粒子群算法matlab代码【精品文档】(完整版)

合集下载

粒子群改进算法 matlab

粒子群改进算法 matlab

粒子群改进算法matlab-概述说明以及解释1.引言概述部分的内容可如下编写:1.1 概述粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,通过模拟鸟群或鱼群等自然界中群体行为的方式,来寻找最优解。

它最初由Russell Eberhart和James Kennedy于1995年提出,并在之后的发展中得到了广泛应用。

PSO算法的核心思想是将待求解问题的可能解看作是群体中的粒子,并通过模拟粒子间的交流和协作来不断优化解空间,在寻找最优解的过程中逐步收敛。

每个粒子通过记忆自己的历史最优解和整个群体中的全局最优解来进行自我调整和更新。

在每一次迭代中,粒子根据自身的记忆和全局信息进行位置的更新,直到达到预设的停止条件。

PSO算法具有简单、易于实现和快速收敛等特点,广泛应用于函数优化、组合优化、机器学习等领域。

然而,传统的PSO算法也存在着较为明显的局限性,如易陷入局部最优解、对参数设置较为敏感等问题。

为了克服传统PSO算法的局限性,研究者们提出了各种改进的方法,从算法思想到参数设置进行了深入研究。

本文旨在介绍粒子群改进算法在Matlab环境下的实现。

首先对传统的粒子群算法进行了详细的介绍,包括其原理、算法步骤、优缺点以及应用领域。

然后,进一步介绍了粒子群改进算法的各种改进方法,其中包括改进方法1、改进方法2、改进方法3和改进方法4等。

最后,通过Matlab环境的配置和实验结果与分析来展示粒子群改进算法在实际应用中的性能和效果。

本文的结论部分总结了主要发现、研究的局限性,并展望了未来的研究方向。

综上所述,本文将全面介绍粒子群改进算法的原理、算法步骤、实现过程和实验结果,旨在为读者提供一个详细的了解和研究该算法的指南。

1.2文章结构1.2 文章结构:本文主要包括以下几个部分的内容:第一部分为引言,介绍了本文的背景和目的,概述了即将介绍的粒子群改进算法的原理和优缺点。

(完整word版)基本粒子群算法的原理和matlab程序.doc

(完整word版)基本粒子群算法的原理和matlab程序.doc

基本粒子群算法的原理和matlab 程序作者—— niewei120 (nuaa)一、粒子群算法的基本原理粒子群优化算法源自对鸟群捕食行为的研究,最初由Kennedy 和 Eberhart 提出,是一种通用的启发式搜索技术。

一群鸟在区域中随机搜索食物,所有鸟知道自己当前位置离食物多远,那么搜索的最简单有效的策略就是搜寻目前离食物最近的鸟的周围区域。

PSO 算法利用这种模型得到启示并应用于解决优化问题。

PSO 算法中,每个优化问题的解都是粒子在搜索空间中的位置,所有的粒子都有一个被优化的目标函数所决定的适应值,粒子还有一个速度值决定它们飞翔的方向和距离,然后粒子群就追随当前的最优粒子在解空间中搜索。

PSO 算法首先在给定的解空间中随机初始化粒子群,待优化问题的变量数决定了解空间的维数。

每个粒子有了初始位置与初始速度。

然后通过迭代寻优。

在每一次迭代中,每个粒子通过跟踪两个“极值”来更新自己在解空间中的空间位置与飞翔速度。

第一个极值就是单个粒子本身在迭代过程中找到的最优解粒子,这个粒子叫做个体极值。

另一个极值是种群所有粒子在迭代过程中所找到的最优解粒子,这个粒子是全局极值。

上述的方法叫全局粒子群算法。

如果不用种群所有粒子而只用其中一部分作为该粒子的邻居粒子,那么在所有邻居粒子中的极值就是局部极值,该方法称为局部PSO 算法。

速度、位置的更新方程表示为:每个粒子自身搜索到的历史最优值p i,p i=(p i1 ,p i2 ,....,p iQ ), i=1,2,3,....,n 。

所有粒子搜索到的最优值p g, p g=(p g1 ,p g2,....,p gQ ),注意这里的p g只有一个。

是保持原来速度的系数,所以叫做惯性权重。

是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。

通常设置为 2 。

是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。

粒子群算法matlab程序

粒子群算法matlab程序

粒子群算法matlab程序粒子群算法(PSO)是一种基于群体智能的求解优化问题的算法。

其通过模拟鸟群等大规模群体行为,实现全局搜索和基于群体协作的局部搜索。

在PSO中,通过一组粒子(每个粒子代表一个解)来搜索问题的解空间,在搜索过程中,粒子的位置表示该解在解空间中的位置,速度表示该解在该方向(即属性)上的变化速率,最终达到全局最优解或局部最优解。

PSO算法有着简单易懂、实现简便、计算速度快以及易于与其他算法结合等优点。

下面我将介绍一下如何使用matlab编写简单的粒子群算法程序。

程序主要分为以下步骤:1.初始化在程序开始之前需要对粒子进行初始化操作,其中需要确定粒子群的大小、每个粒子的位置、速度等初始参数。

2.计算适应值计算每个粒子的适应值,即根据当前位置计算该解的适应值。

适应值可以根据实际问题进行定义,如最小化目标函数或最大化收益等。

3.更新粒子速度和位置这一步是PSO算法的核心步骤,通过改变粒子的速度和位置来找到更优的解。

其核心公式为:v(t+1) = w * v(t) + c1 * rand() * (pbest - x(t)) + c2 * rand() * (gbest - x(t)) x(t+1) = x(t) + v(t+1)其中w是惯性权重,c1、c2是学习因子,pbest是该粒子的历史最优解,gbest 是当前全局最优解。

4.更新pbest和gbest在每次更新位置之后需要更新每个粒子自己的历史最优解以及全局最优解。

5.停止条件判断设定停止条件,如最小适应值误差、迭代次数、最大迭代次数等,如果达到了停止条件,则程序结束,输出全局最优解。

下面是一份简单的PSO算法的matlab代码:function [best_fit, best_x] = pso(func, dim, lb, ub, max_iter, swarm_size, w, c1, c2)%初始化粒子v = zeros(swarm_size, dim);x = repmat(lb, swarm_size, 1) + repmat(ub - lb, swarm_size, 1) .* rand(swarm_size, dim);pbest = x;[best_fit, best_idx] = min(func(x));gbest = x(best_idx,:);%开始迭代for iter = 1 : max_iter%更新速度和位置v = w * v + c1 * rand(swarm_size, dim) .* (pbest - x) + c2 * rand(swarm_size, dim) .* repmat(gbest, swarm_size, 1) - x;x = x + v;%边界处理x = max(x, repmat(lb, swarm_size, 1));x = min(x, repmat(ub, swarm_size, 1));%更新pbest和gbestidx = func(x) < func(pbest);pbest(idx,:) = x(idx,:);[min_fit, min_idx] = min(func(pbest));if min_fit < best_fitbest_fit = min_fit;best_x = pbest(min_idx,:);endendend在使用上述代码时,需要定义适应值函数(func)、解空间维度(dim)、每个维度的上界(ub)与下界(lb)、最大迭代次数(max_iter)、粒子群大小(swarm_size)、惯性权重(w)、学习因子(c1、c2)等参数。

pso算法matlab代码

pso算法matlab代码

pso算法matlab代码pso算法是一种优化算法,全称为粒子群优化算法(Particle Swarm Optimization)。

它模拟了鸟群或者鱼群的行为,通过不断地迭代寻找最优解。

在许多优化问题中,pso算法都有着良好的表现,特别是在连续空间的优化问题中。

在matlab中实现pso算法并不复杂,以下是一个简单的例子:```matlabfunction [best_pos, best_val] = pso_algorithm(fitness_func,num_particles, num_iterations, range)% 初始化粒子的位置和速度positions = rand(num_particles, length(range)) .* (range(2) - range(1)) + range(1);velocities = rand(num_particles, length(range)) .* (range(2) - range(1)) + range(1);% 初始化每个粒子的最佳位置和适应度值personal_best_pos = positions;personal_best_val = arrayfun(fitness_func, personal_best_pos);% 初始化全局最佳位置和适应度值[global_best_val, global_best_idx] = min(personal_best_val);global_best_pos = personal_best_pos(global_best_idx, :);% 开始迭代for iter = 1:num_iterations% 更新粒子的速度和位置inertia_weight = 0.9 - iter * (0.5 / num_iterations); % 慢慢减小惯性权重cognitive_weight = 2;social_weight = 2;r1 = rand(num_particles, length(range));r2 = rand(num_particles, length(range));velocities = inertia_weight .* velocities + ...cognitive_weight .* r1 .* (personal_best_pos - positions) + ...social_weight .* r2 .* (global_best_pos - positions);positions = positions + velocities;% 更新每个粒子的最佳位置和适应度值new_vals = arrayfun(fitness_func, positions);update_idx = new_vals < personal_best_val;personal_best_pos(update_idx, :) = positions(update_idx, :);personal_best_val(update_idx) = new_vals(update_idx);% 更新全局最佳位置和适应度值[min_val, min_idx] = min(personal_best_val);if min_val < global_best_valglobal_best_val = min_val;global_best_pos = personal_best_pos(min_idx, :);endendbest_pos = global_best_pos;best_val = global_best_val;end```上面的代码实现了一个简单的pso算法,其中`fitness_func`是待优化的目标函数,`num_particles`是粒子数量,`num_iterations`是迭代次数,`range`是变量的范围。

改进粒子群算法matlab代码

改进粒子群算法matlab代码

改进粒子群算法matlab代码粒子群算法是一种基于群体智能的优化算法,其主要思想是将优化问题转化为粒子在搜索空间中寻找最优解的过程。

粒子群算法的运作方式是通过定义一群随机粒子,并根据它们在搜索空间中的位置和速度,来引导粒子向着更好的解决方案进行搜索。

以下是改进版粒子群算法的MATLAB代码:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 粒子群算法-改进版%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 初始化参数和粒子群function [gbest_x, gbest_y] = PSO(num_particles,max_iterations, f, lower_bound, upper_bound)% 定义粒子群基本参数w = 0.7; % 惯性权重c1 = 1.4; % 学习因子1c2 = 1.4; % 学习因子2% 初始化粒子位置和速度particles_position = unifrnd(lower_bound, upper_bound, [num_particles, 2]);particles_velocity = zeros(num_particles, 2);% 初始化个体最优解和全局最优解pbest_position = particles_position;pbest_value = zeros(num_particles, 1);for i = 1:num_particlespbest_value(i) = f(particles_position(i,:));end[global_min_value, global_min_index] = min(pbest_value); gbest_position = particles_position(global_min_index, :);gbest_value = global_min_value;% 迭代优化for iter = 1:max_iterationsfor i = 1:num_particles% 更新粒子速度particles_velocity(i,:) = w *particles_velocity(i,:) ...+ c1 * rand() * (pbest_position(i,:) -particles_position(i,:)) ...+ c2 * rand() * (gbest_position -particles_position(i,:));% 限制粒子速度范围particles_velocity(i,1) = max(particles_velocity(i,1), lower_bound);particles_velocity(i,1) = min(particles_velocity(i,1), upper_bound);particles_velocity(i,2) = max(particles_velocity(i,2), lower_bound);particles_velocity(i,2) = min(particles_velocity(i,2), upper_bound);% 更新粒子位置particles_position(i,:) = particles_position(i,:) + particles_velocity(i,:);% 限制粒子位置范围particles_position(i,1) = max(particles_position(i,1), lower_bound);particles_position(i,1) = min(particles_position(i,1),upper_bound);particles_position(i,2) = max(particles_position(i,2), lower_bound);particles_position(i,2) = min(particles_position(i,2), upper_bound);% 更新个体最优解temp_value = f(particles_position(i,:));if temp_value < pbest_value(i)pbest_value(i) = temp_value;pbest_position(i,:) = particles_position(i,:);endend% 更新全局最优解[temp_min_value, temp_min_index] = min(pbest_value);if temp_min_value < gbest_valuegbest_value = temp_min_value;gbest_position = pbest_position(temp_min_index,:);endend% 返回全局最优解gbest_x = gbest_position(1);gbest_y = gbest_position(2);end其中,num_particles为粒子数目,max_iterations为最大迭代次数,f为目标函数句柄,lower_bound和upper_bound为搜索空间的下界和上界。

粒子群算法 matlab源代码

粒子群算法  matlab源代码

%相关参数的设置UB=600; %函数的上界LB=300; %函数的下界PopSize=40; %种群的大小Dim=10; %微粒的维数c1=2; %学习因子c2=2; %学习因子w_start=0.9;%惯性权重的开始值w_end=0.4;%惯性权重的最后值Vmax=100;%微粒的最大速度MaxIter=1500;%最大迭代次数Iter=0;%初始迭代次数%初始化群和速度X=rand(PopSize,Dim)*(UB-LB)+LB;%微粒位置随机初始化V=rand(PopSize,Dim);%微粒速度随机初始化;%测试函数:Griewank函数ind=repmat(1:Dim,PopSize,1);FX=sum(((X.^2)/4000)')'- prod(cos(X./sqrt(ind))')'+1;%设定当前位置为粒子的最好位置,并记录其最好值PBest=X;FPBest=FX;%找到初始微粒群体的最好微粒[Fgbest,r]=min(FX);CF=Fgbest;%记录当前全局最优值Best=X(r,:);%用于保存最优粒子的位置FBest=Fgbest;%循环while(Iter<=MaxIter)Iter=Iter+1;%更新惯性权重的值;w_now=((w_start-w_end)*(MaxIter-Iter)/MaxIter)+w_end;A=repmat(X(r,:),PopSize,1);%生成随机数R1=rand(PopSize,Dim);R2=rand(PopSize,Dim);%速度更新V=w_now*V+c1*R1.*(PBest-X)+c2*R2.*(A-X);%对进化后速度大于最大速度的微粒进行处理changeRows=V>Vmax;VStep(find(changeRows))=Vmax;%对进化后速度小雨最小速度的微粒进行处理changeRows=V<-Vmax;V(find(changeRows))=-Vmax;%微粒位置进行更新X=X+1.0*V;%重新计算新位置的适应度值ind=repmat(1:Dim,PopSize,1);FX=sum(((X.^2)/4000)')'- prod(cos(X./sqrt(ind))')'+1;%更新每个微粒的最好位置P=FX<FPBest;FPBest(find(P))=FX(find(P));%适应值更换PBest(find(P),:)=X(find(P),:)%粒子位置更换[Fgbest,g]=min(FPBest);%保存最好适应值if Fgbest<CF %如果本次适应值好于上次则保存[fBest,b]=min(FPBest);%最好适应值为fBestBest=PBest(b,:);%最好位置为BestendCF=Fgbest;%保留本次适应值准备与下次比较end %循环结束。

粒子群算法matlab(算法已经调试)

粒子群算法matlab(算法已经调试)

程序1当22111==c c ,5.12212==c c ,2.1=w 。

a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization )%------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数%------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=1.5;c22=1.5;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif (rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:)); x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b )适应度函数%适应度函数(fitness.m )function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序2当22111==c c 于2.1,2,02212===w c c 对比a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization )%------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数%------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=0;c22=2;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用)%------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:));x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b)适应度函数%适应度函数(fitness.m)function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序3当2.1,22111===w c c 于2.1,0,22212===w c c 对比a)%主函数源程序(main.m )%------基本粒子群算法 (particle swarm optimization ) %------名称: 基本粒子群算法%------初始格式化clear all ; %清除所有变量clc; %清屏format long ; %将数据显示为长整形科学计数 %------给定初始条条件------------------N=40; %³初始化群体个数D=10; %初始化群体维数T=100; %初始化群体最迭代次数c11=2; %学习因子1c21=2; %学习因子2c12=2;c22=0;w=1.2; %惯性权重eps=10^(-6); %设置精度(在已知最小值的时候用) %------初始化种群个体(限定位置和速度)------------x=zeros(N,D);v=zeros(N,D);for i=1:Nfor j=1:Dx(i,j)=randn; %随机初始化位置v(i,j)=randn; %随机初始化速度endend%------显示群位置----------------------figure(1)for j=1:Dif (rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始位置')tInfo=strcat('第',char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48),char(rem(j,10)+48),'维');endtitle(tInfo)end%------显示种群速度figure(2)for j=1:Dif(rem(D,2)>0)subplot((D+1)/2,2,j)elsesubplot(D/2,2,j)endplot(x(:,j),'b*');grid onxlabel('粒子')ylabel('初始速度')tInfo=strcat('第,char(j+48),'维');if(j>9)tInfo=strcat('第',char(floor(j/10)+48), char(rem(j,10)+48),'维);endtitle(tInfo)endfigure(3)%第一个图subplot(1,2,1)%------初始化种群个体(在此限定速度和位置)------------x1=x;v1=v;%------初始化个体最优位置和最优值---p1=x1;pbest1=ones(N,1);for i=1:Npbest1(i)=fitness(x1(i,:),D);end%------初始化全局最优位置和最优值---------------g1=1000*ones(1,D);gbest1=1000;for i=1:Nif(pbest1(i)<gbest1)g1=p1(i,:);gbest1=pbest1(i);endendgb1=ones(1,T);%-----浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x1(j,:),D)<pbest1(j))p1(j,:)=x1(j,:);pbest1(j)=fitness(x1(j,:),D);endif(pbest1(j)<gbest1)g1=p1(j,:);gbest1=pbest1(j);endv1(j,:)=w*v1(j,:)+c11*rand*(p1(j,:)-x1(j,:))+c21*rand*(g1-x1(j,:));x1(j,:)=x1(j,:)+v1(j,:);endgb1(i)=gbest1;endplot(gb1)TempStr=sprintf('c1= %g ,c2=%g',c11,c21);title(TempStr);xlabel('迭代次数');ylabel('适应度值');%第二个图subplot(1,2,2)%-----初始化种群个体(在此限定速度和位置)------------x2=x;v2=v;%-----初始化种群个体最有位置和最优解-----------p2=x2;pbest2=ones(N,1);for i=1:Npbest2(i)=fitness(x2(i,:),D);end%-----初始化种全局最有位置和最优解------g2=1000*ones(1,D);gbest2=1000;for i=1:Nif(pbest2(i)<gbest2)g2=p2(i,:);gbest2=pbest2(i);endendgb2=ones(1,T);%------浸入主循环,按照公式依次迭代直到满足精度或者迭代次数---for i=1:Tfor j=1:Nif (fitness(x2(j,:),D)<pbest2(j))p2(j,:)=x2(j,:);pbest2(j)=fitness(x2(j,:),D);endif(pbest2(j)<gbest2)g2=p2(j,:);gbest2=pbest2(j);endv2(j,:)=w*v2(j,:)+c12*rand*(p2(j,:)-x2(j,:))+c22*rand*(g2-x2(j,:)); x2(j,:)=x2(j,:)+v2(j,:);endgb2(i)=gbest2;endplot(gb2)TempStr=sprintf('c1= %g ,c2=%g',c12,c22);title(TempStr);xlabel('迭代次数');ylabel('适应度值');b )适应度函数%适应度函数(fitness.m )function result=fitness(x,D)sum=0;for i=1:Dsum=sum+x(i)^2;endresult=sum;程序4对21c c ≠,21w w ≠分别对其取值1.11=c ,22=c ,2.11=w ,5.12=w 测试函数。

PSO粒子群算法Matlab源码

PSO粒子群算法Matlab源码

PSO 粒子群算法Matlab源码%PSO标准算法其中w c1 c2 a可以改变%包含初始化函数迭代函数还有总体的PSO算法函数function[Result,OnLine,OffLine,MinMaxMeanAdapt]=PSO_Stand(SwarmSize,ParticleSize,ParticleSc ope,IsStep,IsDraw,LoopCount,IsPlot)%function[Result,OnLine,OffLine,MinMaxMeanAdapt]=PSO_Stand(SwarmSize,ParticleSize,ParticleSc ope,InitFunc,StepFindFunc,AdaptFunc,IsStep,IsDraw,LoopCount,IsPlot)%功能描述:一个循环n次的PSO算法完整过程,返回这次运行的最小与最大的平均适应度,以及在线性能与离线性能%[Result,OnLine,OffLine,MinMaxMeanAdapt]=PsoProcess(SwarmSize,ParticleSize,Particle Scope,InitFunc,StepFindFunc,AdaptFunc,IsStep,IsDraw,LoopCount,IsPlot)%输入参数:SwarmSize:种群大小的个数%输入参数:ParticleSize:一个粒子的维数%输入参数:ParticleScope:一个粒子在运算中各维的围;% ParticleScope格式:% 3维粒子的ParticleScope格式:% [x1Min,x1Max% x2Min,x2Max% x3Min,x3Max]%%输入参数:InitFunc:初始化粒子群函数%输入参数:StepFindFunc:单步更新速度,位置函数%输入参数:AdaptFunc:适应度函数%输入参数:IsStep:是否每次迭代暂停;IsStep=0,不暂停,否则暂停。

离散粒子群算法matlab编程

离散粒子群算法matlab编程

一、引言离散粒子群算法(Discrete Particle Swarm Optimization,DPSO)是一种在优化问题中广泛应用的启发式优化算法。

它源于粒子群算法(Particle Swarm Optimization,PSO),是通过模拟自然界粒子群的行为来寻找最优解的一种算法。

与传统的数学规划方法相比,离散粒子群算法具有更强的全局寻优能力和较小的计算开销,因此在工程优化、组合优化等领域得到了广泛的应用。

在本文中,我们将共享使用Matlab编程实现离散粒子群算法的方法,以及在应用中的一些注意事项和优化技巧。

二、离散粒子群算法的原理离散粒子群算法是基于离散空间中的最优化问题而设计的一种启发式算法。

其基本原理可以概括为模拟粒子在解空间中搜索最优解的行为,并通过交流经验和信息来不断调整自身位置和速度,以期望找到全局最优解。

离散粒子群算法的核心思想是基于群体智能的概念,通过模拟鸟群或鱼群等自然界中集体行为的方式来寻找最优解。

算法的基本步骤包括初始化、更新粒子速度和位置、评估适应度、更新全局最优解等。

在离散空间中,粒子的位置和速度通常被限制在一定的取值范围内,以确保求解结果是离散的。

三、离散粒子群算法的Matlab实现在Matlab中实现离散粒子群算法,需要首先定义好优化问题的目标函数和约束条件。

可以按照以下步骤来编写算法的主体部分:1. 初始化粒子群:设定粒子群规模、最大迭代次数、速度范围、位置范围等参数,并随机初始化粒子的位置和速度。

2. 计算粒子适应度:根据目标函数和约束条件,计算每个粒子的适应度值,更新个体最优解。

3. 更新全局最优解:根据粒子群的当前状态,更新全局最优解。

4. 更新粒子速度和位置:根据粒子的个体最优位置和全局最优位置,更新粒子的速度和位置。

5. 判断停止条件:判断是否达到最大迭代次数或满足收敛条件。

6. 输出优化结果:输出最优解及对应的目标函数值。

在实现离散粒子群算法时,需要注意并行计算、矢量化操作和编程效率等方面,以提高算法的运行效率和稳定性。

pso算法matlab代码

pso算法matlab代码

pso算法matlab代码粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其基本思想是通过模拟鸟群觅食行为来寻找最优解。

以下是一个简单的 MATLAB 代码示例,用于实现 PSO 算法:matlab复制代码% 定义问题参数n_particles = 100; % 粒子数量n_iterations = 100; % 迭代次数n_dimensions = 2; % 问题的维度lb = [-10-10]; % 问题的下界ub = [1010]; % 问题的上界c1 = 2; % 个体学习因子c2 = 2; % 社会学习因子% 初始化粒子群particles = lb + (ub-lb).*rand(n_particles,n_dimensions);velocities = zeros(n_particles, n_dimensions);p_best = particles;g_best = particles(1, :);g_best_fitness = inf;% 主循环for i = 1:n_iterations% 计算每个粒子的适应度值fitness = evaluate(particles); % 更新个体最优解for j = 1:n_particlesif fitness(j) < p_best(j, :)p_best(j, :) = particles(j, :); endend% 更新全局最优解for j = 1:n_particlesif fitness(j) < g_best_fitness g_best_fitness = fitness(j);g_best = particles(j, :);endend% 更新粒子速度和位置for j = 1:n_particlesr1 = rand(); % 个体学习因子随机数r2 = rand(); % 社会学习因子随机数velocities(j, :) = velocities(j, :) +c1*r1*(p_best(j, :) - particles(j, :)) + c2*r2*(g_best - particles(j, :));particles(j, :) = particles(j, :) + velocities(j, :);% 边界条件处理particles(j, :) = max(particles(j, :) , lb);particles(j, :) = min(particles(j, :) , ub);endend% 输出结果disp('全局最优解:');disp(g_best);disp('全局最优解的适应度值:');disp(g_best_fitness);其中,evaluate函数用于计算每个粒子的适应度值,需要根据具体问题进行定义。

粒子群Matlab程序代码

粒子群Matlab程序代码

粒子群优化算法(panicle swarm optimization ,PSO)是kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995年提出的一种群智能算法,其思想米源予人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到最优。

1.粒子群算法的原理PSO 中,每个优化问题的解看作搜索空间中的一只鸟(即粒子),所有的粒子都有一个被优化的函数决定的适应值,并且有一个速度决定它们飞翔的方向和速率,粒子们追随当前的最优粒子在解空间中搜索。

算法首先初始化一群随机粒子,然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个“极值”即个体极值和全局极值来更新自己的速度与位置。

在D 维目标搜索空间中,由种群数为m 的粒子组成粒子群,其中第f 个粒子在第d 维的位置为Xid ,其飞行速度为Vid ,该粒子当前搜索到的最优位置为Pid(goodvalue)和整个粒子群当前的最优位置Pgd(bestvalue)。

每维的速度与位置更新公式如下112(1)()(1)()(1)id id id id id id v v c rand p x c rand g x ω+=⨯+⨯⨯-+⨯⨯-11(2)id id id x x v ++=+W 为惯性权重,C1和C2为学习因子,rand ()——[0,1]范围内变化的随机数。

2.参数介绍与设置(1)ww 是保持粒子运动惯性的参数,能使种群扩展搜索空间,获得较好的求解效果。

较大的w 有利于群体在更大的范围内进行搜索。

而较小的w 能够保证群体收敛到最优位置,所以w 的选择及在迭代中的变化对搜索能力和跳出局优能力具有重要影响。

一般将w 设定为0.8左右。

(1)加速因子c1和c2c1和c2用于调整粒子自身经验和社会经验在其运动中的作用,表示将每个粒子拉向pbest 和gbest 位置的随机加速项的权重,低的值允许粒子在被拉回前可以在目标区域外徘徊, 而高的值则导致粒子突然冲向或越过目标区域。

04-粒子群算法matlab代码---吐血推荐

04-粒子群算法matlab代码---吐血推荐

04-粒子群算法matlab代码---吐血推荐粒子群算法(1)----粒子群算法简介二、粒子群算法的具体表述上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。

下面通俗的解释PSO 算法。

PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO.中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。

大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。

这个过程我们转化为一个数学问题。

寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。

为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。

下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。

直到最后在y=1.3706这个点停止自己的更新。

这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。

该函数的最大值就是鸟群中的食物计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。

更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。

下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。

粒子群算法(2)----标准的粒子群算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。

这个公式就是粒子群算法中的位置速度更新公式。

下面就介绍这个公式是什么。

在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

matlab自带的粒子群算法

matlab自带的粒子群算法

matlab自带的粒子群算法粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,可用于解决各种实数空间的优化问题。

在Matlab中,PSO算法由函数“particleswarm”实现。

本文将简要介绍该函数的使用方法和一些相关参考内容,以便读者熟悉和使用该算法。

首先,为了使用Matlab中的PSO算法,需要了解“particleswarm”函数的基本用法和语法。

该函数的基本语法如下:[pbest,fval] = particleswarm(fun,nvars,lb,ub)其中,fun是优化目标函数的句柄,nvars是问题变量的维数,lb和ub分别是每个变量的下界和上界。

该函数返回优化结果pbest和对应的目标函数值fval。

除了基本用法外,“particleswarm”函数还提供了许多可选参数,用于进一步控制粒子群算法的行为。

例如,可以通过设置“MaxIterations”参数来指定最大迭代次数,或者通过设置“MaxStallIterations”参数来指定停滞迭代次数。

为了更好地理解PSO算法,读者可以参考以下相关内容:1. 书籍:《Swarm Intelligence: Principles, Advances, and Applications》(英文版),作者:Russel C. Eberhart等。

这本书对群体智能算法的原理、应用和进展进行了全面介绍,其中包括对PSO算法的详细解释和实例应用。

2. 学术论文:《Particle swarm optimization》(2008),作者:Maurice Clerc。

这篇经典的学术论文详细阐述了PSO算法的原理、参数设置和改进策略,对理解和应用PSO算法具有重要参考价值。

3. Matlab官方文档:Matlab官方网站提供了针对“particleswarm”函数的详细文档和示例代码。

用户可以通过访问Matlab官方网站并搜索“particleswarm”来获取相关信息。

粒子群算法解决VRP代码(matlab)

粒子群算法解决VRP代码(matlab)

粒子群算法解决VRP代码(matlab)particle_swarm_optimization.m文件:function PSOforTSP%初始化Alpha=0.25; %个体经验保留概率Beta=0.25; %全局经验保留概率NC_max=100; %最大迭代次数m=80; %微粒数CityNum=14; %问题的规模(城市个数)[dislist,Clist]=tsp(CityNum);NC=1;%迭代计数器R_best=zeros(NC_max,CityNum); %各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度%产生微粒的初始位置for i=1:mx(i,:)=randperm(CityNum);L(i)=CalDist(dislist,x(i,:));endp=x; %p为个体最好解pL=L;[L_best(1,1) n_best]=min(L);R_best(1,:)=x(n_best,:);L_ave(1,1)=mean(L);%初始交换序v=ones(CityNum-1,2,m)*(round(rand*(CityNum-1))+1);figure(1);while NC<=NC_max %停止条件之一:达到最大迭代次数for i=1:mxnew(i,:)=changeFun(x(i,:),v(:,:,i));A=changeNum(x(i,:),p(i,:));Arand=randFun(A,Alpha);xnew(i,:)=changeFun(xnew(i,:),Arand);B=changeNum(x(i,:),R_best(NC,:));Brand=randFun(B,Beta);xnew(i,:)=changeFun(xnew(i,:),Brand);v(:,:,i)=changeNum(x(i,:),xnew(i,:));L(i)=CalDist(dislist,xnew(i,:));if L(i)<pl(i)< p="">p(i,:)=xnew(i,:);pL(i)=L(i);endend[L_bestnew n_best]=min(L);R_bestnew=xnew(n_best,:);L_ave(NC+1,1)=mean(L);if L_bestnew<l_best(nc,1)< p="">L_best(NC+1,1)=L_bestnew;R_best(NC+1,:)=R_bestnew;elseL_best(NC+1,1)=L_best(NC,1);R_best(NC+1,:)=R_best(NC,:);endx=xnew;drawTSP10(Clist,R_best(NC,:),L_best(NC,1),NC,0); %pause;NC=NC+1;end%输出结果Pos=find(L_best==min(L_best));Shortest_Route=R_best(Pos(1),:);Shortest_Length=L_best(Pos(1)); figure(2);plot([L_best L_ave]);legend('最短距离','平均距离'); endfunction xnew=changeFun(x,C); changeLen=size(C,1);xnew=x;for i=1:changeLena=xnew(C(i,1));xnew(C(i,1))=xnew(C(i,2));xnew(C(i,2))=a;endendfunction C=changeNum(x,y); CityNum=size(x,2);C=ones(CityNum-1,2);for i=1:CityNum-1pos=find(x==y(i));C(i,:)=[i pos];x=changeFun(x,C(i,:));endendfunction v=randFun(v,w);randLen=size(v,1);for i=1:randLenif rand>wv(i,2)=v(i,1);endendendfunction F=CalDist(dislist,s)%计算回路路径距离DistanV=0;n=size(s,2);for i=1:(n-1)DistanV=DistanV+dislist(s(i),s(i+1));endDistanV=DistanV+dislist(s(n),s(1));F=DistanV;endfunction [DLn,cityn]=tsp(n)city14=[0 0;0.3 0.334;0.08 0.433;0.166 0.456;0.5 0.4439;0.2439 0.1463;0.1207 0.2293;0.2293 0.761;0.6171 0.9414;0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];for i=1:14for j=1:14DL14(i,j)=((city14(i,1)-city14(j,1))^2+(city14(i,2)-city14(j,2))^2)^0.5;endendDLn=DL14;cityn=city14;enddrawTSP10.m文件:function m=drawTSP(Clist,BSF,bsf,p,f)CityNum=size(Clist,1);for i=1:CityNum-1plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(BSF(i +1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');hold on;endaxis([0,1,0,1]);plot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNu m),2),Clist(BSF(1), 2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');title([num2str(CityNum),'城市TSP']);if f==0text(0.1,0.1,['第',int2str(p),' 步',' 最短距离为',num2str(bsf)]);elsetext(0.1,0.1,['最终搜索结果:最短距离',num2str(bsf)]);endhold off;pause(0.05);</l_best(nc,1)<></pl(i)<>。

粒子群算法的matlab代码实现

粒子群算法的matlab代码实现

粒子群算法的matlab代码实现function swarmwarning off MATLAB:divideByZero%%% Script Particle Swarm Optimization%%% Author: Ivan Candelas del Toro%%% e-mail: ivanct@%%%%%% Control variables%%%%%global numberOfParticles;numberOfParticles = 40;global numberOfNeighbors;numberOfNeighbors = 4;maxIterations = 1000;%% Limites para cambio de localizaciónglobal deltaMin;deltaMin = -4.0;global deltaMax;deltaMax = 4.0;%% individuality and socialityiWeight = 2.0;iMin = 0.0;iMax = 1.0;sWeight = 2.0;sMin = 0.0;sMax = 1.0;%%%%%%%%%%%%% Related variables to the problem space solutions %%%%%%%%%%%initialFitness = -100000;targetFitness = 0;global dimensions;dimensions = 4;%%%% Program Startglobal particles;for p = 1:numberOfParticlesfor d = 1:dimensionsparticles(p).next(d) = randint(1,10); %%%%%%%%%%%%%%%%%particles(p).velocity(d) =randint(deltaMin,deltaMax); %%%%%%%%%%%particles(p).current(d) = particles(p).next(d);endparticles(p).bestSoFar = initialFitness;endfor p = 1:numberOfParticlesneighborVector = getNeighborIndexVector(p,numberOfNeighbors);for n = 1:numberOfNeighborsparticles(p).neighbor(n) = neighborVector(n);endenditerations = 0;ticwhile iterations <= maxIterationsfor p = 1:numberOfParticlesfor d = 1:dimensionsparticles(p).current(d) = particles(p).next(d);endfitness = test(p);if fitness > particles(p).bestSoFar;particles(p).bestSoFar = fitness;for d = 1:dimensionsparticles(p).best(d) = particles(p).current(d);endendif fitness == targetFitnessX=particles(p).current(1)Y=particles(p).current(2)Z=particles(p).current(3)W=particles(p).current(4)total_time=tocdisp('Success!!');returnendendfor p = 1:numberOfParticlesn = getNeighborIndexWithBestFitness(p);for d = 1:dimensionsiFactor = iWeight * randint(iMin,iMax); %%%%%%%%%%%%%%sFactor = sWeight * randint(sMin,sMax); %%%%%%%%%%%%%pDelta(d) = particles(p).best(d) - particles(p).current(d); nDelta(d) = particles(n).best(d) - particles(p).current(d);delta = (iFactor * pDelta(d)) + (sFactor * nDelta(d));delta = particles(p).velocity(d) + delta;particles(p).velocity(d) = constrict(delta);particles(p).next(d) = particles(p).current(d) +particles(p).velocity(d);endenditerations = iterations + 1enddisp('Failure');%%%%%%%%%%%%% Support Functions%%%%%%%%%%%%-------------function fitness = test(p)global particles;x = particles(p).current(1);y = particles(p).current(2);z = particles(p).current(3);w = particles(p).current(4);f = 5 * (x^2) + 2 * (y^3) - (z/w)^2 + 4;if ( x * y ) == 0n = 1;elsen = 0;endfitness = 0 - abs(f) - n;%%-------------function d = constrict(delta)global deltaMin;global deltaMax;if delta < deltaMind = deltaMin;returnendif delta > deltaMaxd = deltaMax;returnendd = delta;%%--------function p = getNeighborIndex(pindex,n)global numberOfParticles;global dimensions;global particles;dista=zeros(1,numberOfParticles);for i = 1:numberOfParticlessuma = 0;for d = 1:dimensionssuma = suma + (particles(pindex).current(d) - particles(i).current(d))^2;enddista(i)=sqrt(suma);end[X,I] = sort(dista);p = I(n);%%--------function p = getNeighborIndexVector(pindex,n) global numberOfParticles;global dimensions;global particles;dista=zeros(1,numberOfParticles);for i = 1:numberOfParticlessuma = 0;for d = 1:dimensionssuma = suma + (particles(pindex).current(d) - particles(i).current(d))^2;enddista(i)=sqrt(suma);end[X,I] = sort(dista);p = I(1:n);%%---------function p = getNeighborIndexWithBestFitness(pindex) global dimensions;global particles;global numberOfNeighbors;fit = zeros(1,4);for d = 1:numberOfNeighbors;fit(d) = test(particles(pindex).neighbor(d));end[X,I] = sort(fit);p = particles(pindex).neighbor(I(1));%%-------------%%return a random integer between min and max%function num = randint(min,max)array = min:max;index = mod(floor(rand(1)*1000),size(array,2))+1; num = array(index);。

粒子群_Matlab程序代码

粒子群_Matlab程序代码

粒子群优化算法(panicle swarm optimization ,PSO)是kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995年提出的一种群智能算法,其思想米源予人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到最优。

1.粒子群算法的原理PSO 中,每个优化问题的解看作搜索空间中的一只鸟(即粒子),所有的粒子都有一个被优化的函数决定的适应值,并且有一个速度决定它们飞翔的方向和速率,粒子们追随当前的最优粒子在解空间中搜索。

算法首先初始化一群随机粒子,然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个“极值”即个体极值和全局极值来更新自己的速度与位置。

在D 维目标搜索空间中,由种群数为m 的粒子组成粒子群,其中第f 个粒子在第d 维的位置为Xid ,其飞行速度为Vid ,该粒子当前搜索到的最优位置为Pid(goodvalue)和整个粒子群当前的最优位置Pgd(bestvalue)。

每维的速度与位置更新公式如下112(1)()(1)()(1)id id id id id id v v c rand p x c rand g x ω+=⨯+⨯⨯-+⨯⨯-L 11(2)id id id x x v ++=+LW 为惯性权重,C1和C2为学习因子,rand ()——[0,1]范围内变化的随机数。

2.参数介绍与设置(1)ww 是保持粒子运动惯性的参数,能使种群扩展搜索空间,获得较好的求解效果。

较大的w 有利于群体在更大的范围内进行搜索。

而较小的w 能够保证群体收敛到最优位置,所以w 的选择及在迭代中的变化对搜索能力和跳出局优能力具有重要影响。

一般将w 设定为0.8左右。

(1)加速因子c1和c2c1和c2用于调整粒子自身经验和社会经验在其运动中的作用,表示将每个粒子拉向pbest 和gbest 位置的随机加速项的权重,低的值允许粒子在被拉回前可以在目标区域外徘徊, 而高的值则导致粒子突然冲向或越过目标区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒子群算法(1)----粒子群算法简介
二、粒子群算法的具体表述
上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。

下面通俗的解释PSO 算法。

PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO.中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。

大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。

这个过程我们转化为一个数学问题。

寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

该函数的图形如下:
当x=0.9350-0.9450,达到最大值y=1.3706。

为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。

下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。

直到最后在y=1.3706这个点停止自己的更新。

这个过程与粒子群算法作为对照如下:
这两个点就是粒子群算法中的粒子。

该函数的最大值就是鸟群中的食物
计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。

更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。

下面演示一下这个算法运行一次的大概过程:
第一次初始化
第一次更新位置
第二次更新位置
第21次更新
最后的结果(30次迭代)
最后所有的点都集中在最大值的地方。

粒子群算法(2)----标准的粒子群算法
在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。

这个公式就是粒子群算法中的位置速度更新公式。

下面就介绍这个公式是什么。

在上一节中我们求取函数
y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5;x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况--x为一个矢量的情况,比如二维的情况
z=2*x1+3*x22的情况。

这个时候我们的每个粒子为二维,记粒子P1=
(x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。

这里n为粒子群群体的规模,也就是这个群中粒子的个数,每个粒子的维数为2。

更一般的是粒子的维数为q,这样在这个种群中有n个粒子,每个粒子为q 维。

由n个粒子组成的群体对Q维(就是每个粒子的维数)空间进行搜索。

每个粒子表示为:x i=(x i1,x i2,x i3,...,x iQ),每个粒子对应的速度可以表示为v i=(v i1,v i2,v i3,....,v iQ),每个粒子在搜索时要考虑两个因素:
1。

自己搜索到的历史最优值p i ,p i=(p i1,p i2,....,p iQ),i=1,2,3,....,n。

2。

全部粒子搜索到的最优值p g,p g=(p g1,p g2,....,p gQ),注意这里的p g只有一个。

下面给出粒子群算法的位置速度更新公式:
这里有几个重要的参数需要大家记忆,因为在以后的讲解中将会经常用到:
它们是:
是保持原来速度的系数,所以叫做惯性权重。

是粒子跟踪自己历史最优值的权重系数,它表示粒子自身的认识,所以叫“认知”。

通常设置为2。

是粒子跟踪群体最优值的权重系数,它表示粒子对整个群体知识的认识,所以叫做“社会知识”,经常叫做“社会”。

通常设置为2。

是[0,1]区间内均匀分布的随机数。

是对位置更新的时候,在速度前面加的一个系数,这个系数我们叫做约束因子。

通常设置为1。

这样一个标准的粒子群算法就结束了。

下面对整个基本的粒子群的过程给一个简单的图形表示:
判断终止条件可是设置适应值到达一定的数值或者循环一定的次数。

注意:这里的粒子是同时跟踪自己的历史最优值与全局(群体)最优值来改变自己的位置预速度的,所以又叫做全局版本的标准粒子群优化算法。

相关文档
最新文档