高考数学填空题的五种解题技巧.doc

合集下载

高考数学填空题答题套路和技巧

高考数学填空题答题套路和技巧

高考数学填空题答题套路和技巧考试答题,对分数影响最为关键的就是答案的正确性。

下面是为大家整理的高考数学填空题答题套路和技巧相关内容,以供参考,一起来看看!高考数学填空题答题套路和技巧1、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。

3、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

4、等价转化法通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。

5、图像法借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。

文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

6、构造法在解题时有时需要根据题目的具体情况,来设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。

高考数学答题规范1、答题工具答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。

禁止使用涂改液、修正带或透明胶带改错。

必须用0.5毫米黑色墨水签字笔作答,作图题可先用铅笔绘出,确认后,再用0.5毫米黑色墨水签字笔描清楚。

2、答题规则与程序①先填空题,再做解答题;②先填涂再解答;③先易后难。

3、答题位置按题号在指定的答题区域内作答,如需对答案进行修改,可将需修改的内容划去,然后紧挨在其上方或其下方写出新的答案,修改部分在书写时与正文一样,不能超出该题答题区域的黑色矩形边框,否则修改的答案无效。

4、解题过程及书写格式要求关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。

填空题的解法大全

填空题的解法大全

填空题的解法1.填空题的特征:填空题是不要求写出计算或推理过程,只需要将结论直接写出的“求解题”.填空题与选择题也有质的区别:第一,填空题没有备选项,因此,解答时有不受诱误干扰之好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活.从历年高考成绩看,填空题得分率一直不是很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分.因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫.2.解填空题的基本原则:解填空题的基本原则是“小题不能大做”,基本策略是“巧做”.解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法、合情推理法等.3.【方法要点展示】方法一直接法:直接法就是从题干给出的条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,直接得出结论.这种策略多用于一些定性的问题,是解填空题最常用的策略.这类填空题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法.例1【湖南省怀化市2019届3月第一次模拟】已知双曲线:的左、右焦点分别为、,第一象限内的点在双曲线的渐近线上,且,若以为焦点的抛物线:经过点,则双曲线的离心率为_______.【解析】由题意,双曲线的渐近线方程为,焦点为,,可得,①又,可得,即为,②由,联立①②可得,,由为焦点的抛物线:经过点,可得,且,即有,即,由,可得,解得例2 【江西省南昌市2019届第一次模拟】若对任意,函数总有零点,则实数的取值范围是__________.【解析】∵函数总有零点,∴对任意恒成立,∴,记在上单调递减,∴,∴,故答案为:例3 已知椭圆C :x 24+y 23=1的左,右焦点分别为F 1,F 2,椭圆C 上点A 满足AF 2⊥F 1F 2.若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )【解析】 由椭圆方程知c =4-3=1,所以F 1(-1,0),F 2(1,0),因为椭圆C 上点A 满足AF 2⊥F 1F 2,则可设A (1,y 0),代入椭圆方程可得y 20=94,所以y 0=±32. 设P (x 1,y 1),则F 1P →=(x 1+1,y 1),F 2A →=(0,y 0),所以F 1P →·F 2A →=y 1y 0,因为点P 是椭圆C 上的动点,所以-3≤y 1≤3,F 1P →·F 2A →的最大值为332.答案 332例4已知12,F F 分别是双曲线22221x y a b -= (0,0)a b >>的左、右焦点,过()17,0F -的直线l 与双曲线分别交于点,A B (点A 在右支上),若2ABF ∆为等边三角形,则双曲线的方程为__________.【规律总结】直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.【举一反三】1. 【贵州省遵义航天2019届第七次模拟】 已知等比数列,是方程的两实根,则等于____【解析】,为的两根,,则.故答案为:4. 3 .已知复数z =a +(a -1)i(a ∈R ,i 为虚数单位)为实数,则复数z i 在复平面上所对应的点的坐标为________.解析 因为复数z =a +(a -1)i(a ∈R ,i 为虚数单位)为实数,所以a -1=0,解得a =1.所以复数z =1,所以z i =i.所以复数z i 在复平面上所对应的点的坐标为(0,1).方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,特殊数列,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出待求的结论.这样可大大地简化推理、论证的过程.例1已知函数(a R ∈)为奇函数,则=a .【解析】试题分析:函数()f x 的定义域为R ,又因为()f x 为奇函数,所以(0)0f =,即,解得2a =-.例3 如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.【解析】 把四边形ABCD 看成正方形,则P 点为对角线的交点,AC =6,则AP →·AC →=18.答案 18【规律总结】求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.本题中的发现函数过一个定点是本题的运用特值法的前提条件,从而减少了计算量.【举一反三】练习 1 若,则被3除的余数是______.【解析】令,得.分别令和,将得到的两式相加,得.所以.练习 2 如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →,|AD →|=1,则AC →·AD →=________.【解析】不妨取|BD →|=2,则|BC →|=23,∠ADB =π3,∴AC →·AD →=(BC →-BA →)·AD →=BC →·AD →-BA →·AD →=23×1×cos π3+0= 3.练习 3 cos 2α+cos 2(α+120°)+cos 2(α+240°)的值为________________.【解析】令α=0°,则原式=cos 20°+cos 2120°+cos 2240°=32.练习 4 已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.【解析】 此题考查抽象函数的奇偶性,周期性,单调性和对称轴方程,条件多,将各种特殊条件结合的最有效方法是把抽象函数具体化.根据函数特点取f (x )=sin π4x ,再由图象可得(x 1+x 2)+(x 3+x 4)=(-6×2)+(2×2)=-8.答案 -8方法三数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以借助图形的直观性,迅速作出判断,简捷地解决问题,得出正确的结果,Venn图、三角函数线、函数的图象及方程的曲线等,都是常用的图形.例1已知函数f(x)=x|x-2|,则不等式f(2-x)≤f(1)的解集为________.【解析】函数y=f(x)的图象如图,由不等式f(2-x)≤f(1)知,2-x≤2+1,从而得到不等式f(2-x)≤f(1)的解集为[-1,+∞).例2【浙江省温州市2019届2月测试】已知,若对任意的 a∈R,存在∈[0,2] ,使得成立,则实数k的最大值是_____【解析】当0时,即a≤0时,在[0,2]恒成立,∴,此时在[0,2]上单调递增,∴max f(x)max=f(2)=22﹣2a=4﹣2a,∴k≤4-2a对任意的a≤0成立,∴k≤4;当2时,即a≥4,在[0,2]恒成立,∴,此时在[0,2]上单调递减,∴max f(x)min=-f(2)=-22+2a=-4+2a,∴k≤-4+2a对任意的a≥4成立,∴k≤4;当0时,即0<a≤2时,此时在[0,]上单调递减,在[,2] 上单调递增,且在[0,a]恒成立,在[a,2]恒成立,∴max,又-=+2a-4≥0时,即时,max,∴k≤对任意的成立,∴k≤;时,max ,∴k≤对任意的成立,∴k≤;当2时,即2<a <4时,f (x )max ==,∴k≤对任意的2<a <4成立,∴k≤1; 综上所述: k≤;故答案为.例4 【湖南省郴州市一中2009届高三二月月考】点M N 、分别是函数()f x 、()g x 图像上的点,若M N 、关于原点对称,则称M N 、是一对“关联点”.已知()242f x x x =-+-, ()24g x x x =--,则函数()f x 、()g x 图像上的“关联点”有__________ 对.【规律总结】图解法实质上就是数形结合的思想方法在解决填空题中的应用,利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.【举一反三】1. 【山东省潍坊市2019届一模】已知抛物线的焦点为,准线为,过的直线与抛物线及其准线依次相交于、、三点(其中在、之间且在第一象限),若,,则__________.【解析】如图,过M 作MH ⊥l =H ,由|MN |=2|MF |,得|MN |=2|MH |,∴MN 所在直线斜率为,MN 所在直线方程为y (x ),联立,得12x 2﹣20px +3p 2=0.解得:,则|GF |,即p =2.故答案为:2.2 设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域.区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】 作不等式组表示的平面区域,如图所示(△OAB 及其内部),易观察知,所求最小值为点P (1,0)到2x -y =0的距离d =|2×1-0|22+(-1)2=255. 3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是________________________________________________________________________.【解析】 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,∴d 2min =(|3-0-1|12+(-1)2)2=(2)2=2. 最大值为点Q 到点A 的距离的平方,∴d 2max =16.∴取值范围是[2,16].方法四 构造法构造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决,它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决.例1 【重庆市第一中学2019届3月模拟】设是定义在上的函数,其导函数为,若,,则不等式(其中为自然对数的底数)的解集为______.【解析】令g (x )=e x f (x )﹣e x ,则g ′(x )=e x f (x )+e x f ′(x )﹣e x =e x (f (x )+f ′(x )﹣1),∵f (x )+f ′(x )<1,∴f (x )+f ′(x )﹣1<0,∴g ′(x )<0,g (x )在R 上为单调递减函数,∵g (0)=f (0)﹣1=2018﹣1=2017,∴原不等式可化为g (x )>g (0),根据g (x )的单调性得x <0, ∴不等式(其中为自然对数的底数)的解集为,故答案为.例2 如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.【解析】 (1)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.例3 e 416,e 525,e 636(其中e 为自然对数的底数)的大小关系是________. 【解析】 由于e 416=e 442,e 525=e 552,e 636=e 662,故可构造函数f (x )=e xx 2,于是f (4)=e 416,f (5)=e 525,f (6)=e 636. 而f ′(x )=(e x x 2)′=e x ·x 2-e x ·2x x 4=e x (x 2-2x )x 4,令f ′(x )>0得x <0或x >2,即函数f (x )在(2,+∞)上单调递增,因此有f (4)<f (5)<f (6),即e 416<e 525<e 636.例4 已知奇函数()f x 定义域为()()(),00,,'f x -∞+∞为其导函数,且满足以下条件①0x >时,()()3'f x f x x <;②()112f =;③()()22f x f x =,则不等式()224f x x x <的解集为 .【解析】0x >时,令()()()343()()0f x xf x f x g x g x x x '-'=⇒=<,又()f x 为奇函数,所以()g x 为偶函数,因为()()22f x f x =,所以()11111142248f f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,31()14814()4f g ⎛⎫== ⎪⎝⎭,从而()2112()8(||)()||444f x x g x g x g x x <⇒<⇒<⇒>⇒解集为【举一反三】1.设函数为自然对数的底数),当x R ∈时, ()0f x ≥恒成立,则实数m 的取值范围是__________.【解析】由题意可得:恒成立,令,则,令可得:,绘制函数的图像如图所示,满足题意时, 212xy x e =的图像不在的图像的下方,设切点坐标为()00,P x y ,切线方程为:,即:,切线过点2,03⎛⎫ ⎪⎝⎭,则:,解方程可得: 00x =或01x =或043x =-,结合函数图像可得:,即06m e ≤≤.表示为区间形式即[]0,6e .2 已知a =ln 12 013-12 013,b =ln 12 014-12 014,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.【解析】 令f (x )=ln x -x ,则f ′(x )=1x -1=1-x x .当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 013>12 014>12 015>0,∴a >b >c .3 . 已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的投影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________(写出所有正确结论的序号).【解析】 用正方体ABCD —A 1B 1C 1D 1实例说明A 1D 1与BC 1在平面ABCD 上的投影互相平行,AB 1与BC 1在平面ABCD 上的投影互相垂直,BC 1与DD 1在平面ABCD 上的投影是一条直线及其外一点.故①②④正确.方法五 归纳推理法做关于归纳推理的填空题的时候,一般是由题目的已知可以得出几个结论(或直接给出了几个结论),然后根据这几个结论可以归纳出一个更一般性的结论,再利用这个一般性的结论来解决问题.归纳推理是从个别或特殊认识到一般性认识的推演过程,这里可以大胆地猜想.1 观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,若某数m 3按上述规律展开后,发现等式右边含有“2 015”这个数,则m =________.解析 由题意可得第n 个算式的左边是n 3,右边是n 个连续奇数的和,设第n 个算式的第一个数为a n ,则有a 2-a 1=3-1=2,a 3-a 2=7-3=4,…,a n -a n -1=2(n -1),以上n -1个式子相加可得a n -a 1=(n -1)[2+2(n -1)]2,故a n =n 2-n +1,可得a 45=1 981,a 46=2 071,故 2 015在453的展开式中,故m =45. 2 .图中是应用分形几何学做出的一个分形规律图,按照图甲所示的分形规律可得图乙所示的一个树形图,我们彩用 “坐标”来表示图乙各行中的白圈黑圈的个数(横坐标表示白圈的个数,纵坐标表示黑圈的个数)比如第一行记为()0,1,第二行记为()1,2,第三行记为()4,5,照此下去,第四行中白圈与黑圈的“坐标”为_________.【解析】有图甲所示的分形规律,1个白圈分形为2个白圈1个黑圈,1个黑圈分形为2个黑圈1个白圈,记某行白圈x 个,黑圈y 个为(),x y ,则第一行记为()0,1,第二行记为()1,2,第三行记为()4,5,第四行白圈数为,黑圈数为,第四行中白圈与黑圈的“坐标”为()13,14,故答案为()13,14.【规律总结】这类问题是近几年高考的热点.解决这类问题的关键是找准归纳对象.如本题把函数的前几个值一一列举出来.观察前面列出的函数值的规律,归纳猜想一般结论或周期,从而求得问题.【举一反三】1.所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称为完备数、完美数).如:6123=++;28124714=++++;4961248163162124248=++++++++.此外,它们都可以表示为2的一些连续正整数次幂之和.如12622=+,23428222=++,……,按此规律,8128可表示为 .【答案】6712222+++…【解析】因为681282127=⨯,又由1212712n-=-,解得7n =.所以6681282(122)=⨯+++…=6712222+++….2. 【山东省淄博市2019届3月模拟】古代埃及数学中发现有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如,可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得+.形如(n =2,3,4,…)的分数的分解:,按此规律,=_____(n =2,3,4,…).【解析】通过分析题目所给的特殊项,的分解是由两个部分构成,第一个部分是,第二部分是,故=.2 (1)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2,五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.【解析】 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k 2n , ∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.3 用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为________.【解析】观察题图①,共有8根火柴,以后依次增加6根火柴,即构成首项为8,公差为6的等差数列,所以,第n 个“金鱼”图需要火柴棒的根数为6n +2.方法六 正反互推法多选型问题给出多个命题或结论,要求从中选出所有满足条件的命题或结论.这类问题要求较高,涉及图形、符号和文字语言,要准确阅读题目,读懂题意,通过推理证明,命题或结论之间互反互推,相互印证,也可举反例判断错误的命题或结论.例 已知f (x )为定义在R 上的偶函数,当x ≥0时,有f (x +1)=-f (x ),且当x ∈[0,1)时,f (x )=log 2(x +1),给出下列命题:①f (2 013)+f (-2 014)的值为0;②函数f (x )在定义域上为周期是2的周期函数;③直线y =x 与函数f (x )的图象有1个交点;④函数f (x )的值域为(-1,1).其中正确的命题序号有________.【解析】 根据题意,可在同一坐标系中画出直线y =x 和函数f (x )的图象如下:根据图象可知①f (2 013)+f (-2 014)=0正确,②函数f (x )在定义域上不是周期函数,所以②不正确,③根据图象确实只有一个交点,所以正确,④根据图象,函数f (x )的值域是(-1,1),正确.答案 ①③④练习 ①双曲线y 22-x 2=1的渐近线方程为y =±2x ;②命题p :“∀x ∈R +,sin x +1sin x ≥2”是真命题;③已知线性回归方程为y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位;④设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=0.2,则P (-1<ξ<0)=0.6;⑤已知22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式的规律,得到一般性的等式为n n -4+8-n(8-n )-4=2(n ≠4).则正确命题的序号为________(写出所有正确命题的序号).答案 ①③⑤知识方法总结 六招拿下填空题:(一)直接法 (二)特例法 (三)数形结合法 (四)构造法(五)归纳推理法 (六)正反互推法从考试的角度来看,解填空题只要做对就行,不需要中间过程,正因为不需要中间过程,出错的概率大大增加.我们要避免在做题的过程中产生笔误,这种笔误很难纠错,故解填空题要注意以下几个方面:(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确.(2)要尽量利用已知的定理、性质及已有的结论.(3)要重视对所求结果的检验.(4)注意从不同的角度分析问题,从而比较用不同的方法解决题目的速度与准确度,从而快速切题,达到准确解题的目的.填空题的主要特征是题目小,跨度大,知识覆盖面广,形式灵活,突出考查考生准确、严谨、全面、灵活运用知识的能力.近年来填空题作为命题组改革实验的一个窗口,出现了一些创新题,如阅读理解型、发散开放型、多项选择型、实际应用型等,这些题型的出现,使解填空题的要求更高、更严了.。

高考数学解题技巧:五个方法助你迅速解决难题

高考数学解题技巧:五个方法助你迅速解决难题

高考数学解题技巧:五个方法助你迅速解决难题引言:数学是高考中最重要的科目之一,也是许多考生最担心的科目。

在高考数学中,有许多难题需要解答,而留给考生的时间通常是非常有限的。

为了帮助考生们更好地应对数学难题,本文将介绍五种高效的解题方法,帮助你迅速解决难题。

第一部分:精确理解题意1. 仔细阅读和分析题目在解决数学难题之前,首先要仔细地阅读和理解题目。

注意题干中的关键信息,确定问题所涉及的知识点和要求。

同时,还需注意题目给出的条件,以便在解题过程中能够正确应用。

2. 绘制清晰的图示对于几何题和函数题,绘制清晰的图示是解题过程中一项重要的工作。

通过绘图,可以更直观地理解问题,并且可以辅助我们找到解决问题的思路和方法。

第二部分:合理选择解题方法1. 找出问题的特性在解决难题之前,我们需要找出问题的特性。

有些问题可以通过代数方法求解,而有些问题则需要使用几何图形进行分析。

了解问题的特性将指引我们选择合适的解题方法。

2. 运用已学知识和技巧为了迅速解决难题,我们可以运用已学的数学知识和解题技巧。

例如,二次函数问题可以通过求导和二次方程求根公式等方法来解决;几何题可以运用平行线性质和相似三角形的性质等来求解。

第三部分:整体与局部的结合1. 从整体上审视问题有时候,我们在解决难题时会陷入一些困境,很难找到解决办法。

这时,我们可以尝试从整体上审视问题,寻找某种规律或者宏观的思路。

从整体上把握问题,可能会让我们事半功倍。

2. 拆分问题,分解为多个小问题有些数学难题非常复杂,看起来很难下手。

这时,我们可以尝试拆分问题为多个小问题,逐个解决。

通过解决每个小问题,最终可以得到整个问题的解答。

第四部分:巧妙利用已有信息1. 利用已有结论在解题过程中,我们可以灵活利用已有的数学结论。

通过应用已有的结论和定理,可以减少解题的时间和工作量,更快速地获得答案。

2. 利用已有的中间结果有时候,我们在解决一个问题时可能会得到一些中间结果。

高考数学填空题蒙题技巧

高考数学填空题蒙题技巧

高考数学填空题蒙题技巧
高考数学填空题蒙题技巧如下:
1. 排除法。

根据题设和有关知识,排除明显不正确选项。

2. 数形结合法。

根据数量关系的通常表现形式——表格、图像、曲线等,用形作为手段,数作为基础,其直观性一目了然,而且可以把冗长的文字表述简化。

3. 特殊值检验法。

对于具有一般性的数学问题,有时通过特殊值代入验证能快捷、简捷地得出答案。

4. 极限推理法。

有些题目,从一般条件出发不易推出结论,则可以考虑使用极限思维法。

5. 跳跃法。

比如有一道选择题,当中有很多项都是对的,只是其中的一项错了,而你又不知道是那一项错了,那么可以采用跳跃法来得到正确答案。

6. 特征法。

根据试题的特征,如形式、结构、比例、图形、排列、方法等,运用数形结合、数学运算、逻辑推理进行判断或选择。

7. 概率法。

有些题目可以通过计算可能性的大小来帮助判断选项,如计算事件A发生的概率P(A),若P(A) > 1/2则选项A正确。

8. 直接法。

有些题目可以直接根据题目条件得出答案,不需要额外推理或计算。

9. 整体法。

有些题目可以将整个问题看作一个整体,通过整体观察或计算来得出答案。

以上是高考数学填空题蒙题技巧,但请注意,这些技巧不能完全依赖,还是要认真学习和掌握数学知识,提高自己的数学能力。

高考数学万能解题模板总结(高考必备)

高考数学万能解题模板总结(高考必备)

高考数学万能解题模板总结(高考必备)1、选择填空题1)易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2)答题方法选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。

填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

2、解答题答题技巧与模板1)三角变换与三角函数的性质问题一、解题路线图①不同角化同角①降幂扩角①化f(x)=Asin(ωx+φ)+h①结合性质求解。

二、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

①整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。

①求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

①反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

2)解三角形问题一、解题路线图①化简变形;①用余弦定理转化为边的关系;①变形证明。

①用余弦定理表示角;①用基本不等式求范围;①确定角的取值范围。

二、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

①定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

①求结果。

①再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

3)数列的通项、求和问题一、解题路线图①先求某一项,或者找到数列的关系式。

①求通项公式。

①求数列和通式。

二、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

2018届高考文科数学(通用版)选择填空题解题技巧

2018届高考文科数学(通用版)选择填空题解题技巧

2018届高考文科数学(通用版)选择填空题解题技巧选择题是高考试题的三大题型之一,其特点是难度中低、小巧灵活、知识覆盖面广,解题只要结果不看过程。

解选择题的基本策略是充分利用题干和选项信息,先定性后定量,先特殊再一般,先排除后求解,避免“小题大做”。

解答选择题主要有直接法和间接法两大类。

直接法是最基本、最常用的方法,但为了提高解题的速度,我们还要研究解答选择题的间接法和解题技巧。

直接法是最常用的解答选择题方法。

直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择。

涉及概念、性质的辨析或运算较简单的题目常用直接法。

特例法是解答选择题的间接法之一。

通过构造或寻找特殊情况,从而得到解题思路和答案。

特例法适用于一些比较抽象、比较难以直接运算的题目。

但需要注意的是,特例法只能得到部分答案,不能代表所有情况。

在解答选择题时,需要准确地把握题目的特点,提高用直接法解选择题的能力。

同时,在稳的前提下求快,避免“小题大做”,用简便的方法巧解选择题,是建立在扎实掌握基础知识的基础上的。

特例法是解决数学题的一种方法,通过选取特殊情况代入,将问题特殊化或构造满足条件的特殊函数或图形位置,进行判断。

特殊化法适用于含有字母或一般性结论的选择题,特殊情况可能是特殊值、特殊点、特殊位置、特殊数列等。

例如,对于已知O是锐角△XXX的外接圆圆心,∠A=60°,·AB+·AC=2m·AO,求sinCsinB的值,我们可以选取△ABC为正三角形的情况,此时A=B=C=60°,取D为BC的中点,AO=AD,则有AB+AC=2m·AO,化简得到m=3/2.因此,sinCsinB=(√3/2)^2=3/4,答案为A。

需要注意的是,取特例要尽可能简单,有利于计算和推理;若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解。

高考数学填空题的常用解题方法

高考数学填空题的常用解题方法

高考数学填空题的常用解题方法填空题是高考试卷中的三大题型之一,和选择题一样,属于客观性试题.它只要求写出结果而不需要写出解答过程.在整个高考试卷中,填空题的难度一般为中等.不同省份的试卷所占分值的比重有所不同。

1、填空题的类型填空题主要考查学生的基础知识、基本技能以及分析问题和解决问题的能力,具有小巧灵活、结构简单、概念性强、运算量不大、不需要写出求解过程而只需要写出结论等特点.从填写内容看,主要有两类:一类是定量填写,一类是定性填写。

2、填空题的特征填空题不要求写出计算或推理过程,只需要将结论直接的“求解题”.填空题与选择题也有质的区别:第一,填空题没有备选项,因此,解答时有不受诱误干扰的好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。

从历年高考成绩看,填空题得分率一直不很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分。

因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫。

3.解填空题的基本原则解填空题的基本原则是“ 小题不能大做” ,基本策略是“ 巧做”。

解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法等.直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法。

思路解析:本题运用直接法,直接利用等差数列的通项公式判断出数列的项的符号,进而确定前几项的和最小,最后利用等差数列的求和公式求得最小值。

特殊值法在考试中应用起来比较方便,它的实施过程是从殊到一般,优点是简便易行.当暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效。

高考数学考试高分秘诀

高考数学考试高分秘诀

高考数学考试高分秘诀一、合理定位,有舍有得填空题的后几题都是精心构思的新题目,必须认真对待;选择题的不少命题似是而非,难以捉摸;可是,不少学生却一带而过,直奔综合题,造成许多不应有的失误。

提高数学高分几率。

二、了解透彻数学题意,谨防失误,读题时,一定要看清楚。

例如:“两圆相切”,就包括外切和内切,条件缺一不可。

如果数学试题与熟悉的例题相像,绝不可掉以轻心。

冷静对待,是数学高分秘诀的前提。

三、步步为营,稳中求快不少数学计算题的失误,都是因为打草稿时太潦草,匆忙抄到试卷上时又看错了,这样的毛病难以在考试时发现。

正确的做法是:在试卷上列出详细的步骤,不要跳步。

只有少量数学运算才用草稿。

事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,数学高分就没问题。

四、冷静应对在数学考试时难免有些题目一时想不出,千万不要钻牛角尖,因为所有试题包含的知识、能力要求都在考纲范围内,不妨先换一个题目做做,等一会儿往往就会豁然开朗了。

综合题的题目内容长,容易使人心烦,我们不要想一口气吃掉整个题目,先做一个小题,后面的思路就好找了。

1、由易到难根据历年高考数学试卷来看,一般前边的数学题,比较容易入手,但是往后后有些难度,这样的题型结构有利于考生正常的发挥。

我们国家在命题的时候一般遵循由易到难的规律,先让考生慢慢地进入状态,再去慢慢地加大难度。

所以不可不知的高考数学解题技巧之一就是由易到难的做数学试卷,这样可以增加考生信心,更好的发挥。

当然由易到难并不是说从第一题一直做到最后一个,以数学高考题为例,一般数学高考题有三个小高峰:第一个小高峰出现在选择题的最后一题,它的难度属于难题的层次;第二个小高峰是填空题的最后一题,也是比较难的;第三个小高峰出现在大题的最后一题。

2、控制速度高考数学不可不知的解题技巧之二就是控制速度,就是平常用什么样的速度做数学题,高考考试的时候就用什么样的速度,如果高考考试的时候加快做数学试题的速度,否则要是硬要提速,很可能因为速度一加快,反而导致了数学质量下降。

高考数学答题方法与技巧

高考数学答题方法与技巧

高考数学答题方法与技巧一、答题原则答题时,一般遵循如下原则:1.从前向后,先易后难。

通常试题的难易分布是按每一类题型从前向后,由易到难。

因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。

当然,有时也不能机械地按部就班。

中间有难题出现时,可先跳过去,到最后攻它或弃它。

先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先填空题,后解答题。

2.规范答题,分分计较。

一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。

解答时要分步骤(层次)解答,争取步步得分。

解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。

3.得分优先、随机应变。

在答题时掌握的基本原则是“熟题细做,生题慢做,难题粗做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。

4.填充实地,不留空白。

高考阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。

另外每道题都有若干得分点,触到得分点便可给分,未能触到得分点也没有倒扣分的规定。

因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。

5.字迹清晰,合理规划。

这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判(特别是已经实行计算机阅卷的科目),如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。

另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到“前紧后松”而不是“前松后紧”。

特别注意只能在规定位置答题,转页答题不予计分。

二、审题要点审题包括浏览全卷和细读试题两个方面。

一是开考前浏览。

开考前5分钟开始发卷,考生利用发卷至开始答题这段有限的时间,检查卷型是否配套,页码是否齐全,印刷是否清楚,再是看本科有几道大题、几道小题、各题分值、以及题型和答卷说明等,通过答前浏览对全卷有大致的了解,据此统筹安排答题顺序。

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。

高考数学专题(二)填空题

高考数学专题(二)填空题

高考数学专题(二)填空题广州六中高三级高考数学专题复习(二)填空题的解法考前突破高考数学专题复习(二)要点:填空题就是高考题中客观性题型之一,具备小巧有效率,跨度小,覆盖面广,概念性弱,运算量并不大,不须要写下解过程而只需轻易写下结论等特点。

可以存有目的、人与自然地综合一些问题,注重训练我们精确、细致、全面、灵活运用科学知识的能力和基本运算能力。

填空题有两类:一类是定量的,一类是定性的。

填空题大多是定量的,近几年才出现定性型的具有多重选择性的填空题。

填空题大多能够在课本中找出原型和背景,故可以化后归入我们津津乐道的题目或基本题型。

填空题虽然量少(目前只有4条――16分),但不需过程,不设中间分,更易失分,考生的得分率较低,不很理想。

究其原因,考生还不能达到《考试说明》中对解答填空题提出的基本要求:“正确、合理、迅速”。

那么,怎样才能做到“正确、合理、迅速”地解答填空题,为做后面的题赢得宝贵的时间呢?填空题缺少选择支的信息,故解答题的求解思路可以原封不动地移植到填空题上。

但填空题既不用说明理由,又无须书写过程,因而解选择题的有关策略、方法有时也适合于填空题。

下面以一些典型的问题为例,介绍解填空题的几种常用方法与技巧,从中体会到解题的要领:快――运算要快,力戒小题大作;稳――变形要稳,不可操之过急;全――答案要全,力避残缺不齐;活――解题要活,不要生搬硬套;细――审题要细,不能粗心大意。

答疑填空题的常用方法存有:①轻易法:直接从题设条件出发,选用有关定义、定理、公式等直接进行求解而得出结论。

在求解过程中应注意准确计算,讲究技巧。

这是解填空题最常用的方法。

1、在等比数列?an?中,记sn?a1?a2?…?an,未知a1?2s1?1,a4?2s2?1,则公比q=_______.2、点m与点(a4,0)的距离比它与直线x+1=0的距离大1,则点m的轨迹方程就是_______.3、设立圆锥底面圆周上两点a、b间的距离为2,圆锥顶点至直线ab的距离为3,ab和圆锥的轴的距离为1,则该圆锥的体积为________________.ooo4、sin7?cos15sin8的值是_________________.cos7o?sin15osin8osinxcosx5、函数y?的值域就是____________.1?sinx?cosx6、设立函数f(x)?logax(a?0,a?1),函数g(x)??x2?bx?c且142345723741114115f(2?2)?f(2?1)?1,g(x)的图象过点a?4,?5?及b??2,?5?,则26162525166………………………………a=;函数f[g(x)]的定义域为.7、例如图,它满足用户:(1)第n行首尾两数均为n,(2)表的关系式关系相似杨辉三角,则第n行(n≥2)第2个数就是____________________.abz18、定义运算:的模等于x,则?ad?bc,若复数z?x?yi(x,y?r)满足cd11复数z对应的z(x,y)的轨迹方程为;其图形为.第1页(共7页)广州六中低三级中考数学专题备考(二)填空题的数学分析9、若f?x?是以5为周期的奇函数且f??3??1,tan??2,则f?20sin?cos??=.第2页(共7页)广州六中低三级中考数学专题备考(二)填空题的数学分析10、已知函数f(x)在r上连续,且f(x0)?n(n?n*),c4?c4?c4(?1)c4(?1)c②特例法:当填空题暗示结论唯一或者其值为定值时,根据题目的条件、选取某个符合条件的特殊值(或作特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊曲线、特殊方程、特殊模型等等)进行计算或推理的方法。

高考数学填空题做题技巧

高考数学填空题做题技巧

高中数学:填空题的常用解题方法填空题是高考试卷中的三大题型之一,和选择题一样,属于客观性试题.它只要求写出结果而不需要写出解答过程.在整个高考试卷中,填空题的难度一般为中等.不同省份的试卷所占分值的比重有所不同。

1、填空题的类型填空题主要考查学生的基础知识、基本技能以及分析问题和解决问题的能力,具有小巧灵活、结构简单、概念性强、运算量不大、不需要写出求解过程而只需要写出结论等特点.从填写内容看,主要有两类:一类是定量填写,一类是定性填写。

2、填空题的特征填空题不要求写出计算或推理过程,只需要将结论直接的“求解题”.填空题与选择题也有质的区别:第一,填空题没有备选项,因此,解答时有不受诱误干扰的好处,但也有缺乏提示之不足;第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容 (既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。

从历年高考成绩看,填空题得分率一直不很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分。

因此,解填空题要求在“快速、准确”上下功夫,由于填空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫。

3.解填空题的基本原则解填空题的基本原则是“小题不能大做”,基本策略是“巧做”。

解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法等.一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法。

思路解析:本题运用直接法,直接利用等差数列的通项公式判断出数列的项的符号,进而确定前几项的和最小,最后利用等差数列的求和公式求得最小值。

二、特殊值法特殊值法在考试中应用起来比较方便,它的实施过程是从殊到一般,优点是简便易行.当暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效。

高考数学填空题十大解题技巧

高考数学填空题十大解题技巧

高考数学试卷中,填空题排在第二大题,选择题之后,包含4道题目,共20分。

填空题是只要求写出结果不要求计算过程的客观性试题。

填空题跟选择题有许多的共同点:小巧灵活,结构简单运算量不大等特点,考察的知识点范围比较广,根据填空时所填写的内容形式,可以将填空题分成以下几种类型:(1)定量型:要求考生填写数值、数集或数量关系,如方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等;(2)定性型:要求填写的是具有某种性质的对象或者填写给定数学对象的某种性质,如填写给定二次曲线的焦点坐标,离心率等.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格.因此,我们在复习备考时,要理解各个题型所包含的知识点,只有把各个数学知识点掌握住以后才能熟悉做题技巧。

要有合理的分析和判断,要求推理、运算的每一步少算多思将是快速、准确地解答填空题的基本前提。

解答填空题的基本策略是准确、快速、整洁。

这跟做选择题是差不多的,只不过选择题中我们还有选项支可以做参考,填空题更要求我们对知识的灵活运用!因此,研究填空题的解题技巧非常有必要。

准确是解答填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免"超时失分"现象的发生;整洁是保住得分的充分条件,只有把正确的答案整洁的书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。

高考数学填空题一般是基础题或中档题,且绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。

小数老师在这里给大家用几个例题来讲一下解题技巧,高考路上祝大家一臂之力!直接法跟选择题一样,填空题有些题目也是可以通过套用公式定理性质直接求解的,拿到题目后,直接根据题干提供的信息通过变形、推理、运算等过程,直接得到结果。

高考数学填空题的解题方法和技巧

高考数学填空题的解题方法和技巧

填空题的解题方法和技巧
填空题特点:
1.分值高:70分,占整张试卷的44%。

2影响整场考试的发挥
3.不要求写出计算或推理过程,只需将结论直接写出。

填空题解题方法:特殊值法、数型结合法、整体思维法、构造转换法
1.特殊值法:
已知A-B= 60º ,则的值为多少? 一般方法:A-B= 60º,A=B+60º 带入整理计算,原式=√3 特殊值法:令A=90º ,B=30º,带入计算,原式=√3
2.数型结合: 如果不等式x a x x )1(42->-的解集为A ,且}20|{<<⊆x x A ,那么实数a 的取值范围是 。

一般方法:解不等式,根据结果确定a 的取值范围
数型结合法:根据不等式解集的几何意义,作函数
24x x y -=和函数x a y )1(-=的图象(如图)
,从图上容易得出实数a 的取值范围是[)+∞∈,2a 。

下次课内容:
整体思维法、构造转换法。

2024填空题

2024填空题

2024填空题摘要:1.2024 年高考填空题的背景和重要性2.填空题的解题技巧和方法3.如何准备和应对2024 年的高考填空题正文:【1】2024 年高考填空题的背景和重要性高考作为我国选拔人才的重要途径,每年都备受关注。

2024 年高考填空题,作为高考数学、物理、化学等科目的重要组成部分,对于考生的成绩起着举足轻重的作用。

填空题旨在考查考生的基础知识和应用能力,要求考生在有限的时间内迅速找到解题思路,准确填写答案。

因此,对于考生来说,掌握填空题的解题技巧和方法至关重要。

【2】填空题的解题技巧和方法1.仔细阅读题目,理解题意。

对于填空题,考生首先要做的是认真阅读题目,确保自己对题目的已知条件、所求问题和解题要求有一个清晰的认识。

2.提取关键信息,确定解题思路。

在理解题意的基础上,考生需要快速提取题目中的关键信息,根据这些信息确定解题思路。

3.运用相关知识点,进行计算。

在确定解题思路后,考生需要运用相关的知识点和公式进行计算,得出答案。

4.检查答案,确保正确。

在计算出答案后,考生需要对答案进行检查,确保其正确性。

【3】如何准备和应对2024 年的高考填空题1.加强基础知识的学习。

高考填空题主要考查考生的基础知识,因此,考生在备考过程中要加强对基础知识的学习,确保自己对各个知识点有深入的理解。

2.多做练习,提高解题能力。

考生在备考过程中要多做填空题,通过不断的练习,提高自己的解题能力。

3.分析错题,总结经验。

在练习过程中,考生可能会遇到一些错误。

这时候,考生需要认真分析错题,总结经验,避免在考试中再次犯错。

4.注重时间管理,提高解题速度。

高考填空题的答题时间是有限的,因此,考生在备考过程中要注重时间管理,提高自己的解题速度。

【高考复习】教你轻松搞定高考数学填空题

【高考复习】教你轻松搞定高考数学填空题

【高考复习】教你轻松搞定高考数学填空题数学填空题只要求写出结果,不要求写出计算和推理过程,其结果必须是数值准确、形式规范、表达式(数)最简.填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题.解题时,要有合理地分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整.合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求.绝大多数数学填空题都是计算题(尤其是推理和计算题)和概念(属性)判断题。

在回答时,必须根据规则进行实际计算或逻辑推理和判断,解决空白填充问题的基本策略是“精确”、“灵巧”和“速度”,常用的方法有直接法、特化法、数形组合法;等效变换法等方法一、直接法直接法是从问题设置条件出发,运用定义、定理、公式和性质,通过变形、推理和运算过程,直接得出正确结论。

在使用这种方法时,我们应该善于从现象中看到本质,并有意识地采取灵活简单的解决方案适用范围:对于计算型的试题,多通过计算求结果.方法:直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.方法二。

特殊值法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数、特殊角、特殊数列、特殊位置、特殊点、特殊方程、特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.应用范围:特殊值替换法可用于解决尺寸的评价或比较等问题,但应注意的是,该方法仅限于一个结论的空白填充问题。

对于开放式问题或包含多个答案的空白填充问题,不能使用此方法方法点津:空白填充问题的结论是唯一的,或者在问题设置条件下提供的信息意味着答案是一个固定值,这是应用该方法的先决条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学填空题的五种解题技巧
填空题是高考试卷中的三大题型之一,和选择题一样,属于客观性试题.它只要求写出结果而不需要写出解答过程.在整个高考试卷中,填空题的难度一般为中等.不同省份的试卷所占分值的比重有所不同。

1、填空题的类型
填空题主要考查学生的基础知识、基本技能以及分析问题和解决问题的能力,具有小巧灵活、结构简单、概念性强、运算量不大、不需要写出求解过程而只需要写出结论等特点.从填写内容看,主要有两类:一类是定量填写,一类是定性填写。

2、填空题的特征
填空题不要求写出计算或推理过程,只需要将结论直接的“求解题”.填空题与选择题也有质的区别:
第一,填空题没有备选项,因此,解答时有不受诱误干扰的好处,但也有缺乏提示之不足;
第二,填空题的结构往往是在一个正确的命题或断言中,抽出其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。

从历年高考成绩看,填空题得分率一直不很高,因为填空题的结果必须是数值准确、形式规范、表达式最简,稍有毛病,便是零分。

因此,解填空题要求在“快速、准确”上下功夫,由于填
空题不需要写出具体的推理、计算过程,因此要想“快速”解答填空题,则千万不可“小题大做”,而要达到“准确”,则必须合理灵活地运用恰当的方法,在“巧”字上下功夫。

3.解填空题的基本原则
解填空题的基本原则是“小题不能大做”,基本策略是“巧做”。

解填空题的常用方法有:直接法、数形结合法、特殊化法、等价转化法、构造法等.
一、直接法直接法就是从题设条件出发,运用定义、定理、公式、性质、法则等知识,通过变形、推理、计算等,得出正确结论,使用此法时,要善于透过现象看本质,自觉地、有意识地采用灵活、简捷的解法。

思路解析:本题运用直接法,直接利用等差数列的通项公式判断出数列的项的符号,进而确定前几项的和最小,最后利用等差数列的求和公式求得最小值。

二、特殊值法特殊值法在考试中应用起来比较方便,它的实施过程是从殊到一般,优点是简便易行.当暗示答案是一个“定值”时,就可以取一个特殊数值、特殊位置、特殊图形、特殊关系、特殊数列或特殊函数值来将字母具体化,把一般形式变为特殊形式.当题目的条件是从一般性的角度给出时,特例法尤其有效。

思维启迪:题目中给出了△ABC的边和角满足的一个关
系式,由此关系式来确定角C的大小,因此可考虑一些特殊的三角形是否满足关系式,如:等边三角形、直角三角形等,若满足,则可求出此时角C的大小。

思路解析:特殊值法的理论依据是:若对所有值都成立,么对特殊值也成立,我们就可以利用填空题不需要过只需要结果这一“弱点”,“以偏概全”来求值.在解决一些与三角形、四边形等平面图形有关的填空题时,可根据题意,选择其中的特殊图形(如正三角形、正方形)等解决问题。

思维启迪:题目中过点K的直线是任意的,因此m和n 的值是变化的,但从题意看m+n的值是一个定值,故可取一条特殊的直线进行求解。

思路解析:本题在解答中,充分考虑了“直线虽然任意, 但m+n的值却是定值”这一信息,通过取直线的一个特殊位置得到了问题的解,显得非常简单,在求解这类填空题时,就要善于捕捉这样的有效信息,帮助我们解决问题.
三、图象分析法(数形结合法)依据特殊数量关系所对应的图形位置、特征,利用图形直观性求解的填空题,称为图象分析型填空题,这类问题的几何意义一般较为明显。

由于填空题不要求写出解答过程,因而有些问题可以借助于图形,然后参照图形的形状、位置、性质,综合图象的特征,进行直观地分析,加上简单的运算,一般就可以得出正确的答案。

事实上许多问题都可以转化为数与形的结合,利用数形结合法解题既浅显易懂,又能节省时间。

利用数形结合的思想解决问题能很好地考查考生对基础知识的掌握程度及灵活处理问题的能力,此类问题为近年来高考考查的热点内容。

思路解析:本题是数列问题,但由于和方程的根有关系,故可借助数形结合的方法进行求解,因此在解题时,我们要认真分析题目特点,充分挖掘其中的有用信息,寻求最简捷的解法。

思路解析:与函数有关的填空题,依据题目条件,灵活地应用函数图象解答问题,往往可使抽象复杂的代数问题变得形象直观,使问题快速获解。

四、等价转化法将所给的命题进行等价转化,使之成为一种容易理解的语言或容易求解的模式.通过转化,使问题化繁为简、化陌生为熟悉,将问题等价转化成便于解决的问题,从而得出正确的结果。

思维启迪:将问题转化为y=m与y=f(x)有三个不同的交点,再研究三个交点的横坐标之和的取值范围。

思路解析:等价转化法的关键是要明确转化的方向或者说转化的目标.本题转化的关键就是将研究x1+x2+x3的取值范围问题转化成了直线y=m与曲线y=f(x)有三个交点的问题,将数的问题转化成了形的问题,从而利用图形
的性质解决。

五、构造法造型填空题的求解,需要利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到简捷的解决。

它来源于对基础知识和基本方法的积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到过的类似问题中寻找灵感,构造出相应的函数、概率、几何等具体的数学模型,使问题快速解决。

规律方法总结1.解填空题的一般方法是直接法,除此以外,对于带有一般性命题的填空题可采用特例法,和图形、曲线等有关的命题可考虑数形结合法.解题时,常常需要几种方法综合使用,才能迅速得到正确的结果。

2.解填空题不要求求解过程,从而结论是判断是否正确的唯一标准,因此解填空题时要注意如下几个方面:
(1)要认真审题,明确要求,思维严谨、周密,计算有据、准确;
(2)要尽量利用已知的定理、性质及已有的结论;
(3)要重视对所求结果的检验。

相关文档
最新文档