太仓市外国语学校2018-2019学年高二上学期第二次月考试卷数学卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太仓市外国语学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. ()0
﹣(1﹣0.5﹣2
)÷
的值为( )
A .﹣
B .
C .
D .
2. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8
D .10
3. 若将函数y=tan (ωx+
)(ω>0)的图象向右平移
个单位长度后,与函数y=tan (ωx+
)的图象
重合,则ω的最小值为( )
A .
B .
C .
D .
4. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1
B .3
C .5
D .9
5. 已知变量x 与y 负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )
A . =﹣0.2x+3.3
B . =0.4x+1.5
C . =2x ﹣3.2
D . =﹣2x+8.6
6. 设函数f (x )=
则不等式f (x )>f (1)的解集是( )
A .(﹣3,1)∪(3,+∞)
B .(﹣3,1)∪(2,+∞)
C .(﹣1,1)∪(3,+∞)
D .(﹣∞,
﹣3)∪(1,3)
7. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)
8. 已知i z 311-=,i z +=32,其中i 是虚数单位,则2
1
z z 的虚部为( ) A .1- B .
54 C .i - D .i 5
4 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.
9.下列正方体或四面体中,P、Q、R、S分别是所在棱的中点,这四个点不共面的一个图形是
()
10.已知平面向量与的夹角为,且||=1,|+2|=2,则||=()
A.1 B.C.3 D.2
11.已知f(x)=ax3+bx+1(ab≠0),若f(2016)=k,则f(﹣2016)=()
A.k B.﹣k C.1﹣k D.2﹣k
12.“互联网 ”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶
段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为()A.10 B.20 C.30 D.40 二、填空题
13.一质点从正四面体A﹣BCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,…对于N∈n*,第3n次运动回到点A,第3n+1次运动经过的棱与3n﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点
为.
14.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________ 15.在中,角、、所对应的边分别为、、,若,则_________
16.已知f(x)=x(e x+a e-x)为偶函数,则a=________.
17.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,
C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.
18.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值
是 .
三、解答题
19.已知函数f (x )=,求不等式f (x )<4的解集.
20.设集合{}
{}2
|8150,|10A x x x B x ax =-+==-=.
(1)若1
5
a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .
21.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.
22.在直角坐标系xOy 中,以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 1的极坐标方程为
ρ(sin θ+cos θ)=1,曲线C 2的参数方程为
(θ为参数).
(Ⅰ)求曲线C 1的直角坐标方程与曲线C 2的普通方程;
(Ⅱ)试判断曲线C 1与C 2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
23.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3
23
1312
f x x k x kx =-
+++,其中.k R ∈
(1)当3k =时,求函数()f x 在[]
0,5上的值域;
(2)若函数()f x 在[]
1,2上的最小值为3,求实数k 的取值范围.
24.已知集合A={x|a ﹣1<x <2a+1},B={x|0<x <1} (1)若a=,求A ∩B .
(2)若A ∩B=∅,求实数a 的取值范围.
太仓市外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D
【解析】解:原式=1﹣(1﹣)÷
=1﹣(1﹣
)÷
=1﹣(1﹣4)×
=1﹣(﹣3)×
=1+
=. 故选:D .
【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.
2. 【答案】
【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p
2=2,
∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,
由⎩⎪⎨⎪⎧y 2
=8x y =±
x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.
3. 【答案】D
【解析】解:y=tan (ωx+),向右平移
个单位可得:y=tan[ω(x ﹣
)+
]=tan (ωx+
)
∴
﹣
ω+k π=
∴ω=k+(k ∈Z ), 又∵ω>0
∴ωmin =. 故选D .
4. 【答案】C
【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A}, ∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},
∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个. 故选C .
5. 【答案】A
【解析】解:变量x 与y 负相关,排除选项B ,C ; 回归直线方程经过样本中心,
把=3, =2.7,代入A 成立,代入D 不成立.
故选:A .
6. 【答案】A
【解析】解:f (1)=3,当不等式f (x )>f (1)即:f (x )>3 如果x <0 则 x+6>3可得 x >﹣3,可得﹣3<x <0.
如果 x ≥0 有x 2
﹣4x+6>3可得x >3或 0≤x <1
综上不等式的解集:(﹣3,1)∪(3,+∞) 故选A .
7. 【答案】A
【解析】解:∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数, ∴在(﹣∞,0)内f (x )也是增函数, 又∵f (﹣3)=0, ∴f (3)=0
∴当x ∈(﹣∞,﹣3)∪(0,3)时,f (x )<0;当x ∈(﹣3,0)∪(3,+∞)时,f (x )>0; ∴(x ﹣2)•f (x )<0的解集是(﹣3,0)∪(2,3) 故选:A .
8. 【答案】B
【解析】由复数的除法运算法则得,i i i i i i i i z z 54
531086)3)(3()3)(31(33121+=+=-+-+=++=,所以2
1z z 的虚部为54.
9. 【答案】D
【解析】
考
点:平面的基本公理与推论. 10.【答案】D
【解析】解:由已知,|+2|2
=12,即
,所以||2
+4||||×+4=12,所以||=2;
故选D .
【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.
11.【答案】D
【解析】解:∵f (x )=ax 3+bx+1(ab ≠0),f (2016)=k , ∴f (2016)=20163a+2016b+1=k , ∴20163a+2016b=k ﹣1,
∴f (﹣2016)=﹣20163a ﹣2016b+1=﹣(k ﹣1)+1=2﹣k . 故选:D .
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
12.【答案】B 【解析】
试题分析:设从青年人抽取的人数为800,,2050600600800
x x x ∴=∴=++,故选B . 考点:分层抽样.
二、填空题
13.【答案】 D .
【解析】解:根据题意,质点运动的轨迹为:
A→B→C→A→D→B→A→C→D→A
接着是→B→C→A→D→B→A→C→D→A…
周期为9.
∵质点经过2015次运动,
2015=223×9+8,
∴质点到达点D.
故答案为:D.
【点评】本题考查了函数的周期性,本题难度不大,属于基础题.
14.【答案】
【解析】【知识点】抛物线双曲线
【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
15.【答案】
【解析】
因为,所以,
所以,所以
答案:
16.【答案】
【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(-x)(e-x+a e x)=x(e x+a e-x),
∴a(e x+e-x)=-(e x+e-x),∴a=-1.
答案:-1
17.【答案】150
【解析】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100m.
在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,
由正弦定理得,,因此AM=100m.
在RT△MNA中,AM=100m,∠MAN=60°,由
得MN=100×=150m.
故答案为:150.
18.【答案】4.
【解析】解:画出满足条件的平面区域,如图示:
,
由,解得:A(3,4),
显然直线z=ax+by过A(3,4)时z取到最大值12,
此时:3a+4b=12,即+=1,
∴+=(+)(+)=2++≥2+2=4,
当且仅当3a=4b时“=”成立,
故答案为:4.
【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
三、解答题
19.【答案】
【解析】解:函数f (x )=
,不等式f (x )<4,
当x ≥﹣1时,2x+4<4,解得﹣1≤x <0; 当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1. 综上x ∈(﹣3,0).
不等式的解集为:(﹣3,0).
20.【答案】(1)A B ⊆;(2){}5,3,0=C . 【解析】
考
点:1、集合的表示;2、子集的性质.
21.【答案】
【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),
∴
=0,
+8
=0,
∴=
,
化为,代入
=0,
化为: +16﹣
cos 2θ,
∴,
∴θ=
或
.
【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.
22.【答案】
【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1,
根据曲线C 2的参数方程为
(θ为参数),可得它的普通方程为
+y 2=1.
(Ⅱ)把曲线C 1与C 2是联立方程组,化简可得 5x 2
﹣8x=0,显然△=64>0,
故曲线C 1与C 2是相交于两个点.
解方程组求得
,或
,可得这2个交点的坐标分别为(0,1)、(,﹣).
【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.
23.【答案】(1)[]
1,21;(2)2k ≥.
【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;
试题解析:(1)解:3k = 时,()32
691f x x x x =-++
则()()()2
3129313f x x x x x =-+=--' 令()0f x '=得121,3x x ==列表
由上表知函数()f x 的值域为[]
1,21
(2)方法一:()()()()2
331331f x x k x k x x k =-++=--'
①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()()min 3
1113132
f x f k k ==-+++= 即5
3
k =
(舍)
②当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增
所以()()()322min 3
13132
f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2
120k k +-=
所以1k =-或2k =(舍)
注:也可令()3
2
34g k k k =-+
则()()2
3632g k k k k k =='--
对()()1,2,0k g k ∀∈'≤
()3234g k k k =-+在()1,2k ∈单调递减
所以()02g k <<不符合题意
综上所述:实数k 取值范围为2k ≥
方法二:()()()()2
331331f x x k x k x x k =-++=--'
①当2k ≥时,[]
()1,2,'0x f x ∀∈≤,函数()f x 在区间[]
1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+=
符合题意 …………8分
②当1k ≤时,[]
()1,2,'0x f x ∀∈≥,函数()f x 在区间[]
1,2单调递增 所以()()min 23f x f <=不符合题意
③当12k <<时,
当[)1,x k ∈时,()'0f x <()f x 区间在[
)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意
综上所述:实数k 取值范围为2k ≥ 24.【答案】
【解析】解:(1)当a=时,A={x|},B={x|0<x <1}
∴A ∩B={x|0<x <1}
(2)若A∩B=∅
当A=∅时,有a﹣1≥2a+1
∴a≤﹣2
当A≠∅时,有
∴﹣2<a≤或a≥2
综上可得,或a≥2
【点评】本题主要考查了集合交集的求解,解题时要注意由A∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.。