(江苏专用)2020高考数学二轮复习填空题训练综合仿真练(一)
2020年江苏省高考文科科数学仿真模拟试题一(附答案)
2020年江苏省高考文科数学仿真模拟试题一(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( )A .{-1,0,1,2}B .{-1,0,1}C .{-1,0,2}D .{0,1} 2.“sin A =12”是“A =30°”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.下列函数中,既是偶函数又存在零点的是( )A.y=lnxB.21y x =+ C.y=sinx D.y=cosx 4.已知命题p :∀x>2,x 3-8>0,那么¬p 是( ) A .∀x≤2,x 3-8≤0 B .∃x>2,x 3-8≤0 C .∀x>2,x 3-8≤0 D .∃x≤2,x 3-8≤05. 若函数22,0()(),0x x f x g x x -⎧-<=⎨>⎩为奇函数,则f (g (2))=( )A. ﹣2B. ﹣1C. 0D. 26. 从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A.23B.12C.25D.137. 某几何体的三视图如图所示,则该几何体的表面积为( )A. 3+B. 3+C. 2D. 2+8. 已知直线2y kx =-与抛物线24x y =相切,则双曲线2221x k y -=的离心率等于( )A.2B.29. 已知球O 与棱长为2的正方体1111ABCD A B C D -的各面都相切,则平面1ACB 截球O 所得的截面圆与球心O 所构成的圆锥的体积为 ( )B.18C.27D. 5410. 已知函数()sin cos f x x x ωω=-(0ω>),若()3y f x π=+的图象与()6y f x π=-的图象重合,记ω的最小值为0ω,函数0()cos()3g x x πω=-的单调递增区间为 ( )A. 2[,]63k k ππππ++(k Z ∈)B. 27[,]36k k ππππ+++(k Z ∈) C. [,]12232k k ππππ++(k Z ∈) D. 7[,]32122k k ππππ++(k Z ∈) 11. 若x ,y 满足约束条件220330240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,目标函数z ax y =+仅在点(2,0)处取得最小值,则实数a 的取值范围是 ( ) A. 1(2,)2-B. 1100,32(-,)()C. 1(0,)2D. 11(,)32-12. 若函数212[]22(xf x a x e ax ax a R =---+∈()()())在1,12()上有极大值,则a 的取值范围为 ( )A. )eB.)C. (2,eD. (),e +∞二、填空题:本题共4小题,每小题5分,共20分。
(江苏专用)2020高考数学二轮复习填空题训练综合仿真练(三)
综合仿真练(三)1.命题p :∃x ∈R ,x 2+2x +1≤0是________命题(选填“真”或“假”). 解析:由x 2+2x +1=(x +1)2≥0,得∃x ∈R ,x 2+2x +1≤0是真命题. 答案:真2.(2019·徐州中学模拟)设集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =3x},则A ∩B 的子集个数是________.解析:作出单位圆和函数y =3x的图象(图略),可知他们有两个公共点,所以A ∩B 中有两个元素,则A ∩B 有4个子集.答案:43.已知复数z =3-i1+i ,其中i 为虚数单位,则复数z 的模是________.解析:法一:因为z =3-i 1+i ,所以|z |=⎪⎪⎪⎪⎪⎪3-i 1+i =|3-i||1+i|=102= 5.法二:因为z =3-i 1+i =3-i 1-i 2=1-2i ,所以|z |=12+-22= 5.答案: 54.某学校共有师生3 200人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.解析:样本中教师抽160-150=10人,设该校教师人数为n ,则10n =1603 200,所以n =200.答案:2005.如图是给出的一种算法,则该算法输出的t 的值是________.t ←1i ←2While i ≤4t ←t ×i i ←i +1End While Print t解析:当i =2时,满足循环条件,执行循环t =1×2=2,i =3; 当i =3时,满足循环条件,执行循环t =2×3=6,i =4; 当i =4时,满足循环条件,执行循环t =6×4=24,i =5; 当i =5时,不满足循环条件,退出循环,输出t =24. 答案:246.男队有号码1,2,3的三名乒乓球运动员,女队有号码为1,2,3,4的四名乒乓球运动员,现两队各出一名运动员比赛一场,则出场的两名运动员号码不同的概率为________.解析:两队各出一名运动员的基本事件总数n =12,出场的两名运动员号码不同的对立事件是出场的两名运动员号码相同,共有3个基本事件,所以出场的两名运动员号码不同的概率P =1-312=34.答案:347.等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13=________. 解析:由题意及等差数列的性质得5a 7=100,故a 7=20,3a 9-a 13=3(a 1+8d )-(a 1+12d )=2a 7=40.答案:408.将函数f (x )=sin 2x +cos 2x 的图象向右平移φ(φ>0)个单位,可得函数g (x )=sin 2x -cos 2x 的图象,则φ的最小值为________.解析:f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8,g (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8, 故将函数f (x )向右平移π4+k π,k ∈Z 个单位可得g (x )的图象,因为φ>0,故φ的最小值为π4.答案:π49.已知圆锥的底面圆心到某条母线的距离为1,则该圆锥母线的长度取最小值时,该圆锥的体积为________.解析:设圆锥的底面半径为r ,圆锥的高为h ,则有1r 2+1h2=1,而母线长l =r 2+h 2,则l 2=(r 2+h 2)⎝ ⎛⎭⎪⎫1r 2+1h 2≥4,即可得母线最小值为2,此时r =h =2,则体积为13πr 2h =13(2)3π=223π.答案:223π10.(2019·无锡期初)已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan2x 的值是________.解析:因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x 1-tan 2x =-61-9=34. 答案:3411.在Rt △ABC 中,∠C =90°,AC =4,BC =2,D 是BC 的中点,E 是AB 的中点,P 是△ABC (包括边界)内任一点.则AD ―→·EP ―→的取值范围是________.解析:以C 为坐标原点,CB ,CA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则A (0,4),B (2,0),E (1,2),D (1,0),设P (x ,y ),则AD ―→·EP ―→=(1,-4)·(x -1,y -2)=x -4y +7,令z =x -4y +7,则y =14x +7-z 4,作直线y =14x ,平移直线y =14x ,由图象可知当直线y =14x +7-z4,经过点A 时,直线的截距最大,但此时z 最小, 当直线经过点B 时,直线的截距最小,此时z 最大. 即z min =-4×4+7=-9,z max =2+7=9, 即-9≤AD ―→·EP ―→≤9.故AD ―→·EP ―→的取值范围是[-9,9]. 答案:[-9,9]12.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,A ,B 是椭圆的左、右顶点,P是椭圆上不同于A ,B 的一点,直线PA ,PB 的倾斜角分别为α,β,则cos α-βcos α+β=________.解析:由题意可知A (-a,0),B (a,0),设P (x 0,y 0),则k PA ·k PB =y 20x 20-a2,又y 20=b 2-b 2a 2·x 20,所以k PA ·k PB =-b 2a 2,即tan αtan β=-b 2a 2.又e =c a=a 2-b 2a 2=32,所以-b 2a 2=-14,即tan αtan β=-14,所以cos α-βcos α+β=cos αcos β+sin αsin βcos αcos β-sin αsin β=1+tan αtan β1-tan αtan β=35.答案:3513.已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ ―→=23AP ―→+13AC ―→,则|BQ ―→|的最小值是__________.解析:以点A 为坐标原点,AB 为x 轴正半轴,使得C 落在第一象限,建立平面直角坐标系(图略),设P (cos α,sin α),则由AQ ―→=23AP ―→+13AC ―→得,Q 23cos α+12,23sin α+32,故点Q 的轨迹是以D ⎝ ⎛⎭⎪⎫12,32为圆心,23为半径的圆.又BD =7,所以|BQ ―→|的最小值是7-23.答案:7-2314.(2019·盐城中学模拟)已知函数f (x )=1x+a ln x (x ∈(0,e])的最小值是0,则实数a 的取值集合为________.解析:法一:f ′(x )=-1x 2+a x =ax -1x2.当a ≤0时,f ′(x )<0,f (x )在(0,e]上单调递减,f (x )min =f (e)=1e +a ,令1e +a =0,得a =-1e ,满足题意;当0<a ≤1e时,易知x ∈(0,e)时,f ′(x )<0,f (x )在(0,e]上单调递减,f (x )min =f (e)=1e +a ,令1e+a =0,得a =-1e ,不满足题意;当a >1e 时,易知x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )<0,f (x )单调递减,x∈⎝ ⎛⎭⎪⎫1a,e 时,f ′(x )>0,f (x )单调递增,则f (x )min =f ⎝ ⎛⎭⎪⎫1a =a -a ln a ,令a -a ln a =0,得a =e ,满足题意.综上,实数a 的取值集合为⎩⎨⎧⎭⎬⎫-1e ,e .法二:由题意可得①∀x ∈(0,e],f (x )=1x+a ln x ≥0,且②当x ∈(0,e]时,方程1x+a ln x =0有解.由①可得∀x ∈(0,e],ax ln x ≥-1,当a =0时满足题意;当a >0时,需-1a ≤(x ln x )min ;当a <0时,需-1a≥(x ln x )max .令g (x )=x ln x ,x ∈(0,e],则g ′(x )=1+ln x ,由g ′(x )=0得x =1e ,所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0,g (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,e 时,g ′(x )>0,g (x )单调递增,所以g (x )min =g ⎝ ⎛⎭⎪⎫1e =-1e ,又当0<x <1e 时,g (x )<0,所以g (x )max =g (e)=e ,则当a >0时,-1a ≤-1e ,得0<a ≤e;当a <0时,-1a ≥e,得-1e ≤a <0.故可得-1e ≤a ≤e.由②可得a ≠0,且当x ∈(0,e]时,方程-1a =x ln x 有解,则-1a ∈⎣⎢⎡⎦⎥⎤-1e ,e ,易得a ≤-1e或a ≥e.综上可得实数a 的取值集合为⎩⎨⎧⎭⎬⎫-1e ,e . 答案:⎩⎨⎧⎭⎬⎫-1e ,e。
江苏省南京市、盐城市2020届高三年级第二次模拟考试数学试题(含附加题)(含答案)
南京市、盐城市2020届高三年级第二次模拟考试数学2020.03参考公式:圆锥的侧面积公式:S=πrl,其中r 为圆锥底面圆的半径,l 为圆锥的母线长.一、填空题(本大题共14小题,每小题5分,计70分不需写出解答过程,请把答案写在答题卡的指定位置上)1.已知集合A={x|x=2k+1,k ∈Z ),B={x|x(x-5)≤0),则A∩B=__2.已知复数z=1+2i,其中i 为虚数单位,则z 2的模为__3.如图是一个算法流程图,若输出的实数,y 的值为-1,则输入的实数x 的值为___4.某校初三年级共有500名女生,为了了解初三女生1分钟"仰卧起坐"项目训练情况,统计了所有女生1分钟"仰卧起坐"测试数据(单位:个),并绘制了如下频率分布直方图,则1分钟至少能做到30个仰卧起坐的初三女生有____个。
5.从编号为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____.6.已知函数f(x)是定义在R 上的奇函数,且周期为2,当x ∈(0,1]时,()3a f x x =+,则f(a)的值为_____.7.若将函数()sin(2)3f x x π=+的图象沿x 轴向右平移φ(φ≥0)个单位后所得的图象与f(x)的图象关于x 轴对称,则φ的最小值为___8.在△ABC 中,AB =AC =∠BAC=90°,则△ABC 绕BC 所在直线旋转一周所形成的几何体的表面积为_____.9.已知数列(a n }为等差数列,数列{b,}为等比数列,满足{a 1,a 2,a 3}={b 1,b 2,b 3)={a,b,-2},其中a>0,b>0,则a+b 的值为___10.已知点P 是抛物线x 2=4y 上动点,F 是抛物线的焦点,点A 的坐标为(0,-1),则PF PA的最小值为______.11.已知x ,y 为正实数,且xy +2x+4y=41,则x+y 的最小值为_____12.在平面直角坐标系xOy 中,圆C:(x-m)2+y 2=r 2(m>0).已知过原点O 且相互垂直的两条直线l 1和l 2,其中l 1与圆C 相交于A 、B 两点,l 2与圆C 相切于点D.若AB=OD,则直线l 1的斜率为____.13.在△ABC 中,BC 为定长,|2|3||AB AC BC += ,若△ABC 的面积的最大值为2,则边BC 的长为___.14.函数f(α)=e x -x-b(e 为自然对数的底数,b ∈R ),若函数1()(())2g x f f x =-恰有4个零点,则实数b 的取值范围为______.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.(本小题满分14分)如图,三棱锥P-ABC 中,点D,E 分别为AB,BC 的中点,且平面PDE ⊥平面ABC.(1)求证:AC ∥平面PDE;(2)若,求证:平面PBC ⊥平面ABC.16.(本小题满分14分)在△ABC 中,角A,B,C 所对的边分别为a,b,c,且a=bcosC+csinB.(1)求B 的值.(2)设∠BAC 的平分线AD 与边BC 交于点D,已知177AD =,7cos 25A =-,求b 的值17.(本小题满分14分)如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米,为方便游人到小岛观光,从点A 向小岛建三段栈道AB,BD,BE,湖面上的点B 在线段AC 上,且BD,BE 均与圆C 相切,切点分别为D,E,其中栈道AB,BD,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道 .DE记∠CBD 为θ.(1)用θ表示栈道的总长度f(θ),并确定sinθ的取值范围;(2)求当θ为何值时,栈道总长度最短.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率为12且过点.(1)求椭圆C 的方程;(2)已知△BMN 是椭圆C 的内接三角形,①若点B 为椭圆C 的上顶点,原点O 为△BMN 的垂心,求线段MN 的长;②若原点O 为△BMN 的重心,求原点O 到直线MN 距离的最小值.19,(本小题满分16分)已知函数f(x)=x 3-x 2-(a-16)x,g(x)=a|nx,a ∈R .函数()()()f x h x g x x =-的导函数h'(x)在5[,4]2存在零点(1)求实数a 的取值范围;(2)若存在实数a,当x ∈[0,b]时,函数f(x)在x=0时取得最大值,求正实数b 的最大值;(3)若直线l 与曲线y=f(x)和y=g(x)都相切,且l 在y 轴上的截距为-12,求实数a 的值.20.(本小题满分16分)已知无穷数列{a n }的各项均为正整数,其前n 项和为S n ,记T n 为数列{a n }的前a n 项和,即12n a n T a a a =++⋯+.(1)若数列{a n }为等比数列,且a 1=1,S 4=5S 2,求T 3的值;(2)若数列{a n }为等差数列,且存在唯一的正整数n(n≥2),使得2n n T a <求数列{a n }的通项公式;(3)若数列(T n )的通项为(1)2n n n T +=,求证:数列{a n }为等差数列南京市、盐城市2020届高三第二次模拟考试数学附加题2020.03本试卷共40分,考试时间30分钟.21.【选做题】在A,B,C 三小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.选修4—24矩阵与变换已知矩阵1210,2101MN ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦M (1)求矩阵N;(2)求矩阵N 的特征值.B 选修4—41坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为22,12x t y t ⎧⎪=⎪⎨⎪⎪=⎩,(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l极坐标方程为cos(4πρθ-=.若直线1交曲线C 于A,B 两点,求线段AB 的长.C 选终4—5:不等式选讲已知a>0.12a a+-【必做题】第22题,第23题,每题10分,共20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某商场举行有奖促销活动,顾客购买每满400元的商品即可抽奖—次.抽奖规则如下x 抽奖者掷各面标有1~6点数的正方体骰子1次,若挪得点数大于4,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖.已知抽奖箱中装有2个红球与m(m≥2,m ∈N *)个白球,抽奖者从箱中任意摸出2个球,若2个球均为红球,则获得一等奖,若2个球为1个红球和1个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).(1)若m=4,求顾客参加一次抽奖活动获得三等奖的概率;(2)若一等奖可获奖金400元,二等奖可获奖金300元,三等奖可获奖金100元,记顾客一次抽奖所获得的奖金为X,若商场希望X 的数学期望不超过150元,求m 的最小值.23.(本小题满分10分)已知集合A n ={1,2,…n},n ∈N *,n≥2,将A n 的所有子集任意排列,得到一个有序集合组(M 1,M 2,…,M m ),其中m=2n .记集合M k 中元素的个数为a k ,k ∈N *,k≤m,规定空集中元素的个数为0.(1)当n=2时,求a 1+a 2+…+a m 的值;(2)利用数学归纳法证明:不论n(n≥2)为何值,总存在有序集合组(M 1,M 2,…,M m ),满足任意*,1, i i m ∈-N 都有11i i a a +-=.参考答案1.{1,3}2.53.-144.3255.126.07.π28.65π9.5 10.2211.8 12.±25513.2 14.(1,12+ln2)-515.16.-5 17.18.20.21A21B 21C。
2020年高考江苏(专用)全真模拟 数学试题(附答案与全解全析)
2020年高考江苏(专用)全真模拟试题数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:高中全部内容。
一、填空题:本题共14个小题,每题5分,满分70分.1.定义一种集合运算(){|AB x x A B =∈⋃,且()}x A B ∉⋂},设{}|22M x x =-<<,{}|13N x x =<<,则MN 所表示的集合是________.2.已知复数z 满足(1)13i z i +=+,则z =________.3.已知数列{}n a 为等差数列,若159a a a π++=,则28sin()a a +=________ 4.函数()f x =的定义域为_______. 5.已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.6.如图,在ABC V 中,若AB a =u u u v v ,AC b =u u u v v,线段AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP ma nb =+u u u v v v,则m n +=_____.7.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是___________.8.设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为______.9.在长方体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,若其外接球的表面积为16π,则异面直线1BD 与1CC 所成的角的余弦值为__________.10.曲线()x f x xe =在点(1,(1))f 处的切线在y 轴上的截距是_______. 11.定义在R 上的奇函数()f x ,若()1f x +为偶函数,且()12f -=,则()()1213f f +的值等于______.12.根据如图所示算法流程图,则输出S 的值是__.13.已知双曲线()2222:10,0x y C a b a b -=>>的左焦点为F ,圆222:O x y a +=与双曲线的渐近线在第二象限相交于点M (O 为坐标原点),若直线MF 的斜率为ba,则双曲线C 的离心率为______. 14.已知偶函数满足,若在区间内,函数有4个零点,则实数的取值范围_________.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos sin 0b A a B -=. (1)求角A 的大小; (2)已知b =ABC ∆的面积为1,求边a .16.如图,已知PA ⊥平面ABCD ,底面ABCD 是矩形,1PA AB ==,AD =,F 是PB 中点,点E在BC 边上.()f x []2(2)(),1,0()f x f x x f x x -=∈-=且当时,[]13-,()()()log 2a g x f x x =-+a(1)求三棱锥E PAD -的体积; (2)求证:AF PE ⊥;(3)若//EF 平面PAC ,试确定E 点的位置.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,右焦点为F ,以原点O 为圆心,椭圆C 的短半轴长为半径的圆与直线0x y -=相切.(1)求椭圆C 的方程;(2)如图,过定点(2,0)P 的直线l 交椭圆C 于,A B 两点,连接AF 并延长交C 于M ,求证:PFM PFB ∠=∠.18.已知函数()2ln 1f x x x kx =+--.(I )讨论函数()f x 的单调性;(II )若()f x 存在两个极值点()1212,x x x x <,求证:()()210f x f x <<. 19.已知数列{}n a 中,11a =, 且()21232,1n n n na a n n n N n -*-=+≥∈-g . (1)求23,a a 的值及数列{}n a 的通项公式;(2)令()13n n nb n N a -*=∈, 数列{}n b 的前n 项和为n S , 试比较2nS 与n 的大小;(3)令()11n n a c n N n *+=∈+, 数列()221n n c c ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭的前n 项和为n T , 求证: 对任意n N *∈, 都有2n T <. 20.如图所示,某镇有一块空地OAB ∆,其中3OA km =,OB =,AOB 90∠=o 。
江苏省南通市2020届高三二模考前数学综合练习一含附加题含答案
2020届南通市高三二模考前数学综合练习一参考答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1.记复数z=a+bi(i 为虚数单位)的共轭复数为-z =a-bi(a,b 是实数),已知z=2+i ,则-z 2= .34i -2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则C U (A ∪B)= .{}53.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为 . 754.角α的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点P(1,2),则sin(π-α)的值是 .5.执行以下语句后,打印纸上打印出的结果应是:.286. 设α、β为互不重合的平面,m,n 是互不重合的直线,给出下列四个命题:①若m ∥n,则m ∥α;②若m ⊂α,n ⊂α,m ∥β, n ∥β,则α∥β;③若α∥β,m ⊂α,n ⊂β,则m ∥n ;④若α⊥β, α∩β=m, n ⊂α, m ⊥n ,则n ⊥β;其中正确命题的序号为 . ④7.已知函数f (x )=32,2,(1),02x x x x ⎧⎪⎨⎪-<<⎩≥,若关于x 的方程f (x )=kx 有两个不同的实根,则实数k 的取值范围是.10,2⎛⎫⎪⎝⎭8.已知关于x 的不等式(ax-a 2-4)(x-4)>0的解集为A,且A 中共含有n 个整数,则当n 最小时实数a 的值为______________.-29.已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的两个焦点为F 1(-32,0)、F 2(32,0),点P 是第一象限内双曲线上的点,且tan ∠PF 1F 2=12,tan ∠PF 2F 1=-2,则双曲线的离心率为 .355;10.记S k =1k +2k +3k +……+n k ,当k=1,2,3,……时,观察下列等式:S 1=12n 2+12n, S 2=13n 3+12n 2+16n,S 3=14n 4+12n 3+14n 2,……S 5=An 6+12n 5+512n 4+Bn 2,⋅⋅⋅可以推测,A-B =.1/12 x11. 设函数f(x)=x|x-a|,若对于任意的x 1,x 2∈[2,)+∞,x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是 . 2a ≤12.已知平面向量a,b,c 满足|a|=1,|b|=2,a,b 的夹角等于π3,且(a-c)(b-c)=0,则|c|的取值范围是 .[7-32,7+32] 13.在平面直角坐标系xOy 中,直角三角形ABC 的三个顶点都在椭圆x 2a 2+y 2=1(a>1)上,其中A(0,1)为直角顶点.若该三角形的面积的最大值为278,则实数a 的值为 .314.设f(x)=e tx (t>0),过点P(t,0)且平行于y 轴的直线与曲线C:y=f(x)的交点为Q,曲线C 过点Q 的切线交x 轴于点R ,若S(1,f(1)),则∆PRS 的面积的最小值是 .2e 二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)在三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若3sin 5A =,1tan()3A B -=,角C 为钝角,5b =.(1)求sin B 的值; (2)求边c 的长.解:(1)因为角C 为钝角,3sin 5A =,所以4cos 5A ==, 又1tan()3AB -=,所以02A B π<-<, 且sin())A B A B -=-= 所以sin sin[()]sin cos()cos sin()B A A B A A B A A B =--=---3455=-=(2)因为sin sin a A b B ==,且5b =,所以a = 又cos cos()cos cos sin sinC A B A B A B =-+=-+=,则2222cos 902525(169c a b ab C =+-=+-⨯=, 所以13c =. 16.(本题满分14分)如图,四棱锥V -ABCD 中,底面ABCD 是菱形,对角线AC 与BD 交于点O ,VO ⊥平面ABCD ,E 是棱VC 的中点.(1)求证:VA ∥平面BDE ;(2)求证:平面VAC ⊥平面BDE .【证明】(1)连结OE .因为底面ABCD 是菱形,所以O 为AC 的中点, 又因为E 是棱VC 的中点,所以VA ∥OE . 又因为OE ⊂平面BDE ,VA ⊄平面BDE , 所以VA ∥平面BDE . (2)因为VO ⊥平面ABCD ,又BD ⊂平面ABCD ,所以VO ⊥BD ,因为底面ABCD 是菱形,所以BD ⊥AC , 又VO ∩AC =O ,VO ,AC ⊂平面VAC , 所以BD ⊥平面VAC .又因为BD ⊂平面BDE ,所以平面VAC ⊥平面BDE .17.(本题满分14分)已知半径为5的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切,直线ax -y +5=0(a >0)与圆相交于A ,B 两点. (1)求实数a 的取值范围;(2)是否存在实数a ,使得弦AB 的垂直平分线l 过点P (-2,4),若存在,求出实数a 的值;若不存在,请说明理由.解:(1)设圆心为M (m ,0)(m ∈Z ),由于原与直线4x +3y -29=0相切,且半径为5,所以|429|55m -=,又m ∈Z ,故m =1.所以所求圆的方程为(x -1)2+y 2=25. 把直线ax -y +5=0即y =ax +5代人圆的方程消去y 得(a 2+1)x 2+2(5a -1)x +1=0, 由于直线ax -y +5=0与圆交于A ,B 两点,故△=4(5a -1)2-4(a 2+1)>0(a >0).解得a >512.所以所求实数a的取值范围为(512,+∞) .(2)设符合条件得实数a存在,由于a≠0,则直线l的斜率为-1a,l的方程为y =-1a (x+2)+4,即x+ay+2-4a=0.由于l垂直平分弦AB,故圆心M(1,0)在l上.所以1+0+2-2a=0,解得a=34,由于34∈(512,+∞),故存在实数a=34,使得弦AB的垂直平分线l过点P(-2,4).18.(本题满分16分)如图,两座建筑物CDAB,的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10和20,从建筑物AB的顶部A看建筑物CD的视角60CAD∠=o.(1)求BC的长度;(2)在线段BC上取一点(P点P与点CB,不重合),从点P看这两座建筑物的视角分别为,,βα=∠=∠DPCAPB问点P在何处时,βα+最小?解:(1)作AE⊥CD,垂足为E,则10CE=,10DE=,设BC x=,则22tantan tan(2)1tanCAECAD CAECAE∠∠=∠=-∠22031001xx==-,化简得232010030x x--=,解之得,103x=或3x=-(舍)答:BC的长度为103m.(2)设BP t=,则103(0103)CP t t=-<<,2210031010(103)103tan()10201032001032001103++++++t tt tt t t tt tαβ-===-----⋅-设()f t =()f t '=,令()0f t '=,因为0t <<t =-当t ∈时,()0f t '<,()f t 是减函数;当t ∈时,()0f t '>,()f t 是增函数,所以,当t =()f t 取得最小值,即tan()αβ+取得最小值,因为22000+t --<恒成立,所以()0f t <,所以tan()0αβ<+,(,)2αβπ∈π+,因为tan y x =在(,)2ππ上是增函数,所以当t =αβ+取得最小值.答:当BP 为t =cm 时,αβ+取得最小值. 19.(本题满分16分)设首项为1的正项数列{}n a 的前n 项和为n S ,数列{}2n a 的前n 项和为n T ,且24()3n n S p T --=,其中p 为常数. (1)求p 的值;(2)求证:数列{}n a 为等比数列;(3)证明:“数列n a ,12x n a +,22y n a +成等差数列,其中x 、y 均为整数”的充要条件是“1x =, 且2y =”.解:(1)n = 1时,由24(1)13p --=得p = 0或2,若p = 0时,243n n S T -=,当2n =时,22224(1)13a a -++=,解得20a =或212a =-,而0n a >,所以p = 0不符合题意,故p = 2;(5分) (2)当p = 2时,241(2)33n n T S =--①,则21141(2)33n n T S ++=--②,②-①并化简得1134n n n a S S ++=--③,则22134n n n a S S +++=--④, ④-③得2112n n a a ++=(n *∈N ),又易得2112a a =,所以数列{a n }是等比数列,且112n n a -=; (3)充分性:若x = 1,y = 2,由112n n a -=知n a ,12x n a +,22y n a +依次为112n -,22n ,142n +, 满足112142222nn n -+⨯=+,即a n ,2x a n +1,2y a n +2成等差数列;(12分) 必要性:假设n a ,12x n a +,22y n a +成等差数列,其中x 、y 均为整数,又112n na -=, 所以11111222222x y nn n -+⋅⋅=+⋅, 化简得2221x y --=显然2x y >-,设(2)k x y =--,因为x 、y 均为整数,所以当2k ≥时,2221x y -->或2221x y --<,故当1k =,且当1x =,且20y -=时上式成立,即证.20.(本题满分16分)已知函数123()()()()f x x x x x x x =---,123,,x x x ∈R ,且123x x x <<. (1)当123012x x x ===,,时,求函数()f x 的减区间; (2)求证:方程()0f x '=有两个不相等的实数根; (3)若方程()0f x '=的两个实数根是()αβαβ<,,试比较122x x +,232x x + 与αβ,的大小,并说明理由.解:(1)()f x 减区间(1; (2)法1:32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-,2123122331()32()()f x x x x x x x x x x x x '=-+++++2221223312[()()()]0x x x x x x ∆=-+-+->,123x x x <<,所以,方程()0f x '=有两个不相等的实数根;法2:122331()()()()()()()f x x x x x x x x x x x x x '=--+--+--, 22321()()()0f x x x x x '=--<, ()f x 是开口向上的二次函数,所以,方程()0f x '=有两个不相等的实数根; (3)因为21221()()024x x x x f +-'=-<,22323()()024x x x x f +-'=-<,又()f x 在(,)α-∞和(,)β+∞增,()f x 在(,)αβ减,所以231222x x x x αβ++<<<.2020届南通市高三一模考试前数学综合练习一附加题答案21.本题包括A ,B 共2小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换试求曲线x y sin =在矩阵MN 变换下的函数解析式,其中M =⎥⎦⎤⎢⎣⎡2001,N =⎥⎥⎦⎤⎢⎢⎣⎡10021. 解:MN = ⎥⎦⎤⎢⎣⎡2001⎥⎥⎦⎤⎢⎢⎣⎡10021=⎥⎥⎦⎤⎢⎢⎣⎡20021, 即在矩阵MN 变换下⎢⎢⎣⎡⎥⎥⎦⎤=⎢⎣⎡⎥⎦⎤''''→⎢⎣⎡⎥⎦⎤y x y x y x 221,则x y ''=''2sin 21, 即曲线x y sin =在矩阵MN 变换下的函数解析式为x y 2sin 2=.B .选修4—4:极坐标与参数方程 已知直线l 的极坐标方程为sin()63πρθ-=,圆C 的参数方程为10cos (10sin x y θθθ=⎧⎨=⎩为参数).(1)请分别把直线l 和圆C 的方程化为直角坐标方程; (2)求直线l 被圆截得的弦长.解:(1)由 πsin()63ρθ-=,得1(sin )62ρθθ=:12y ∴=120y -+=.圆的方程为22100x y +=.(2)6,10d r ==Q,弦长16l ==. 22.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,EF ∥AB ,∠BAF =90°,AD =2,AB =AF =2EF =2,点P 在棱DF 上.(1)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (2)若二面角D ﹣AP ﹣C 的正弦值为√63,求PF 的长度.解(1)∵BAF =90°,∴AF ⊥AB ,又∵平面ABEF ⊥平面ABCD ,且平面ABEF ∩平面ABCD =AB , ∴AF ⊥平面ABCD ,又四边形ABCD 为矩形,∴以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系, ∵AD =2,AB =AF =2EF =2,P 是DF 的中点,∴B (2,0,0),E (1,0,2),C (2,2,0),P (0,1,1), BE →=(﹣1,0,2),CP →=(﹣2,﹣1,1), 设异面直线BE 与CP 所成角的平面角为θ, 则cosθ=|BE →⋅CP →||BE →|⋅|CP →|=√5⋅√6=2√3015, ∴异面直线BE 与CP 所成角的余弦值为2√3015. (2)A (0,0,0),C (2,2,0),F (0,0,2),D (0,2,0),设P (a ,b ,c ),FP →=λFD →,0≤λ≤1,即(a ,b ,c ﹣2)=λ(0,2,﹣2), 解得a =0,b =2λ,c =2﹣2λ,∴P (0,2λ,2﹣2λ), AP →=(0,2λ,2﹣2λ),AC →=(2,2,0), 设平面APC 的法向量n →=(x ,y ,z ),则{n →⋅AP →=2λy +(2−2λ)z =0n →⋅AC →=2x +2y =0,取x =1,得n →=(1,﹣1,2λ2−2λ), 平面ADF 的法向量m →=(1,0,0), ∵二面角D ﹣AP ﹣C 的正弦值为√63, ∴|cos <m →,n →>|=|m →⋅n →||m →|⋅|n →|=√2+(2−2λ)2=1−(√63),解得λ=14,∴P (0,12,32),∴PF 的长度|PF |=√(0−0)2+(12−0)2+(32−2)2=√22.23.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤. 甲乙丙三名射击运动员射中目标的概率分别为12,a ,()01a a <<,三人各射击一次,击中目标的次数为ξ.(1)求ξ的分布列及数学期望;(2)在概率()(0,1,2,3)P i i ξ==中,若(1)P ξ=的值最大,求实数a 的取值范围. 解:(1)()P ξ是“ξ个人命中,3ξ-个人未命中”的概率.其中ξ的可能取值为0,1,2,3.00221211(0)1(1)(1)22P C c a a ξ⎛⎫==--=- ⎪⎝⎭,()1020121212111(1)(1)1(1)1222P C C a C C a a a ξ⎛⎫==⋅-+--=- ⎪⎝⎭,()11022********(2)(1)12222P C C a a C C a a a ξ⎛⎫==⋅-+-=- ⎪⎝⎭,2122121(3)22a P C C a ξ==⋅=.所以ξ的分布列为ξ的数学期望为()()2222111410(1)1122322222a a E a a a a ξ+=⨯-+⨯-+⨯-+⨯=.(2)()221(1)(0)1(1)(1)2P P a a a a ξξ⎡⎤=-==---=-⎣⎦, ()()22112(1)(2)1222a P P a a a ξξ-⎡⎤=-==---=⎣⎦, ()222112(1)(3)122a P P a a ξξ-⎡⎤=-==--=⎣⎦. 由2(1)012021202a a a a ⎧⎪-⎪-⎪⎨⎪⎪-≥⎪⎩……和01a <<,得102a <≤,即a 的取值范围是10,2⎛⎤ ⎥⎝⎦.。
2020年江苏省高考数学模拟试卷含答案解析
2020年江苏省高考数学模拟试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=.2.已知复数,则z的共轭复数的模为.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.4.运行如图所示的伪代码,其结果为.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为.7.若函数是偶函数,则实数a的值为.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是.12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为.14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?2020年江苏省高考数学模拟试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=(﹣1,0] .【考点】交、并、补集的混合运算.【分析】求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B的补集,求出集合A与集合B的补集的交集即可【解答】解:由A={x|﹣1<x<1}=(﹣1,1),B={x|x2﹣2x<0}=(0,2),∴C u B=(﹣∞,0]∪[2,+∞),∴A∩∁U B=(﹣1,0],故答案为:(﹣1,0].2.已知复数,则z的共轭复数的模为.【考点】复数求模.【分析】根据复数与它的共轭复数的模相等,即可求出结果.【解答】解:复数,则z的共轭复数的模为||=|z|====.故答案为:.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.【考点】等可能事件的概率.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.4.运行如图所示的伪代码,其结果为.【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,用裂项法即可求值得解.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,所以S=S=++…+=×(1﹣+﹣…+﹣)=(1﹣)=.故答案为:.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为﹣=1.【考点】双曲线的简单性质.【分析】求得已知双曲线的渐近线方程,设出所求双曲线的方程为﹣=1(a,b>0),求出渐近线方程和准线方程,由题意可得=,=,结合a,b,c的关系,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线的渐近线为y=±x,设所求双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,准线方程为y=±,由题意可得=,=,又a2+b2=c2,解得a=2,b=,即有所求双曲线的方程为﹣=1.故答案为:﹣=1.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为﹣2.【考点】函数恒成立问题.【分析】由题意可得a≤f(x)的最小值,运用单调性,可得f(0)取得最小值,即可得到a的范围,进而得到a的最大值.【解答】解:由,可得0≤x≤4,由f(x)=﹣,其中y=在[0,4]递增,y=﹣在[0,4]递增,可得f(x)在[0,4]递增,可得f(0)取得最小值﹣2,可得a≤﹣2,即a的最大值为﹣2.故答案为:﹣2.7.若函数是偶函数,则实数a的值为﹣.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由题意可得,f(﹣)=f(),从而可求得实数a的值.【解答】解:∵f(x)=asin(x+)+sin(x﹣)为偶函数,∴f(﹣x)=f(x),∴f(﹣)=f(),即﹣=a,∴a=﹣.故答案为:﹣.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.【考点】棱柱、棱锥、棱台的体积.【分析】求出底面中心到边的距离,棱锥的高,然后求解棱锥的体积.【解答】解:设正五棱锥高为h,底面正五边形的角为108°,底面正五边形中心到边距离为:tan54°,h=,则此正五棱锥体积为:×=20.故答案为:20.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,3).【考点】分段函数的应用.【分析】判断f(x)在R上递增,由f(x2﹣2x)<f(3x﹣4),可得或,解不等式即可得到所求解集.【解答】解:当x<3时,f(x)=﹣x2+6x=﹣(x﹣3)2+9,即有f(x)递增;故f(x)在R上单调递增.由f(x2﹣2x)<f(3x﹣4),可得或,解得或,即为1<x≤或<x<3,即1<x<3.即有解集为(1,3).故答案为:(1,3).10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为[,1).【考点】余弦定理.【分析】设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.由于⊥,可得•=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).利用函数的单调性即可得出.【解答】解:设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.∴•=(t﹣)•(﹣)=﹣t2+(+1)•﹣2.∵⊥,∴•=﹣t2+(+1)•﹣2=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).由于f(t)是[0,1]是的单调递增函数,∴f(0)≤f(t)≤f(1),即:≤f(t)≤,即:≤cosA≤,∵A∈(0,π),∴cosA<1,∴cosA的取值范围是:[,1).故答案为:[,1).11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是(0,1)∪[3,+∞).【考点】简单线性规划的应用.【分析】由题意作平面区域,从而结合图象可知y=a x的图象过点(3,1)时为临界值a=3,从而解得.【解答】解:由题意作平面区域如下,,结合图象可知,y=a x的图象过点(3,1)时为临界值a=3,且当0<a<1时,一定成立;故答案为:(0,1)∪[3,+∞).12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是{a|a≤﹣4或a≥0} .【考点】利用导数研究函数的极值.【分析】函数f(x)=x2+2x+alnx在区间(0,1)内无极值点⇔函数f(x)在(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(01,)内恒成立.再利用导数的运算法则、分离参数法、函数的单调性即可得出.【解答】解:函数f(x)=x2+2x+alnx在区间(0,1)内无极值⇔函数f(x)=x2+2x+alnx 在区间(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(0,1)内恒成立.由f′(x)=2x+2≥0在(0,1)内恒成立⇔a≥(﹣2x﹣2x2)max,x∈(0,1).即a≥0,由f′(x)=2x+2≤0在(0,1)内恒成立⇔a≤(﹣2x﹣2x2)min,x∈(0,1).即a≤﹣4,故答案为:a≤﹣4或a≥0.故答案为:{a|a≤﹣4或a≥0}.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为(2,4).【考点】全称命题;特称命题.【分析】由①可得当x≤﹣1时,g(x)<0,根据②可得g(1)=a(1﹣a+3)>0,由此解得实数a的取值范围.【解答】解:∵已知函数,根据①∀x∈R,f(x)<0,或g(x)<0,即函数f(x)和函数g(x)不能同时取非负值.由f(x)≥0,求得x≤﹣1,即当x≤﹣1时,g(x)<0恒成立,故,解得:a>2;根据②∃x∈(﹣1,1),使f(x)•g(x)<0成立,∴g(1)=a(1﹣a+3)>0,解得:0<a<4,综上可得:a∈(2,4),故答案为:(2,4)14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为64或65.【考点】数列递推式.【分析】由题意可得:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,则2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得d<4,d为正整数,得出d=1,2,3,分类讨论后求得满足条件的正整数A的值.【解答】解:依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,∴2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得:2t≤A<2t+1,2t+d﹣3≤A<2t+d﹣2,,故max{}≤A<min{},由以下关系:2t+d﹣3<2t+1,,得d<4,∵d为正整数,∴d=1,2,3.当d=1时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=2时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=3时,max{}=max{}=2t,min{}=min{}=>2t,适合题意.此时2t≤A<,b1=t,b2=t+3,b5=t+6,∴t+3≤b3≤t+6.∵b3=10,∴4≤t≤7,∵t为整数,∴t=4,t=5,t=6或t=7.∵f(3)=27A,b3=10,∴210≤27A<211,∴≤A<.当t=4时,24≤A<,∴无解.当t=5时,25≤A<,∴无解.当t=6时,26≤A<,∴64≤A<.当t=7时,27≤A<,∴无解.则26≤A<.∵A∈N*,∴A=64或A=65.综上:A=64或65.故答案为:64或65.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】(1)利用已知条件求出sin()与cos(),然后利用二倍角公式以及两角和的正弦函数化简求解即可.(2)求出正切函数的二倍角的值,利用两角和的正切函数化简求解即可.【解答】解:(1)角α终边逆时针旋转与单位圆交于点,可得sin()=,cos()=,sin(2)=2sin()cos()==,cos(2)=2×=.=sin(2﹣)=sin(2)cos﹣sin cos(2)==.(2)∵,∴tan(2α+2β)===.sin(2)=,cos(2)=.tan(2)=.tan(2α+2β)=tan[()+(2)]==,解得=.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)由已知得PA⊥AB,PA⊥AD,从而BD⊥PA,由四边形ABCD是菱形,得AC ⊥BD,由此能证明BD⊥平面PAC.(2)由四边形ABCD是梯形,且平面PAB∩平面PCD=l,得CD与AB有交点P,从而直线l∩平面ABCD=P,由此得到直线l不能与平面ABCD平行.【解答】证明:(1)∵在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角,∴PA⊥AB,PA⊥AD,又AB∩AD=A,∴PA⊥平面ABCD,∵BD⊥PA,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∩PA=A,∴BD⊥平面PAC.解:(2)直线l不能与平面ABCD平行.理由如下:∵四边形ABCD是梯形,且平面PAB∩平面PCD=l,∴CD与AB有交点P,∴P∈l,∴直线l∩平面ABCD=P,∴直线l不能与平面ABCD平行.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.【考点】椭圆的简单性质.【分析】(1)设P(x,y),由题意可得k PD•k PE=﹣,运用直线的斜率公式,化简即可得到所求轨迹方程;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,设A(x1,y1),B(x2,y2),运用韦达定理,点满足直线方程,再由过O的直线x=﹣my交椭圆C于M,N两点,求得M,N的坐标,运用直线的斜率公式,化简整理,即可得到直线AM与直线BN斜率之和为定值0.【解答】解:(1)设P(x,y),由题意可得k PD•k PE=﹣,即有•=﹣,化为+=1;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,可得(2+m2)y2+2my﹣2=0,设A(x1,y1),B(x2,y2),即有y1+y2=﹣,y1y2=﹣,x1=my1+,x2=my2+,由题意可得,过O的直线x=﹣my交椭圆C于M,N两点,解得M(﹣,),N(,﹣),可得k AM+k BN=+,通分后的分子=x2y1﹣x2﹣y1+x1y2+x1+y2+=2my1y2+(y1+y2)+(x1﹣x2)+(y2﹣y1)+=﹣﹣+(y1﹣y2)+(y2﹣y1)+=0.即有直线AM与直线BN斜率之和为定值0.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.【考点】旋转体(圆柱、圆锥、圆台);基本不等式在最值问题中的应用.【分析】(1)根据面积得出圆锥的底面半径,利用勾股定理求出圆锥的高,代入体积公式即可;(2)利用基本不等式得出体积的最值及取得最值得条件;(3)求出圆锥内切球的半径,与0.5比较大小.【解答】解:(1)由题意知圆锥的母线l=3,设圆锥的底面半径为r,则2πr=3α,∴r=,∴圆锥的高h===.∴V==.(2)V==≤=2.当且仅当4π2﹣α2=即α=时,取等号.∴当α=时,体积V取得最大值.(3)当圆锥体积最大时,圆锥的底面半径r=.设圆锥轴截面△ABC的内切圆⊙O半径为R,如图所示,则OD=R,CD=CE=,AC=3,∴AE=,AD=3﹣.由△AOD∽△ACE得,∴,解得R=3≈0.8.∵0.8>0.5,∴容积最大的圆锥形容器能完全盖住桌面上一个半径为0.5分米的球.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.【考点】数列的求和;等比关系的确定.=1作差可知a n+1=3a n(n≥2),进而可知数列{a n}【分析】(1)通过S n+1﹣3S n=1与S n﹣3S n﹣1是首项为1、公比为3的等比数列;(2)通过(1)可知a n=3n﹣1、S n=(3n﹣1),假设存在满足题意的项a k,则3k﹣1=S r+t﹣S t,进而化简可知不存在r满足3r﹣x﹣=2,进而可得结论;(3)通过(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,通过化简可知q=3q﹣p(2p﹣3p﹣1),利用当p≥3时2p﹣3p﹣1<0可知当p≥3时不满足题意,进而验证当p=2时是否满足题意即可.【解答】(1)证明:∵S n+1﹣3S n=1,=1,∴当n≥2时,S n﹣3S n﹣1两式相减得:a n+1=3a n,又∵S n+1﹣3S n=1,a1=1,∴a2=S2﹣S1=2a1+1=3满足上式,∴数列{a n}是首项为1、公比为3的等比数列;(2)解:结论:不存在满足题意的项a k;理由如下:由(1)可知a n=3n﹣1,S n==(3n﹣1),假设数列{a n}中存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和,则3k﹣1=S r+t﹣S t=(3r+t﹣1)﹣(3t﹣1)=(3r+t﹣3t)=•3t(3r﹣1),于是(3r﹣1)=3x(其中x为大于1的自然数),整理得:3r﹣x﹣=2,显然r无解,故假设不成立,于是不存在满足题意的项a k;(3)解:结论:存在唯一的数组(p,q)=(2,3)满足题意;理由如下:由(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,则2b p=b1+b q,即2=+,整理得:2p•3q﹣p=3q﹣1+q,∴q=2p•3q﹣p﹣3q﹣1=3q﹣p(2p﹣3p﹣1),∵当p≥3时2p﹣3p﹣1<0,∴当p≥3时不满足题意,当p=2时,2=+即为:=+,整理得:=,解得:q=3,综上所述,存在唯一的数组(p,q)=(2,3)满足题意.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.【考点】函数恒成立问题.【分析】(1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(2)先求出当直线和y=lnx相切时a的取值,然后进行讨论求解即可.【解答】解:(1)若ax>lnx恒成立,则a>,在x>0时恒成立,设h(x)=,则h′(x)==,由h′(x)>0得1﹣lnx>0,即lnx<1,得0<x<e,由h′(x)<0得1﹣lnx<0,即lnx>1,得x>e,即当x=e时,函数h(x)取得极大值同时也是最大值h(e)==.即a>.(2)设f(x)=lnx,g(x)=ax,(x>0),则f′(x)=,当g(x)与f(x)相切时,设切点为(m,lnm),则切线斜率k=,则过原点且与f(x)相切的切线方程为y﹣lnm=(x﹣m)=x﹣1,即y=x﹣1+lnm,∵g(x)=ax,∴,得m=e,a=.即当a>时,ax>lnx恒成立.当a=时,当x0≥时,要使ax>lnx恒成立.得当x>x0时,ax>lnx恒成立.当0<a<时,f(x)与g(x)有两个不同的交点,不妨设较大的根为x1,当x0≥x1时,当x>x0时,ax>lnx恒成立.∴∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.【考点】与圆有关的比例线段.【分析】连结OD、AD,证出△ADB≌△ODC,得到AB=CO,从而证出结论.【解答】证明:如图示:,连结OD、AD,∵AB是圆O的直径,∴∠ADB=90°,AB=2AO,∵DC是⊙O的切线,∴∠CDO=90°,∵DB=DC,∴∠B=∠C,∴△ADB≌△ODC,∴AB=CO,即2OA=OA+CA,∴CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.【考点】几种特殊的矩阵变换.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.【考点】简单曲线的极坐标方程.【分析】求出点A,B的直角坐标,利用点斜式方程得出直线l的直角坐标方程,再求出曲线C的普通方程,求出圆心和半径,利用d=r构建出a的方程,解出a的值.【解答】解:由直线l过点,可得A,B的直角坐标为A(,),B(0,3),直线AB的斜率k==,即有直线l的方程为:y﹣3=x,即y=x+3,由曲线C:ρ=asinθ(a>0),可得曲线C的普通方程为x2+y2﹣ay=0,即有圆心C(0,),r==,直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点即直线和圆相切,可得,解得a=2或﹣6,由a>0,可得a=2.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.【考点】函数的最值及其几何意义.【分析】根据条件利用平方关系结合一元二次函数的性质进行求解即可.【解答】解:由得,即5≤x≤7,由平方得y2=x﹣5+7﹣x+2=2+2,∵5≤x≤7,∴当x=6时,函数y2=2+2取得最大值为y2=2+2=4,当x=5或7时,函数y2=2+2取得最小值为y2=2,即2≤y2≤4,则≤y≤2,即函数的最大值为2.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PC与BD所成角的余弦值.(2)求出平面PBC的法向量和平面PCD的法向量,利用向量法能求出钝二面角B﹣PC﹣D的大小.【解答】解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设AP=AB=AD=2BC=2,则P(0,0,2),C(2,1,0),B(2,0,0),D(0,2,0),=(2,1,﹣2),=(﹣2,2,0),设异面直线PC与BD所成角为θ,则cosθ===.∴异面直线PC与BD所成角的余弦值为.(2)=(2,0,﹣2),=(2,1,﹣2),=(0,2,﹣2),设平面PBC的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(1,2,2),设钝二面角B﹣PC﹣D的平面角为θ,cosθ=﹣|cos<>|=﹣||=﹣,∴θ=135°,∴钝二面角B﹣PC﹣D的大小为135°.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?【考点】归纳推理.【分析】(1)若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得a7,a10中一个为1,一个为0,进而得到答案;(2)若第十一层十一个数为0或1,a1为5的倍数,则a56,a66中一个为1,一个为0,且a57+a58+…+a65=2,或a57+a58+…+a65=7,进而得到答案.【解答】解:(1)若第二层的两个数为0或1,则a1=a2+a3,由a1为奇数,可得第二层的两个数有2种不同的取法;若第三层的三个数为0或1,则a1=a4+2a5+a6,由a1为奇数,可得第三层的三个数有4种不同的取法;若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得第四层的四个数有8种不同的取法;(2)根据(1)中结论,若第十一层十一个数为0或1,则a1=a56+2(a57+a58+…+a65)+a66,若a1为5的倍数,则a56,a66中一个为1,一个为0,a57+a58+…+a65=2,或a57+a58+…+a65=7,即a57,a58,…,a65中有2个1或2个0,则第十一层十一个数共有=144种不同取法.2020年8月12日。
江苏省南京市、盐城市2020届高三第二次模拟考试 数学含答案
2020届高三模拟考试试卷数学(满分160分,考试时间120分钟)2020.4 参考公式:圆锥的侧面积公式:S=πrl,其中r为圆锥底面圆的半径,l为圆锥的母线长.一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A={x|x=2k+1,k∈Z},B={x|x(x-5)<0},则A∩B=________.2. 已知复数z=1+2i,其中i为虚数单位,则z2的模为________.3. 如图是一个算法流程图,若输出的实数y的值为-1,则输入的实数x的值为________.(第3题)(第4题)4. 某校初三年级共有500名女生,为了了解初三女生1分钟“仰卧起坐”项目训练情况,统计了所有女生1分钟“仰卧起坐”测试数据(单位:个),并绘制了如图频率分布直方图,则1分钟至少能做到30个仰卧起坐的初三女生有________个.5. 从编号为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上数字能被第一次抽得的卡片上的数字整除的概率为________.6. 已知函敬f(x)是定义在R 上的奇函敷,且周期为2,当x ∈(0,1]时,f(x)=x +,则f(a)的值为________.7. 若将函数f(x)=sin(2x +π3)的图象沿x 轴向右平移φ(φ>0)个单位长度后所得的图象与f(x)的图象关于x 轴对称,则φ的最小值为________.8. 在△ABC 中,AB =25,AC =5,∠BAC =90°,则△ABC 绕BC 所在直线旋转一周所形成的几何体的表面积为________.9. 已知数列{a n }为等差数列,数列{b n }为等比数列,满足{a 1,a 2,a 3}={b 1,b 2,b 3}={a ,b ,-2},其中a >0,b >0,则a +b 的值为________.10. 已知点P 是抛物线x 2=4y 上动点,F 是抛物线的焦点,点A 的坐标为(0,-1),则PFPA 的最小值为________.11. 已知x ,y 为正实数,且xy +2x +4y =41,则x +y 的最小值为________. 12. 在平面直角坐标系xOy 中,圆C :(x -m)2+y 2=r 2(m >0).已知过原点O 且相互垂直的两条直线l 1和l 2,其中l 1与圆C 相交于A ,B 两点,l 2与圆C 相切于点D.若AB =OD ,则直线l 1的斜率为________.13. 在△ABC 中,BC 为定长,|AB →+2AC →|=3|BC →|.若△ABC 面积的最大值为2,则边BC 的长为________.14. 已知函数f(x)=e x -x -b(e 为自然对数的底数,b ∈R ).若函数g(x)=f(f(x)-12)恰有4个零点,则实数b 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在三棱锥PABC 中,点D ,E 分别为AB ,BC 的中点,且平面PDE 上平面ABC. (1) 求证:AC ∥平面PDE ;(2) 若PD =AC =2,PE =3,求证:平面PBC ⊥平面ABC.16. (本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =bcos C +csin B. (1) 求B 的值;177,cos A=-725,求b的值.(2) 设∠BAC的平分线AD与边BC交于点D.已知AD=如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米.为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE ︵,记∠CBD 为θ.(1) 用θ表示栈道的总长度f(θ),并确定sin θ的取值范围; (2) 求当θ为何值时,栈道总长度最短.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点(0,3).(1) 求椭圆C 的方程;(2) 已知△BMN 是椭圆C 的内接三角形.① 若点B 为椭圆C 的上顶点,原点O 为△BMN 的垂心,求线段MN 的长; ② 若原点O 为△BMN 的重心,求原点O 到直线MN 距离的最小值.已知函数f(x)=x 3-x 2-(a -16)x ,g(x)=aln x ,a ∈R .函数h(x)=f (x )x -g(x)的导函数h′(x)在[52,4]上存在零点. (1) 求实数a 的取值范围;(2) 若存在实数a ,当x ∈[0,b]时,函数f(x)在x =0时取得最大值,求正实数b 的最大值;(3) 若直线l 与曲线y =f(x)和y =g(x)都相切,且l 在y 轴上的截距为-12,求实数a 的值.已知无穷数列{a n}的各项均为正整数,其前n项和为S n.记T n为数列{a n}的前a n项和,即T n=a1+a2+…+a n.(1) 若数列{a n}为等比数列,且a1=1,S4=5S2,求T3的值;(2) 若数列{a n}为等差数列,且存在唯一的正整数n(n≥2),使得T na n<2,求数列{a n}的通项公式;(3) 若数列{T n}的通项为T n=n(n+1)2,求证:数列{a n}为等差数列.2020届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换) 已知矩阵M =[1221],MN =[1001].(1) 求矩阵N ;(2) 求矩阵N 的特征值.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2t ,y =12t 2(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos (θ-π4)= 2.若直线l 交曲线C 于A ,B 两点,求线段AB 的长.C. (选修45:不等式选讲) 已知a >0,求证:a 2+1a 2-2≥a +1a -2.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某商场举行有奖促销活动,顾客购买每满400元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有1~6点数的正方体骰子1次,若掷得点数大于4,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖.已知抽奖箱中装有2个红球与m(m≥2,m∈N*)个白球,抽奖者从箱中任意摸出2个球,若2个球均为红球,则获得一等奖;若2个球为1个红球和1个白球,则获得二等奖;否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).(1) 若m=4,求顾客参加一次抽奖活动获得三等奖的概率;(2) 若一等奖可获奖金400元,二等奖可获奖金300元,三等奖可获奖金100元,记顾客一次抽奖所获得的奖金为X,若商场希望X的数学期望不超过150元,求m的最小值.23.已知集合A n={1,2,…,n},n∈N*,n≥2,将A n的所有子集任意排列,得到一个有序集合组(M1,M2,…,M m),其中m=2n.记集合M k中元素的个数为a k,k∈N*,k≤m,规定空集中元素的个数为0.(1) 当n=2时,求a1+a2+…+a m的值;(2) 利用数学归纳法证明:不论n(n≥2)为何值,总存在有序集合组(M1,M2,…,M m),满足任意i∈N*,i≤m-1,都有|a i-a i+1|=1.2020届高三模拟考试试卷(南京、盐城)数学参考答案及评分标准1. {1,3}2. 53. -144. 3255. 126. 07. π28. 65π9. 5 10. 22 11. 8 12.±25513. 2 14. (1,12+ln 2)15. 证明:(1) 因为点D ,E 分别为AB ,BC 的中点,所以DE ∥AC.(2分) 因为AC ⊄平面PDE ,DE ⊂平面PDE ,所以AC ∥平面PDE.(4分) (2) 因为点D ,E 分别为AB ,BC 的中点,所以DE =12AC.因为AC =2,所以DE =1.因为PD =2,PE =3,所以PD 2=PE 2+DE 2, 因此在△PDE 中,PE ⊥DE.(8分)又平面PDE ⊥平面ABC ,且平面PDE ∩平面ABC =DE ,PE ⊂平面PDE , 所以PE ⊥平面ABC.(12分)因为PE ⊂平面PBC ,所以平面PBC ⊥平面ABC.(14分) 16. 解:(1) 因为a =bcos C +csin B , 由a sin A =b sin B =c sin C,得sin A =sin Bcos C +sin Csin B .(2分) 因为sin A =sin[π-(B +C)]=sin(B +C)=sin Bcos C +cos Bsin C , 所以sin Bcos C +cos Bsin C =sin Bcos C +sin Csin B , 即cos Bsin C =sin Csin B .(4分)因为0<C <π,所以sin C ≠0,所以sin B =cos B.又0<B <π,所以sin B ≠0,从而cos B ≠0,所以tan B =1,所以B =π4.(6分)(2) 因为AD 是∠BAC 的平分线,设∠BAD =θ,所以A =2θ.因为cos A =-725,所以cos 2θ=cos A =-725,即2cos 2θ-1=-725,所以cos 2θ=925.因为0<A <π,所以0<θ<π2,所以cos θ=35,所以sin θ=1-cos 2θ=45.在△ABD 中,sin ∠ADB =sin(B +θ)=sin(π4+θ)=sin π4cos θ+cos π4sin θ=22×(35+45)=7210.(8分) 由AD sin B =AB sin ∠ADB ,所以AB =ADsin ∠ADB sin B =177×7210×2=175.(10分) 在△ABC 中,sin A =1-cos 2A =2425,所以sin C =sin(A +B)=sin Acos B +cos Asin B =22×(2425-725)=17250.(12分) 由b sin B =c sin C ,得b =csin B sin C =175×2217250=5.(14分) 17. 解:(1) 连结CD ,因为BD 与圆C 相切,切点为D ,所以△BCD 为直角三角形. 因为∠CBD =θ,且圆形小岛的半径为1千米,所以DB =1tan θ,BC =1sin θ.因为岸边上的点A 与小岛圆心C 相距3千米,所以AB =AC -BC =3-1sin θ.(2分)因为BE 与圆C 相切,所以BE =DB =1tan θ,优弧DE ︵所对圆心角为2π-(π-2θ)=π+2θ,所以优弧DE ︵长l 为π+2θ.(4分)所以f(θ)=AB +BD +BE +l =3-1sin θ+1tan θ+1tan θ+π+2θ=3+π+2θ+2cos θ-1sin θ.(6分)因为0<AB <2,所以0<3-1sin θ<2,解得13<sin θ<1,所以sin θ的取值范围是(13,1).(8分)(2) 由f(θ)=3+π+2θ+2cos θ-1sin θ,得f′(θ)=-2+cos θsin 2θ+2=cos θ(1-2cos θ)sin 2θ.(10分)令f′(θ)=0,解得cos θ=12.因为θ为锐角,所以θ=π3.(12分)设sin θ0=13,θ0为锐角,则0<θ0<π3.当θ∈(θ0,π3)时,f ′(θ)<0,则f(θ)在(θ0,π3)上单调递减;当θ∈(π3,π2)时,f ′(θ)>0,则f(θ)在(π3,π2)上单调递增.所以f(θ)在θ=π3时取得最小值.答:当θ=π3时,栈道总长度最短.(14分)18. 解:(1) 记椭圆C 的焦距为2c ,因为椭圆C 的离心率为12,所以c a =12.因为椭圆C 过点(0,3),所以b = 3. 因为a 2-c 2=b 2,解得c =1,a =2, 故椭圆C 的方程为x 24+y 23=1.(2分)(2) ① 因为点B 为椭圆C 的上顶点,所以B 点坐标为(0,3). 因为O 为△BMN 的垂心,所以BO ⊥MN ,即MN ⊥y 轴. 由椭圆的对称性可知M ,N 两点关于y 轴对称.(4分) 不妨设M(x 0,y 0),则N(-x 0,y 0),其中-3<y 0< 3.因为MO ⊥BN ,所以MO →·BN →=0,即(-x 0,-y 0)·(-x 0,y 0-3)=0,得x 20-y 20+3y 0=0.(6分)又点M(x 0,y 0)在椭圆上,则x 204+y 23=1.由⎩⎪⎨⎪⎧x 20-y 20+3y 0=0,x 204+y 203=1,解得y 0=-437或y 0=3(舍去),此时|x 0|=2337.故MN =2|x 0|=4337,即线段MN 的长为4337.(8分) ② (解法1)设B(m ,n),记线段MN 中点为D.因为O 为△BMN 的重心,所以BO →=2OD →,则点D 的坐标为(-m 2,-n 2).(10分)若n =0,则|m|=2,此时直线MN 与x 轴垂直,故原点O 到直线MN 的距离为⎪⎪⎪⎪m 2, 即为1.若n ≠0,此时直线MN 的斜率存在.设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=-m ,y 1+y 2=-n.又x 214+y 213=1,x 224+y 223=1,两式相减得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0, 可得k MN =y 1-y 2x 1-x 2=-3m 4n .(12分)故直线MN 的方程为y =-3m 4n (x +m 2)-n2,即6mx +8ny +3m 2+4n 2=0,则点O 到直线MN 的距离为d =|3m 2+4n 2|36m 2+64n 2.将m 24+n 23=1,代入得d =3n 2+9.(14分) 因为0<n 2≤3,所以d min =32. 又32<1,故原点O 到直线MN 距离的最小值为32.(16分) (解法2)设M(x 1,y 1),N(x 2,y 2),B(x 3,y 3),因为O 为△BMN 的重心,所以x 1+x 2+x 3=0,y 1+y 2+y 3=0, 则x 3=-(x 1+x 2),y 3=-(y 1+y 2).(10分) 因为x 234+y 233=1,所以(x 1+x 2)24+(y 1+y 2)23=1.将x 214+y 213=1,x 224+y 223=1,代入得x 1x 24+y 1y 23=-12.(12分) 若直线MN 的斜率不存在,则线段MN 的中点在x 轴上,从而B 点位于长轴的顶点处. 由于OB =2,所以此时原点O 到直线MN 的距离为1.若直线MN 的斜率存在,设为k ,则其方程为y =kx +n. 由⎩⎪⎨⎪⎧y =kx +n ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8knx +4n 2-12=0 (*). 则Δ=(8kn)2-4(3+4k 2)(4n 2-12)>0,即3+4k 2>n 2. 由根与系数关系可得x 1+x 2=-8kn 3+4k 2,x 1x 2=4n 2-123+4k 2,则y 1y 2=(kx 1+n)(kx 2+n)=k 2x1x 2+kn(x 1+x 2)+n 2=3n 2-12k 23+4k 2,代入x 1x 24+y 1y 23=-12,得14×4n 2-123+4k 2+13×3n 2-12k 23+4k 2=-12,即n 2=k 2+34.(14分) 又3+4k 2>n 2,于是3+4k 2>k 2+34,即3k 2+94>0恒成立,因此k ∈R .原点(0,0)到直线MN 的距离为d =|n|k 2+1=k 2+34k 2+1=1-14(k 2+1).因为k 2≥0,所以当k =0时,d min =32. 又32<1,故原点O 到直线MN 距离的最小值为32.(16分) 19. 解:(1) 因为h(x)=f (x )x -g(x)=x 2-x -(a -16)-aln x ,所以h′(x)=2x -1-a x =2x 2-x -ax .令h′(x)=0,得2x 2-x -a =0.因为函数h′(x)在[52,4]上存在零点,即y =2x 2-x -a 在[52,4]上存在零点,又函数y =2x 2-x -a 在[52,4]上单调递增,所以⎩⎪⎨⎪⎧2×(52)2-52-a ≤0,2×42-4-a ≥0,解得10≤a ≤28.因此,实数a 的取值范围是[10,28].(2分)(2) (解法1)因为当x ∈[0,b]时,函数f(x)在x =0处取得最大值,即存在实数a ,当x ∈[0,b]时,f(0)≥f(x)恒成立, 即x 3-x 2-(a -16)x ≤0对任意x ∈[0,b]都成立.(4分) 当x =0时,上式恒成立;(6分)当x ∈(0,b]时,存在a ∈[10,28],使得x 2-x +16≤a 成立,(8分) 所以x 2-x +16≤28,解得-3≤x ≤4,所以b ≤4. 故当a =28时,b 的最大值为4.(10分)(解法2)由f(x)=x 3-x 2-(a -16)x ,得f′(x)=3x 2-2x -(a -16). 设Δ=4+12(a -16)=4(3a -47).若Δ≤0,则f′(x)≥0恒成立,f(x)在[0,b]上单调递增,因此当x ∈[0,b]时,函数f(x)在x =0时不能取得最大值,于是Δ>0,(4分) 故f′(x)=0有两个不同的实数根,记为x 1,x 2(x 1<x 2).若x 1>0,则当x ∈(0,x 1)时,f ′(x)>0,f(x)在(0,x 1)上单调递增, 因此当x ∈[0,b]时,函数f(x)在x =0时不能取得最大值, 所以x 1≤0.(6分)又x 1+x 2=23>0,因此x 2>0,从而当x ∈(0,x 2)时,f ′(x)<0,f(x)单调递减; 当x ∈(x 2,+∞)时,f ′(x)>0,f(x)单调递增,若存在实数a ,当x ∈[0,b]时,函数f(x)在x =0处取得最大值, 则存在实数a ,使得f(0)≥f(b)成立,即b 3-b 2-(a -16)b ≤0.(8分) 所以存在a ∈[10,28],使得b 2-b +16≤a 成立, 所以b 2-b +16≤28,解得-3≤b ≤4, 故当a =28时,b 的最大值为4.(10分)(3) 设直线l 与曲线y =f(x)相切于点A(x 1,f(x 1)),与曲线y =g(x)相切于点B(x 2,g(x 2)),过点A(x 1,f(x 1))的切线方程为y -[x 31-x 21-(a -16)x 1]=[3x 21-2x 1-(a -16)](x -x 1),即y =[3x 21-2x 1-(a -16)]x -2x 31+x 21.过点B(x 2,g(x 2))的切线方程为y -aln x 2=a x 2(x -x 2),即y =ax 2x +aln x 2-a.因为直线l 在y 上的截距为-12,所以⎩⎪⎨⎪⎧3x 21-2x 1-(a -16)=ax 2①,-2x 31+x 21=-12 ②,aln x 2-a =-12 ③.(12分)由②解得x 1=2,则⎩⎪⎨⎪⎧24-a =a x 2,aln x 2-a =-12,消去a ,得ln x 2+1-x 22x 2=0.(14分)由(1)知10≤a ≤28,且x 2>0,则x 2≥57.令p(x)=ln x +1-x 2x ,x ∈[57,+∞),则p′(x)=1x -12x 2=2x -12x 2.因为p′(x)>0,所以函数p(x)在[57,+∞)上为增函数.因为p(1)=0,且函数p(x)的图象是不间断的, 所以函数p(x)在[57,+∞)上有唯一零点1,所以方程ln x 2+1-x 22x 2=0的解为x 2=1,所以a =12.所以实数a 的值为12.(16分)20. (1) 解:设等比数列{a n }的公比为q ,因为S 4=5S 2,所以a 1+a 2+a 3+a 4=5(a 1+a 2),即a 3+a 4=4(a 1+a 2), 所以a 1q 2(1+q)=4a 1(1+q).因为数列{a n }的各项均为正整数,所以a 1,q 均为正数,所以q 2=4,解得q =2. 又a 1=1,所以a n =2n -1,从而a 3=4, 所以T 3=S 4=1+2+22+23=15.(2分)(2) 解:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d. 因为数列{a n }的各项均为正整数,所以d ∈Z .若d <0,令a n >0,得n <1-a 1d ,这与{a n }为无穷数列相矛盾,因此d ≥0,即d ∈N .(4分)因为S n =na 1+n (n -1)d 2,所以T n =a 1a n +a n (a n -1)d 2,因此T na n =a 1+(a n -1)d 2.由T na n <2,得a 1+(a n -1)d 2<2.(6分) 因为a 1∈N *,d ∈N ,所以2>a 1+(a n -1)d 2≥a 1≥1,因此a 1=1.于是1+(n -1)d 22<2,即(n -1)d 2<2.① 若d =0,则存在无穷多个n(n ≥2),使得上述不等式成立,所以d =0不合题意;(8分)② 若d ∈N *,则n <1+2d2,因为存在唯一的正整数n(n ≥2),使得该不等式成立, 所以2<1+2d2≤3,即1≤d 2<2.又d ∈N *,所以d =1,因此a n =1+(n -1)×1=n.(10分)(3) 证明:因为S n +1-S n =a n +1>0,所以S n +1>S n ,即数列{S n }单调递增. 又T n +1-T n =(n +1)(n +2)2-n (n +1)2=n +1>0,所以T n +1>T n ,即Sa n +1>Sa n ,因为数列{S n }单调递增,所以a n +1>a n .(12分) 又a n ∈N *,所以a n +1≥a n +1,即a n +1-a n ≥1, 所以a n +1-a 1=(a 2-a 1)+(a 3-a 2)+…+(a n +1-a n )≥n , 因此a n +1≥a 1+n ≥1+n ,即a n ≥n(n ≥2). 又a 1≥1,所以a n ≥n ①.(14分)由T n +1-T n =n +1,得aa n +1+aa n +2+…+aa n +1=n +1, 因此n +1≥aa n +1≥a n +1,即a n ≤n ②. 由①②知a n =n ,因此a n +1-a n =1, 所以数列{a n }为等差数列.(16分)2020届高三模拟考试试卷(南京、盐城) 数学附加题参考答案及评分标准21. A. 解:(1) 因为M =⎣⎢⎡⎦⎥⎤1221,MN =⎣⎢⎡⎦⎥⎤1001,所以N =M -1.(2分) 因为|M|=1×1-2×2=-3,(4分)所以N =M-1=⎣⎢⎢⎡⎦⎥⎥⎤-13-2-3-2-3-13=⎣⎢⎡⎦⎥⎤-132323-13.(6分) (2) N 的特征多项式f(λ)=⎪⎪⎪⎪⎪⎪λ+13-23-23λ+13=(λ+13)2-(-23)2=(λ-13)(λ+1).(8分)令f(λ)=0,解得λ=13或-1,所以N 的特征值是13和1.(10分)B. 解:曲线C 的普通方程为y =12(x 2)2=18x 2.(2分)由直线l 的极坐标方程ρcos (θ-π4)=2,得ρ(cos θcos π4+sin θsin π4)=2, 即22x +22y =2,所以直线l 的方程为y =-x +2.(4分) 设A(x 1,y 1),B(x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =18x 2,y =-x +2,消去y ,得x 2+8x -16=0,(6分) 则x 1+x 2=-8,x 1x 2=-16, 所以AB =1+(-1)2|x 1-x 2|=2×(x 1+x 2)2-4x 1x 2=2×(-8)2-4×(-16)=16.(10分)C. 证明:(证法1)因为a >0,所以a +1a≥2,要证a 2+1a 2-2≥a +1a -2,只需证a 2+1a 2≥(a +1a)-(2-2).因为(a +1a )-(2-2)>0,所以只需证(a 2+1a 2)2≥⎣⎡⎦⎤(a +1a )-(2-2)2,(4分)即2(2-2)(a +1a )≥8-42,即证a +1a ≥2.(8分)因为a +1a ≥2成立,所以要证的不等式成立.(10分)(证法2)令t =a +1a ,因为a >0,所以a +1a ≥2,即t ≥2.要证a 2+1a 2-2≥a +1a-2,即证t 2-2-2≥t -2, 即证t -t 2-2≤2-2,(4分) 即证2t +t 2-2≤2- 2.(6分)由于f(t)=t +t 2-2在[2,+∞)上单调递增,则f(t)≥f(2)=2+2, 故2t +t 2-2≤22+2=2- 2.所以要证的原不等式成立.(10分)22. 解:(1) 设“顾客参加一次抽奖活动获得三等奖”为事件A. 因为m =4,所以P(A)=46+26×C 24C 26=23+13×25=45.答:顾客参加一次抽奖活动获得三等奖的概率为45.(4分)(2) X 的所有可能取值为400,300,100. P(X =400)=26×C 22C 22+m =23(m +1)(m +2),P(X =300)=26×C 12C 1mC 22+m =4m 3(m +1)(m +2),P(X =100)=46+26×C 2m C 22+m =23+m (m -1)3(m +1)(m +2),(7分) 则E(X)=400×23(m +1)(m +2)+300×4m 3(m +1)(m +2)+100×[23+m (m -1)3(m +1)(m +2)]≤150,化简得3m 2-7m -6≥0. 因为m ≥2,m ∈N *,所以m ≥3,所以m 的最小值为3.(10分)23. (1) 解:当n =2时,A 2的子集为∅,{1},{2},{1,2},且m =4.所以a 1+a 2+…+a m =0+1+1+2=4.(2分)(2) 证明:① 当n =2时,取一个集合组(M 1,M 2,M 3,M 4)=(∅,{1},{1,2},{2}), 此时a 1=0,a 2=1,a 3=2,a 4=1,满足任意i ∈N *,i ≤3,都有|a i -a i +1|=1, 所以当n =2时命题成立.(4分)② 假设n =k(k ∈N *,k ≥2)时,命题成立,即对于A k ={1,2,…,k},存在一个集合组(M 1,M 2,…,M m )满足任意i ∈N *,i ≤m -1,都有|a i -a i +1|=1,其中m =2k .当n =k +1时,则A k +1={1,2,…,k ,k +1},集合A k +1的所有子集除去M 1,M 2,…,M m 外,其余的子集都含有k +1.令M m +1=M m ∪{k +1},M m +2=M m -1∪{k +1},…,M 2m =M 1∪{k +1},取集合组(M 1,M 2,…,M m ,M m +1,M m +2,…,M 2m ),其中2m =2k +1,(6分) 根据归纳假设知|a i -a i +1|=1,其中i ∈N *,m +1≤i ≤2m -1,(8分)所以此集合组满足|a i -a i +1|=1,其中i ∈N *,i ≤m -1或m +1≤i ≤2m -1.又M m +1=M m ∪{c},所以|a m -a m +1|=1,因此|a i -a i +1|=1,其中i ∈N *,i ≤2m -1,即当n =k +1时,命题也成立.综上,不论n 为何值,总存在有序集合组(M 1,M 2,…,M m ),满足任意i ∈N *,i ≤m -1,都有|a i -a i +1|=1.(10分)。
2020届江苏省南京市、盐城市高三下学期第二次模拟考试数学试题(解析版)
2020届江苏省南京市、盐城市高三下学期第二次模拟考试数学试题一、填空题1.已知集合{}|21,A x x k k Z ==+∈,(){}|50B x x x =-<,则A B =I _____________.【答案】{}1,3【解析】由集合A 和集合B 求出交集即可. 【详解】解:Q 集合{}|21,A x x k k Z ==+∈,(){}|50B x x x =-<,∴{}13A B ⋂=,.故答案为:{}1,3. 【点睛】本题考查了交集及其运算,属于基础题.2.已知复数12z i =+,其中i 为虚数单位,则2z 的模为_______________. 【答案】5【解析】利用复数模的计算公式求解即可. 【详解】解:由12z i =+,得()221234z i i =+=-+,所以25z ==.故答案为:5. 【点睛】本题考查复数模的求法,属于基础题.3.如图是一个算法流程图,若输出的实数y 的值为1-,则输入的实数x 的值为______________.【答案】14-【解析】根据程序框图得到程序功能,结合分段函数进行计算即可. 【详解】解:程序的功能是计算()2log 21,02,0x x x y x ⎧+≤=⎨>⎩,若输出的实数y 的值为1-,则当0x ≤时,由()2log 211x +=-得14x =-,当0x >时,由21x =-,此时无解. 故答案为:14-. 【点睛】本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题. 4.某校初三年级共有500名女生,为了了解初三女生1分钟“仰卧起坐”项目训练情况,统计了所有女生1分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则1分钟至少能做到30个仰卧起坐的初三女生有_____________个.【答案】325【解析】根据数据先求出0.02x =,再求出1分钟至少能做到30个仰卧起坐的初三女生人数即可. 【详解】解:Q ()0.0150.0350.01101x x ++++⋅=,∴0.02x =.则1分钟至少能做到30个仰卧起坐的初三女生人数为()10.0150.021*******-+⋅⋅=⎡⎤⎣⎦.故答案为:325. 【点睛】本题主要考查频率分布直方图,属于基础题.5.从编号为1,2,3,4的张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为_____________. 【答案】12【解析】基本事件总数4416n =⨯=,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,由此能求出概率. 【详解】解:从编号为1,2,3,4的张卡片中随机抽取一张,放回后再随机抽取一张, 基本事件总数4416n =⨯=,第二次抽得的卡片上的数字能被第一次抽得的卡片上数字的基本事件有8个,分别为:()1,1,()1,2,()1,3,()1,4,()2,2,()2,4,()3,3,()4,4.所以第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为81162P ==. 故答案为12.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,属于基础题.6.已知函数()f x 是定义在R 上的奇函数,且周期为2,当(]0,1x ∈时,()3af x x =+,则()f a 的值为___________________. 【答案】0【解析】由题意可得:(),0130,0,103a x x f x x ax x ⎧+<≤⎪⎪==⎨⎪⎪--≤<⎩,周期为2,可得()()11f f =-,可求出0a =,最后再求()f a 的值即可. 【详解】解:Q 函数()f x 是定义在R 上的奇函数,∴(),0130,0,103a x x f x x ax x ⎧+<≤⎪⎪==⎨⎪⎪--≤<⎩.由周期为2,可知()()11f f =-,∴1133a a+=-,∴0a =. ∴()()00f a f ==.故答案为:0. 【点睛】本题主要考查函数的基本性质,属于基础题.7.若将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴向右平移()0ϕϕ>个单位后所得的图象与()f x 的图象关于x 轴对称,则ϕ的最小值为________________. 【答案】2π【解析】由题意利用函数()sin y A ωx φ=+的图象变换规律,三角函数的图像的对称性,求得ϕ的最小值. 【详解】解:将函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图象沿x 轴向右平移()0ϕϕ>个单位长度,可得 ()sin 2sin 2233y x x ππϕϕ⎡⎤⎛⎫=-+=-+ ⎪⎢⎥⎣⎦⎝⎭的图象.根据图象与()f x 的图象关于x 轴对称,可得si s n in 22323x x πϕπ⎛⎫-+= ⎪⎝⎛⎫-+ ⎪⎝⎭⎭,∴()221k ϕπ-=+,k Z ∈,即1k =-时,ϕ的最小值为2π. 故答案为:2π. 【点睛】本题主要考查函数()sin y A ωx φ=+的图象变换规律,正弦函数图像的对称性,属于基础题.8.在ABC V 中,25AB =,5AC =,90BAC ∠=︒,则ABC V 绕BC 所在直线旋转一周所形成的几何体的表面积为______________. 【答案】65π【解析】由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积S rl π=计算公式可得.【详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起, 在ABC V 中,25AB =,5AC =,90BAC ∠=︒,如下图所示,底面圆的半径为()()222552255r AD ⋅===+,则所形成的几何体的表面积为()()12225565S r l l πππ=+=⨯⨯+=.故答案为:65π. 【点睛】本题考查旋转体的表面积计算问题,属于基础题.9.已知数列{}n a 为等差数列,数列{}n b 为等比数列,满足{}{}{}123123,,,,,,2a a a b b b a b ==-,其中0a >,0b >,则+a b 的值为_______________.【答案】5【解析】根据题意,判断出22b =-,根据等比数列的性质可得()2221324b b b ==-=,再令数列{}n a 中的12a =-,2a a =,3a b =,根据等差数列的性质,列出等式22a b =-+,求出a 和b 的值即可.【详解】解:由{}{}{}123123,,,,,,2a a a b b b a b ==-,其中0a >,0b >,可得22b =-,则()2221324b b b ==-=,令1b a =,3b b =,可得4ab =.①又令数列{}n a 中的12a =-,2a a =,3a b =, 根据等差数列的性质,可得2132a a a =+, 所以22a b =-+.② 根据①②得出1a =,4b =. 所以5a b +=. 故答案为5. 【点睛】本题主要考查等差数列、等比数列的性质,属于基础题.10.已知点P 是抛物线24x y =上动点,F 是抛物线的焦点,点A 的坐标为()0,1-,则PFPA的最小值为______________.【答案】2【解析】过点P 作PM 垂直于准线,M 为垂足,则由抛物线的定义可得PM PF =, 则sin PF PM PAM PA PA==∠,PAM ∠为锐角.故当PA 和抛物线相切时,PFPA 的值最小.再利用直线的斜率公式、导数的几何意义求得切点的坐标,从而求得PFPA的最小值. 【详解】解:由题意可得,抛物线24x y =的焦点()0,1F ,准线方程为1y =-,过点P 作PM 垂直于准线,M 为垂足,则由抛物线的定义可得PM PF =, 则sin PF PMPAM PA PA==∠,PAM ∠为锐角.故当PAM ∠最小时,PFPA的值最小. 设切点()2,P a a ,由214y x =的导数为12y x '=,则PA 的斜率为1222a a a⋅==, 求得1a =,可得()2,1P ,∴2PM =,22PA =, ∴2sin PM PAM PA ∠==.2. 【点睛】本题考查抛物线的定义,性质的简单应用,直线的斜率公式,导数的几何意义,属于中档题.11.已知x ,y 为正实数,且2441xy x y ++=,则x y +的最小值为________________. 【答案】8【解析】由x ,y 为正实数,且2441xy x y ++=,可知4x ≠-,于是2414x y x -+=+,可得()241494644x x y x x x x -++=+=++-++,再利用基本不等式即可得出结果.【详解】解:Q x ,y 为正实数,且2441xy x y ++=,可知4x ≠-,∴2414x y x -+=+,∴()24149466844x x y x x x x -++=+=++-≥=++. 当且仅当3x =时取等号.∴x y +的最小值为8.故答案为:8. 【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.12.在平面直角坐标系xOy 中,圆()()222:0C x m y r m -+=>.已知过原点O 且相互垂直的两条直线1l 和2l ,其中1l 与圆C 相交于A ,B 两点,2l 与圆C 相切于点D .若AB OD =,则直线1l 的斜率为_____________.【答案】 【解析】设1l :0kx y -=,2l :0x ky +=,利用点到直线的距离,列出式子r =⎪=⎪⎩,求出k 的值即可. 【详解】解:由圆()()222:0C x m y r m -+=>,可知圆心(),0C m ,半径为r .设直线1l :0kx y -=,则2l :0x ky +=,圆心(),0C m 到直线1l,OD =Q AB OD=∴AB =圆心(),0C m 到直线2l r =,并根据垂径定理的应用,可列式得到r =⎪=⎪⎩,解得k =.故答案为:5±. 【点睛】本题主要考查点到直线的距离公式的运用,并结合圆的方程,垂径定理的基本知识,属于中档题.13.在ABC V 中,BC 为定长,23AB AC BC +=u u u r u u u r u u u r,若ABC V 的面积的最大值为2,则边BC 的长为____________. 【答案】2【解析】设BC a =,以B 为原点,BC 为x 轴建系,则()0,0B ,(),0C a ,设(),A x y ,0y ≠,()223,33AB AC a x y a +=--=u u u r u u u r,利用求向量模的公式,可得22223a x y a ⎛⎫-+= ⎪⎝⎭()0y ≠,根据三角形面积公式进一步求出a 的值即为所求.【详解】解:设BC a =,以B 为原点,BC 为x 轴建系,则()0,0B ,(),0C a ,设(),A x y ,0y ≠,则()223,33AB AC a x y a +=--==u u u r u u u r,即22223a x y a ⎛⎫-+= ⎪⎝⎭()0y ≠, 由12ABCS BC y =⋅V ,可得2222a a y ≤=. 则2BC a ==. 故答案为:2. 【点睛】本题考查向量模的计算,建系是关键,属于难题.14.函数()xf x e x b =--(e 为自然对数的底数,b R ∈),若函数()()12g x f f x ⎛⎫=- ⎪⎝⎭恰有4个零点,则实数b 的取值范围为__________________.【答案】11,ln 22⎛⎫+ ⎪⎝⎭【解析】令()12f x t -=,则()0f t =,()12f x t =+恰有四个解.由()1x f x e '=-判断函数增减性,求出最小值,列出相应不等式求解得出b 的取值范围. 【详解】 解:令()12f x t -=,则()0f t =,()12f x t =+恰有四个解. ()0f t =有两个解,由()1x f x e '=-,可得()f x 在(),0-∞上单调递减,在()0,∞+上单调递增,则()()min 010f x f b ==-<,可得1b >. 设()0f t =的负根为m , 由题意知,112m b +>-,12m b >-, 102f b ⎛⎫-> ⎪⎝⎭,则12102b e -->, ∴1ln 22b <+. ∴11,ln 22b ⎛⎫∈+ ⎪⎝⎭故答案为:11,ln 22⎛⎫+ ⎪⎝⎭. 【点睛】本题考查导数在函数当中的应用,属于难题.二、解答题15.如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ; ()2若2PD AC ==,3PE =PBC ⊥平面ABC .【答案】()1证明见解析;()2证明见解析. 【解析】()1利用线面平行的判定定理求证即可;()2D 为AB 中点,E 为BC 中点,可得112DE AC ==,2PD =,3PE =222PD PE DE =+,故PDE △为直角三角形,PE DE ⊥,利用面面垂直的判定定理求证即可. 【详解】解: ()1证明:Q D 为AB 中点,E 为BC 中点,∴//AC DE ,又Q AC ⊄平面PDE ,DE ⊂平面PDE ,∴//AC 平面PDE ;()2证明:Q D 为AB 中点,E 为BC 中点,∴112DE AC ==,又2PD =,3PE = 则222PD PE DE =+,故PDE △为直角三角形,PE DE ⊥,Q 平面PDE ⊥平面ABC ,平面PDE I 平面ABC DE =,PE DE ⊥,PE ⊂平面PDE ,∴PE ⊥平面ABC ,又∵PE ⊂平面PBC ,∴平面PBC ⊥平面ABC .【点睛】本题考查线面平行和面面垂直的判定定理的应用,属于基础题.16.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a b C c B =+.()1求B 的值;()2设BAC ∠的平分线AD 与边BC 交于点D ,已知177AD =,7cos 25A =-,求b 的值.【答案】()14B π=;()2sin sin AD ADCb C∠=.【解析】()1利用正弦定理化简求值即可;()2利用两角和差的正弦函数的化简公式,结合正弦定理求出b 的值.【详解】解:()1cos sin a b C c B -=,由正弦定理得:sin sin cos sin sin A B C C B -=,()sin sin cos sin sin B C B C C B π---=, ()sin sin cos sin sin B C B C C B +-=,sin cos sin cos sin cos sin sin B C C B B C C B +-=, sinCcos sin sin B C B =,又B ,C 为三角形内角,故sin 0B >,sin 0C >, 则cos sin 0B B =>,故tan 1B =,4B π=;(2)AD 平分BAC ∠,设BAD CAD x ∠=∠=,则()20,A x π=∈,0,2x π⎛⎫∈ ⎪⎝⎭,27cos cos 22cos 125A x x ==-=-,3cos 5x =,则4sin 5x ==,24sin 25A ==,又4B π=,则333sin sin sin cos cos sin 44450C A A A πππ⎛⎫=---=⎪⎝⎭()sin sin sin sin cos cos sin 444ADC B x x x x πππ⎛⎫∠=+=+=+=⎪⎝⎭在ACD V 中,由正弦定理:sin sin b AD ADC C =∠,sin sin AD ADCb C∠=. 【点睛】本题考查正弦定理和两角和差的正弦函数的化简公式,二倍角公式,考查运算能力,属于基础题.17.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米,为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道»DE.记CBD ∠为θ.()1用θ表示栈道的总长度()f θ,并确定sin θ的取值范围; ()2求当θ为何值时,栈道总长度最短.【答案】()1()1232sin tan f θπθθθ=-+++,1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2当3πθ=时,栈道总长度最短.【解析】()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==,130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,则()1232sin tan fθπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,进而确定sin θ的取值范围; ()2根据()12cos 23sin f θθθπθ-=-++求导得()()2cos 2cos 1sin f θθθθ--'=,利用增减性算出()min 533f πθ=+,进而求θ得取值. 【详解】解:()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==, CBE CBD θ∠=∠=,又CD BD ⊥,CE BE ⊥,故2DCE πθ∠=-, 则劣弧»DE的长为2πθ-,因此,优弧»DE 的长为2πθ+, 又3AC =,故130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,所以,()1232sin tan fθπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,则1sin ,13θ⎡⎫∈⎪⎢⎣⎭; ()2()12cos 23sin f θθθπθ-=-++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,其中01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,()()2cos 2cos 1sin f θθθθ--'=故3πθ=时,()min 533f πθ=+ 所以当3πθ=时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.18.如图,在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为12,且过点()0,3.()1求椭圆C 的方程;()2已知BMN △是椭圆C 的内接三角形,①若点B 为椭圆C 的上顶点,原点O 为BMN △的垂心,求线段MN 的长; ②若原点O 为BMN △的重心,求原点O 到直线MN 距离的最小值.【答案】()122143x y +=;()24333【解析】()1根据题意列出方程组求解即可;()2①由原点O 为BMN △的垂心可得BO MN ⊥,//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,根据·=0BM ON u u u ru u u u r 求出线段MN 的长;②设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++,当MN 斜率不存在时,则O 到直线MN 的距离为1,()()221212434460kx x mk x x m +++++=,由223412y kx mx y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-=,122843mk x x k -+=+,212241243m x x k -=+,得出22443m k =+,根据d ===. 【详解】解:()1设焦距为2c,由题意知:22212b b ac c a ⎧⎪=⎪=-⎨⎪⎪=⎩,22431a b c ⎧=⎪=⎨⎪=⎩因此,椭圆C 的方程为:22143x y +=;()2①由题意知:BO MN ⊥,故//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,2227·403BM ON x y y =-+=-=u u u u u u r u r,解得:y =7-,B ,M不重合,故y =213249x =,故2MN x ==;②设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,当MN 斜率不存在时,则O 到直线MN 的距离为1;设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++()()222222121211221434343x x y y x y x y+++=+=+=,1212346x x y y +=-()()1212346x x kx m kx m +++=-()()221212434460kx x mk x x m +++++=223412y kx m x y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-= ()2248430k m∆=+->,x =则:122843mk x x k -+=+,212241243m x x k -=+,代入式子得: 22223286043m k m k --=+,22443m k =+设O 到直线MN 的距离为d,则d ===0k =时,min d =综上,原点O 到直线MN距离的最小值为2. 【点睛】本题考查椭圆的方程的知识点,结合运用向量,韦达定理和点到直线的距离的知识,属于难题.19.已知函数()()3216f x x x a x =---,()ln g x a x =,a R ∈.函数()()()f x h x g x x=-的导函数()h x '在5,42⎡⎤⎢⎥⎣⎦上存在零点. ()1求实数a 的取值范围;()2若存在实数a ,当[]0,x b ∈时,函数()f x 在0x =时取得最大值,求正实数b 的最大值;()3若直线l 与曲线()y f x =和()y g x =都相切,且l 在y 轴上的截距为12-,求实数a 的值.【答案】()1[]10,28;()24;()312.【解析】()1由题意可知,()2ln 16h x x x a x a =---+,求导函数()h x ',方程220x x a --=在区间5,42⎡⎤⎢⎥⎣⎦上有实数解,求出实数a 的取值范围;()2由()()3216f x x x a x =---,则()23216f x x x a =--+',分步讨论,并利用导函数在函数的单调性的研究,得出正实数b 的最大值;()3设直线l 与曲线()y f x =的切点为()()321111,16x x x a x ---,因为()()23216f x x x a =---',所以切线斜率()2113216k x x a =---,切线方程为()2412y a x =--,设直线l 与曲线()y g x =的切点为()22,ln x a x ,因为()ag x x'=,所以切线斜率2a k x =,即切线方程为()222ln ay x x a x x =-+, 整理得22ln a y x a x a x =+-.所以2224ln 12aa x a x a ⎧=-⎪⎨⎪-=-⎩,求得257x ≥,设()115ln 227G x x x x ⎛⎫=+-≥ ⎪⎝⎭,则()221121022x G x x x x-=-=>', 所以()G x 在5,7⎡⎫+∞⎪⎢⎣⎭上单调递增,最后求出实数a 的值. 【详解】()1由题意可知,()2ln 16h x x x a x a =---+,则()2221a x x ah x x x x--'=--=, 即方程220x x a --=在区间5,42⎡⎤⎢⎥⎣⎦上有实数解,解得[]10,28a ∈;()2因为()()3216f x x x a x =---,则()23216f x x x a =--+',①当()412160a ∆=--+≤,即47103a ≤≤时,()0f x '≥恒成立, 所以()f x 在[]0,b 上单调递增,不符题意; ②当47163a <<时,令()232160f x x x a =--+=', 解得:13x ==,当10,3x ⎛∈ ⎝⎭时,()0f x '>,()f x 单调递增, 所以不存在0b >,使得()f x 在[]0,b 上的最大值为()0f ,不符题意; ③当1628a ≤≤时,()232160f x x x a =--+=',解得:10x=<,20x =>且当()20,x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>, 所以()f x 在()20,x 上单调递减,在()2,x +∞上单调递增,若20b x <≤,则()f x 在[]0,b 上单调递减,所以()()max 0f x f =,若2b x >,则()()20,f x x 上单调递减,在()2,x b 上单调递增, 由题意可知,()()0f b f ≤,即()32160b b a b ---≤,整理得216b b a -≤-,因为存在[]16,28a ∈,符合上式,所以212b b -≤,解得04b <≤, 综上,b 的最大值为4;()3设直线l 与曲线()y f x =的切点为()()321111,16x x x a x ---,因为()()23216f x x x a =---',所以切线斜率()2113216k x x a =---,即切线方程()()()232111111321616y x x a x x x x a x ⎡⎤=----+---⎣⎦整理得:()232111132162y x x a x x x ⎡⎤=----+⎣⎦由题意可知,3211212x x -+=-,即32112120x x --=,即()()211122360x x x -++=,解得12x =所以切线方程为()2412y a x =--,设直线l 与曲线()y g x =的切点为()22,ln x a x , 因为()a g x x '=,所以切线斜率2a k x =,即切线方程为()222ln a y x x a x x =-+, 整理得22ln ay x a x a x =+-. 所以2224ln 12aa x a x a ⎧=-⎪⎨⎪-=-⎩,消去a ,整理得2211ln 022x x +-=, 且因为[]()22410,28aa a x =-∈,解得257x ≥, 设()115ln 227G x x x x ⎛⎫=+-≥ ⎪⎝⎭,则()221121022x G x x x x -=-=>', 所以()G x 在5,7⎡⎫+∞⎪⎢⎣⎭上单调递增,因为()10G =,所以21x =,所以24a a =-,即12a =. 【点睛】本题主要考查导数在函数中的研究,导数的几何意义,属于难题. 20.已知矩阵1221M ⎡⎤=⎢⎥⎣⎦,1001⎡⎤=⎢⎥⎣⎦MN . ()1求矩阵N ; ()2求矩阵N 的特征值.【答案】()112332133N ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦;()2113λ=,21λ=-. 【解析】()1由题意,可得a b N c d ⎡⎤=⎢⎥⎣⎦,利用矩阵的知识求解即可.()2矩阵N 的特征多项式为()21439f λλ⎛⎫=+- ⎪⎝⎭,令()0f λ=,求出矩阵N 的特征值. 【详解】()1设矩阵a b N c d ⎡⎤=⎢⎥⎣⎦,则122210212201a b a c b d MN c d a c b d ++⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦⎣⎦, 所以21202021a c b d a c b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得13a =-,23b =,23c =,13d =-,所以矩阵12332133N ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦; ()2矩阵N 的特征多项式为()21439f λλ⎛⎫=+- ⎪⎝⎭,令()0f λ=,解得113λ=,21λ=-, 即矩阵N 的两个特征值为113λ=,21λ=-. 【点睛】本题考查矩阵的知识点,属于常考题.21.在平面直角坐标系xOy 中,曲线C 的参数方程为2212x t y t =⎧⎪⎨=⎪⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l极坐标方程为cos 4πρθ⎛⎫-= ⎪⎝⎭若直线l 交曲线C 于A ,B 两点,求线段AB 的长. 【答案】16【解析】由cos cos cos sin sin 444πππρθρθρθ⎛⎫-=+= ⎪⎝⎭cos sin 2ρθρθ+=,由cos ,sin x y ρθρθ==,所以直线l 的直角坐标方程为2x y +=,因为曲线C 的参数方程为2212x ty t =⎧⎪⎨=⎪⎩,整理得28x y =,直线l 的方程与曲线C 的方程联立,228x y x y+=⎧⎨=⎩,整理得28160x x +-=,设()()1122,,,A x y B x y ,则1128,16x x x x +==-,根据弦长公式求解即可.【详解】由cos cos cos sin sin 444πππρθρθρθ⎛⎫-=+= ⎪⎝⎭,化简得cos sin 2ρθρθ+=,又因为cos ,sin x y ρθρθ==,所以直线l 的直角坐标方程为2x y +=,因为曲线C 的参数方程为2212x ty t =⎧⎪⎨=⎪⎩,消去t ,整理得28x y =,将直线l 的方程与曲线C 的方程联立,228x y x y+=⎧⎨=⎩,消去y ,整理得28160x x +-=, 设()()1122,,,A x y B x y ,则1128,16x x x x +==-, 所以AB ===,将1128,16x x x x +==-,代入上式,整理得16AB =. 【点睛】本题考查参数方程,极坐标方程的应用,结合弦长公式的运用,属于中档题.22.已知a >01a a+-2. 【答案】证明见解析【解析】利用分析法,证明a 132a +>即可. 【详解】证明:∵a >0,∴a 1a+≥2, ∴a 1a+-2≥0,∴1a a+-2, 只要证明a 221a +>(a 1a +)2﹣4(a 1a +)+4, 只要证明:a 132a +>,∵a 1a +≥232>,∴原不等式成立. 【点睛】本题考查不等式的证明,着重考查分析法的运用,考查推理论证能力,属于中档题. 23.某商场举行有奖促销活动,顾客购买每满400元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有16-点数的正方体骰子1次,若掷得点数大于4,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有2个红球与()*2,m m m N ≥∈个白球,抽奖者从箱中任意摸出2个球,若2个球均为红球,则获得一等奖,若2个球为1个红球和1个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).()1若4m =,求顾客参加一次抽奖活动获得三等奖的概率;()2若一等奖可获奖金400元,二等奖可获奖金300元,三等奖可获奖金100元,记顾客一次抽奖所获得的奖金为X ,若商场希望X 的数学期望不超过150元,求m 的最小值. 【答案】()135;()29. 【解析】()1设顾客获得三等奖为事件A ,因为顾客掷得点数大于4的概率为13,顾客掷得点数小于4,然后抽将得三等奖的概率为415,求出()P A ;()2由题意可知,随机变量X 的可能取值为100,300,400,相应求出概率,求出期望,化简得()()()2100200220016003321m m E X m m ++=+++,由题意可知,()150E X ≤,即()()2100200220016001503321m m m m +++≤++,求出m 的最小值. 【详解】()1设顾客获得三等奖为事件A ,因为顾客掷得点数大于4的概率为13, 顾客掷得点数小于4,然后抽将得三等奖的概率为24262264331515C C ⨯=⨯=, 所以()1433155P A =+=; ()2由题意可知,随机变量X 的可能取值为100,300,400,且()()()()22221121100333321m m m m C P X C m m +-==+⨯=+++, ()()()11222283003321m m C C mP X C m m +==⨯=++,()()()2222244003321m C P X C m m +==⨯=++,所以随机变量X 的数学期望,()()()()()()()()211841003004003321321321m m m E X m m m m m m ⎛⎫-=⨯++⨯+⨯ ⎪ ⎪++++++⎝⎭,化简得()()()2100200220016003321m m E X m m ++=+++, 由题意可知,()150E X ≤,即()()2100200220016001503321m m m m +++≤++, 化简得2323180m m --≥,因为*m N ∈,解得9m ≥, 即m 的最小值为9. 【点睛】本题主要考查概率和期望的求法,属于常考题.24.已知集合{}1,2,,n A n =L ,*n N ∈,2n ≥,将n A 的所有子集任意排列,得到一个有序集合组()12,,,m M M M L ,其中2n m =.记集合k M 中元素的个数为k a ,*k N ∈,k m ≤,规定空集中元素的个数为0.()1当2n =时,求12m a a a +++L的值;()2利用数学归纳法证明:不论()2n n ≥为何值,总存在有序集合组()12,,,m M M M L ,满足任意*i N ∈,1i m ≤-,都有11i i a a +-=.【答案】()14;()2证明见解析.【解析】()1当2n =时,集合n A 共有224=个子集,即可求出结果;()2分类讨论,利用数学归纳法证明.【详解】()1当2n =时,集合n A 共有224=个子集,所以124m a a a +++=L ;()2①当2n =时,224m ==,由()1可知,1244a a a +++=L,此时令11a =,22a =,31a =,40a =, 满足对任意()*3i i N≤∈,都有11ii a a+-=,且40a =;②假设当()2n k k =≥时,存在有序集合组()122,,,k M M M L 满足题意,且20k a =, 则当1n k =+时,集合n A 的子集个数为1222k k +=⋅个,因为22k ⋅是4的整数倍,所以令211k a +=,222k a +=,231k a +=,240k a +=, 且()224124k k kj j a a j +++=≤≤-恒成立,即满足对任意121k i +≤-,都有11i i a a +-=,且210k a +=, 综上,原命题得证. 【点睛】本题考查集合的自己个数的研究,结合数学归纳法的应用,属于难题.。
2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)
6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.
2019-2020学年度最新数学高考江苏专版二轮专题复习训练:14个填空题综合仿真练(四)-含解析
2019-2020学年度最新数学高考江苏专版二轮专题复习训练:14个填空题综合仿真练(四)-含解析综合仿真练(四)1.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中的元素的个数为________. 解析:集合A ={1,2,3},B ={2,4,5},则A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5.答案:5 2.复数z =21-i(其中i 是虚数单位),则复数z 的共轭复数为________. 解析:z =21-i =2(1+i )(1-i )(1+i )=1+i ,则复数z 的共轭复数为1-i.答案:1-i3.如图是一个算法的流程图,则输出的k 的值为________.解析:阅读流程图,当k =2,3,4,5时,k 2-7k +10≤0,一直进行循环,当k =6时,k 2-7k +10>0,此时终止循环,输出k =6.答案:64.在数字1,2,3,4中随机选两个,则选中的数字中至少有一个是偶数的概率为________. 解析:在数字1,2,3,4中随机选两个,基本事件总数n =6,选中的数字中至少有一个是偶数的对立事件是选中的两个数字都是奇数,所以选中的数字中至少有一个是偶数的概率为P =1-16=56.答案:565.双曲线x 25-y 24=1的右焦点与左准线之间的距离是____________.解析:由已知得,双曲线的右焦点为(3,0),左准线方程为x =-53,所以右焦点与左准线之间的距离是3-⎝⎛⎭⎫-53=143. 答案:1436.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________.解析:由题意,得840=n 40+10+40+60,所以n =30.答案:307.若实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≥0,y -x -1≤0,x ≤1,则z =2x +3y 的最大值为________.解析:由约束条件⎩⎪⎨⎪⎧x +y -1≥0,y -x -1≤0,x ≤1,作出可行域如图,化目标函数z =2x +3y 为y =-23x +13z ,由图可知,当直线y =-23x +13z 过点A 时,直线在y 轴上的截距最大,联立⎩⎪⎨⎪⎧x =1,y -x -1=0,解得A (1,2),故z max =8.答案:88.底面边长为2,侧棱长为3的正四棱锥的体积为________. 解析:取点O 为底面ABCD 的中心,则SO ⊥平面ABCD ,取BC 的中点E ,连结OE ,SE ,则OE =BE =1,在Rt △SBE 中,SE =SB 2-BE 2=2,在Rt △SOE 中,SO =SE 2-OE 2=1,从而该正四棱锥的体积V =13S 四边形ABCD ·SO =13×2×2×1=43.答案:439.在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为________.解析:法一:由题意知,当A 在原点时,PQ 最小,此时,sin ∠PAC=23,cos ∠PAC =73,cos ∠PAQ =59, 故cos ∠PCQ =-59,∴PQ =PC 2+QC 2-2×PC ×QC ×cos ∠PCQ =2+2-2×2×2×⎝⎛⎭⎫-59=2143, 当A 点离原点无限远时,PQ 接近于22, ∴PQ 的取值范围为⎣⎡⎭⎫2143,22.法二:设CA =x ,x ∈[3,+∞),则PA =x 2-2,sin ∠ACP =PACA=x 2-2x=1-2x2, 所以PQ =2CP ·sin ∠ACP =22·1-2x 2.因为x ∈[3,+∞),所以y =1-2x 2在[3,+∞)上为增函数,所以2143≤PQ <2 2. 答案:⎣⎡⎭⎫2143,2210.若函数f (x )=⎩⎪⎨⎪⎧x +2x,x ≤0,ax -ln x ,x >0,在其定义域上恰有两个零点,则正实数a 的值为________.解析:易知函数f (x )在(-∞,0]上有一个零点,所以由题意得方程ax -ln x =0在(0,+∞)上恰有一解,即a =ln x x 在(0,+∞)上恰有一解. 令g (x )=ln xx ,由g ′(x )=1-ln x x 2=0,得x =e ,当x ∈(0,e)时,g (x )单调递增,当x ∈(e ,+∞)时,g (x )单调递减,所以g (x )在x =e 处取得极大值也为最大值,作出y =g (x )与y =a 的图象(图略),知当正实数a =g (x )max 时两函数有一个交点,所以a =g (e)=1e.答案:1e11.设直线l 是曲线y =4x 3+3ln x 的切线,则直线l 的斜率的最小值为________.解析:y ′=12x 2+3x(x >0),令g (x )=12x 2+3x ,则g ′(x )=24x -3x2,令g ′(x )=0,得x =12,故当x ∈⎝⎛⎭⎫0,12时,g ′(x )<0,当x ∈⎝⎛⎭⎫12,+∞时,g ′(x )>0,所以当x =12时,g (x )取得最小值g ⎝⎛⎭⎫12=9,故y ′=12x 2+3x 的最小值为9,即直线l 的斜率的最小值为9.答案:912.扇形AOB 中,弦AB =1,C 为劣弧AB 上的动点,AB 与OC 交于点P ,则OP ―→·BP ―→的最小值是________.解析:设弦AB 的中点为M ,则OP ―→·BP ―→=(OM ―→+MP ―→)·BP ―→=MP ―→·BP ―→, 若MP ―→,BP ―→同向,则OP ―→·BP ―→>0; 若MP ―→,BP ―→反向,则OP ―→·BP ―→<0,故OP ―→·BP ―→的最小值在MP ―→,BP ―→反向时取得,此时|MP ―→|+|BP ―→|=12,OP ―→·BP ―→=-|MP ―→|·|BP ―→|≥-⎝ ⎛⎭⎪⎫|MP ―→|+|BP ―→|22=-116, 当且仅当|MP ―→|=|BP ―→|=14时取等号,即OP ―→·BP ―→的最小值是-116.答案:-11613.在平面直角坐标系xOy 中,已知A (cos α,sin α),B (cos β,sin β)是直线y =3x +2上的两点,则tan(α+β)的值为________.解析:由题意,α,β是方程3cos x -sin x +2=0的两根. 设f (x )=3cos x -sin x +2, 则f ′(x )=-3sin x -cos x . 令f ′(x )=0,得tan x 0=-33, 所以α+β=2x 0,所以tan(α+β)=- 3. 答案:- 314.已知函数f (x )=|x -a |-3x +a -2有且仅有三个零点,且它们成等差数列,则实数a的取值集合为________.解析:f (x )=⎩⎨⎧x -3x -2,x ≥a ,-x -3x +2a -2,x <a ,当x ≥a 时,由x -3x -2=0,得x 1=-1,x 2=3,结合图形知,①当a <-1时,x 3,-1,3成等差数列,则x 3=-5,代入-x -3x +2a -2=0得,a =-95; ②当-1≤a ≤3时,方程-x -3x +2a -2=0, 即x 2+2(1-a )x +3=0,设方程的两根为x 3,x 4,且x 3<x 4,则x 3x 4=3,且x 3+3=2x 4,解得x 4=3±334,又x 3+x 4=2(a -1),所以a =5+3338.③当a >3时,显然不符合.所以a 的取值集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-95,5+3338. 答案:⎩⎨⎧⎭⎬⎫-95,5+3338。
【精品高考数学】[2020年江苏高考仿真模拟卷-数学]+答案
2020年江苏高考仿真模拟卷数学 2020.4满分:150分 考试时间:120分钟一、填空题1.(5分)已知集合M ={x |x >2},集合N ={x |x ≤1},则M ∪N =__________. 2.(5分)已知复数z 满足z +2z =6+i ,则z 的实部为__________.3.(5分)已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是__________. 4.(5分)函数f (x )=lg (4x ﹣2x +1)的定义域为__________.5.(5分)将100粒大小一样的豆子随机撒入图中长3cm ,宽2cm 的长方形内,恰有30粒豆子落在阴影区域内,则阴影区域的面积约为__________cm 26.(5分)如图是一个算法的伪代码,其输出的结果为__________.7.(5分)已知双曲线x 23−y 2b =1的两条渐近线与直线x =√3围成正三角形,则双曲线的离心率为__________.8.(5分)公差不为零的等差数列{a n }的前n 项和为S n ,若a 3是a 2与a 6的等比中项,S 3=3,则S 9的值为__________.9.(5分)下面四个命题:其中所有正确命题的序号是__________. ①函数y =sin|x |的最小正周期为π;②在△ABC 中,若AB →⋅BC →>0,则△ABC 一定是钝角三角形; ③函数y =2+log a (x ﹣2)(a >0且a ≠1)的图象必经过点(3,2);④若命题“∃x ∈R ,x 2+x +a <0”是假命题,则实数a 的取值范围为[14,+∞);⑤y =cos x ﹣sin x 的图象向左平移π4个单位,所得图象关于y 轴对称.10.(5分)四棱锥S ﹣ABCD 中,底面ABCD 是边长为2的正方形,侧面SAD 是以AD 为斜边的等腰直角三角形,若∠SAB ∈[π3,2π3],则四棱锥S ﹣ABCD 的体积的取值范围为__________.11.(5分)若直线y =ax +b 与曲线y =lnx +1相切,则ab 的最大值为__________. 12.(5分)设关于x 的不等式ax +b >0的解集为{x |x <2},则关于x 的不等式ax+bx −5x−6≥0的解集为__________.13.(5分)如图,在等腰△ABC 中,AB =AC =3,D ,E 与M ,N 分别是AB ,AC 的三等分点,且DN →•ME →=−1,则cos A =__________.14.(5分)函数y =f (x )的定义域为[﹣2.1,2],其图象如图所示,且f (﹣2.1)=﹣0.96. (1)若函数y =f (x )﹣k 恰有两个不同的零点,则k =__________.(2)已知函数g (x )={2x +1,x ≤0x 3+2x −16,x >0,y =g [f (x )]有__________个不同的零点.二、解答题15.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别是AD,PB的中点.(1)求证:PE⊥CD;(2)求证:EF∥平面PCD;(3)求证:平面P AB⊥平面PCD.16.(14分)已知等比数列{a n}的前n项和为S n,且S2=2a2﹣2,a3=a4﹣2a2.(1)求等比数列{a n}的通项公式;(2)若数列{a n}为递增数列,数列{b n}是等差数列,且b2=2,b4=4;数列{a n b n}的前n项和为T n,求T n.17.(14分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为p(0<p <1),且各个时间段每套系统监测出排放超标情况相互独立.(Ⅰ)当p=12时,求某个时间段需要检查污染源处理系统的概率;(Ⅱ)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.18.(16分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,左右顶点分别为A 、B ,上顶点为T ,且△TF 1F 2为等边三角形. (1)求此椭圆的离心率e ;(2)若直线y =kx +m (k >0)与椭圆交与C 、D 两点(点D 在x 轴上方),且与线段F 1F 2及椭圆短轴分别交于点M 、N (其中M 、N 不重合),且|CM |=|DN |. ①求k 的值;②设AD 、BC 的斜率分别为k 1,k 2,求k 1k 2的取值范围.19.(16分)定义在R 上的函数f (x )满足f (x )=12•f '(1)•e 2x ﹣2f (0)•x +x 2,g (x )=e x ﹣a (x ﹣1).(1)求函数f (x )的解析式; (2)求函数g (x )的单调区间;(3)给出定义:若s ,t ,r 满足|s ﹣r |<|t ﹣r |,则称s 比t 更接近于r ,当x ≥1时,试比较ex和e x﹣1+3哪个更接近Inx ,并说明理由.20.(16分)设数列{a n },{b n },{c n }的前n 项和分别为A n ,B n ,∁n ,且对任意的都有A n =B n +∁n ,已知A n =n2(a n +1)(n ∈N *),数列{b n }和{c n }是公差不为0的等差数列,且各项均为非负整数. (1)求证:数列{a n }是等差数列;(2)若数列{a n }的前4项删去1项后按原来顺序成等比数列,求所有满足条件的数列{a n }; (3)若a 2=4,且B n >∁n ,n ∈N *,求数列{b n },{c n }的通项公式.21.(10分)已知a ,b ∈R ,向量α→=[−12]是矩阵A =[a 1−1b ]的属于特征值﹣1的一个特征向量.(1)求a ,b 的值;(2)若曲线C 1:x ﹣2y +3=0在矩阵A 对应变换作用下得到另一曲线C 2,求C 2的方程.22.(10分)在平面直角坐标系x 0y 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m3k(m 为参数).设直线l 1与l 2的交点为P .当k 变化时点P 的轨迹为曲线C 1.(Ⅰ)求出曲线C 1的普通方程;(Ⅱ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=3√2,点Q 为曲线C 1上的动点,求点Q 到直线C 2的距离的最大值.23.(选做题)已知a ,b ,c ∈(0,+∞),且1a+2b+3c=2,求a +2b +3c 的最小值及取得最小值时a ,b ,c 的值.24.(10分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =12AB =1,点E 、M 分别在线段AB 、PC 上,且AE AB=PM PC=λ,其中0<λ<1,连接CE ,延长CE 与DA 的延长线交于点F ,连接PE ,PF ,ME . (Ⅰ)求证:ME ∥平面PFD ;(Ⅱ)若λ=12时,求二面角A ﹣PE ﹣F 的正弦值;(Ⅲ)若直线PE 与平面PBC 所成角的正弦值为√55时,求λ值.25.(10分)一种掷骰子走跳棋的游戏:棋盘山标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n站的概率为P n,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次,若掷出奇数点,则棋子向前跳动一站;若掷出偶数点,则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的玩具,它的六个面分别标有点数1,2,3,4,5,6).(1)求P0,P1,P2,并根据棋子跳到第n站的情况,试用P n﹣2和P n﹣1表示P n;(2)求证:{P n﹣P n﹣1}(n=1,2…,100)是等比数列;(3)求玩该游戏获胜的概率.2020年江苏高考仿真模拟卷数学2020.4满分:150分考试时间:120分钟一、填空题1.(5分)已知集合M={x|x>2},集合N={x|x≤1},则M∪N=__________.【解析】∵M={x|x>2},N={x|x≤1},∴M∪N={x|x≤1或x>2}.故答案为:{x|x≤1或x>2}.2.(5分)已知复数z满足z+2z=6+i,则z的实部为__________.【解析】设z=a+bi,(a,b∈R).∵复数z满足z+2z=6+i,∴3a﹣bi=6+i,可得:3a=6,﹣b=1,解得a=2,b=1.则z的实部为2.故答案为:2.3.(5分)已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是__________.【解析】数据4.8,4.9,5.2,5.5,5.6的平均数为:x=15×(4.8+4.9+5.2+5.5+5.6)=5.2,∴该组数据的方差为:S2=15×[(4.8﹣5.2)2+(4.9﹣5.2)2+(5.2﹣5.2)2+(5.5﹣5.2)2+(5.6﹣5.2)2]=0.1.故答案为:0.1.4.(5分)函数f(x)=lg(4x﹣2x+1)的定义域为__________.【解析】函数f(x)=lg(4x﹣2x+1),令4x﹣2x+1>0,即(2x)2﹣2•2x>0,解得2x>2,即x>1,所以f(x)的定义域为(1,+∞).故答案为:(1,+∞).5.(5分)将100粒大小一样的豆子随机撒入图中长3cm,宽2cm的长方形内,恰有30粒豆子落在阴影区域内,则阴影区域的面积约为__________cm2【解析】设阴影部分的面积为x,由概率的几何概型知,30100=x2×3,解得x=1.8.故答案为:1.8.6.(5分)如图是一个算法的伪代码,其输出的结果为__________.【解析】模拟执行伪代码,可得:S =0+11×2+12×3+⋯+110×11=(1−12)+(12−13)+…+(110−111)=1−111=1011.故答案为:1011.7.(5分)已知双曲线x 23−y 2b =1的两条渐近线与直线x =√3围成正三角形,则双曲线的离心率为__________. 【解析】双曲线x 23−y 2b =1的两条渐近线与直线x =√3围成正三角形,所以双曲线的渐近线的倾斜角为30°和150°,所以√3=√33,所以b =1,所以双曲线的离心率为:e =ca =3=2√33. 故答案为:2√33. 8.(5分)公差不为零的等差数列{a n }的前n 项和为S n ,若a 3是a 2与a 6的等比中项,S 3=3,则S 9的值为__________.【解析】公差d 不为零的等差数列{a n },若a 3是a 2与a 6的等比中项, 可得a 2a 6=a 32,即(a 1+d )(a 1+5d )=(a 1+2d )2,化为d =﹣2a 1,又S 3=3,可得3a 1+3d =3,解得a 1=﹣1,d =2,则S 9=9a 1+36d =﹣9+72=63, 故答案为:63.9.(5分)下面四个命题:其中所有正确命题的序号是__________. ①函数y =sin|x |的最小正周期为π;②在△ABC 中,若AB →⋅BC →>0,则△ABC 一定是钝角三角形; ③函数y =2+log a (x ﹣2)(a >0且a ≠1)的图象必经过点(3,2);④若命题“∃x ∈R ,x 2+x +a <0”是假命题,则实数a 的取值范围为[14,+∞); ⑤y =cos x ﹣sin x 的图象向左平移π4个单位,所得图象关于y 轴对称.【解析】对于①,函数y =sin|x |={sinx ,x ≥0−sinx ,x <0,该函数不是周期函数,①错误;对于②,△ABC 中,若AB →⋅BC →>0,则∠ABC 的外角是锐角, 所以∠ABC 是钝角,△ABC 是钝角三角形,②正确; 对于③,令x ﹣2=1,解得x =3,此时y =2+log a 1=2;所以函数y =2+log a (x ﹣2)(a >0且a ≠1)的图象必过点(3,2),③正确; 对于④,命题“∃x ∈R ,x 2+x +a <0”是假命题时,它的否命题“∀x ∈R ,x 2+x +a ≥0”是真命题,所以△=1﹣4a ≤0,解得a ≥14, 所以实数a 的取值范围是[14,+∞),④正确;对于⑤,y =cos x ﹣sin x =√2cos (x +π4),y 的图象向左平移π4个单位,得y =√2cos (x +π2)=−√2sin x 的图象,所得图象不关于y 轴对称,⑤错误. 综上知,正确的命题序号是②③④. 故答案为:②③④.10.(5分)四棱锥S ﹣ABCD 中,底面ABCD 是边长为2的正方形,侧面SAD 是以AD 为斜边的等腰直角三角形,若∠SAB ∈[π3,2π3],则四棱锥S ﹣ABCD 的体积的取值范围为__________.【解析】如图,分别取AD 与BC 的中点M 、N ,连接MS ,MN . 由题意知AD ⊥平面SMN ,作SO ⊥MN ,垂足为O .则SO ⊥AD . 由AD ∩MN =M ,∴SO ⊥平面ABCD ,即四棱锥S ﹣ABCD 的高为SO ,过O 作OE ∥AD 交AB 于点E ,连接SE .由题意知∠SEA =90°,其中SA =√2. 当∠SAB ∈[π3,2π3]时,sin ∠SAB ∈[√32,1],SE =SA ,sin ∠SAB ∈[√62,√2],EO =1. ∴SO =√SE 2−1∈[√22,1],∴V S ﹣ABCD =13×4×SO∈[2√23,43].故答案为:[2√23,43].11.(5分)若直线y =ax +b 与曲线y =lnx +1相切,则ab 的最大值为__________.【解析】设切点为(x 0,lnx 0+1),则切线为y =1x 0(x −x 0)+lnx 0+1=1x 0x +lnx 0,所以1x 0=a ,lnx 0=b ,则ab =lnx 0x 0,令g (x )=lnx x ,所以g ′(x )=1−lnxx 2, 所以g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减, 则g(x)max =g(e)=1e ,即ab 的最大值为1e,故答案为:1e.12.(5分)设关于x 的不等式ax +b >0的解集为{x |x <2},则关于x 的不等式ax+bx 2−5x−6≥0的解集为__________.【解析】∵不等式ax +b >0的解集为{x |x <2},∴2是方程ax +b =0的解,且a <0, ∴2a +b =0(a <0),ax+b x 2−5x−6≥0⇒ax−2ax 2−5x−6≥0⇒a (x ﹣2)(x ﹣6)(x +1)≥0且x ≠6,x ≠﹣1由标根法得x <﹣1或2≤x <6.∴原不等式的解集为:{x |x <﹣1或2≤x <6}. 故答案为:{x |x <﹣1或2≤x <6}.13.(5分)如图,在等腰△ABC 中,AB =AC =3,D ,E 与M ,N 分别是AB ,AC 的三等分点,且DN →•ME →=−1,则cos A =__________.【解析】以边BC 所在直线为x 轴,以边BC 的中垂线为y 轴,建立如图所示平面直角坐标系, 设A (0,b ),B (﹣a ,0),C (a ,0),且D ,E 与M ,N 分别是AB ,AC 的三等分点, ∴D(−a 3,2b 3),E(−2a 3,b 3),M(a 3,2b 3),N(2a 3,b3),∴DN →=(a ,−b 3),ME →=(−a ,−b3),且DN →⋅ME →=−1, ∴−a 2+b29=−1①,又AC =3,∴a 2+b 2=9②,联立①②得,a 2=95,在△ABC 中,由余弦定理得,cosA =9+9−4a 22×3×3=18−36518=35.故答案为:35.14.(5分)函数y =f (x )的定义域为[﹣2.1,2],其图象如图所示,且f (﹣2.1)=﹣0.96. (1)若函数y =f (x )﹣k 恰有两个不同的零点,则k =__________.(2)已知函数g (x )={2x +1,x ≤0x 3+2x −16,x >0,y =g [f (x )]有__________个不同的零点.【解析】(1)∵y =f (x )﹣k 恰有两个不同的零点,∴y =f (x )和y =k 图象有两个不同的交点. y =f (x )的图象如图:∴k =4或k =0. (2)∵g (x )={2x +1,x ≤0x 3+2x −16,x >0,当x ≤0时,2x +1=0,得x =−12;此时f (x )=−12,由图可知有一个解;当x >0时,g (x )=x 3+2x ﹣16单调递增, ∵g (2)=﹣4,g (3)=17,∴g (x )在(2,3)有一个零点x 0,即f (x )=x 0∈(2,3) 由图可知有三个解,∴共有四个解. 故答案为4或0;4.二.解答题15.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别是AD,PB的中点.(1)求证:PE⊥CD;(2)求证:EF∥平面PCD;(3)求证:平面P AB⊥平面PCD.【解析】(1)∵P A=PD,E是AD的中点,∴PE⊥AD,∵平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,∴PE⊥平面ABCD,∵CD⊂平面ABCD,∴PE⊥CD.(2)取BC中点G,连结EG,FG,∵E,F分别是AD,PB的中点,∴FG∥PC,EF∥DC,∵FG∩EG=G,∴平面EFG∥平面PCD,∵EF⊂平面EFG,∴EF∥平面PCD.(3)∵底面ABCD为矩形,∴CD⊥AD,由(1)得CD⊥PE,又AD∩PE=E,∴CD⊥平面P AD,∵AP⊂平面P AD,∴CD⊥AP,∵P A⊥PD,PD∩CD=D,∴P A⊥平面PCD,∵P A⊂平面P AB,∴平面P AB⊥平面PCD.16.(14分)已知等比数列{a n}的前n项和为S n,且S2=2a2﹣2,a3=a4﹣2a2.(1)求等比数列{a n}的通项公式;(2)若数列{a n}为递增数列,数列{b n}是等差数列,且b2=2,b4=4;数列{a n b n}的前n项和为T n,求T n.【解析】(1)等比数列{a n}中有a3=a4﹣2a2,则q2﹣q﹣2=0,所以q=2或﹣1,因为S2=2a2﹣2,所以a1+a2=2a2﹣2,所以a1=a1q﹣2,当q=2时,a1=2,此时a n=2n;当q=﹣1时,a1=﹣1,此时a n=(−1)n;(2)因为数列{a n}为递增数列,所以a n=2n,数列{b n}是等差数列,且b2=2,b4=4,公差设为d,则有b4﹣b2=2d=4﹣2=2,所以d=1,所以b n=b2+(n﹣2)d=2+(n﹣2)×1=n,即b n=n,所以a n b n=n⋅2n,所以T n=1×2+2×22+3×23+⋯+n×2n,2T n=1×22+2×23+3×24+⋯+n×2n+1,两式相减得−T n=2+22+23+⋯+2n−n⋅2n+1,−T n=2−2n+11−2−n⋅2n+1=(1−n)⋅2n+1−2,即T n=(n−1)⋅2n+1+2.17.(14分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为p(0<p <1),且各个时间段每套系统监测出排放超标情况相互独立.(Ⅰ)当p=12时,求某个时间段需要检查污染源处理系统的概率;(Ⅱ)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.【解析】(Ⅰ)∵某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为C 32(12)3+C 33(12)3=12,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为C 31(12)3[1−(12)2]=932,∴某个时间段需要检查污染源处理系统的概率为12+932=2532;(Ⅱ)设某个时间段环境监测系统的运行费用为X 元,则X 的可能取值为900,1500,∵P(X =1500)=C 31p(1−p)2,P(X =900)=1−C 31p(1−p)2,∴E(X)=900×[1−C 31p(1−p)2]+1500×C 31p(1−p)2=900+1800p (1﹣p )2,令g (p )=p (1﹣p )2,p ∈(0,1),则g '(p )=(1﹣p )2﹣2p (1﹣p )=(3p ﹣1)(p ﹣1), 当p ∈(0,13)时,g '(p )>0,g (p )在(0,13)上单调递增; 当p ∈(13,1)时,g '(p )<0,g (p )在上(13,1)单调递减, ∴g (p )的最大值为g(13)=427,∴实施此方案,最高费用为100+9000×(900+1800×427)×10−4=1150(万元), ∵1150<1200,故不会超过预算. 18.(16分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,左右顶点分别为A 、B ,上顶点为T ,且△TF 1F 2为等边三角形. (1)求此椭圆的离心率e ;(2)若直线y =kx +m (k >0)与椭圆交与C 、D 两点(点D 在x 轴上方),且与线段F 1F 2及椭圆短轴分别交于点M 、N (其中M 、N 不重合),且|CM |=|DN |. ①求k 的值;②设AD 、BC 的斜率分别为k 1,k 2,求k 1k 2的取值范围.【解析】(1)设x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,由△TF 1F 2为等边三角形.得a =2c ,即椭圆的离心率e =ca =12;(2)①设C (x 1,y 1),D (x 2,y 2),由y =kx +m ,可知M(−mk ,0),N (0,m ), 联立y =kx +m 与x 2a 2+y 2b 2=1,整理得(a 2k 2+b 2)x 2+2kma 2x +a 2m 2﹣a 2b 2=0,其中△=4a 2b 2(a 2k 2+b 2﹣m 2)>0, 易值,x 1+x 2=x M +x N ,即−2kma 2a 2k 2+b2=−mk,解得k 2=b 2a2=1−e 2=34,因为,k >0,所以k =√32,②由M 在线段F 1F 2,且M ,N 不重合, 可知,x M =−m k =−amb ∈[−c ,0)∪(0,c], 从而m ∈[−bc a ,0)∪(0,bca ], 即k 1=y 2x 2+a ,k 1=y1x 1−a,并结合在曲线上,则有, 所以k 12k 22=y 22y 12⋅(x 1−a)2(x 2+a)2=a 2−x 22a−x 12⋅(x 1−a)2(x 2+a)2=(x 1−a )(x 2−a )(x 1+a )(x 2+a )=x 1x 2−a (x 1+x 2)+a 2x 1x 2+a (x 1+x 2)+a 2=(m+b)2(m−b)2,从而可得,k 1k 2=−m+b m−b =−1−2b m−b∈[a−c a+c ,1)∪(1,a+ca−c], 所以k 1k 2的取值范围为[13,1)∪(1,3].19.(16分)定义在R 上的函数f (x )满足f (x )=12e2•f '(1)•e 2x ﹣2f (0)•x +x 2,g (x )=e x ﹣a (x ﹣1).(1)求函数f (x )的解析式; (2)求函数g (x )的单调区间;(3)给出定义:若s ,t ,r 满足|s ﹣r |<|t ﹣r |,则称s 比t 更接近于r ,当x ≥1时,试比较ex和e x﹣1+3哪个更接近Inx ,并说明理由.【解析】(1)∵f (x )=12e2•f '(1)•e 2x ﹣2f (0)•x +x 2, ∴f ′(x )=f '(1)•e 2x ﹣2﹣2f (0)+2x ,令x =1可得,f ′(1)=f '(1)﹣2f (0)+2,可得f (0)=1, 由f (x )=12e 2•f '(1)•e 2x ﹣2f (0)•x +x 2,可得f (0)=12e 2•f '(1)=1, ∴f ′(1)=2e 2,∴f (x )=e 2x ﹣2x +x 2,(2)∵g (x )=e x ﹣a (x ﹣1).∴g ′(x )=e x ﹣a ,①当a≤0时,g′(x)>0,g(x)单调递增,②当a>0时,当x>lna,g′(x)>0,g(x)单调递增,x<lna,g′(x)<0,g(x)单调递减,(3)设p(x)=ex−lnx,q(x)=e x﹣1﹣lnx+3,易得p(x)在[1,+∞)上单调递减,故当e≥x≥1时,p(x)≥p(e)=0,当x>e时,p(x)<0,而q′(x)=e x−1−1 x,q′′(x)=e x−1+12>0,故q′(x)在[1,+∞)单调递增,q′(x)≥q′(1)=0,则q(x)在[1,+∞)上单调递增,q(x)≥q(1)=4>0,①1≤x≤e时,|p(x)|﹣|q(x)|=p(x)﹣q(x)=e x−e x−1−3=m(x),∴m′(x)=−ex2−e x−1<0,故m(x)单调递减,m(x)≤m(1)=e﹣4<0,∴|p(x)|<|q(x)|即ex比e x﹣1+3更接近lnx,②x>e时,|p(x)|﹣|q(x)|=﹣p(x)﹣q(x)=−e x−e x−1−3+2lnx<﹣e x﹣1+2lnx﹣3=n(x),∴n′(x)=﹣e x﹣1+2x,n′′(x)=﹣e x﹣1−2x2<0,∴n′(x)单调递减,n′(x)<n′(e)<0,故n(x)单调递减,n(x)<n(e)<0,∴|p(x)|<|q(x)|,即ex比e x﹣1+3更接近lnx,综上可得,当x≥1时,ex比e x﹣1+3更接近lnx,20.(16分)设数列{a n},{b n},{c n}的前n项和分别为A n,B n,∁n,且对任意的都有A n=B n+∁n,已知A n=n2(a n+1)(n∈N*),数列{b n}和{c n}是公差不为0的等差数列,且各项均为非负整数.(1)求证:数列{a n}是等差数列;(2)若数列{a n}的前4项删去1项后按原来顺序成等比数列,求所有满足条件的数列{a n};(3)若a2=4,且B n>∁n,n∈N*,求数列{b n},{c n}的通项公式.【解析】(1)∵A n=n2(a n+1),①∴A n+1=n+12(a n+1+1),②②﹣①得:2a n+1=(n+1)a n+1﹣na n+1,即(n﹣1)a n+1=na n﹣1,③na n+2=(n+1)a n+1﹣1,④④﹣③得:2na n+1=na n+2+na n,即2a n+1=a n+2+a n,∵n∈N*,∴数列{a n }是等差数列;(2)解:在A n =n 2(a n +1)中,令n =1,得a 1=1, 设数列{a n }的公差为d ,则a n =1+(n ﹣1)d ,∵数列{a n }的前4项删去1项后按原来顺序成等比数列,∴有:①若删去a 1或a 4,剩下的三项连续,若成等比数列,则d =0,则数列的通项公式为a n =1;②若删去a 2,即a 1,a 3,a 4成等比数列,则(1+2d )2=1×(1+3d ),解得d =0或d =−14, 则数列{a n }的通项公式为a n =1或a n =5−n4; ③若删去a 3,即a 1,a 2,a 4成等比数列,则(1+d )2=1×(1+3d ),解得d =0或d =1. 则数列{a n }的通项公式为a n =1或a n =n . 综上所述,满足条件的数列{a n }有a n =1或a n =5−n4或a n =n ; (3)解:A 2=a 1+a 2=a 1+4=22×(4+1),则a 1=1,a n =3n ﹣2, ∵对任意n ∈N *,都有A n =B n +∁n ,∴对任意n ∈N *,都有a n =b n +c n , 设数列{b n },{c n }的公差分别为d 1,d 2,则 b 1+(n ﹣1)d 1+c 1+(n ﹣1)d 2=3n ﹣2,n ∈N *, ∴{d 1+d 2=3b 1+c 1−d 1−d 2=−2,即{d 1+d 2=3b 1+c 1=1,① ∵对任意n ∈N *,都有B n >∁n ,∴nb 1+n(n−1)2d 1>nc 1+n(n−1)2d 2, 整理得:d 1−d 22n 2+(b 1−c 1−d 1−d 22)n >0,n ∈N *,∴d 1−d 22≥0,且由n =1可得b 1﹣c 1>0,②由数列{b n }和{c n }的各项均为非负整数, ∴由②得d 1≥d 2>0,b 1>c 1≥0,③ 由①③得{b 1=1c 1=0且{d 1=2d 2=1.∴b n =2n ﹣1,c n =n ﹣1.21.(10分)已知a ,b ∈R ,向量α→=[−12]是矩阵A =[a 1−1b ]的属于特征值﹣1的一个特征向量.(1)求a ,b 的值;(2)若曲线C 1:x ﹣2y +3=0在矩阵A 对应变换作用下得到另一曲线C 2,求C 2的方程.【解析】(1)由向量α→=[−12]是矩阵A =[a 1−1b ]的属于特征值﹣1的一个特征向量,得[a 1−1b ] [−12]=−1×[−12],所以﹣a +2=1,1+2b =﹣2,解得a =1,b =−32; (2)由(1)得A =[11−1−32], 设点P (x ,y )为曲线C 1的任意一点,点P 在矩阵A 的变换下得到点P ′(x 0,y 0), 则[11−1−32] [x y ]=[x +y −x −32y ]=[x 0y 0],所以x =3x 0+2y 0,y =﹣2x 0﹣2y 0,代入C 1得7x 0+6y 0+3=0, 即有C 2:7x +6y +3=022.(10分)在平面直角坐标系x 0y 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m3k(m 为参数).设直线l 1与l 2的交点为P .当k 变化时点P 的轨迹为曲线C 1.(Ⅰ)求出曲线C 1的普通方程;(Ⅱ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=3√2,点Q 为曲线C 1上的动点,求点Q 到直线C 2的距离的最大值. 【解析】(Ⅰ)直线l 1的参数方程为{x =t −√3y =kt (t 为参数),转换为直角坐标方程为y =k(x +√3)①.直线l 2的参数方程为{x =√3−m y =m3k(m 为参数).转换为直角坐标方程为y =13k (√3−x)②. 所以①×②得到x 23+y 2=1(y ≠0).(Ⅱ)直线C 2的极坐标方程为ρsin(θ+π4)=3√2,转换为直角坐标方程为x +y ﹣6=0. 设曲线C 1的上的点Q (√3cosθ,sinθ)到直线x +y ﹣8=0的距离d =|√3cosθ+sinθ−6|2=|2sin(θ+π3)−6|√2,当sin(θ+π3)=−1时,d max =82=4√2. 23.(选做题)已知a ,b ,c ∈(0,+∞),且1a+2b +3c=2,求a +2b +3c 的最小值及取得最小值时a ,b ,c 的值.【解析】由于(1a +2b +3c )(a +2b +3c )=[(√1a)2+(√2b)2+(√3c)2][(√a)2+(√2b)2+(√3c)2]≥(√1a √a +√2b √2b +√3c √3c)2=36(5分) 又1a +2b +3c=2,∴a +2b +3c ≥18,当且仅当a =b =c =3时等号成立当a =b =c =3时,a +2b +3c 取得最小值18 (10分)24.(10分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =12AB =1,点E 、M 分别在线段AB 、PC 上,且AEAB=PM PC=λ,其中0<λ<1,连接CE ,延长CE 与DA 的延长线交于点F ,连接PE ,PF ,ME . (Ⅰ)求证:ME ∥平面PFD ;(Ⅱ)若λ=12时,求二面角A ﹣PE ﹣F 的正弦值; (Ⅲ)若直线PE 与平面PBC 所成角的正弦值为√55时,求λ值.【解析】(Ⅰ)在线段PD 上取一点N ,使得PN PD=λ,∵PN PD=λ=PM PC,∴MN ∥DC 且MN =1λDC ,∵AEAB=λ,∴AE =1λAB ,AB ∥DC 且AB =DC ,∴且AE =MN ,∴四边形为平行四边形,∴ME ∥AN , 又∵AN ⊂平面PFD ,ME ⊄平面PFD ,∴ME ∥平面PFD .(Ⅱ)以A 为坐标原点,分别以AF ,AB ,AP 为x ,y ,z 轴建立空间直角坐标系A (0,0,0),P (0,0,1),B (0,2,0),C (﹣1,2,0),D (﹣1,0,0), ∵λ=12,∴E (0,1,0),F (1,0,0)设平面PEA 的一个法向量为n →=(x ,y ,z), PE →=(0,1,−1),AP →=(0,0,1),{n →⋅PE →=y −z =0n →⋅AP →=z =0,令z =1,∴y =1,∴m →=(0,1,1), 设平面PEF 的一个法向量为m →=(x ,y ,z),PE →=(0,1,−1),PF →=(1,0,−1),{m →⋅PE →=y −z =0m →⋅PF →=x −z =0, 令z =1,∴x =1,y =1,∴m →=(1,1,1),∴cos <m →,n →>=m →⋅n →|m →|⋅|n →|=2⋅3=√33,sin <m →,n →>=√1−cos 2<m →,n →>=√63,二面角A ﹣PE ﹣F 的正弦值为√63.( III )令E (0,h ,0),0≤h ≤2,PE →=(0,ℎ,−1),设平面PEA 的一个法向量为n 1→=(x ,y ,z),PB →=(0,2,−1),BC →=(−1,0,0),{n 1→⋅PB →=2y −z =0n 1→⋅PB →=−x =0,令y =1,∴z =1,∴n 1→=(0,1,2)由题意可得:|cos <PE →,n 1→>|=|PE →⋅n 1→||PE →|⋅|n 1→|=|ℎ−2|√ℎ+1⋅√5=√55,∴ℎ=34,∴AE =34,λ=AE AB =38.25.(10分)一种掷骰子走跳棋的游戏:棋盘山标有第0站、第1站、第2站、…、第100站,共101站,设棋子跳到第n 站的概率为P n ,一枚棋子开始在第0站,棋手每掷一次骰子,棋子向前跳动一次,若掷出奇数点,则棋子向前跳动一站;若掷出偶数点,则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束(骰子是用一种均匀材料做成的立方体形状的玩具,它的六个面分别标有点数1,2,3,4,5,6).(1)求P0,P1,P2,并根据棋子跳到第n站的情况,试用P n﹣2和P n﹣1表示P n;(2)求证:{P n﹣P n﹣1}(n=1,2…,100)是等比数列;(3)求玩该游戏获胜的概率.【解析】(1)根据题意,棋子跳到第n站的概率为p n,则p0即棋子跳到第0站的概率,则p0=1,p1即棋子跳到第1站的概率,则p1=1 2,p2即棋子跳到第2站的概率,有两种情况,即抛出2次奇数或1次偶数,则p2=12p0+12p1=34;故跳到第n站p n有两种情况,①在第n﹣2站抛出偶数,②在第n﹣1站抛出奇数;所以p n=12p n−1+12p n−2;(2)证明:∵p n=12p n−1+12p n−2,∴p n−p n−1=−12(p n−1−p n−2),又∵p1−p0=−1 2;∴数列{P n﹣P n﹣1}(n=1,2…,100)是以−12为首项,−−12为公比的等比数列.(3)玩游戏获胜即跳到第99站,由(2)可得p n−p n−1=(−12)n(1≤n≤100),∴p1−p0=−1 2,p2−p1=14,p3−p2=−18,p99−p98=(−12)99,∴p99−p0=(−12)×[1−(−12)99]1−(−12),∴p99=23[1−(12)100].。
(江苏专用)2020高考数学二轮复习综合仿真练(一) (1)
综合仿真练(一)1.如图,在四棱锥P ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD .求证:(1)PA ∥平面BDE; (2)平面BDE ⊥平面PCD .证明:(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 的中点.又因为E 为PC 的中点, 所以OE ∥PA .又因为OE ⊂平面BDE ,PA ⊄平面BDE , 所以PA ∥平面BDE .(2)因为OE ∥PA ,PA ⊥PD ,所以OE ⊥PD . 因为OP =OC ,E 为PC 的中点,所以OE ⊥PC .又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PC ∩PD =P ,所以OE ⊥平面PCD . 又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD .2.(2019·南通市一中模拟)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0),部分自变量、函数值如下表.xπ3 7π12 ωx +φ 0 π2 π3π22π f (x )24求:(1)函数f (x )的单调增区间.(2)函数f (x )在(0,π]内的所有零点. 解:(1)由题意得⎩⎪⎨⎪⎧π3ω+φ=3π2,7π12ω+φ=2π,解得⎩⎪⎨⎪⎧ω=2,φ=5π6.又⎩⎪⎨⎪⎧A sin 0+B =2,A sin π2+B =4,解得⎩⎪⎨⎪⎧A =2,B =2.∴ f (x )=2sin ⎝⎛⎭⎪⎫2x +5π6+2由-π2+2k π≤2x +5π6≤π2+2k π,k ∈Z ,解得-2π3+k π≤x ≤-π6+k π,k ∈Z ,∴函数f (x )单调增区间为⎣⎢⎡⎦⎥⎤-2π3+k π,-π6+k π (k ∈Z ). (2)∵f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6+2=0,∴sin ⎝⎛⎭⎪⎫2x +5π6=-1.∵x ∈(0,π],∴5π6<2x +5π6≤2π+5π6,∴2x +5π6=3π2,解得:x =π3.∴函数f (x )在(0,π]内的零点为π3.3.(2019·扬州四模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为14,左顶点为A ,右焦点为F ,且AF =5.(1)求椭圆C 的方程;(2)已知圆M 的圆心M ⎝ ⎛⎭⎪⎫-78,0,半径为r ,点P 为椭圆上的一点,若圆M 与直线PA ,PF 都相切,求此时圆M 的半径r .解:(1)∵椭圆离心率为14,左顶点为A ,右焦点为F ,且AF =5.∴⎩⎪⎨⎪⎧c a =14,a +c =5,解得⎩⎪⎨⎪⎧a =4,c =1.∴b 2=15,∴椭圆C 的方程为:x 216+y 215=1.(2)由题意得:A (-4,0),F (1,0),设点P 的坐标为(x 0,y 0),则x 2016+y 2015=1①当x 0=1时,直线PF :x =1,与圆M 相切,则R =1-⎝ ⎛⎭⎪⎫-78=158,不妨取P ⎝⎛⎭⎪⎫1,154,直线PA :y =1541--4(x +4),即3x -4y +12=0,∴点M 到直线PF 的距离为⎪⎪⎪⎪⎪⎪3×⎝ ⎛⎭⎪⎫-78+1232+42=158=r ∴直线PF 与圆M 相切∴当r =158时,圆M 与直线PA ,PF 都相切.②当x 0=-4时,点P 与点A 重合,不符合题意; ③当x 0≠1且x 0≠-4时,直线PA :y =y 0x 0+4(x +4),PF :y =y 0x 0-1(x -1)化简得:PA :y 0x -(x 0+4)y +4y 0=0,PF :y 0x -(x 0-1)y -y 0=0∵圆M 与直线PA ,PF 都相切∴⎪⎪⎪⎪⎪⎪-78y 0+4y 0y 20+x 0+42=⎪⎪⎪⎪⎪⎪-78y 0-y 0y 20+x 0-12=r∵y 0≠0,又y 2=15⎝ ⎛⎭⎪⎫1-x 2016代入化简得:x 20-122x 0+121=0,解得:x 0=1或x 0=121∵-4<x 0<4且x 0≠1 ∴无解. 综上:r =158.4.如图,半圆AOB 是某市休闲广场的平面示意图,半径OA 的长为10.管理部门在A ,B 两处各安装一个光源,其相应的光强度分别为4和9.根据光学原理,地面上某点处照度y 与光强度I 成正比,与光源距离x 的平方成反比,即y =kIx2(k 为比例系数).经测量,在弧AB 的中点C 处的照度为130.(C 处的照度为A ,B 两处光源的照度之和)(1)求比例系数k 的值;(2)现在管理部门计划在半圆弧AB 上,照度最小处增设一个光源P ,试问新增光源P 安装在什么位置?解:(1)因为半径OA 的长为10,点C 是弧AB 的中点, 所以OC ⊥AB ,AC =BC =10 2. 所以C 处的照度为y =4k 1022+9k 1022=130,解得比例系数k =2 000.(2)设点P 在半圆弧AB 上,且P 距光源A 为x , 则PA ⊥PB ,由AB =20,得PB =400-x 2(0<x <20). 所以点P 处的照度为y =8 000x 2+18 000400-x 2(0<x <20).所以y ′=-16 000x3+36 000x400-x22 =4 000×9x 4-4400-x22x 3400-x 22=20 000×x 2-160x 2+800x 3400-x 22.由y ′=0,解得x =410. 当0<x <410时,y ′<0,y =8 000x 2+18 000400-x2为减函数; 当410<x <20时,y ′>0,y =8 000x 2+18 000400-x 2为增函数.所以x =410时,y 取得极小值,也是最小值.所以新增光源P 安装在半圆弧AB 上且距A 为410(距B 为415)的位置. 5.已知函数f (x )=(a -3)x -a -2ln x (a ∈R ).(1)若函数f (x )在(1,+∞)上为单调增函数,求实数a 的最小值;(2)已知不等式f (x )+3x ≥0对任意x ∈(0,1]都成立,求实数a 的取值范围. 解:(1)法一:因为f ′(x )=a -3-2x(x >0),当a ≤3时,f ′(x )<0,f (x )在(0,+∞)上单调递减; 当a >3时,由f ′(x )<0,得0<x <2a -3, f (x )在0,2a -3上单调递减, 由f ′(x )>0,得x >2a -3,f (x )在⎝ ⎛⎭⎪⎫2a -3,+∞上单调递增. 因为函数f (x )在(1,+∞)上为单调增函数, 所以a >3且2a -3≤1,所以a ≥5, 所以实数a 的最小值为5.法二:因为函数f (x )在(1,+∞)上为单调增函数, 所以f ′(x )=a -3-2x≥0在(1,+∞)上恒成立,所以a ≥3+2x在(1,+∞)上恒成立,又当x >1时,3+2x<5, 所以a ≥5,所以实数a 的最小值为5.(2)令g (x )=f (x )+3x =a (x -1)-2ln x ,x ∈(0,1], 所以g ′(x )=a -2x.①当a ≤2时,由于x ∈(0,1],所以2x≥2,所以g ′(x )≤0,g (x )在(0,1]上单调递减,所以g (x )min =g (1)=0,所以对任意x ∈(0,1],g (x )≥g (1)=0,即对任意x ∈(0,1]不等式f (x )+3x ≥0都成立,所以a ≤2;②当a >2时,由g ′(x )<0,得0<x <2a,g (x )在⎝ ⎛⎭⎪⎫0,2a 上单调递减;由g ′(x )>0,得x >2a,g (x )在⎝ ⎛⎦⎥⎤2a ,1上单调递增.所以,存在2a∈(0,1),使得g ⎝ ⎛⎭⎪⎫2a <g (1)=0,不合题意.综上所述,实数a 的取值范围为(-∞,2]. 6.已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)求数列{a n }的通项公式;(2)记集合M ={n |n (n +1)≥λa n ,n ∈N *},若M 中有3个元素,求λ的取值范围; (3)是否存在等差数列{b n },使得a 1b n +a 2b n -1+a 3b n -2+…+a n b 1=2n +1-n -2对一切n ∈N *都成立?若存在,求出b n ;若不存在,说明理由.解:(1)当n =1时,S 1=2a 1-1,得a 1=1. 当n ≥2时,由S n =2a n -1,① 得S n -1=2a n -1-1,② ①-②,得a n =2a n -1,即a na n -1=2(n ≥2). 因此{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.(2)由已知可得λ≤n n +12n -1,令f (n )=n n +12n -1,则f (1)=2,f (2)=3,f (3)=3,f (4)=52,f (5)=158,下面研究f (n )=n n +12n -1的单调性,因为f (n +1)-f (n )=n +1n +22n-n n +12n -1=n +12-n2n,所以,当n ≥3时,f (n +1)-f (n )<0,f (n +1)<f (n ), 即f (n )单调递减.因为M 中有3个元素,所以不等式λ≤n n +12n -1解的个数为3,所以2<λ≤52,即λ的取值范围为⎝ ⎛⎦⎥⎤2,52.(3)设存在等差数列{b n}使得条件成立,则当n=1时,有a1b1=22-1-2=1,所以b1=1.当n=2时,有a1b2+a2b1=23-2-2=4,所以b2=2.所以等差数列{b n}的公差d=1,所以b n=n.设S=a1b n+a2b n-1+a3b n-2+…+a n b1,S=1·n+2(n-1)+22(n-2)+…+2n-2·2+2n-1·1,③所以2S=2·n+22(n-1)+23(n-2)+…+2n-1·2+2n·1,④④-③,得S=-n+2+22+23+…+2n-1+2n=-n+21-2n1-2=2n+1-n-2,所以存在等差数列{b n},且b n=n满足题意.。
(江苏专用)2020高考数学二轮复习综合仿真练(一)理
综合仿真练(一)(理独)1.本题包括A 、B 、C 三个小题,请任选二个作答 A .[选修4-2:矩阵与变换](2019·江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤3122.(1)求A 2;(2)求矩阵A 的特征值.解:(1)因为A =⎣⎢⎡⎦⎥⎤3122,所以A 2=⎣⎢⎡⎦⎥⎤3122⎣⎢⎡⎦⎥⎤3122=⎣⎢⎡⎦⎥⎤3×3+1×23×1+1×22×3+2×22×1+2×2=⎣⎢⎡⎦⎥⎤115106. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-3 -1 -2 λ-2=λ2-5λ+4.令f (λ)=0,解得A 的特征值λ1=1,λ2=4. B .[选修4-4:坐标系与参数方程]在极坐标系中,已知圆C 的圆心在极轴上,且过极点和点⎝ ⎛⎭⎪⎫32,π4,求圆C 的极坐标方程.解:法一:因为圆心C 在极轴上且过极点, 所以设圆C 的极坐标方程为ρ=a cos θ, 又因为点⎝ ⎛⎭⎪⎫32,π4在圆C 上,所以32=a cos π4,解得a =6.所以圆C 的极坐标方程为ρ=6cos θ. 法二:点⎝ ⎛⎭⎪⎫32,π4的直角坐标为(3,3), 因为圆C 过点(0,0),(3,3), 所以圆心C 在直线为x +y -3=0上. 又圆心C 在极轴上,所以圆C 的直角坐标方程为(x -3)2+y 2=9.所以圆C 的极坐标方程为ρ=6cos θ. C .[选修4-5:不等式选讲] (2019·南通等七市一模)柯西不等式 已知实数a ,b ,c 满足a 2+b 2+c 2≤1,求证:1a 2+1+1b 2+1+1c 2+1≥94. 证明:由柯西不等式,得[(a 2+1)+(b 2+1)+(c 2+1)]·⎝ ⎛⎭⎪⎫1a 2+1+1b 2+1+1c 2+1≥a 2+1·1a 2+1+b 2+1·1b 2+1+c 2+1·1c 2+12=9,所以1a 2+1+1b 2+1+1c 2+1≥9a 2+b 2+c 2+3≥91+3=94. 2.(2019·扬州期末)已知直线x =-2上有一动点Q ,过点Q 作直线l 1垂直于y 轴,动点P 在l 1上,且满足OP ―→·OQ ―→=0(O 为坐标原点),记点P 的轨迹为C .(1)求曲线C 的方程;(2)已知定点M ⎝ ⎛⎭⎪⎫-12,0,N ⎝ ⎛⎭⎪⎫12,0,A 为曲线C 上一点,直线AM 交曲线C 于另一点B ,且点A 在线段MB 上,直线AN 交曲线C 于另一点D ,求△MBD 的内切圆半径r 的取值范围.解:(1)设点P (x ,y ),则Q (-2,y ),∴OP ―→=(x ,y ),OQ ―→=(-2,y ), ∵OP ―→·OQ ―→=0,∴OP ―→·OQ ―→=-2x +y 2=0,即y 2=2x .(2)设A (x 1,y 1),B (x 2,y 2),D (x 3,y 3),直线BD 与x 轴的交点为E ,△MBD 内切圆与MB 的切点为T .设直线AM 的方程为y =k ⎝ ⎛⎭⎪⎫x +12,联立方程,得⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x +12,y 2=2x ,得k 2x 2+(k 2-2)x +k 24=0,Δ=4-4k 2>0, ∴x 1,2=2-k 2±21-k22k 2, ∴x 1x 2=14且0<x 1<x 2,∴x 1<12<x 2,∴直线AN 的方程为y =y 1x 1-12⎝ ⎛⎭⎪⎫x -12,与方程y 2=2x 联立并整理得y 21x 2-y 21+2x 21-2x 1+12x +14y 21=0,化简得2x 1x 2-⎝⎛⎭⎪⎫2x 21+12x +12x 1=0,解得x =14x 1或x =x 1,∴x 3=14x 1=x 2,∴直线BD ⊥x 轴,设△MBD 的内切圆圆心为H ,连接HT ,则H 在x 轴上且HT ⊥AB . 法一:∴S △MBD =12·⎝ ⎛⎭⎪⎫x 2+12·|2y 2|,且△MBD 的周长为2⎝⎛⎭⎪⎫x 2+122+y 22+2|y 2|, ∴S △MBD =12⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 2+122+y 22+2|y 2|·r =12·⎝ ⎛⎭⎪⎫x 2+12·|2y 2|, ∴r =⎝ ⎛⎭⎪⎫x 2+12|y 2||y 2|+ ⎝ ⎛⎭⎪⎫x 2+122+y 22=11x 2+12+1y 22+1⎝⎛⎭⎪⎫x 2+122=112x 2+1⎝ ⎛⎭⎪⎫x 2+122+1x 2+12. 令t =x 2+12,则t >1,∴r =112t -1+1t 2+1t 在(1,+∞)上单调递增,则r >12+1,即r 的取值范围为(2-1,+∞).法二:∴H (x 2-r,0),直线BD 的方程为x =x 2, 直线AM 的方程为y =y 2x 2+12⎝ ⎛⎭⎪⎫x +12,即y 2x -⎝ ⎛⎭⎪⎫x 2+12y +12y 2=0,且点H 与点O 在直线AB 的同侧, 不妨设点B 在x 轴上方,∴r =⎪⎪⎪⎪⎪⎪x 2-r y 2+12y 2⎝⎛⎭⎪⎫x 2+122+y 22=x 2-r y 2+12y 2⎝⎛⎭⎪⎫x 2+122+y 22,解得r =x 2y 2+12y 2y 2+⎝⎛⎭⎪⎫x 2+122+y 22=112x 2+1⎝ ⎛⎭⎪⎫x 2+122+1x 2+12.令t =x 2+12,则t >1,∴r =112t -1+1t 2+1t 在(1,+∞)上单调递增,则r >12+1,即r 的取值范围为(2-1,+∞).法三:∴△MTH ∽△MEB ,∴MH MB =HT BE,即x 2+12-r⎝ ⎛⎭⎪⎫x 2+122+y 22=r|y 2|, 解得r =⎝ ⎛⎭⎪⎫x 2+12|y 2||y 2|+⎝⎛⎭⎪⎫x 2+122+y 22=x 2+12⎝ ⎛⎭⎪⎫x 2+122y 22+1+1=112x 2+1⎝ ⎛⎭⎪⎫x 2+122+1x 2+12.令t =x 2+12,则t >1,∴r =112t -1+1t 2+1t 在(1,+∞)上单调递增,则r >12+1,即r 的取值范围为(2-1,+∞).3.一条直路上依次有2n +1棵树,分别为T 1,T 2,…,T 2n +1(n 为给定的正整数),一个醉汉从中间位置的树T n +1出发,并按以下规律在这些树之间随机游走n 分钟:当他某一分钟末在树T i (2≤i ≤2n )位置时,下一分钟末他分别有14,12,14的概率到达T i -1,T i ,T i +1的位置.(1)求该醉汉第n 分钟末处在树T i (1≤i ≤2n +1)位置的概率;(2)设相邻2棵树之间的距离为1个单位长度,试求该醉汉第n 分钟末所在位置与起始位置(即树T n +1)之间的距离的数学期望(用关于n 的最简形式表示).解:(1)不妨假设2n +1棵树T 1,T 2,…,T 2n +1从左向右排列,每2棵树的间距为1个单位长度.因为该醉汉下一分钟末分别有14,12,14的概率到达T i -1,T i ,T i +1的位置,所以该醉汉将以12的概率向左或向右走.我们规定,事件“以12的概率向左或向右走0.5个单位长度”为一次“随机游走”,故原问题等价于求该醉汉从树T n +1位置出发,经过2n 次随机游走后处在树T i 位置的概率为P i .对某个i (1≤i ≤2n +1),设从T n +1出发,经过2n 次随机游走到达T i 的全过程中,向右走0.5个单位长度和向左走0.5个单位长度分别有k 次和2n -k 次,则n +1+k -2n -k2=i ,解得k =i -1,即在2n 次中有i -1次向右游走,2n -(i-1)次向左游走,而这样的情形共Ci -12n种,故所求的概率P i =C i -12n22n (1≤i ≤2n +1).(2)对i =1,2,…,2n +1,树T i 与T n +1相距|n +1-i |个单位长度,而该醉汉到树T i的概率为P i ,故所求的数学期望E =∑i =12n +1|n +1-i |C i -12n22n .而∑i =12n +1|n +1-i |Ci -12n=∑j =02n|n -j |C j2n=2∑j =0n(n -j )C j2n =2∑j =0nn C j2n -2∑j =0nj C j2n=2n ∑j =0nC j2n -2∑j =1n2n C j -12n -1=2n ×12(C n 2n +∑j =02n C j 2n )-4n ∑j =0n -1C j2n -1=n (C n2n +22n)-4n ×12∑j =02n -1C j2n -1=n (C n 2n +22n )-2n ·22n -1=n C n2n ,n C n2n 22n .因此E=。
(江苏专用)2020高考数学二轮复习综合仿真练(三)
综合仿真练(三)1.已知向量m =(3cos x ,-1),n =(sin x ,cos 2x ). (1)当x =π3时,求m ·n 的值;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π4,且m ·n =33-12,求cos 2x 的值.解:(1)当x =π3时,m =⎝ ⎛⎭⎪⎫32,-1,n =⎝ ⎛⎭⎪⎫32,14,所以m ·n =34-14=12.(2)m ·n =3cos x sin x -cos 2x =32sin 2x -12cos 2x -12=sin ⎝⎛⎭⎪⎫2x -π6-12, 若m ·n =33-12,则sin ⎝⎛⎭⎪⎫2x -π6-12=33-12,即sin ⎝⎛⎭⎪⎫2x -π6=33,因为x ∈⎣⎢⎡⎦⎥⎤0,π4,所以-π6≤2x -π6≤π3, 所以cos ⎝⎛⎭⎪⎫2x -π6=63, 则cos 2x =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x -π6+π6=cos ⎝ ⎛⎭⎪⎫2x -π6×cos π6-sin ⎝ ⎛⎭⎪⎫2x -π6sin π6=63×32-33×12=32-36. 2.如图,三棱柱ABC A 1B 1C 1中,M ,N 分别为AB ,B 1C 1的中点. (1)求证:MN ∥平面AA 1C 1C ;(2)若CC 1=CB 1,CA =CB ,平面CC 1B 1B ⊥平面ABC ,求证:AB ⊥平面CMN .证明:(1)法一:取A 1C 1的中点P ,连结AP ,NP . 因为C 1N =NB 1,C 1P =PA 1, 所以NP ∥A 1B 1,NP =12A 1B 1.在三棱柱ABC A 1B 1C 1中,A 1B 1∥AB ,A 1B 1=AB . 所以NP ∥AB ,且NP =12AB .因为M 为AB 的中点,所以AM =12AB .所以NP =AM ,且NP ∥AM ,所以四边形AMNP 为平行四边形,所以MN ∥AP . 因为AP ⊂平面AA 1C 1C ,MN ⊄平面AA 1C 1C , 所以MN ∥平面AA 1C 1C.法二: 取BC 的中点Q ,连结NQ ,MQ . 由三棱柱可得,四边形BCC 1B 1为平行四边形. 又Q ,N 分别为BC ,B 1C 1的中点, 所以CQ ∥C 1N ,CQ =C 1N , 所以四边形CQNC 1为平行四边形. 所以NQ ∥CC 1.因为NQ ⊂平面MNQ ,CC 1⊄平面MNQ , 所以CC 1∥平面MNQ .因为AM =MB ,CQ =QB ,所以MQ ∥AC . 同理可得AC ∥平面MNQ .因为AC ⊂平面AA 1C 1C ,CC 1⊂平面AA 1C 1C ,AC ∩CC 1=C ,所以平面MNQ ∥平面AA 1C 1C. 因为MN ⊂平面MNQ ,所以MN ∥平面AA 1C 1C. (2)因为CA =CB ,M 为AB 的中点,所以CM ⊥A B. 因为CC 1=CB 1,N 为B 1C 1的中点,所以CN ⊥B 1C 1. 在三棱柱ABC A 1B 1C 1中,BC ∥B 1C 1,所以CN ⊥BC .因为平面CC 1B 1B ⊥平面ABC ,平面CC 1B 1B ∩平面ABC =BC ,CN ⊂平面CC 1B 1B ,所以CN ⊥平面AB C.因为AB ⊂平面ABC ,所以CN ⊥A B.因为CM ⊂平面CMN ,CN ⊂平面CMN ,CM ∩CN =C , 所以AB ⊥平面CMN .3.(2019·海门中学模拟)某城市有一矩形街心广场ABCD ,其中AB =4百米,BC =3百米,在其中心P 处(AC 中点)有一观景亭.现将挖掘一个三角形水池PMN 种植荷花,其中M 点在BC 边上,N 点在AB 边上,满足∠MPN =45°.设∠PMC =θ.(1)将PM 表示为角θ的函数,并求出cos θ的取值范围; (2)求水池△PMN 面积的最小值.解:(1)∵矩形ABCD ,AB =4百米,BC =3百米, ∴AC =5百米,∵P 为AC 中点,∴AP =CP =52百米.设∠ACB =α,则α∈⎝ ⎛⎭⎪⎫0,π2且sin α=45,cos α=35在△CPM 中,PM sin α=CP sin θ,即PM45=52sin θ∴ PM =2sin θ,当点M 在B 处时,θ即为∠PBC =∠PCB =α,则cos θ=35,当点N在B 处时,θ=∠PBC +π4=α+π4,cos θ=cos ⎝⎛⎭⎪⎫α+π4=35×22-45×22=-210∴cos θ的取值范围为⎣⎢⎡⎦⎥⎤-210,35(0<θ<π). (2)在△APN 中,PN sin ⎝ ⎛⎭⎪⎫π2-α=AP sin ⎝ ⎛⎭⎪⎫3π4-θ,即PN35=52sin ⎝ ⎛⎭⎪⎫3π4-θ,∴PN =32sin ⎝⎛⎭⎪⎫θ+π4S △PMN =12×PM ×PN ×sin π4=24·2sin θ·32sin ⎝ ⎛⎭⎪⎫θ+π4=31+2sin ⎝⎛⎭⎪⎫2θ-π4 ∴当2θ-π4=π2,即θ=3π8∈(0,π)时,sin ⎝ ⎛⎭⎪⎫2θ-π4max =1,则(S △PMN )min =31+2=3(2-1)此时cos θ=2-24<35符合条件. 答:水池△PMN 面积的最小值为(32-3)百米2.4.如图,在平面直角坐标系xOy 中,焦点在x 轴上的椭圆C :x 28+y 2b2=1经过点(b,2e ),其中e 为椭圆C 的离心率.过点T (1,0)作斜率为k (k >0)的直线l 交椭圆C 于A ,B 两点(A 在x 轴下方).(1)求椭圆C 的标准方程;(2)过点O 且平行于l 的直线交椭圆C 于点M ,N ,求AT ·BTMN 2的值;(3)记直线l 与y 轴的交点为P .若AP ―→=25TB ―→,求直线l 的斜率k .解:(1)因为椭圆C :x 28+y 2b 2=1经过点(b,2e ),所以b 28+4e 2b2=1.因为e 2=c 2a 2=c 28,所以b 28+c 22b2=1,又a 2=b 2+c 2,b 28+8-b 22b2=1,解得b 2=4或b 2=8(舍去). 所以椭圆C 的方程为x 28+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2).因为T (1,0),则直线l 的方程为y =k (x -1).联立直线l 与椭圆方程⎩⎪⎨⎪⎧y =k x -1,x 28+y24=1,消去y ,得(2k 2+1)x 2-4k 2x +2k 2-8=0, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-82k 2+1.因为MN ∥l ,所以直线MN 的方程为y =kx ,联立直线MN 与椭圆方程⎩⎪⎨⎪⎧y =kx ,x 28+y24=1,消去y 得(2k 2+1)x 2=8,解得x 2=82k 2+1.因为MN ∥l ,所以AT ·BT MN 2=1-x 1·x 2-1x M -x N 2, 因为(1-x 1)·(x 2-1)=-[x 1x 2-(x 1+x 2)+1]=72k 2+1,(x M -x N )2=4x 2=322k 2+1.所以AT ·BT MN 2=72k 2+1×2k 2+132=732.(3)在y =k (x -1)中,令x =0,则y =-k ,所以P (0,-k ), 从而AP ―→=(-x 1,-k -y 1),TB ―→=(x 2-1,y 2), ∵AP ―→=25TB ―→,∴-x 1=25(x 2-1),即x 1+25x 2=25,①由(2)知x 1+x 2=4k22k 2+1,②联立①②得x 1=-4k 2+232k 2+1,x 2=16k 2-232k 2+1. 又x 1x 2=2k 2-82k 2+1,∴50k 4-83k 2-34=0, 解得k 2=2或k 2=-1750(舍去).又因为k >0,所以k = 2.5.数列{a n }中,对任意给定的正整数n ,存在不相等的正整数i ,j (i <j ),使得a n =a i a j ,且i ≠n ,j ≠n ,则称数列{a n }具有性质P .(1)若仅有3项的数列1,a ,b 具有性质P ,求a +b 的值; (2)求证:数列⎩⎨⎧⎭⎬⎫nn +2 019具有性质P ;(3)正项数列{b n }是公比不为1的等比数列.若{b n }具有性质P ,则数列{b n }至少有多少项?请说明理由.解:(1)∵数列1,a ,b 具有性质P ∴⎩⎪⎨⎪⎧ab =1,a =b .∴⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.∴a +b =2或a +b =-2;(2)证明:假设存在不相等的正整数i ,j (i <j )使得a n =a i a j ,即n n +2 019=ii +2 019·jj +2 019(*)解得:j =i +2 019ni -n ,取i -n =1,则存在⎩⎪⎨⎪⎧i =n +1,j =n +2 020n ,使得(*)成立∴数列⎩⎨⎧⎭⎬⎫nn +2 019具有性质P;(3)设正项等比数列{b n }的公比为q ,q >0且q ≠1,则b n =b 1·q n -1.∵数列{b n }具有性质P∴存在不相等的正整数i ,j (i <j ),i ≠n ,j ≠n ,使得b 1=b 1·q i -1·b 1·qj -1,即b 1=1qi +j -2,且m ≥3∵j >i ≥1,且i ,j ∈N *,∴i +j -2≥1若i +j -2=1,即b 1=1q,∴b 2=1,b 3=q要使b 1=1q =b i b j ,则1q 2必为{b n }中的项,与b 1=1q矛盾;∴i +j -2≠1若i +j -2=2,即b 1=1q 2,∴b 2=1q,b 3=1,b 4=q ,要使b 1=1q 2=b i b j ,则1q 3必为{b n }中的项,与b 1=1q2矛盾;∴i +j -2≠2若i +j -2=3,即b 1=1q 3,∴b 2=1q 2,b 3=1q,b 4=1,b 5=q ,b 6=q 2,b 7=q 3,这时对于n =1,2,…,7,都存在b n =b i b j ,其中i <j ,i ≠n ,j ≠n .∴数列{b n }至少有7项.6.已知函数f (x )=mx+x ln x (m >0),g (x )=ln x -2. (1)当m =1时,求函数f (x )的单调增区间;(2)设函数h (x )=f (x )-xg (x )-2,x >0.若函数y =h (h (x ))的最小值是322,求m 的值;(3)若函数f (x ),g (x )的定义域都是[1,e],对于函数f (x )的图象上的任意一点A ,在函数g (x )的图象上都存在一点B ,使得OA ⊥OB ,其中e 是自然对数的底数,O 为坐标原点.求m 的取值范围.解:(1)当m =1时,f (x )=1x +x ln x ,f ′(x )=-1x2+ln x +1.因为f ′(x )在(0,+∞)上单调递增,且f ′(1)=0, 所以当x >1时,f ′(x )>0;当0<x <1时,f ′(x )<0. 所以函数f (x )的单调增区间是(1,+∞).(2)h (x )=m x +2x -2,则h ′(x )=2-m x 2=2x 2-mx2,令h ′(x )=0,得x =m2,当0<x < m2时,h ′(x )<0,函数h (x )在⎝⎛⎭⎪⎫0,m 2上单调递减; 当x >m2时,h ′(x )>0,函数h (x )在⎝⎛⎭⎪⎫m2,+∞上单调递增.所以h (x )min =h ⎝⎛⎭⎪⎫m 2=22m - 2.①当2(2m -1)≥m2,即m ≥49时, 函数y =h (h (x ))的最小值h (22m -2)=2⎣⎢⎡⎦⎥⎤m 22m -1+22m -1-1=322,即17m -26m +9=0,解得m =1或m =917(舍去),所以m =1.②当0<2(2m -1)<m2,即14<m <49时, 函数y =h (h (x ))的最小值h ⎝⎛⎭⎪⎫m 2=2(2m -1)=322,解得m =54(舍去). 综上所述,m 的值为1.(3)由题意知,k OA =m x2+ln x ,k OB =ln x -2x.考虑函数y =ln x -2x,因为y ′=3-ln x x2>0在[1,e]上恒成立, 所以函数y =ln x -2x在[1,e]上单调递增,故k OB ∈⎣⎢⎡⎦⎥⎤-2,-1e ,所以k OA ∈⎣⎢⎡⎦⎥⎤12,e , 即12≤mx2+ln x ≤e 在[1,e]上恒成立, 即x 22-x 2ln x ≤m ≤x 2(e -ln x )在[1,e]上恒成立. 设p (x )=x 22-x 2ln x ,则p ′(x )=-2x ln x ≤0在[1,e]上恒成立, 所以p (x )在[1,e]上单调递减,所以m ≥p (1)=12.设q (x )=x 2(e -ln x ),则q ′(x )=x (2e -1-2ln x )≥x (2e -1-2ln e)>0在[1,e]上恒成立, 所以q (x )在[1,e]上单调递增, 所以m ≤q (1)=e.综上所述,m 的取值范围为⎣⎢⎡⎦⎥⎤12,e .。
江苏省南京市、盐城市2020届高三第二次模拟考试 数学(含答案)
南京、盐城2020届高三模拟考试试卷数学(满分160分,考试时间120分钟)参考公式:圆锥的侧面积公式:S=πrl,其中r为圆锥底面圆的半径,l为圆锥的母线长.一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A={x|x=2k+1,k∈Z},B={x|x(x-5)<0},则A∩B=________.2. 已知复数z=1+2i,其中i为虚数单位,则z2的模为________.3. 如图是一个算法流程图,若输出的实数y的值为-1,则输入的实数x的值为________.(第3题)(第4题)4. 某校初三年级共有500名女生,为了了解初三女生1分钟“仰卧起坐”项目训练情况,统计了所有女生1分钟“仰卧起坐”测试数据(单位:个),并绘制了如图频率分布直方图,则1分钟至少能做到30个仰卧起坐的初三女生有________个.5. 从编号为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上数字能被第一次抽得的卡片上的数字整除的概率为________.6. 已知函敬f(x)是定义在R 上的奇函敷,且周期为2,当x ∈(0,1]时,f(x)=x +,则f(a)的值为________.7. 若将函数f(x)=sin(2x +π3)的图象沿x 轴向右平移φ(φ>0)个单位长度后所得的图象与f(x)的图象关于x 轴对称,则φ的最小值为________.8. 在△ABC 中,AB =25,AC =5,∠BAC =90°,则△ABC 绕BC 所在直线旋转一周所形成的几何体的表面积为________.9. 已知数列{a n }为等差数列,数列{b n }为等比数列,满足{a 1,a 2,a 3}={b 1,b 2,b 3}={a ,b ,-2},其中a >0,b >0,则a +b 的值为________.10. 已知点P 是抛物线x 2=4y 上动点,F 是抛物线的焦点,点A 的坐标为(0,-1),则PFPA 的最小值为________.11. 已知x ,y 为正实数,且xy +2x +4y =41,则x +y 的最小值为________.12. 在平面直角坐标系xOy 中,圆C :(x -m)2+y 2=r 2(m >0).已知过原点O 且相互垂直的两条直线l 1和l 2,其中l 1与圆C 相交于A ,B 两点,l 2与圆C 相切于点D.若AB =OD ,则直线l 1的斜率为________.13. 在△ABC 中,BC 为定长,|AB →+2AC →|=3|BC →|.若△ABC 面积的最大值为2,则边BC 的长为________.14. 已知函数f(x)=e x -x -b(e 为自然对数的底数,b ∈R ).若函数g(x)=f(f(x)-12)恰有4个零点,则实数b 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本小题满分14分)如图,在三棱锥PABC 中,点D ,E 分别为AB ,BC 的中点,且平面PDE 上平面ABC.(1) 求证:AC ∥平面PDE ;(2) 若PD =AC =2,PE =3,求证:平面PBC ⊥平面ABC.16. (本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =bcos C +csin B. (1) 求B 的值;(2) 设∠BAC 的平分线AD 与边BC 交于点D.已知AD =177,cos A =-725,求b 的值.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米.为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE ︵,记∠CBD 为θ.(1) 用θ表示栈道的总长度f(θ),并确定sin θ的取值范围; (2) 求当θ为何值时,栈道总长度最短.18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点(0,3).(1) 求椭圆C 的方程;(2) 已知△BMN 是椭圆C 的内接三角形.① 若点B 为椭圆C 的上顶点,原点O 为△BMN 的垂心,求线段MN 的长;② 若原点O 为△BMN 的重心,求原点O 到直线MN 距离的最小值.19. (本小题满分16分)已知函数f(x)=x 3-x 2-(a -16)x ,g(x)=aln x ,a ∈R .函数h(x)=f (x )x -g(x)的导函数h′(x)在[52,4]上存在零点.(1) 求实数a 的取值范围;(2) 若存在实数a ,当x ∈[0,b]时,函数f(x)在x =0时取得最大值,求正实数b 的最大值; (3) 若直线l 与曲线y =f(x)和y =g(x)都相切,且l 在y 轴上的截距为-12,求实数a 的值.已知无穷数列{a n }的各项均为正整数,其前n 项和为S n .记T n 为数列{a n }的前a n 项和,即T n =a 1+a 2+…+a n .(1) 若数列{a n }为等比数列,且a 1=1,S 4=5S 2,求T 3的值;(2) 若数列{a n }为等差数列,且存在唯一的正整数n(n ≥2),使得T na n<2,求数列{a n }的通项公式;(3) 若数列{T n }的通项为T n =n (n +1)2,求证:数列{a n }为等差数列.数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换) 已知矩阵M =[1221],MN =[1001].(1) 求矩阵N ;(2) 求矩阵N 的特征值.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2t ,y =12t 2(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos (θ-π4)= 2.若直线l 交曲线C 于A ,B 两点,求线段AB 的长.C. (选修45:不等式选讲) 已知a >0,求证:a 2+1a 2-2≥a +1a -2.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某商场举行有奖促销活动,顾客购买每满400元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有1~6点数的正方体骰子1次,若掷得点数大于4,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖.已知抽奖箱中装有2个红球与m(m≥2,m∈N*)个白球,抽奖者从箱中任意摸出2个球,若2个球均为红球,则获得一等奖;若2个球为1个红球和1个白球,则获得二等奖;否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).(1) 若m=4,求顾客参加一次抽奖活动获得三等奖的概率;(2) 若一等奖可获奖金400元,二等奖可获奖金300元,三等奖可获奖金100元,记顾客一次抽奖所获得的奖金为X,若商场希望X的数学期望不超过150元,求m的最小值.23.已知集合A n={1,2,…,n},n∈N*,n≥2,将A n的所有子集任意排列,得到一个有序集合组(M1,M2,…,M m),其中m=2n.记集合M k中元素的个数为a k,k∈N*,k≤m,规定空集中元素的个数为0.(1) 当n=2时,求a1+a2+…+a m的值;(2) 利用数学归纳法证明:不论n(n≥2)为何值,总存在有序集合组(M1,M2,…,M m),满足任意i∈N*,i≤m-1,都有|a i-a i+1|=1.2020届高三模拟考试试卷(南京、盐城)数学参考答案及评分标准1. {1,3}2. 53. -144. 3255. 126. 07. π28. 65π9. 5 10. 22 11. 8 12. ±25513. 2 14. (1,12+ln 2)15. 证明:(1) 因为点D ,E 分别为AB ,BC 的中点,所以DE ∥AC.(2分) 因为AC ⊄平面PDE ,DE ⊂平面PDE ,所以AC ∥平面PDE.(4分) (2) 因为点D ,E 分别为AB ,BC 的中点,所以DE =12AC.因为AC =2,所以DE =1.因为PD =2,PE =3,所以PD 2=PE 2+DE 2, 因此在△PDE 中,PE ⊥DE.(8分)又平面PDE ⊥平面ABC ,且平面PDE ∩平面ABC =DE ,PE ⊂平面PDE , 所以PE ⊥平面ABC.(12分)因为PE ⊂平面PBC ,所以平面PBC ⊥平面ABC.(14分) 16. 解:(1) 因为a =bcos C +csin B , 由a sin A =b sin B =c sin C,得sin A =sin Bcos C +sin Csin B .(2分) 因为sin A =sin[π-(B +C)]=sin(B +C)=sin Bcos C +cos Bsin C , 所以sin Bcos C +cos Bsin C =sin Bcos C +sin Csin B , 即cos Bsin C =sin Csin B .(4分)因为0<C <π,所以sin C ≠0,所以sin B =cos B.又0<B <π,所以sin B ≠0,从而cos B ≠0,所以tan B =1,所以B =π4.(6分)(2) 因为AD 是∠BAC 的平分线,设∠BAD =θ,所以A =2θ.因为cos A =-725,所以cos 2θ=cos A =-725,即2cos 2θ-1=-725,所以cos 2θ=925.因为0<A <π,所以0<θ<π2,所以cos θ=35,所以sin θ=1-cos 2θ=45.在△ABD 中,sin ∠ADB =sin(B +θ)=sin(π4+θ)=sin π4cos θ+cos π4sin θ=22×(35+45)=7210.(8分)由AD sin B =AB sin ∠ADB ,所以AB =ADsin ∠ADB sin B =177×7210×2=175.(10分) 在△ABC 中,sin A =1-cos 2A =2425,所以sin C =sin(A +B)=sin Acos B +cos Asin B =22×(2425-725)=17250.(12分) 由b sin B =c sin C ,得b =csin B sin C =175×2217250=5.(14分) 17. 解:(1) 连结CD ,因为BD 与圆C 相切,切点为D ,所以△BCD 为直角三角形. 因为∠CBD =θ,且圆形小岛的半径为1千米,所以DB =1tan θ,BC =1sin θ.因为岸边上的点A 与小岛圆心C 相距3千米,所以AB =AC -BC =3-1sin θ.(2分)因为BE 与圆C 相切,所以BE =DB =1tan θ,优弧DE ︵所对圆心角为2π-(π-2θ)=π+2θ,所以优弧DE ︵长l 为π+2θ.(4分)所以f(θ)=AB +BD +BE +l =3-1sin θ+1tan θ+1tan θ+π+2θ=3+π+2θ+2cos θ-1sin θ.(6分)因为0<AB <2,所以0<3-1sin θ<2,解得13<sin θ<1,所以sin θ的取值范围是(13,1).(8分)(2) 由f(θ)=3+π+2θ+2cos θ-1sin θ,得f′(θ)=-2+cos θsin 2θ+2=cos θ(1-2cos θ)sin 2θ.(10分) 令f′(θ)=0,解得cos θ=12.因为θ为锐角,所以θ=π3.(12分)设sin θ0=13,θ0为锐角,则0<θ0<π3.当θ∈(θ0,π3)时,f ′(θ)<0,则f(θ)在(θ0,π3)上单调递减;当θ∈(π3,π2)时,f ′(θ)>0,则f(θ)在(π3,π2)上单调递增.所以f(θ)在θ=π3时取得最小值.答:当θ=π3时,栈道总长度最短.(14分)18. 解:(1) 记椭圆C 的焦距为2c ,因为椭圆C 的离心率为12,所以c a =12.因为椭圆C 过点(0,3),所以b = 3. 因为a 2-c 2=b 2,解得c =1,a =2, 故椭圆C 的方程为x 24+y 23=1.(2分)(2) ① 因为点B 为椭圆C 的上顶点,所以B 点坐标为(0,3). 因为O 为△BMN 的垂心,所以BO ⊥MN ,即MN ⊥y 轴. 由椭圆的对称性可知M ,N 两点关于y 轴对称.(4分) 不妨设M(x 0,y 0),则N(-x 0,y 0),其中-3<y 0< 3.因为MO ⊥BN ,所以MO →·BN →=0,即(-x 0,-y 0)·(-x 0,y 0-3)=0,得x 20-y 20+3y 0=0.(6分)又点M(x 0,y 0)在椭圆上,则x 204+y 203=1.由⎩⎪⎨⎪⎧x 20-y 20+3y 0=0,x 204+y 203=1,解得y 0=-437或y 0=3(舍去),此时|x 0|=2337. 故MN =2|x 0|=4337,即线段MN 的长为4337.(8分)② (解法1)设B(m ,n),记线段MN 中点为D.因为O 为△BMN 的重心,所以BO →=2OD →,则点D 的坐标为(-m 2,-n 2).(10分)若n =0,则|m|=2,此时直线MN 与x 轴垂直,故原点O 到直线MN 的距离为⎪⎪⎪⎪m 2, 即为1. 若n ≠0,此时直线MN 的斜率存在.设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=-m ,y 1+y 2=-n.又x 214+y 213=1,x 224+y 223=1,两式相减得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0, 可得k MN =y 1-y 2x 1-x 2=-3m 4n .(12分)故直线MN 的方程为y =-3m 4n (x +m 2)-n2,即6mx +8ny +3m 2+4n 2=0, 则点O 到直线MN 的距离为d =|3m 2+4n 2|36m 2+64n 2.将m 24+n 23=1,代入得d =3n 2+9.(14分) 因为0<n 2≤3,所以d min =32. 又32<1,故原点O 到直线MN 距离的最小值为32.(16分) (解法2)设M(x 1,y 1),N(x 2,y 2),B(x 3,y 3),因为O 为△BMN 的重心,所以x 1+x 2+x 3=0,y 1+y 2+y 3=0,则x 3=-(x 1+x 2),y 3=-(y 1+y 2).(10分)因为x 234+y 233=1,所以(x 1+x 2)24+(y 1+y 2)23=1. 将x 214+y 213=1,x 224+y 223=1,代入得x 1x 24+y 1y 23=-12.(12分) 若直线MN 的斜率不存在,则线段MN 的中点在x 轴上,从而B 点位于长轴的顶点处. 由于OB =2,所以此时原点O 到直线MN 的距离为1.若直线MN 的斜率存在,设为k ,则其方程为y =kx +n.由⎩⎪⎨⎪⎧y =kx +n ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8knx +4n 2-12=0 (*). 则Δ=(8kn)2-4(3+4k 2)(4n 2-12)>0,即3+4k 2>n 2.由根与系数关系可得x 1+x 2=-8kn 3+4k 2,x 1x 2=4n 2-123+4k 2, 则y 1y 2=(kx 1+n)(kx 2+n)=k 2x 1x 2+kn(x 1+x 2)+n 2=3n 2-12k 23+4k 2, 代入x 1x 24+y 1y 23=-12,得14×4n 2-123+4k 2+13×3n 2-12k 23+4k 2=-12,即n 2=k 2+34.(14分) 又3+4k 2>n 2,于是3+4k 2>k 2+34,即3k 2+94>0恒成立,因此k ∈R . 原点(0,0)到直线MN 的距离为d =|n|k 2+1=k 2+34k 2+1=1-14(k 2+1). 因为k 2≥0,所以当k =0时,d min =32. 又32<1,故原点O 到直线MN 距离的最小值为32.(16分)19. 解:(1) 因为h(x)=f (x )x-g(x)=x 2-x -(a -16)-aln x , 所以h′(x)=2x -1-a x =2x 2-x -a x. 令h′(x)=0,得2x 2-x -a =0.因为函数h′(x)在[52,4]上存在零点,即y =2x 2-x -a 在[52,4]上存在零点, 又函数y =2x 2-x -a 在[52,4]上单调递增, 所以⎩⎪⎨⎪⎧2×(52)2-52-a ≤0,2×42-4-a ≥0,解得10≤a ≤28. 因此,实数a 的取值范围是[10,28].(2分)(2) (解法1)因为当x ∈[0,b]时,函数f(x)在x =0处取得最大值,即存在实数a ,当x ∈[0,b]时,f(0)≥f(x)恒成立,即x 3-x 2-(a -16)x ≤0对任意x ∈[0,b]都成立.(4分)当x =0时,上式恒成立;(6分)当x ∈(0,b]时,存在a ∈[10,28],使得x 2-x +16≤a 成立,(8分)所以x 2-x +16≤28,解得-3≤x ≤4,所以b ≤4.故当a =28时,b 的最大值为4.(10分)(解法2)由f(x)=x 3-x 2-(a -16)x ,得f′(x)=3x 2-2x -(a -16).设Δ=4+12(a -16)=4(3a -47).若Δ≤0,则f′(x)≥0恒成立,f(x)在[0,b]上单调递增,因此当x ∈[0,b]时,函数f(x)在x =0时不能取得最大值,于是Δ>0,(4分)故f′(x)=0有两个不同的实数根,记为x 1,x 2(x 1<x 2).若x 1>0,则当x ∈(0,x 1)时,f ′(x)>0,f(x)在(0,x 1)上单调递增,因此当x ∈[0,b]时,函数f(x)在x =0时不能取得最大值,所以x 1≤0.(6分)又x 1+x 2=23>0,因此x 2>0, 从而当x ∈(0,x 2)时,f ′(x)<0,f(x)单调递减;当x ∈(x 2,+∞)时,f ′(x)>0,f(x)单调递增,若存在实数a ,当x ∈[0,b]时,函数f(x)在x =0处取得最大值,则存在实数a ,使得f(0)≥f(b)成立,即b 3-b 2-(a -16)b ≤0.(8分)所以存在a ∈[10,28],使得b 2-b +16≤a 成立,所以b 2-b +16≤28,解得-3≤b ≤4,故当a =28时,b 的最大值为4.(10分)(3) 设直线l 与曲线y =f(x)相切于点A(x 1,f(x 1)),与曲线y =g(x)相切于点B(x 2,g(x 2)),过点A(x 1,f(x 1))的切线方程为y -[x 31-x 21-(a -16)x 1]=[3x 21-2x 1-(a -16)](x -x 1),即y =[3x 21-2x 1-(a -16)]x -2x 31+x 21.过点B(x 2,g(x 2))的切线方程为y -aln x 2=a x 2(x -x 2),即y =a x 2x +aln x 2-a. 因为直线l 在y 上的截距为-12,所以⎩⎪⎨⎪⎧3x 21-2x 1-(a -16)=ax 2 ①,-2x 31+x 21=-12 ②,aln x 2-a =-12 ③.(12分)由②解得x 1=2,则⎩⎪⎨⎪⎧24-a =a x 2,aln x 2-a =-12,消去a ,得ln x 2+1-x 22x 2=0.(14分) 由(1)知10≤a ≤28,且x 2>0,则x 2≥57. 令p(x)=ln x +1-x 2x ,x ∈[57,+∞),则p′(x)=1x -12x 2=2x -12x 2. 因为p′(x)>0,所以函数p(x)在[57,+∞)上为增函数. 因为p(1)=0,且函数p(x)的图象是不间断的,所以函数p(x)在[57,+∞)上有唯一零点1, 所以方程ln x 2+1-x 22x 2=0的解为x 2=1,所以a =12. 所以实数a 的值为12.(16分)20. (1) 解:设等比数列{a n }的公比为q ,因为S 4=5S 2,所以a 1+a 2+a 3+a 4=5(a 1+a 2),即a 3+a 4=4(a 1+a 2),所以a 1q 2(1+q)=4a 1(1+q).因为数列{a n }的各项均为正整数,所以a 1,q 均为正数,所以q 2=4,解得q =2.又a 1=1,所以a n =2n -1,从而a 3=4,所以T 3=S 4=1+2+22+23=15.(2分)(2) 解:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d.因为数列{a n }的各项均为正整数,所以d ∈Z .若d <0,令a n >0,得n <1-a 1d,这与{a n }为无穷数列相矛盾, 因此d ≥0,即d ∈N .(4分)因为S n =na 1+n (n -1)d 2,所以T n =a 1a n +a n (a n -1)d 2,因此T n a n =a 1+(a n -1)d 2. 由T n a n <2,得a 1+(a n -1)d 2<2.(6分) 因为a 1∈N *,d ∈N ,所以2>a 1+(a n -1)d 2≥a 1≥1,因此a 1=1. 于是1+(n -1)d 22<2,即(n -1)d 2<2. ① 若d =0,则存在无穷多个n(n ≥2),使得上述不等式成立,所以d =0不合题意;(8分)② 若d ∈N *,则n <1+2d 2, 因为存在唯一的正整数n(n ≥2),使得该不等式成立,所以2<1+2d 2≤3,即1≤d 2<2. 又d ∈N *,所以d =1,因此a n =1+(n -1)×1=n.(10分)(3) 证明:因为S n +1-S n =a n +1>0,所以S n +1>S n ,即数列{S n }单调递增.又T n +1-T n =(n +1)(n +2)2-n (n +1)2=n +1>0, 所以T n +1>T n ,即Sa n +1>Sa n ,因为数列{S n }单调递增,所以a n +1>a n .(12分)又a n ∈N *,所以a n +1≥a n +1,即a n +1-a n ≥1,所以a n +1-a 1=(a 2-a 1)+(a 3-a 2)+…+(a n +1-a n )≥n ,因此a n +1≥a 1+n ≥1+n ,即a n ≥n(n ≥2).又a 1≥1,所以a n ≥n ①.(14分)由T n +1-T n =n +1,得aa n +1+aa n +2+…+aa n +1=n +1,因此n +1≥aa n +1≥a n +1,即a n ≤n ②.由①②知a n =n ,因此a n +1-a n =1,所以数列{a n }为等差数列.(16分)2020届高三模拟考试试卷(南京、盐城)数学附加题参考答案及评分标准21. A. 解:(1) 因为M =⎣⎢⎡⎦⎥⎤1221,MN =⎣⎢⎡⎦⎥⎤1001,所以N =M -1.(2分) 因为|M|=1×1-2×2=-3,(4分) 所以N =M -1=⎣⎢⎢⎡⎦⎥⎥⎤-13-2-3-2-3-13=⎣⎢⎡⎦⎥⎤-13 23 23-13.(6分) (2) N 的特征多项式f(λ)=⎪⎪⎪⎪⎪⎪λ+13-23-23λ+13=(λ+13)2-(-23)2=(λ-13)(λ+1).(8分) 令f(λ)=0,解得λ=13或-1, 所以N 的特征值是13和1.(10分) B. 解:曲线C 的普通方程为y =12(x 2)2=18x 2.(2分) 由直线l 的极坐标方程ρcos (θ-π4)=2,得ρ(cos θcos π4+sin θsin π4)=2, 即22x +22y =2,所以直线l 的方程为y =-x +2.(4分) 设A(x 1,y 1),B(x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =18x 2,y =-x +2,消去y ,得x 2+8x -16=0,(6分)则x 1+x 2=-8,x 1x 2=-16,所以AB =1+(-1)2|x 1-x 2|=2×(x 1+x 2)2-4x 1x 2=2×(-8)2-4×(-16)=16.(10分)C. 证明:(证法1)因为a >0,所以a +1a≥2, 要证a 2+1a 2-2≥a +1a -2, 只需证a 2+1a 2≥(a +1a)-(2-2). 因为(a +1a)-(2-2)>0,所以只需证(a 2+1a2)2≥⎣⎡⎦⎤(a +1a )-(2-2)2,(4分) 即2(2-2)(a +1a )≥8-42,即证a +1a≥2.(8分) 因为a +1a≥2成立,所以要证的不等式成立.(10分) (证法2)令t =a +1a ,因为a >0,所以a +1a≥2,即t ≥2. 要证a 2+1a 2-2≥a +1a-2, 即证t 2-2-2≥t -2,即证t -t 2-2≤2-2,(4分) 即证2t +t 2-2≤2- 2.(6分) 由于f(t)=t +t 2-2在[2,+∞)上单调递增,则f(t)≥f(2)=2+2, 故2t +t 2-2≤22+2=2- 2. 所以要证的原不等式成立.(10分)22. 解:(1) 设“顾客参加一次抽奖活动获得三等奖”为事件A.因为m =4,所以P(A)=46+26×C 24C 26=23+13×25=45. 答:顾客参加一次抽奖活动获得三等奖的概率为45.(4分) (2) X 的所有可能取值为400,300,100.P(X =400)=26×C 22C 22+m =23(m +1)(m +2), P(X =300)=26×C 12C 1m C 22+m =4m 3(m +1)(m +2), P(X =100)=46+26×C 2m C 22+m =23+m (m -1)3(m +1)(m +2),(7分) 则E(X)=400×23(m +1)(m +2)+300×4m 3(m +1)(m +2)+100×[23+m (m -1)3(m +1)(m +2)]≤150,化简得3m 2-7m -6≥0. 因为m ≥2,m ∈N *,所以m ≥3,所以m 的最小值为3.(10分)23. (1) 解:当n =2时,A 2的子集为∅,{1},{2},{1,2},且m =4.所以a1+a2+…+a m=0+1+1+2=4.(2分)(2) 证明:①当n=2时,取一个集合组(M1,M2,M3,M4)=(∅,{1},{1,2},{2}),此时a1=0,a2=1,a3=2,a4=1,满足任意i∈N*,i≤3,都有|a i-a i+1|=1,所以当n=2时命题成立.(4分)②假设n=k(k∈N*,k≥2)时,命题成立,即对于A k={1,2,…,k},存在一个集合组(M1,M2,…,M m)满足任意i∈N*,i≤m-1,都有|a i-a i+1|=1,其中m=2k.当n=k+1时,则A k+1={1,2,…,k,k+1},集合A k+1的所有子集除去M1,M2,…,M m外,其余的子集都含有k+1.令M m+1=M m∪{k+1},M m+2=M m-1∪{k+1},…,M2m=M1∪{k+1},取集合组(M1,M2,…,M m,M m+1,M m+2,…,M2m),其中2m=2k+1,(6分)根据归纳假设知|a i-a i+1|=1,其中i∈N*,m+1≤i≤2m-1,(8分)所以此集合组满足|a i-a i+1|=1,其中i∈N*,i≤m-1或m+1≤i≤2m-1.又M m+1=M m∪{c},所以|a m-a m+1|=1,因此|a i-a i+1|=1,其中i∈N*,i≤2m-1,即当n=k+1时,命题也成立.综上,不论n为何值,总存在有序集合组(M1,M2,…,M m),满足任意i∈N*,i≤m-1,都有|a i-a i+1|=1.(10分)。
江苏省南通市2020届高三数学下学期二模考前综合练习试题含解析
江苏省南通市2020届高三数学下学期二模考前综合练习试题(含解析)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.记复数z =a +bi (i 为虚数单位)的共轭复数为()z a bi a b R =-∈,,已知z =2+i ,则2z =_____.【答案】3﹣4i 【解析】 【分析】计算得到z 2=(2+i )2=3+4i ,再计算2z 得到答案. 【详解】∵z =2+i ,∴z 2=(2+i )2=3+4i ,则234z i =-. 故答案为:3﹣4i .【点睛】本题考查了复数的运算,共轭复数,意在考查学生的计算能力. 2.已知集合U ={1,3,5,9},A ={1,3,9},B ={1,9},则∁U (A∪B)=________. 【答案】{5} 【解析】易得A∪B=A ={1,3,9},则∁U (A∪B)={5}.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____. 【答案】30 【解析】 【分析】直接根据分层抽样的比例关系得到答案. 【详解】分层抽样的抽取比例为801160020=,∴抽取学生的人数为600120⨯=30. 故答案为:30.【点睛】本题考查了分层抽样的计算,属于简单题.4.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____. 【答案】25【解析】 【分析】 计算si nα255y r ==,再利用诱导公式计算得到答案. 【详解】由题意可得x =1,y =2,r 5=,∴sinα25y r ==,∴sin (π﹣α)=sinα25=. 故答案为:25. 【点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力. 5.执行以下语句后,打印纸上打印出的结果应是:_____.【答案】28 【解析】 【分析】根据程序框图直接计算得到答案.【详解】程序在运行过程中各变量取值如下所示:是否继续循环 i x 循环前 1 4 第一圈 是 4 4+2 第二圈 是 7 4+2+8 第三圈 是 10 4+2+8+14退出循环,所以打印纸上打印出的结果应是:28故答案为:28.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.6.设α、β为互不重合的平面,m ,n 是互不重合的直线,给出下列四个命题: ①若m ∥n ,则m ∥α;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,m ⊂α,n ⊂β,则m ∥n ;④若α⊥β,α∩β=m ,n ⊂α,m ⊥n ,则n ⊥β; 其中正确命题的序号为_____. 【答案】④ 【解析】 【分析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于①,当m ∥n 时,由直线与平面平行的定义和判定定理,不能得出m ∥α,①错误;对于②,当m ⊂α,n ⊂α,且m ∥β,n ∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m ⊂α,n ⊂β时,由两平面平行的性质定理,不能得出m ∥n ,③错误;对于④,当α⊥β,且α∩β=m ,n ⊂α,m ⊥n 时,由两平面垂直的性质定理,能够得出n ⊥β,④正确;综上知,正确命题的序号是④. 故答案为:④.【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.7.已知函数f(x)=322{102x x x x ≥,,(-),<<,若关于x 的方程f(x)=kx 有两个不同的实根,则实数k的取值范围是________.【答案】10,2⎛⎫⎪⎝⎭【解析】由图可知,当直线y =kx 在直线OA 与x 轴(不含它们)之间时,y =kx 与y =f(x)的图像有两个不同交点,即方程有两个不相同的实根.8.已知关于x 的不等式(ax ﹣a 2﹣4)(x ﹣4)>0的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为_____.【答案】-2 【解析】 【分析】讨论0,0,0a a a <=>三种情况,a <0时,根据均值不等式得到a 4a +=-(﹣a 4a-)≤﹣()4a a ⎛⎫--=- ⎪⎝⎭4,计算等号成立的条件得到答案. 【详解】已知关于x 的不等式(ax ﹣a 2﹣4)(x ﹣4)>0, ①a <0时,[x ﹣(a 4a +)](x ﹣4)<0,其中a 4a+<0, 故解集为(a 4a+,4), 由于a 4a +=-(﹣a 4a-)≤﹣()4a a ⎛⎫--=- ⎪⎝⎭4,当且仅当﹣a 4a=-,即a =﹣2时取等号, ∴a 4a +的最大值为﹣4,当且仅当a 4a+=-4时,A 中共含有最少个整数,此时实数a 的值为﹣2;②a =0时,﹣4(x ﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a =0不符合条件;③a >0时,[x ﹣(a 4a +)](x ﹣4)>0,其中a 4a+≥4, ∴故解集为(﹣∞,4)∪(a 4a+,+∞),整数解有无穷多,故a >0不符合条件;综上所述,a =﹣2. 故答案为:﹣2.【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.9.已知双曲线22221x y a b -=(a >0,b >0)的两个焦点为102F ⎛⎫- ⎪ ⎪⎝⎭、202F ⎛⎫ ⎪ ⎪⎝⎭,点P 是第一象限内双曲线上的点,且1212tan PF F ∠=,tan ∠PF 2F 1=﹣2,则双曲线的离心率为_____.【答案】5【解析】 【分析】 根据正弦定理得1212122PF sin PF F PF sin PF F ∠==∠,根据余弦定理得2212PF PF +-2PF 1•PF 2cos ∠F 1PF 2212F F ==3,联立方程得到12PF PF ==算得到答案.【详解】∵△PF 1F 2中,sin ∠PF 1F 2═5,sin ∠PF 1F 2═5,∴由正弦定理得1212122PF sin PF F PF sin PF F ∠==∠,① 又∵1212tan PF F ∠=,tan ∠PF 2F 1=﹣2, ∴tan ∠F 1PF 2=﹣tan (∠PF 2F 1+∠PF 1F 2)123214122-=-=+⨯,可得cos ∠F 1PF 245=, △PF 1F 2中用余弦定理,得2212PF PF +-2PF 1•PF 2cos ∠F 1PF 2212F F ==3,②①②联解,得12PF PF ==,可得12PF PF -=∴双曲线的2a =,结合2c =,得离心率22c e a ==.. 【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力. 10.记S k =1k +2k +3k +……+n k ,当k =1,2,3,……时,观察下列等式:S 112=n 212+n ,S 213=n 312+n 216+n ,S 314=n 412+n 314+n 2,……S 5=An 612+n 5512+n 4+Bn 2,…可以推测,A ﹣B =_____.【答案】14【解析】 【分析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案. 【详解】根据所给的已知等式得到:各等式右边各项的系数和为1, 最高次项的系数为该项次数的倒数,∴A 16=,A 15212B +++=1,解得B 112=-,所以A ﹣B 1116124=+=. 故答案为:14.【点睛】本题考查了归纳推理,意在考查学生的推理能力.11.设函数()f x x x a =-,若对于任意的1x ,2x ∈[2,)+∞,1x ≠2x ,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是 .【答案】2a ≤ 【解析】试题分析:由题意得函数()f x x x a =-在[2,)+∞上单调递增,当2a ≤时()()f x x x a =-在[2,)+∞上单调递增;当2a >时()f x x x a =-在[,)a +∞上单调递增;在[2,)a 上单调递减,因此实数a 的取值范围是2a ≤ 考点:函数单调性12.已知平面向量a ,b ,c 满足|a |=1,|b |=2,a ,b 的夹角等于3π,且(a c -)•(b c -)=0,则|c |的取值范围是_____.【答案】22⎣⎦, 【解析】 【分析】计算得到|a b +|=27c =|c |cosα﹣1,解得cosα2c=,根据三角函数的有界性计算范围得到答案.【详解】由(a c -)•(b c -)=0 可得 2c =(a b +)•c a b -⋅=|a b +|•|c |cosα﹣1×2cos3π=|a b +|•|c |cosα﹣1,α为a b +与c 的夹角.再由 ()222a ba b +=++2a •b =1+4+2×1×2cos3π=7 可得|a b +|=∴27c =|c |cosα﹣1,解得cosα2c=.∵0≤α≤π,∴﹣1≤cosα2c≤1,即27c -|c |+1≤0,解得2≤|c |72≤,故答案为⎣⎦. 【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.13.在平面直角坐标系xOy 中,直角三角形ABC 的三个顶点都在椭圆()22211x y a a+=>上,其中A (0,1)为直角顶点.若该三角形的面积的最大值为278,则实数a 的值为_____. 【答案】3 【解析】 【分析】设直线AB 的方程为y =kx +1,则直线AC 的方程可设为y 1k=-x +1,(k ≠0),联立方程得到B(22221a k a k -+,222211a k a k -+),故S 442221211a k ka a k k +=⎛⎫+++ ⎪⎝⎭,令t 1k k =+,得S 42222(1)a a a t t=-+,利用均值不等式得到答案.【详解】设直线AB 的方程为y =kx +1,则直线AC 的方程可设为y 1k=-x +1,(k ≠0) 由22211y kx x y a=+⎧⎪⎨+=⎪⎩消去y ,得(1+a 2k 2)x 2+2a 2kx =0,所以x =0或x 22221a k a k -=+ ∵A 的坐标(0,1),∴B 的坐标为(22221a k a k -+,k •22221a k a k -++1),即B (22221a k a k -+,222211a k a k-+), 因此AB ==22221a k a k+, 同理可得:AC =22221a kak+.∴Rt △ABC 的面积为S 12=AB •AC =•44422422221221111a k a ka a k a a k k k +=⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ 令t 1k k =+,得S ()4422422222(1)12a t a a a a t a tt==-++-+. ∵t 1k k =+≥2,∴S △ABC442(1)a a a ≤=-.2=,即t 21a a-=时,△ABC 的面积S 有最大值为4227(1)8a a a =-. 解之得a =3或a 316=.∵a 3297+=时,t 21a a -=<2不符合题意,∴a =3.故答案为:3.【点睛】本题考查了椭圆内三角形面积的最值问题,意在考查学生的计算能力和转化能力. 14.设f (x )=e tx(t >0),过点P (t ,0)且平行于y 轴的直线与曲线C :y =f (x )的交点为Q ,曲线C 过点Q 的切线交x 轴于点R ,若S (1,f (1)),则△PRS 的面积的最小值是_____. 【答案】2e【解析】 【分析】计算R (t 1t -,0),PR =t ﹣(t 1t -)1t =,△PRS 的面积为S 2te t =,导数S ′()212t e t t-=,由S ′=0得t =1,根据函数的单调性得到最值.【详解】∵PQ ∥y 轴,P (t ,0),∴Q (t ,f (t ))即Q (t ,2t e ),又f (x )=e tx (t >0)的导数f ′(x )=te tx ,∴过Q 的切线斜率k =t 2t e ,设R (r ,0),则k 220t t e te t r-==-,∴r =t 1t -,即R (t 1t -,0),PR =t ﹣(t 1t -)1t=,又S (1,f (1))即S (1,e t),∴△PRS 的面积为S 2te t=,导数S ′()212t e t t -=,由S ′=0得t =1,当t >1时,S ′>0,当0<t <1时,S ′<0,∴t =1为极小值点,也为最小值点, ∴△PRS 的面积的最小值为2e . 故答案为:2e . 【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三角形ABC 中,角A,B,C 的对边分别为a,b,c ,若()31sin ,tan 53A AB =-=,角C 为钝角, 5.b =(1)求sin B 的值; (2)求边c 的长. 【答案】(1)10sin 10B = (2)13c = 【解析】 【分析】(1)由()sin sin B A A B ⎡⎤=--⎣⎦,分别求得sin cos A A ,,()()sin cos A B A B --,得到答案;(2)利用正弦定理sin sin a A b B=得到 310a =13c =. 【详解】(1)因为角C 为钝角,3sin 5A = ,所以24cos 1sin 5A A =-= ,又()1tan 3A B -= ,所以02A B π<-< ,且()()sin 1010A B A B -=-= ,所以()()()sin sin sin cos cos sin B A A B A A B A A B ⎡⎤=--=---⎣⎦3455101010=⨯-⨯= . (2)因为sin 310sin a A b B ==,且5b = ,所以310a = , 又()cos cos cos cos sin sin 510C A B A B A B =-+=-+=-, 则2222cos 952523105169510c a b ab C ⎛=+-=+-⨯⨯-= ⎪⎝⎭ ,所以 13c = .16.如图,四棱锥V ﹣ABCD 中,底面ABCD 是菱形,对角线AC 与BD 交于点O ,VO ⊥平面ABCD ,E 是棱VC 的中点.(1)求证:VA ∥平面BDE ; (2)求证:平面VAC ⊥平面BDE . 【答案】(1)见解析(2)见解析 【解析】 【分析】(1)连结OE ,证明VA ∥OE 得到答案.(2)证明VO ⊥BD ,BD ⊥AC ,得到BD ⊥平面VAC ,得到证明. 【详解】(1)连结OE .因为底面ABCD 是菱形,所以O 为AC 的中点, 又因为E 是棱VC 的中点,所以VA ∥OE ,又因为OE ⊂平面BDE ,VA ⊄平面BDE , 所以VA ∥平面BDE ;(2)因为VO ⊥平面ABCD ,又BD ⊂平面ABCD ,所以VO ⊥BD ,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.【点睛】本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.17.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.【答案】(1)(x﹣1)2+y2=25.(2)(512+∞,).(3)存在,34a=【解析】【分析】(1)设圆心为M(m,0),根据相切得到42955m-=,计算得到答案.(2)把直线ax﹣y+5=0,代入圆的方程,计算△=4(5a﹣1)2﹣4(a2+1)>0得到答案.(3)l的方程为()124y xa=-++,即x+ay+2﹣4a=0,过点M(1,0),计算得到答案. 【详解】(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y﹣29=0相切,且半径为5,所以42955m-=,即|4m﹣29|=25.因为m为整数,故m=1.故所求圆的方程为(x﹣1)2+y2=25.(2)把直线ax﹣y+5=0,即y=ax+5,代入圆的方程,消去y,整理得(a2+1)x2+2(5a﹣1)x+1=0,由于直线ax﹣y+5=0交圆于A,B两点,故△=4(5a﹣1)2﹣4(a2+1)>0,即12a2﹣5a>0,由于a>0,解得a512>,所以实数a的取值范围是(512+∞,).(3)设符合条件的实数a存在,则直线l的斜率为1a -,l的方程为()124y xa=-++,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2﹣4a=0,解得34a=.由于35412⎛⎫∈+∞⎪⎝⎭,,故存在实数34a=使得过点P(﹣2,4)的直线l垂直平分弦AB.【点睛】本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力.18.如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角∠CAD=60°.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为∠APB =α,∠DPC=β,问点P在何处时,α+β最小?【答案】(1)3m;(2)当BP为202103t=时,α+β取得最小值.【解析】【分析】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,根据()2tan CAD tan CAE∠=∠232010030x x--=,解得答案.(2)设BP=t,则(1030103CP t t=<<,故()210103103200ttant tαβ+=-+-()2103103200tf tt t+=-+-,求导得到函数单调性,得到最值.【详解】(1)作AE⊥CD,垂足为E,则CE=10,DE=10,设BC=x,则()22202210011tan CAEx tan CAD tan CAE tan CAE x ∠∠=∠===-∠-2200x --=,解之得,x =x =(舍), (2)设BP =t,则(0CP t t =<<, ()101t tan t αβ+===-设()f t =,()2'200f t t =-+-,令f '(t )=0,因为0t <<t =当(0t ∈,时,f '(t )<0,f (t )是减函数;当(t ∈时,f '(t )>0,f (t)是增函数,所以,当t =f (t )取得最小值,即tan (α+β)取得最小值, 因为22000t -+-<恒成立,所以f (t )<0,所以tan (α+β)<0,2παβπ⎛⎫+∈ ⎪⎝⎭,,因为y =tanx 在2ππ⎛⎫⎪⎝⎭,上是增函数,所以当t =-时,α+β取得最小值.【点睛】本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力. 19.设首项为1的正项数列{a n }的前n 项和为S n ,数列{}2na 的前n 项和为T n,且()243n n S p T --=,其中p 为常数.(1)求p 的值;(2)求证:数列{a n }为等比数列;(3)证明:“数列a n ,2xa n +1,2ya n +2成等差数列,其中x 、y 均为整数”的充要条件是“x =1,且y =2”.【答案】(1)p =2;(2)见解析(3)见解析 【解析】 【分析】(1)取n =1时,由()24113p --=得p =0或2,计算排除p =0的情况得到答案.(2)241(2)33n n T S =--,则21141(2)33n n T S ++=--,相减得到3a n +1=4﹣S n +1﹣S n ,再化简得到2112n n a a ++=,得到证明. (3)分别证明充分性和必要性,假设a n ,2xa n +1,2ya n +2成等差数列,其中x 、y 均为整数,计算化简得2x ﹣2y ﹣2=1,设k =x ﹣(y ﹣2),计算得到k =1,得到答案. 【详解】(1)n =1时,由()24113p --=得p =0或2,若p =0时,243n n S T -=,当n =2时,()22224113a a-++=,解得a 2=0或212a =-, 而a n >0,所以p =0不符合题意,故p =2; (2)当p =2时,241(2)33n n T S =--①,则21141(2)33n n T S ++=--②, ②﹣①并化简得3a n +1=4﹣S n +1﹣S n ③,则3a n +2=4﹣S n +2﹣S n +1④, ④﹣③得2112n n a a ++=(n ∈N *), 又因为2112a a =,所以数列{a n }是等比数列,且112n n a -=; (3)充分性:若x =1,y =2,由112n n a -=知a n ,2x a n +1,2y a n +2依次为112n -,22n ,142n +,满足112142222n n n -+⨯=+,即a n ,2x a n +1,2y a n +2成等差数列;必要性:假设a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数,又112n n a -=,所以11111222222x y n n n -+⋅⋅=+⋅,化简得2x ﹣2y ﹣2=1,显然x >y ﹣2,设k =x ﹣(y ﹣2),因为x 、y 均为整数,所以当k ≥2时,2x ﹣2y ﹣2>1或2x ﹣2y ﹣2<1, 故当k =1,且当x =1,且y ﹣2=0时上式成立,即证.【点睛】本题考查了根据数列求参数,证明等比数列,充要条件,意在考查学生的综合应用能力.20.已知函数123()()()()f x x x x x x x =---,123,,x x x R ∈,且123x x x <<. (1)当123012x x x ===,,时,求函数()f x 的减区间; (2)求证:方程()0f x '=有两个不相等的实数根; (3)若方程()0f x '=的两个实数根是()αβαβ<,,试比较122x x +,232x x +与αβ,的大小,并说明理由.【答案】(1)(1(2)详见解析(3)231222x x x x αβ++<<< 【解析】 【详解】试题分析:(1)当123012x x x ===,,时,322()(1)(2)=32,()362,f x x x x x x x f x x x =---+=-+',由()0f x <得()f x 减区间(1-+;(2)因为32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-,所以2123122331()32()()f x x x x x x x x x x x x =-+++'++,因为2221223312[()()()]0x x x x x x ∆=-+-+->所以,方程()0f x '=有两个不相等的实数根;(3)因为21221()()024x x x x f +-=-<',22323()()024x x x x f +-=-<',所以231222x x x x αβ++<<< 试题解析:(1)当123012x x x ===,,时,322()(1)(2)=32,()362,f x x x x x x x f x x x =---+=-+',由()0f x <得()f x 减区间(1-+; (2)法1:32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-,2123122331()32()()f x x x x x x x x x x x x =-+++'++2221223312[()()()]0x x x x x x ∆=-+-+->,123x x x <<,所以,方程()0f x '=有两个不相等的实数根;法2:122331()()()()()()()f x x x x x x x x x x x x x =--+---'-+,22321()()()0f x x x x x -'=-<,()f x 是开口向上的二次函数,所以,方程()0f x '=有两个不相等的实数根;(3)因为21221()()024x x x x f +-=-<',22323()()024x x x x f +-=-<',又()f x 在(,)α-∞和(,)β+∞增,()f x 在(,)αβ减,所以231222x x x x αβ++<<<. 考点:利用导数求函数减区间,二次函数与二次方程关系本题包括A ,B 共1小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤. [选修4-2:矩阵与变换]21.试求曲线y =sinx 在矩阵MN 变换下的函数解析式,其中M 1002⎡⎤=⎢⎥⎣⎦,N 10201⎡⎤⎢⎥=⎢⎥⎣⎦. 【答案】y =2sin 2x . 【解析】 【分析】计算MN 11100022020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,计算得到函数表达式. 【详解】∵M 1002⎡⎤=⎢⎥⎣⎦,N 10201⎡⎤⎢⎥=⎢⎥⎣⎦,∴MN 11100022020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ∴在矩阵MN 变换下,x y ⎡⎤⎢⎥⎣⎦→1'2'2x x y y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦∴曲线y =sinx 在矩阵MN 变换下的函数解析式为y =2sin 2x . 【点睛】本题考查了矩阵变换,意在考查学生的计算能力. [选修4-4:极坐标与参数方程] 22.已知直线l 的极坐标方程为63sin πρθ⎛⎫-= ⎪⎝⎭,圆C 的参数方程为1010x cos y sin θθ=⎧⎨=⎩(θ为参数).(1)请分别把直线l 和圆C 的方程化为直角坐标方程; (2)求直线l 被圆截得的弦长.【答案】(1120y -+=.x 2+y 2=100.(2)16 【解析】【分析】(1)直接利用极坐标方程和参数方程公式化简得到答案. (2)圆心()0,0到直线的距离为1262d ==,故弦长为222r d -得到答案. 【详解】(1)sin 63πρθ⎛⎫-= ⎪⎝⎭,即13sin cos 62ρθθ⎛⎫-= ⎪ ⎪⎝⎭,即1362y x -=, 即3120x y -+=.10cos 10sin x y θθ=⎧⎨=⎩,故22100x y +=. (2)圆心()0,0到直线的距离为1262d ==,故弦长为22216r d -=. 【点睛】本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.23.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,EF ∥AB ,∠BAF =90°,AD =2,AB =AF =2EF =2,点P 在棱DF 上.(1)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (2)若二面角D ﹣AP ﹣C 的正弦值为63,求PF 的长度. 【答案】(1)23015.(22. 【解析】 【分析】(1)以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系,则BE =(﹣1,0,2),CP =(﹣2,﹣1,1),计算夹角得到答案.(2)设FP FD λ=,0≤λ≤1,计算P (0,2λ,2﹣2λ),计算平面APC 的法向量n =(1,﹣1,222λλ-),平面ADF 的法向量m =(1,0,0),根据夹角公式计算得到答案.【详解】(1)∵BAF =90°,∴AF ⊥AB ,又∵平面ABEF ⊥平面ABCD ,且平面ABEF ∩平面ABCD =AB , ∴AF ⊥平面ABCD ,又四边形ABCD矩形,∴以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系, ∵AD =2,AB =AF =2EF =2,P 是DF 的中点,∴B (2,0,0),E (1,0,2),C (2,2,0),P (0,1,1), BE =(﹣1,0,2),CP =(﹣2,﹣1,1), 设异面直线BE 与CP 所成角的平面角为θ, 则cosθ155BE CP BE CP⋅===⋅,∴异面直线BE 与CP 所成角的余弦值为15. (2)A (0,0,0),C (2,2,0),F (0,0,2),D (0,2,0),设P (a ,b ,c ),FP FD λ=,0≤λ≤1,即(a ,b ,c ﹣2)=λ(0,2,﹣2), 解得a =0,b =2λ,c =2﹣2λ,∴P (0,2λ,2﹣2λ), AP =(0,2λ,2﹣2λ),AC =(2,2,0), 设平面APC 的法向量n =(x ,y ,z ),则()2220220n AP y z n AC x y λλ⎧⋅=+-=⎨⋅=+=⎩,取x =1,得n =(1,﹣1,222λλ-),平面ADP 的法向量m =(1,0,0), ∵二面角D ﹣AP ﹣C 的正弦值为, ∴|cos m n <,>|2(m n m n⋅===⋅+ 解得12λ=,∴P (0,1,1),∴PF 的长度|PF |222(00)(10)(12)2=-+-+-=.【点睛】本题考查了异面直线夹角,根据二面角求长度,意在考查学生的空间想象能力和计算能力.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤. 24.甲、乙、丙三名射击运动员射中目标的概率分别为1,,2a a (01)a <<,三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率()P i ξ=(i =0,1,2,3)中, 若(1)P ξ=的值最大, 求实数a 的取值范围. 【答案】(1)412a +,ξ的分布列为 ξ123P12(1-a)212(1-a 2)12(2a -a 2)22a(2)10,2⎛⎤ ⎥⎝⎦【解析】(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P(ξ=0)=01C 112⎛⎫-⎪⎝⎭02C (1-a)2=12(1-a)2; P (ξ=1)=11C ·122C (1-a)2+01C 112⎛⎫- ⎪⎝⎭12C a(1-a)=12(1-a 2); P(ξ=2)=11C ·1212C a(1-a)+01C 112⎛⎫- ⎪⎝⎭22C a 2=12(2a -a 2);P(ξ=3)=11C·1222C a 2=22a . 所以ξ的分布列为ξ的数学期望为E(ξ)=0×12(1-a)2+1×12(1-a 2)+2×12(2a -a 2)+3×22a =412a +.(2)P(ξ=1)-P(ξ=0)=12[(1-a 2)-(1-a)2]=a(1-a); P(ξ=1)-P(ξ=2)=12[(1-a 2)-(2a -a 2)]=122a -;P(ξ=1)-P(ξ=3)=12[(1-a 2)-a 2]=2122a -.由2(1)0,12{0,21202a a a a-≥-≥-≥和0<a <1,得0<a≤12,即a 的取值范围是10,2⎛⎤⎥⎝⎦.。
2020年高考数学江苏专版复习训练:14个填空题综合仿真练(二) Word版含解析
14个填空题综合仿真练(二)1.已知全集U ={1,2,3,4},集合A ={1,4},B ={3,4},则∁U (A ∪B )=_________. 解析:因为A ={1,4},B ={3,4}, 所以A ∪B ={1,3,4}, 因为全集U ={1,2,3,4}, 所以∁U (A ∪B )={2}. 答案:{2} 2.已知复数z =1-i2i,其中i 为虚数单位,则复数z 的虚部为________. 解析:z =1-i 2i =i (1-i )2i 2=1+i -2=-12-12i.所以z 的虚部为-12. 答案:-123.某校有足球、篮球、排球三个兴趣小组,共有成员120人,其中足球、篮球、排球的成员分别有40人、60人、20人.现用分层抽样的方法从这三个兴趣小组中抽取24人来调查活动开展情况,则在足球兴趣小组中应抽取________人.解析:设足球兴趣小组中抽取人数为n ,则n 24=40120,所以n =8.答案:84.如图是一个算法的流程图,则输出的n 的值为________.解析:由题意,n =1,a =1,第1次循环,a =5,n =3,满足a <16,第2次循环,a =17,n =5,不满足a <16,退出循环,输出的n 的值为5.答案:55.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的概率为__________.解析:从集合{1,2,3,4}中任取两个不同的数,基本事件总数n =6,这两个数的和为3的倍数包含的基本事件有:(1,2),(2,4),共2个,故这两个数的和为3的倍数的概率P =26=13.答案:136.设x ∈R ,则p :“log 2x <1”是q :“x 2-x -2<0”的__________条件.(填“充分不必要”“必要不充分”“既不充分也不必要”“充要”)解析:由log 2x <1,得0<x <2,由x 2-x -2<0可得-1<x <2,所以p ⇒q ,q ⇒/p ,故p 是q 的充分不必要条件.答案:充分不必要7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点到渐近线的距离等于实轴长,则双曲线C 的离心率为________.解析:由题意,双曲线C 的左焦点到渐近线的距离d =bc a 2+b 2=b ,则b =2a ,因此双曲线C 的离心率e =ca=1+⎝⎛⎭⎫b a 2= 5.答案: 58.记公比为正数的等比数列{a n }的前n 项和为S n .若a 1=1,S 4-5S 2=0,则S 5的值为________.解析:由题意q ≠1,设等比数列的公比为q (q ≠1), 由a 1=1,S 4-5S 2=0,得1-q 41-q -5(1+q )=0,化简得1+q 2=5,解得q =±2. ∵数列{a n }的各项均为正数, ∴q =2.故S 5=1-251-2=31.答案:319.如图所示,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BB 1C 1C 的体积为________.解析:因为四棱锥P -BB 1C 1C 的底面积为16,高PB 1=1,所以VP -BB 1C 1C =13×16×1=163.答案:16310.已知函数f (x )=sin ⎝⎛⎭⎫2x +π3(0≤x <π),且f (α)=f (β)=13(α≠β),则α+β=__________. 解析:由0≤x <π,知π3≤2x +π3<7π3,因为f (α)=f (β)=13<32,所以⎝⎛⎭⎫2α+π3+⎝⎛⎭⎫2β+π3=2×3π2,所以α+β=7π6.答案:7π611.已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≥0,-x +1,x <0.若函数y =f (f (x ))-k 有3个不同的零点,则实数k的取值范围是________.解析:当x <0时,-x >0,故-x +1>0, 所以f (-x +1)=x 2-2x +1-1=x 2-2x , 当x ≥0时,f (x )=x 2-1,当0≤x <1时, x 2-1<0,故f (x 2-1)=-x 2+2,当x ≥1时,x 2-1≥0,故f (x 2-1)=x 4-2x 2.故f (f (x ))=⎩⎪⎨⎪⎧x 2-2x ,x <0,-x 2+2,0≤x <1,x 4-2x 2,x ≥1,作出函数f (f (x ))的图象如图所示,可知当1<k ≤2时,函数y =f (f (x ))-k 有3个不同的零点.答案:(1,2]12.已知△ABC 外接圆O 的半径为2,且AB ―→+AC ―→=2AO ―→,|AB ―→|=|AO ―→|,则CA ―→·CB ―→=__________.解析:由AB ―→+AC ―→=2AO ―→,可得OB ―→+OC ―→=0,即BO ―→=OC ―→,所以圆心在BC 中点上,且AB ⊥AC .因为|AB ―→|=|AO ―→|=2,所以∠AOC =2π3,C =π6,由正弦定理得AC sin 2π3=AOsin π6,故AC =23,又BC =4,所以CA ―→·CB ―→=|CA ―→|·|CB ―→|·cos C =4×23×32=12.答案:1213.设a ,b ,c 是三个正实数,且a (a +b +c )=bc ,则ab +c的最大值为__________. 解析:由a (a +b +c )=bc ,得1+b a +c a =b a ·c a ,设x =b a ,y =c a ,则x +y +1=xy ,ab +c =1x +y ,因为x +y +1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,所以x +y ≥2+22,所以a b +c的最大值为2-12. 答案:2-1214.设a 为实数,记函数f (x )=ax -ax 3⎝⎛⎭⎫x ∈⎣⎡⎦⎤12,1的图象为C .如果任何斜率不小于1的直线与C 都至多有一个公共点,则a 的取值范围是__________.解析:因为任何斜率不小于1的直线与C 都至多有一个公共点,所以f ′(x )≤1在x ∈⎣⎡⎦⎤12,1上恒成立.因为f ′(x )=a -3ax 2,所以3ax 2-a +1≥0在⎣⎡⎦⎤12,1上恒成立.设g (t )=3at -a +1,t ∈⎣⎡⎦⎤14,1, 只需⎩⎪⎨⎪⎧ g ⎝⎛⎭⎫14≥0,g (1)≥0,即⎩⎪⎨⎪⎧34a -a +1≥0,3a -a +1≥0,解得-12≤a ≤4.答案:⎣⎡⎦⎤-12,4。
(江苏专用)2020高考数学二轮复习 填空题训练 综合仿真练(八)
综合仿真练(八)1.(2020·通州中学)若复数z 满足z iz -i=1,其中i 为虚数单位,则复数z 的模为________.解析:由z iz -i=1得z i =z -i ,即z =i 1-i ,所以|z |=|i||1-i|=12=22. 答案:222.已知集合M ={0,1,3},N ={x |x =3a ,a ∈M },则M ∩N =________.解析:因为M ={0,1,3},N ={x |x =3a ,a ∈M },所以N ={0,3,9},所以M ∩N ={0,3}. 答案:{0,3}3.在区间(0,5)内任取一个实数m ,则满足3<m <4的概率为________. 解析:根据几何概型的概率计算公式得,满足3<m <4的概率为P =4-35-0=15.答案:154.已知一组数据x 1,x 2,…,x 100的方差是2,则数据3x 1,3x 2,…,3x 100 的标准差为________. 解析:由x 1,x 2,…,x 100的方差是2,则3x 1,3x 2,…,3x 100的方差是18,所以所求标准差为3 2.答案:3 25.在如图所示的算法中,输出的i 的值是________.解析:当i =1时,S =2;当i =3时,S =6;当i =5时,S =30;当i =7时,S =210>200.所以输出的i =7.答案:76.双曲线x 2a 2-y 2b2=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e =________.解析:由双曲线的性质“焦点到渐近线的距离等于b ”,则b =a +c2,即a 2+⎝⎛⎭⎪⎫a +c 22=c 2.整理得3c 2-2ac -5a 2=0,所以3e 2-2e -5=0,解得e =53.答案:537.设正四棱柱ABCD A 1B 1C 1D 1的底面ABCD 的边长为1,其表面积为14,则AA 1=________. 解析:正四棱柱的表面积为14,两个底面积之和为2,故侧面积为12,则AA 1=3. 答案:38.在平面直角坐标系xOy 中,若曲线y =ln x 在x =e(e 为自然对数的底数)处的切线与直线ax -y +3=0垂直,则实数a 的值为________.解析:因为y ′=1x ,所以曲线y =ln x 在x =e 处的切线的斜率k =y ′|x =e =1e .又该切线与直线ax -y +3=0垂直,所以a ·1e=-1,所以a =-e.答案:-e9.若不等式组⎩⎪⎨⎪⎧y ≤x +2,y ≥x ,0≤y ≤4,x ≥0表示的平面区域的面积为S ,则S的值为________.解析:作出不等式组表示的平面区域如图阴影部分所示,得面积S =12(42-22)=6. 答案:610.已知函数f (x )=sin ωx -3cos ωx (ω>0)在(0,π)上有且只有两个零点,则实数ω的取值范围为________.解析:易得f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π3,设t =ωx -π3,因为0<x <π,所以-π3<t <ωπ-π3.因为函数f (x )在(0,π)上有且仅有两个零点,所以π<ωπ-π3≤2π, 解得43<ω≤73.答案:⎝ ⎛⎦⎥⎤43,73 11.若两个非零向量a ,b 的夹角为60°,且(a +2b )⊥(a -2b ),则向量a +b 与a -b 的夹角的余弦值是________.解析:由(a +2b )⊥(a -2b ),得(a +2b )·(a -2b )=0,即|a |2-4|b |2=0,则|a |=2|b |,cos 〈a +b ,a -b 〉=a +b ·a -b|a +b ||a -b |=a 2-b2a 2+2a ·b +b 2·a 2-2a ·b +b 2=3b221b2=217. 答案:21712.(2020·扬州中学模拟)已知等差数列{a n }前n 项和为S n ,且S 6=-9,S 8=4,若满足不等式n ·S n ≤λ的正整数n 有且仅有3个,则实数λ的取值范围为________.解析:不妨设S n =An 2+Bn ,由S 6=-9,S 8=4,得⎩⎪⎨⎪⎧36A +6B =-9,64A +8B =4,则⎩⎪⎨⎪⎧A =1,B =-152,所以nS n =n 3-152n 2,令f (x )=x 3-152x 2,则f ′(x )=3x 2-15x =3x (x -5),易得数列{nS n }在1≤n ≤5,n ∈N *时单调递减; 在n >5,n ∈N *时单调递增.令nS n =b n ,有b 3=-812,b 4=-56,b 5=-1252,b 6=-54,b 7=-492.若满足题意的正整数n 只有3个,则n 只能为4,5,6,故实数λ的取值范围为⎣⎢⎡⎭⎪⎫-54,-812. 答案:⎣⎢⎡⎭⎪⎫-54,-81213.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2cos A =b 3cos B =c6cos C ,则cos A cos B cos C =________.解析:由题意及正弦定理得tan A 2=tan B 3=tan C6,可设tan A =2k ,tan B =3k ,tan C =6k ,k >0,而在△ABC 中,tan A +tan B +tan C =tan A tan B tan C ,于是k =116,从而cos A cos B cos C =320×215×112=110. 答案:11014.已知函数f (x )=2x 3+7x 2+6xx 2+4x +3,x ∈[0,4],则f (x )最大值是________.解析:法一:当x =0时,原式值为0;当x ≠0时,由f (x )=2x 3+7x 2+6xx 2+4x +3=2x +7+6xx +4+3x,令t =2x +7+6x,由x ∈(0,4],得t ∈[2+3,+∞),f (x )=g (t )=2t t 2+1=2t +1t. 而t +1t ≥4,当且仅当t =2+3时,取得等号,此时x =3,所以f (x )≤12.即f (x )的最大值为12.法二:f (x )=2xx 2+4x +3-x 2x 2+4x +3=2x x 2+4x +3-⎝ ⎛⎭⎪⎫x x 2+4x +32,于是令t =x x 2+4x +3,所求的代数式为y =2t -t 2.当x =0时,t =0;当x ≠0时,有t =1x +4+3x≤123+4=2-32,所以t ∈⎣⎢⎡⎦⎥⎤0,2-32,当t =2-32时, 2t -t 2有最大值12,此时x = 3.答案:12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合仿真练(一)
1.已知集合A ={0,3,4},B ={-1,0,2,3},则A ∩B =________. 解析:因为集合A ={0,3,4},B ={-1,0,2,3},所以A ∩B ={0,3}. 答案:{0,3}
2.已知x >0,若(x -i)2
是纯虚数(其中i 为虚数单位),则x =________. 解析:因为x >0,(x -i)2
=x 2
-1-2x i 是纯虚数(其中i 为虚数单位), 所以x 2
-1=0且-2x ≠0,解得x =1. 答案:1
3.函数f (x )=1-2log 6x 的定义域为________.
解析:由题意知⎩
⎪⎨
⎪⎧
x >0,
1-2log 6x ≥0,解得0<x ≤ 6.
答案:(0, 6 ]
4.从2个白球,2个红球,1个黄球中随机取出2个球,则取出的2球中恰有1个红球的概率是________.
解析:将2个白球记为A ,B,2个红球记为C ,D,1个黄球记为E ,则从中任取两个球的所有可能结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,
E ),(D ,E ),共10个,恰有1个红球的可能结果为(A ,C ),(A ,D ),(B ,C ),(B ,D ),(E ,C ),(E ,D )共6个,故所求概率为P =610=35
.
答案:3
5
5.执行如图所示的伪代码,若输出的y 的值为13,则输入的x 的值是________.
Read x
If x ≤2 Then y ←6x Else y ←x +5End If Print y
解析:若6x =13,则x =13
6
>2,不符合题意;若x +5=13,则x =8>2,符合题意,故
x =8.
答案:8
6.一种水稻品种连续5年的平均单位面积产量(单位:t/hm 2
)分别为:9.4,9.7,9.8,10.3,10.8,则这组样本数据的方差为________.
解析:这组数据的平均数为15(9.4+9.7+9.8+10.3+10.8)=10,方差为15[(10-9.4)
2
+(10-9.7)2
+(10-9.8)2
+(10-10.3)2
+(10-10.8)2
]=0.244.
答案:0.244
7.(2019·南通中学模拟)《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求球的直径d 的公式d =⎝ ⎛⎭⎪⎫169V 13
.若球的半径为r =1,根据“开立圆术”的方法计算该球的体积
为________.
解析:根据公式d =⎝ ⎛⎭⎪⎫169V 13得,2=⎝ ⎛⎭
⎪⎫169V 13
,解得V =92.
答案:9
2
8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255
,AB ―→·AC ―→
=
3,b +c =6,则a =________.
解析:∵cos A 2=255,∴cos A =2cos 2A 2-1=35
,又由AB ―→·AC ―→=3,得bc cos A =3,
∴bc =5,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2
-2bc (1+cos A )=36-10×85=20,
解得a =2 5.
答案:2 5
9.已知α,β∈(0,π),且tan(α-β)=12,tan β=-1
5,则tan α的值为________.
解析:tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-1
51-12×⎝ ⎛⎭⎪⎫-15=3
11
.
答案:3
11
10.(2019·海门中学模拟)边长为2的三个全等的等边三角形摆放成如图形状,其中B ,D 分别为AC ,CE 的中点,N 为GD 与CF 的交点,则AN ―→·EG ―→
=________.
解析:由已知得AN ―→=2AB ―→+CN ―→=2AB ―→+12AH ―→,EG ―→=-DE ―→+DG ―→=-AB ―→+CH ―→
=
-
AB ―→
+
AH ―→
-
AC ―→
=-3
AB ―→
+
AH ―→
,所以
AN ―→
·
EG ―→
=
⎝ ⎛⎭
⎪⎫2AB ―→+12AH ―→ ·()
-3AB ―→+AH ―→ =-6|AB ―→|2+12AB ―→·AH ―→+12|AH ―→|2,因为等边三角形的边长为2,所以AN ―→·EG ―→=-6×12+12×1×2×12+12×22
=-72
.
答案:-7
2
11.(2019·泰州中学模拟)设x >0,y >0,若x lg 2,lg 2,y lg 2成等差数列,则1x +9
y
的最小值为________.
解析:∵x lg 2,lg 2,y lg 2成等差数列,∴2lg 2=(x +y )lg 2,∴x +y =1.∴1x
+
9
y
=(x +y )⎝ ⎛⎭
⎪⎫1x +9y ≥10+2
y x ·9x y =10+6=16,当且仅当x =14,y =34时取等号,故1x +9
y
的最小值为16.
答案:16
12.在平面直角坐标系xOy 中,已知圆C :x 2
+y 2
+2x -8=0,直线l :y =k (x -1)(k ∈R )过定点A ,且交圆C 于点B ,D ,过点A 作BC 的平行线交CD 于点E ,则△AEC 的周长为________.
解析:易得圆C 的标准方程为(x +1)2
+y 2
=9,即半径r =3,定点A (1,0),因为AE ∥
BC ,所以EA =ED ,则EC +EA =EC +ED =3,从而△AEC 的周长为5.
答案:5
13.各项均为正偶数的数列a 1,a 2,a 3,a 4中,前三项依次成公差为d (d >0)的等差数列,后三项依次成公比为q 的等比数列.若a 4-a 1=88,则q 的所有可能的值构成的集合为________.
解析:由题意设这四个数分别为a 1,a 1+d ,a 1+2d ,a 1+88,其中a 1,d 均为正偶数,则(a 1+2d )2
=(a 1+d )(a 1+88),整理得a 1=
4d 22-d
3d -88
>0,所以(d -22)(3d -88)<0,解
得22<d <883, 所以d 的所有可能的值为24,26,28.当d =24时,a 1=12,q =5
3
;当d =26时,
a 1=
2085(舍去);当d =28时,a 1=168,q =8
7.所以q 的所有可能的值构成的集合为⎩⎨⎧⎭⎬⎫53,87. 答案:⎩⎨⎧⎭
⎬⎫53,87
14.已知函数f (x )=kx ,g (x )=2ln x +2e ⎝ ⎛⎭
⎪⎫1
e ≤x ≤e 2,若
f (x )与
g (x )的图象上分别存
在点M ,N ,使得M ,N 关
于直线y =e 对称,则实数k 的取值范围是_______________________________________.
解析:设直线y =kx 上的点M (x ,kx ),点M 关于直线y =e 的对
称点N (x,2e -kx ),因为点N 在g (x )=2ln x +2e ⎝ ⎛⎭
⎪⎫1
e ≤x ≤e 2的图象上,
所以2e -kx =2ln x +2e ,所以kx =-2ln x .构造函数y =kx ,y =
-2ln x ⎝ ⎛⎭⎪⎫1e ≤x ≤e 2,画出函数y =-2ln x ⎝ ⎛⎭
⎪⎫1
e ≤x ≤e 2的图象如图所示,
设曲线y =-2ln x ⎝ ⎛⎭
⎪⎫1
e ≤x ≤e 2上的点P (x 0,-2ln x 0),则k OP ≤k ≤k OB (其中B 为端点,P 为
切点).因为y ′=-2x ,所以过点P 的切线方程为y +2ln x 0=-2
x 0
(x -x 0),又该切线经过
原点,所以0+2ln x 0=-2x 0(0-x 0),x 0=e ,所以k OP =-2e .又点B ⎝ ⎛⎭
⎪⎫1e ,2,所以k OB =2e ,所以k ∈⎣⎢⎡⎦
⎥⎤-2e ,2e .
答案:⎣⎢⎡⎦
⎥⎤-2e ,2e。