7a +4b ﹣3ab ﹣5b ﹣6a +6ab=a ﹣b +3ab ,∶a ﹣b =3,ab =5,∶原式=3+15=18.故答案为:18.【点睛】本题考查了整式的加减运算,代数式求值,去括号是解题的关键.20.【分析】由作法得MN 垂直平分BC ,MN 交BC 于E 点,如图,则BE CE =,DE ∶BC ,再利用等腰直角三角形的性质得到6BC AC ==,45B ∠=︒,所以3BE =,△BDE 为等腰直角三角形,根据勾股定理即可得出.【详解】解:由作法得MN 垂直平分BC ,MN 交BC 于E 点,如图,BE CE ∴=,DE BC ⊥, ABC 为等腰直角三角形,6BC AC ∴==,45B ∠=︒,3BE ∴=,BDE △为等腰直角三角形,3BE DE ∴==,BD ∴==.故答案为:【点睛】本题主要考查了线段的垂直平分线的作图和性质、等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质是解题的关键.21.672【详解】试题分析:由方程有一根为﹣3,将x=﹣3代入方程ax 2﹣bx ﹣2016=0,整理后得到关于a ,b 的关系式a×(﹣3)2+3b ﹣2016=0,将求出的关系式9a+3b=2016,,代入所求的式子中即可求出3a+b=672.考点:一元二次方程的解22.4【分析】根据题意列出关系式,合并后根据结果不含二次项,即可确定出m 的值.【详解】解:根据题意得:()2323235842109829x x x x mx x x m x -+++-=+-+-, 由结果不含二次项,得到2m-8=0,解得:m=4.故答案为4.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.35【分析】先求不等式组的解集,可得要使不等式组有解,则有31n m ≤-,然后分5种情况解答,即可求解. 【详解】解:212130x m n x -⎧≤-⎪⎨⎪-≤⎩①②,解不等式∶得:31x m ≤-,解不等式∶得:x n ≥,要使不等式组有解,则有31n m ≤-,若m =-1,则n =0,此时不满足31n m ≤-,即此时不等式组无解;若m =0,则n =2,此时不满足31n m ≤-,即此时不等式组无解;若m =1,则n =2,此时满足31n m ≤-,即此时不等式组有解;若m =2,则n =4,此时满足31n m ≤-,即此时不等式组有解;若m =3,则n =4,此时满足31n m ≤-,即此时不等式组有解;∶(m ,n )使得关于x 的不等式组212130x m n x -⎧≤-⎪⎨⎪-≤⎩有解的概率是35. 故答案为:35【点睛】本题主要考查了求不等式的解集,求概率,熟练掌握不等式解集的求法,以及求概率的方法是解题的关键.24.(7,3)【分析】明确对应关系,排在前,号在后,然后解答.【详解】解:若电影院中的5排2号记为(5,2),则7排3号记为(7,3), 故答案为:(7,3).【点睛】本题主要考查了坐标确定位置,在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件,缺一不可.25.∶A +∶B =90°(答案不唯一)【分析】根据直角三角形的性质即可求解.【详解】∶ABC 中,∶C =90°,则∶A +∶B =90°(答案不唯一).故答案为:∶A +∶B =90°(答案不唯一).【点睛】本题考查了直角三角形的性质,直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点).性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.26.4.8【详解】∶∶BAC =90°,AB =8,AC =6,∶BC ,∶AD ∶BC ,∶6×8=AD ×10,解得:AD =4.8.故答案为4.8.27.4【分析】根据题意先确定出所有符合条件的x 的值,然后求和即可.【详解】解:∶x 的绝对值是偶数,且-3<x <5,∶符合条件的所有x 的值为:-2,0,2,4,∶符合条件的所有x 的值的和是20244-+++=,故答案为:4.【点睛】本题考查有理数的加法运算,以及绝对值的定义,理解题意,准确确定出所有符合条件的未知数的值是解题关键.28. y=2x+23≠2 =5【分析】(1)先移项,然后把y 的系数化1即可;(2)自变量系数不为0时,函数为一次函数,常数项为0时,原函数为正比例函数.【详解】解:(1)3y-6x=2,移项得:3y=6x+2,整理得:y=2x+23 ;(2)∶函数(2)5y m x m =-+-是一次函数,∶20m -≠,即m≠2,;若函数(2)5y m x m =-+-是正比例函数,则5﹣m=0,即m=5.故答案为(1)y=2x+23;(2)≠2;=5.【点睛】本题主要考查一次函数的一般形式,一次函数与正比例函数的定义,解此题的关键在于熟练掌握其知识点.29.4【分析】根据等腰三角形的三线合一,知:等腰三角形底边上的高也是底边上的中线.即底边的一半是3,再根据勾股定理,即可求解.【详解】解:根据等腰三角形底边的一半是3,∶4.故答案为:430.m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:∶正比例函数()2y m x =+中,y 随x 的增大而增大,∶2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.31.1【分析】根据一元二次方程的定义求m 的值即可.【详解】∶21(1)320m m x x ++-+=是一元二次方程212m ∴+= 解得1m =±10m +≠1m ∴=故答案为1【点睛】本题主要考查一元二次方程的定义,一定要注意二次项系数不能为0.32【分析】根据题意可得等量关系式:长×宽=面积,然后设宽是x ,那么长是3x ,列方程解答即可.【详解】解:设宽是x ,那么长是3x ,可得方程:36x x ⋅=236x =22x =x =.【点睛】本题考查算术平方根的应用,利用长方形面积得出等式是解题关键.33.11.22【分析】先根据等腰三角形的三线合一性质得到,再利用正切定义求解即可.【详解】解:∶AB AC =,AD BC ⊥,44BC cm =, ∶1222BD CD BC cm ===, ∶在Rt ABD 中,tan AD ABC BD ∠=, ∶()tan 270.512211.22AD BD cm =︒⋅≈⨯=,故答案为:11.22.【点睛】本题考查等腰三角形的性质、解直角三角形的应用,熟练掌握等腰三角形的性质是解答的关键.34.10【分析】先根据直角三角形的性质、同角的余角相等得B EAD ∠=∠,再证明ABC DAE △≌△即可得解. 【详解】解:AC BC ⊥,DE AC ⊥,90C AED ∴∠=∠=︒,90B BAC ∴∠+∠=︒,AD AB ⊥,90BAC EAD ∴∠+∠=︒,B EAD ∴∠=∠,在ABC 与DAE 中,B EAD BC AEC AED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC DAE ASA ≌AD AB ∴=,10AB =,10AD ∴=,故答案为:10.【点睛】此题考查了三角形全等的判定与性质、直角三角形的性质与同角的余角相等等知识,熟练掌握三角形全等的判定与性质是解答此题的关键.35. 0 3【分析】根据题意可以写出大于-3且小于4的所有整数,从而可以求得大于-3且小于4的所有整数的积与和,本题得以解决.【详解】解:∶大于-3且小于4的所有整数是:-2、-1、0、1、2、3,∶大于-3且小于4的所有整数的积为:(-2)×(-1)×0×1×2×3=0,大于-3且小于4的所有整数的和为:(-2)+(-1)+0+1+2+3=3,故答案为:0,3.【点睛】本题考查有理数大小比较,解答本题的关键是明确题意,写出所有符合要求的整数.36.﹣2【分析】把x =0代入方程(a ﹣2)x 2﹣2x ﹣4+a 2=0得﹣4+a 2=0,再解关于a 的方程,然后利用一元二次方程的定义得到a ﹣2≠0,从而确定a 的值.【详解】解:把x =0代入方程(a ﹣2)x 2﹣2x ﹣4+a 2=0得﹣4+a 2=0,解得a =2或a =﹣2,∶a ﹣2≠0,∶a 的值为﹣2.故答案为:﹣2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.37.(-5,2)【详解】试题解析:A 位于第二象限,到x 轴的距离为2,到y 轴的距离为5,则点A 的坐标为(-5,2),故答案为(-5,2).38【分析】利用仰角的定义,即水平线与视线的夹角,得出∶CDE=60°,再利用锐角三角函数tan∶CDE ,求出CE ,再加上BE 即是BC .【详解】解:连接CD ,做DE∶BC 垂足为E ,∶测角仪测得旗杆顶端C 的仰角为60°,∶∶CDE=60°,∶测角仪在离旗杆底部5米的A 处,∶AB=DE=5米, ∶tan∶CDE=5CE CE DE =,32=【点睛】此题主要考查了仰角的定义,以及锐角三角函数的应用,题目比较贴近生活,正确选择正确的三角函数关系,是解决问题的关键.39.16【分析】根据体积不变列式计算即可得答案.【详解】∶铅块熔化前后体积不变,∶5×33÷23=16……7,∶最多能制成16个棱长为2cm 的立方体铅块.故答案为:16【点睛】本题考查立方体的体积公式的灵活应用,抓住熔化前后的体积不变是解题关键.40.1【分析】首先由数值转换器,发现第二次输出的结果是4 为偶数,所以第三次输出的结果为2,第四次为1,第五次为4,第六次为2,…,可得出规律从第二次开始每三次一个循环,根据此规律求出第2020次输出的结果.【详解】由已知要求得出:第一次输出结果为:8,第二次为4,则第三次为2,第四次为1,那么第五次为4,…,所以得到从第二次开始每三次一个循环,(2020−1)÷3=673,所以第2020次输出的结果是1.故答案为:1.【点睛】此题考查了代数式求值,关键是由已知找出规律,从第二次开始每三次一个循环,根据此规律求出第2020次输出的结果.41.7【分析】根据组数=(最大值-最小值)÷组距,进行计算,注意小数部分要进位.【详解】解:∶在样本数据中最大值为37,最小值为6,∶它们的差是37-6=31,∶组距为5,∶31÷5=6.2,故可以分成7组.故答案为:7.【点睛】本题主要考查的是组数的计算,属于基础题,熟练掌握组数的定义“数据分成的组的个数称为组数”,是本题的解题关键.42.17【分析】根据加权平均数的公式可直接进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省高考数学填空题训练100题1.设集合}4|||}{<=x x A ,}034|{2>+-=x x x B ,则集合A x x ∈|{且=∉}B A x I __________; 2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________; 3.已知m ba ==32,且211=+ba ,则实数m 的值为______________; 4.若0>a ,9432=a,则=a 32log ____________; 5.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________; 6.已知)(x f y =是定义在R 上的奇函数,当),0(+∞∈x 时,22)(-=xx f , 则方程0)(=x f 的解集是____________________;7.已知)78lg()(2-+-=x x x f 在)1,(+m m 上是增函数,则m 的取值范围是________________;8.已知函数x x x f 5sin )(+=,)1,1(-∈x ,如果0)1()1(2<-+-a f a f ,则a 的取值范围是____________; 9.关于x 的方程aa x-+=535有负数解,则实数a 的取值范围是______________; 10.已知函数)(x f 满足:对任意实数1x ,2x ,当2`1x x <时,有)()(21x f x f <,且)()()(2121x f x f x x f ⋅=+.写出满足上述条件的一个函数:=)(x f _____________;11.定义在区间)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,则=)(x f ______________;12.函数122)(2+++=x x x x f (1->x )的图像的最低点的坐标是______________;13.已知正数a ,b 满足1=+b a ,则abab 2+的最小值是___________; 14.设实数a ,b ,x ,y 满足122=+b a ,322=+y x ,则by ax +的取值范围为______________;15.不等式032)2(2≥---x x x 的解集是_________________; 16.不等式06||2<--x x (R x ∈)的解集是___________________; 17.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式2)(≤+x x xf 的解集是_________________;18.若不等式2229xx a x x +≤≤+在]2,0(∈x 上恒成立,则a 的取值范围是___________; 19.若1>a ,10<<b ,且1)12(log >-x b a ,则实数x 的取值范围是______________;20.实系数一元二次方程022=+-b ax x 的两根分别在区间)1,0(和)2,1(上,则b a 32+的取值范围是_____________;21.若函数()m x x f ++=ϕωcos 2)(图像的一条对称轴为直线8π=x ,且18-=⎪⎭⎫⎝⎛πf ,则实数m 的值等于____; 22.函数⎪⎭⎫⎝⎛-=x y 24sin π的单调递增区间是_______________________; 23.已知52)tan(=+βα,414tan =⎪⎭⎫ ⎝⎛-πβ,则=⎪⎭⎫ ⎝⎛+4tan πα__________;24.已知()542sin =-απ,⎪⎭⎫⎝⎛∈ππα2,23,则=-+ααααcos sin cos sin ___________;25.函数()()010cos 520sin 3-++=x x y 的最大值是____________;26.若224sin 2cos -=⎪⎭⎫⎝⎛-παα,则ααsin cos +的值为___________; 27.若()51cos =+βα,()53cos =-βα,则=⋅βαtan tan ___________; 28.如果4||π≤x ,那么函数x x x f sin cos )(2+=的最小值是___________;29.函数34cos 222sin )(+⎪⎭⎫⎝⎛++=x x x f π的最小值是___________; 30.已知向量)sin ,1(θ=a ρ,)cos ,1(θ=b ρ,则||b a ρρ+的最大值为_________; 31.若非零向量a ρ与b ρ满足||||b a b a ρρρρ-=+,则a ρ与b ρ的夹角大小为_________; 32.已知向量)1,(n a =ρ,)1,(-=n b ρ,若b a ρρ-2与b ρ垂直,则=||a ρ_________;33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1=a ,4π=B ,△ABC 的面积2=S ,那么△ABC 的外接圆直径为__________;34.复数i z +=31,i z -=12,则=⋅211z z __________; 35.若复数iia 213++(R a ∈,i 为虚数单位)是纯虚数,则实数a 的值为_________; 36.若C z ∈,且1|22|=-+i z ,则|22|i z --的最小值是__________; 37.等差数列{}n a 的前n 项之和为n S ,若31710a a -=,则19S 的值为_________;38.已知数列{}n a 中,601-=a ,31+=+n n a a ,那么||||||3021a a a +++Λ的值为_________;39.首项为24-的等差数列,从第10项起为正数,则公差d 的取值范围是_________;40.已知一个等差数列的前五项之和是120,后五项之和是180,又各项之和是360,则此数列共有______项;40.已知数列{}n a 的通项公式为5+=n a n ,从{}n a 中依次取出第3,9,27,…,n3,…项,按原来的顺序排成一个新的数列,则此数列的前n 项和为______________;41.在正项等比数列{}n a 中,1a ,99a 是方程016102=+-x x 的两个根,则605040a a a ⋅⋅的值为_______;42.数列{}n a 中,21=a ,12=a ,11112-++=n n n a a a (2≥n ),则其通项公式为=n a __________; 43.如果直线l 与直线01=-+y x 关于y 轴对称,那么直线l 的方程是________________;44.若平面上两点)1,4(-A ,)1,3(-B ,直线2+=kx y 与线段AB 恒有公共点,则k 的取值范围是________; 45.已知△ABC 的顶点)4,1(A ,若点B 在y 轴上,点C 在直线x y =上,则△ABC 的周长的最小值是______;46.设过点)22,2(的直线的斜率为k ,若422=+y x 上恰有三个点到直线l 的距离等于1,则k 的值是__________;47.直线01=+-y x 与0122=--y x 的两条切线,则该圆的面积等于_________; 48.已知),(y x P 为圆1)2(22=+-y x 上的动点,则|343|-+y x 的最大值为______;49.已知圆4)3(22=+-y x 和过原点的直线kx y =的交点为P 、Q ,则||||OQ OP ⋅的值为________;50.已知1F 、2F 为椭圆13610022=+y x 的两个焦点,),(00y x P 为椭圆上一点, 当021>⋅PF PF 时,0x 的取值范围为________________;51.当m 满足___________时,曲线161022=-+-m y m x 与曲线19522=-+-my m x 的焦距相等; 52.若椭圆122=+n y m x (0>>n m )和双曲线122=-by a x (0>a ,0>b )有相同的焦点1F ,2F , 点P 是两条曲线的一个交点,则||||21PF PF ⋅的值为__________; 53.若双曲线经过点)3,6(,且渐近线方程是x y 31±=,则该双曲线方程是__________________;54.一个动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必经过点__________; 55.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为1A 、1B ,则=∠11FB A ___________;D CB A 56.长度为a 的线段AB 的两个端点A 、B 都在抛物线px y 22=(0>p ,p a 2>)上滑动,则线段AB 的中点M 到y 轴的最短距离为___________; 57.已知直线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥β,则m ∥n ;②若m ∥α,n ⊥α,则m ⊥n ;③若m ⊥a ,m ∥β,则α⊥β. 以上命题中正确的是_____________;(写出所有正确命题序号)58.已知一个平面与正方体的12条棱所成的角均为θ,则=θsin _________;59.已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成二面角等于__________; 60.正三棱柱111C B A ABC -的各棱长都为2,E 、F 分别是AB 、11C A 的中点,则EF 的长为________; 61.从0,1,2,3,4中每次取出不同的三个数字组成三位数,这些三位数的个位数之和为_________; 62.某小组有4个男同学和3个女同学,从这小组中选取4人去完成三项不同的工作,其中女同学至少2人,每项工作至少1人,则不同的选派方法的种数为__________;63.有n 个球队参加单循环足球比赛,其中2个队各比赛了三场就退出了比赛,这两队之间未进行比赛,这样到比赛结束共赛了34场,那么=n ________;64.一排共8个座位,安排甲,乙,丙三人按如下方式就座,每人左、右两边都有空位,且甲必须在乙、丙之间,则不同的坐法共有__________种;65.现有6个参加兴趣小组的名额,分给4个班级,每班至少1个,则不同的分配方案共___________种; 66.有3种不同的树苗需要种植在一条直道的一侧,相邻的两棵树不能是同一种树苗,若第一棵种下的是甲种树苗,那么第5棵树又恰好是甲种树苗的种法共有__________种; 67.从集合}20,,3,2,1{Λ中选3个不同的数,使这3个数成递增的等差数列,则这样的数列共有_______组; 68.用5种不同的颜色给图中A 、B 、C 、D 四个区域涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则有_________种不同的涂色方法;69.圆周上有8个等分圆周的点,以这些点为顶点的钝角三角形或锐角三角形共有________个; 70.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则上楼的方法有___________种;71.46)1()1(x x -+展开式中3x 的系数是____________;72.若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为____________;73.55443322105)12(x a x a x a x a x a a x +++++=-,则=++++||||||||||54321a a a a a ________;74.若1001002210100)1()1()1()12(-++-+-+=+x a x a x a a x Λ,则=++++99531a a a a Λ__________;75.盒中有4个白球,5个红球,从中任取3个球,则抽出1个白球和2个红球的概率是_________; 76.从1,2,…,9这九个数中,随机取2个不同的数,则这两个数的和为偶数的概率是________; 77.设集合}3,2,1{=I ,I A ⊆,若把满足I A M =Y 的集合M 叫做集合A 的配集,则}2,1{=A 的配集有_______个;78.设M 是一个非空集合,f 是一种运算,如果对于集合M 中的任意两个元素p ,q ,实施运算f 的结果仍是集合M 中的元素,那么说集合M 对于运算f 是“封闭”的,已知集合},,2|{Q b a b a x x M ∈+==, 若定义运算f 分别为加法、减法、乘法和除法(除数不为零)四种运算,则集合M 对于运算f 是“封闭”的有_______________________;(写出所有符合条件的运算名称)79.的定义符号运算⎪⎩⎪⎨⎧<-=>=0,10,00,1sgn x x x x ,则不等式xx x sgn )12(2->+的解集是__________________;80.我们将一系列值域相同的函数称为“同值函数”,已知22)(2+-=x x x f ,]2,1[-∈x ,试写出)(x f 的一个“同值函数”___________________;(除一次、二次函数外)81.有些计算机对表达式的运算处理过程实行“后缀表达式”,运算符号紧跟在运算对象的后面,按照从左到右的顺序运算,如表达式7)2(*3+-x ,其运算为3,x ,2,—,*,7,+,若计算机进行运算)3(x -,x ,2,—,*,lg ,那么使此表达式有意义的x 的范围为____________; 82.设][x 表示不超过x 的最大整数(例如:5]5.5[=,6]5.5[-=-,则不等式06][5][2≤+-x x 的解集为_______________________;83.对任意a ,R b ∈,记⎩⎨⎧<≥=b a b b a a b a ,,},max{ .则函数}1,1max{)(++-=x x x f (R x ∈)的最小值是__________;84.对于数列}{n a ,定义数列}{1n n a a -+为数列{}n a 的“差数列”.若21=a ,}{n a 的“差数列”的通项为n2,则数列{}n a 的前n 项和=n S _____________;85.对于正整数n ,定义一种满足下列性质的运算“*”:(1)21*1=;(2)121*1*)1(++=+n n n ,则用含n 的代数式表示=1*n _____________;86.若)(n f 为12+n (*N n ∈)的各位数字之和,如1971142=+,17791=++,则17)14(=f .)()(1n f n f =,))(()(12n f f n f =,…,))(()(1n f f n f k k =+,*N k ∈,则=)8(2008f __________;87.如果圆222k y x =+至少覆盖函数kxx f πsin3)(=的图像的一个最大值与一个最小值,则k 的取值范围是________________;88.设),(y x P 是曲线192522=+y x 上的点,)0,4(1-F ,)0,4(2F ,则||||21PF PF +最大值是________;89.已知)2,1(A ,)4,3(B ,直线0:1=x l ,0:2=y l 和013:3=-+y x l . 设i P 是i l (3,2,1=i )上与A ,B 两点距离平方和最小的点, 则△321P P P 的面积是_________;90.如右图将网格中的三条线段沿网格线上下或左右平移, 组成一个首尾相连的三角形,则三条线段一共至少需要移动__________格; 91.已知集合}0|{=-=a x x M ,}01|{=-=ax x N , 若N N M =I ,则实数a 的值是_____________;92.对于任意的函数)(x f y =,在同一坐标系里,)1(-=x f y 与)1(x f y -=的图像关于__________对称; 93.若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值范围是_____________; 94.数列1,a ,2a ,3a ,…,1-n a,…的前n 项和为___________________;95.在△ABC 中,5=a ,8=b ,060=C ,则CA BC ⋅的值等于_________;96.设平面向量)1,2(-=a ρ,)1,(-=λb ρ,若a ρ与b ρ的夹角为钝角,则λ的取值范围是_______________;97.与圆3)5(:22=++y x C 相切且在坐标轴上截距相等的直线有________条;98.某企业在今年年初贷款a ,年利率为r ,从今年末开始,每年末偿还一定金额,预计5年还清,则每年应偿还的金额为________________; 99.过抛物线px y 22=(p 为常数且0≠p )的焦点F 作抛物线的弦AB ,则⋅等于_________; 100.(有关数列极限的题目)(1)计算:=+∞→1lim 33n C n n __________; (2)计算:=+-++∞→112323lim n n nn n ___________; (3)计算:=++++∞→n n n Λ212lim 2___________;(4)若1)(1lim=-+∞→n a n n n ,则常数=a _________; (5)=++-∞→222)1(2lim n C C n n n n _________; (6)数列⎭⎬⎫⎩⎨⎧-1412n 的前n 项和为n S ,则=∞→n n S lim _________; (7)若常数b 满足1||>b ,则=++++-∞→n n n bb b b 121lim Λ___________; (8)设函数xx f +=11)(,点0A 表示坐标原点,点))(,(n f n A n (n 为正整数). 若向量n n n A A A A A A a 12110-+++=Λ,n θ是n a 与i ρ的夹角(其中)0,1(=i ρ),设n n S θθθtan tan tan 21+++=Λ,则=∞→n n S lim _________;江苏省高考数学填空题训练100题参考答案1.]3,1[; 2.),1(+∞; 3.6; 4.3; 5.3-; 6.}1,0,1{-; 7.]3,1[; 8.)2,1(; 9.)1,3(-; 10.x 2(不唯一,一般的xa ,1>a 均可); 11.)1lg(31)1lg(32x x -++; 12.)2,0(; 13.433; 14.]3,3[-; 15.3|{≥x x 或1-=x }; 16.)3,3(-; 17.]1,(-∞; 18.⎥⎦⎤⎢⎣⎡1,132; 19.⎪⎭⎫⎝⎛1,21; 20.)9,2(; 21.3-或1; 22.⎥⎦⎤⎢⎣⎡++87,83ππππk k (Z k ∈); 23.223; 24.71; 25.7; 26.21; 27.21; 28.221-; 29.222-; 30.6;31.90°; 32.2; 33.25; 34.i +2; 35.6-; 36.3; 37.95; 38.765;39.⎥⎦⎤ ⎝⎛3,38; 40.()13235-+nn ; 41.64; 42.n 2; 43.01=+-y x ; 44.⎪⎭⎫⎢⎣⎡+∞--∞,41]1,(Y ;45.34; 46.1或7; 47.329π; 48.8; 49.5; 50.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--10,275275,10Y ; 51.5<m 或96<<m ; 52.a m -; 53.1922=-y x ; 54.)0,2(F ; 55.90°; 56.2pa -; 57.②③; 58.33; 59.3π; 60.5; 61.m<5或5<m<6或6<m<9; 62.792; 63.10; 64.8; 65.10; 66.6; 67.90; 68.260; 69.32; 70.28; 71.8-; 72.540-; 73.242;74.215100-; 75.2110; 76.94;77.4; 78.加法、减法、乘法、除法; 79.⎭⎬⎫⎩⎨⎧<<--34333x x ;80.x y 2log =,]32,2[∈x ; 81.)3,2(; 82.)4,2[; 83.1; 84.n 2; 85.122n +-;86.11; 87.),2()2,(+∞--∞Y ; 88.10; 89.23;90.8; 91.0或1或-1;92.1=x ;93.(-2,2]; 94.⎪⎪⎪⎩⎪⎪⎪⎨⎧≠≠--==.10 ,11,1 ,1,0 ,1a a a a a a n且;95.-20;96.) , 2()2 , 21(∞+⋃-;97.4; 98.1)1()1(55-++r r ar ;99.243p -100.(1)61;(2)3;(3)2;(4)2;(5)23;(6)21;(7)11--b ;(8)1。

相关文档
最新文档