西安电子科技大学2009年半导体物理真题

合集下载

电子科技大学数学物理方法研究生试题09-14

电子科技大学数学物理方法研究生试题09-14

x R, t 0 utt uxx t sin x 4.求下面的定解问题: (15 分) . u ( x, 0) 0, u ( x, 0) sin x t
x2 4 a 2t
5.求证 F
1
e
a 2 2t
e 2a t
1

,其中 F (?) 表示 Fourier 逆变换.(15 分)
将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。 3.长为 l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为 ( x ) ,求杆内温 度分布 u ( x, t ) .(20 分)
utt 9u xx x 2 et x R, t 0 4.求下面的定解问题: (10 分) . u x, 0 x 2 x 18, u x, 0 sin x 18 t
7.写出球形域的 Dirichlets 问题对应的 Green 函数及其定解问题.(10 分)
8.证明:
d xJ1 ( x) xJ 0 ( x) . (10 分) dx
9. (1)写出 Legendre 方程和 Legendre 多项式; (2)将函数 f ( x) 2 3x, x 1 用 Legendre 多项式展开.(10 分)
1.化方程 x2uxx 2 xyuxy y 2u yy xux yu y 0 为标准形. (10 分)
utt a 2u xx 0 0 xl 2. 把定解问题: u x (0, t ) h1 (t ), u x (l , t ) h2 (t ) 的非齐次边界条件化为齐次边界条 u ( x, 0) ( x), u ( x, 0) ( x) 0 x l t

西安电子科技大学《872普通物理(不含力学)》历年考研真题汇编

西安电子科技大学《872普通物理(不含力学)》历年考研真题汇编

目 录第1部分 西安电子科技大学普通物理考研真题2006年西安电子科技大学402普通物理考研真题2005年西安电子科技大学402普通物理考研真题2004年西安电子科技大学402普通物理考研真题第2部分 西安电子科技大学大学物理考研真题2008年西安电子科技大学851大学物理考研真题2007年西安电子科技大学451大学物理考研真题第3部分 其他院校普通物理最新真题2016年山东大学834普通物理考研真题2016年中山大学851普通物理考研真题2016年华南理工大学860普通物理(含力、热、电、光学)考研真题第1部分 西安电子科技大学普通物理考研真题2006年西安电子科技大学402普通物理考研真题西安电子科技大学2006年攻读硕士学位研究生入学考试试题t,考试科目代码及名称402普通物理(5系)[独就^.加食考试时间2006年}月15日下午(3小时)答题要求:所有答案(填空题、选择题按照标号写)必须写在答题纸上,写在试卷上一律作废,准考证号写在指定位置!!一、选择题(每题3分,共45分)I.传播速度为1。

而炽频率为50H&的平面简谐波,在波线上相距为O.Sm的两点之间的振动相位差是(⑴)(A)U/2(B)n/3(C)k/4(D)k/62.在杨氏双建亍涉实验中,使屏幕上干涉屏条纹变宽的是(⑵)(凫)增加玦之间的距离。

Si(B)增加双缝和屏幕之间的距离・$尽敏0^5^(c>如图,在缝的.垂直平分城上放置平面反射镜.2(D)减小入射光波长’3.用波长为2的单色光垂直入射,观察圆孔的夫琅和费衍射,当衍射孔的半径增加为原来的10倍时,爱里斑的半径和光强分别变为原来的(⑶)(A)10倍和1如倍"(B)10倍和1000睥©0.1倍和IQ000倍.(D)(M倍和100倍。

4.用金属维绕制成的标准电要求是无自感的,统制方法正曲的是(⑷)(A)单线绕制成两个相同的线圈,然后正接在一起,使两线圈中电流同向。

电子科技大学09级《大学物理(下)》期末考试及答案A卷 (A3版)

电子科技大学09级《大学物理(下)》期末考试及答案A卷 (A3版)

电子科技大学期末考试 09级《大学物理(下)》A 卷(考试时间90分钟,满分100分)一、选择题(每题2分,共20分)1、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感应强度 ( ) (A )与L 无关; (B )正比于2L ; (C )与L 成正比; (D )与L 成反比。

2、在感应电场中电磁感应定律可写成dtd l d E mCK Φ-=⋅⎰,式中K E 为感应电场的电场强度,此式表明 ( )(A )闭合曲线C 上K E处处相等; (B )感应电场是保守力场; (C )感应电场的电场线不是闭合曲线;(D )在感应电场中不能像静电场那样引入电势的概念。

3、一交变磁场被限制在一半径为R 的圆柱体中,在柱内、外分别有两个静止点电荷A q 和B q ,则 ( ) (A )A q 受力,B q 不受力;(B )A q 和B q 都受力;(C )A q 和B q 都不受力;(D )A q 不受力,B q 受力。

4、关于位移电流,下列哪一种说法是正确的( ) (A )位移电流的磁效应不服从安培环路定理;(B )位移电流是由变化磁场产生; (C )位移电流不可以在真空中传播; (D )位移电流是由变化电场产生。

5、根据惠更斯—菲涅尔原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强决定于波阵面上所有面元发出的子波各自传到P 点的 ( ) (A )振动振幅之和; (B )相干叠加; (C )振动振幅之和的平方; (D )光强之和。

6、严格地说,空气的折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,则干涉圆环将 ( ) (A )变大; (B )变小; (C )消失; (D )不变7、自然光以60。

入射角照射到某一透明介质表面时,反射光为线偏振光,则 ( ) (A )折射光为线偏振光,折射角为30。

; (B )折射光为部分偏振光,折射角为30。

;(C )折射光为线偏振光,折射角不能确定; (D )折射光为部分偏振光,折射角不能确定。

西安电子科技大学 2009年攻读硕士学位研究生入学考试试题

西安电子科技大学 2009年攻读硕士学位研究生入学考试试题

西安电子科技大学2009年攻读硕士学位研究生入学考试试题考试科目代码及名称822电磁场与微波技术考试时间2009年 1月 10日下午( 3小时)答题要求:所有答案〈填空题按照标号写〉必须写在答题纸上,写在试卷上一律作废,准考证号写在指定位置!一、(15分) z=0平面将无限大空间分为两个区域:z<0区域为空气,z>0区域为相对磁导率μr =1,相对介电常数εr =4的理想介质,若知空气中的电场强度为14x z E a a =+V/m ,试求:(1)理想介质中的电场强度E 2;(2)理想介质中电位移矢量D 2与界面间的夹角α;(3) z=0平面上的极化面电荷密度ρsp .二、(15分)均匀平面电磁波在相对磁导率μr =1的理想介质中传播,其电场强度的瞬时值为88(,)5sin[2(10)]5cos[2(10)]x v E r t a t z a t z ππ=-+-(mV/m ),试求:(1)该理想介质的相对介电常数εr ;(2)平面电磁波在该理想介质中的相速度V p ;(3)平面电磁波的极化状态。

三、(15分)空气中传播着磁场复矢量振幅(0.80.6)1()(34)12j x z x z H r a a e ππ-+=-mA/m ,的均匀平面电磁波,试求:(1)该平面电磁波的波长λ;(2)该平面电磁波传播方向的单位矢n ;(3)该平面电磁波电场的复振幅矢量 E®。

四、(15分)电场强度复振幅矢量2()24j z i x E r a e ππ-=(mA/m )的均匀平面电磁波由空气垂直入射到相对介电常数εr =2.25,相对磁导率μr =1的半无限大理想介质的界面(z=0平面),试求:(1)反射波电场强度的振幅E rm ;(2)反射波磁场的复振幅矢量H r (r);(3)透射波电场的复振幅矢量E t (r)。

五、(20分)己知无耗传输线电长度为θ,特性阻抗Z 0=1。

第五题用图(a )(1)已知负载阻抗L l l Z r jx =+,求负载驻波比ρL ;(2)求输入驻波比ρin ;(3)求负载反射系数ΓL 。

最新电子科技大学半导体物理期末考试试卷a试题答案

最新电子科技大学半导体物理期末考试试卷a试题答案

电子科技大学二零 九 至二零 一零 学年第 一 学期期 末 考试半导体物理 课程考试题 A 卷 ( 120分钟) 考试形式: 闭卷 考试日期 2010年 元月 18日课程成绩构成:平时 10 分, 期中 5 分, 实验 15 分, 期末 70 分一、选择题(共25分,共 25题,每题1 分)A )的半导体。

A. 不含杂质和缺陷B. 电阻率最高C. 电子密度和空穴密度相等D. 电子密度与本征载流子密度相等2、如果一半导体的导带中发现电子的几率为零,那么该半导体必定( D )。

A. 不含施主杂质B. 不含受主杂质C. 不含任何杂质D. 处于绝对零度3、对于只含一种杂质的非简并n 型半导体,费米能级E F 随温度上升而( D )。

A. 单调上升B. 单调下降C. 经过一个极小值趋近EiD. 经过一个极大值趋近Ei4、如某材料电阻率随温度上升而先下降后上升,该材料为( C )。

A. 金属 B. 本征半导体 C. 掺杂半导体 D. 高纯化合物半导体5、公式*/m q τμ=中的τ是半导体载流子的( C )。

A. 迁移时间 B. 寿命 C. 平均自由时间 D. 扩散时间6、下面情况下的材料中,室温时功函数最大的是( A ) A. 含硼1×1015cm -3的硅 B. 含磷1×1016cm -3的硅 C. 含硼1×1015cm -3,磷1×1016cm -3的硅 D. 纯净的硅7、室温下,如在半导体Si 中,同时掺有1×1014cm -3的硼和1.1×1015cm -3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级为( G )。

将该半导体由室温度升至570K ,则多子浓度约为( F ),少子浓度为( F ),费米能级为( I )。

(已知:室温下,n i ≈1.5×1010cm -3;570K 时,n i ≈2×1017cm -3)A 、1×1014cm -3B 、1×1015cm -3C 、1.1×1015cm -3D 、2.25×105cm -3E 、1.2×1015cm -3F 、2×1017cm -3G 、高于EiH 、低于EiI 、等于Ei8、最有效的复合中心能级位置在( D )附近;最有利陷阱作用的能级位置在( C )附近,常见的是( E )陷阱。

电子科技大学2009半导体物理期末考试试题答卷B试题参考答案

电子科技大学2009半导体物理期末考试试题答卷B试题参考答案

电子科技大学二零九至二零一零学年第一学期期末考试半导体物理课程考试题B卷(120分钟)考试形式:闭卷考试日期2010年元月18日课程成绩构成:平时10 分,期中 5 分,实验15 分,期末70 分9.有效质量概括了晶体内部势场对载流子的作用,可通过回旋共振实验来测量。

10.某N型Si半导体的功函数W S是4.3eV,金属Al的功函数W m是4.2 eV,该半导体和金属接触时的界面将会形成反阻挡层接触/欧姆接触。

11. 有效复合中心的能级位置靠近禁带中心能级/本征费米能级/E i。

12. MIS结构中半导体表面处于临界强反型时,表面少子浓度等于内部多子浓度,表面反型13. 金属和n 型半导体接触形成肖特基势垒,若外加正向偏压于金属,则半导体表面电子势二、选择题(共15分,每题1 分)导体 5. 空间实验室中失重状态下生长的GaAs 与地面生长的GaAs 相比,载流子迁移率要高,这A. 无杂质污染B. 晶体生长更完整C. 化学配比更合理 A. 复合机构B. 散射机构C. 禁带宽度D. 晶体结构7. 若某材料电阻率随温度升高而单调下降,该材料是 A 。

A. 本征半导体B. 杂质半导体C. 金属导体A. 上升c) 掺入浓度1016 cm-3的P原子,浓度为1015 cm-3的B原子;d) 纯净硅。

A. abcdB. cdbaC. adcbD. dabc12. 以下4种不同掺杂情况的半导体,热平衡时室温下少子浓度最高的是 D 。

A. 掺入浓度1015 cm-3 P原子的Si半导体;B. 掺入浓度1014 cm -3 B 原子的Si 半导体;C. 掺入浓度1015 cm -3 P 原子Ge 半导体;D. 掺入浓度1014 cm -3 B 原子Ge 半导体。

(已知室温时:Si 的本征载流子浓度310105.1-⨯=cm n i ,Ge 的本征载流子浓度313104.2-⨯=cm n i )13. 直接复合时,小注入的P 型半导体的非平衡载流子寿命 τd 决定于 B 。

电子科技大学2009半导体物理期末考试试卷B试题答案

电子科技大学2009半导体物理期末考试试卷B试题答案

电子科技大学二零九至二零一零学年第一学期期末考试半导体物理课程考试题B 卷(120分钟)考试形式:闭卷考试日期2010年元月18日12. MIS 结构中半导体表面处于临界强反型时,表面少子浓度等于内部多子浓度,表面反型13. 金属和n 型半导体接触形成肖特基势垒,若外加正向偏压于金属,则半导体表面电子势二、选择题(共15分,每题1分)D 。

A. 禁带变宽B. 少子迁移率增大C. 多子浓度减小D. 简并化2. 已知室温下Si 的本征载流子浓度为310105.1-⨯=cm n i 。

处于稳态的某掺杂Si 半导体中电子浓度315105.1-⨯=cm n ,空穴浓度为312105.1-⨯=cm p ,则该半导体A 。

A. 存在小注入的非平衡载流子 B. 存在大注入的非平衡载流子 C. 处于热平衡态 A 。

A. 本征半导体 B. 杂质半导体 C. 金属导体A. 上升B. 下降C. 不变D.经过一极值后趋近E i9. GaAs 具有微分负电导现象,原因在于在强电场作用下,A 。

A. 载流子发生能谷间散射B. 载流子迁移率增大C. 载流子寿命变大a) 掺入浓度1014 cm -3的P 原子; b) 掺入浓度1015 cm -3的P 原子;c) 掺入浓度2×1014 cm -3的P 原子,浓度为1014 cm -3的B 原子; d) 掺入浓度3×1015 cm -3的P 原子,浓度为2×1015 cm -3的B 原子。

11.12. (子浓度=n i 13. A.01n r d B.1p r d C. pr d ∆1 D.其它A. 半导体表面势B. 平带电压C. 平带电容D. 器件的稳定性15. 不考虑表面态的影响,如需在n 型硅上做欧姆电极,以下四种金属中最适合的是A 。

A. In(W m =3.8eV)B. Cr(W m =4.6eV)C. Au(W m =4.8eV)D.Al(W m =4.2eV)三、问答题(共31分,共四题,6分+10分+10分+5分)(6分)V 曲线为一条直线,结构,测试高频由C -V 曲线的最大值求出氧化层厚度d 0,再结合最小值可以求出掺杂浓度;(4分)方法⑵:霍耳效应。

电子科技大学09年831考研真题答案

电子科技大学09年831考研真题答案

H1 (jω ) x(t) g (t) h1 (t) 1 r(t) h(t)
y1 (t)
y2 (t)
H1 (jω )
1
−1
0
1
t
−2π
−π

π
ω
解: (1) r(t) = x(t) · g (t) 1 FT ← → R(jω ) = X (jω ) ∗ G(jω ) 2π +∞ ∑ π π 1 1 = [jπδ (ω + ) − jπδ (ω − )] ∗ 2π · δ (ω − kπ ) 2π 4 4 2 −∞ =
FT
所以 H (jω ) = |ω |e−j 2ω ,其幅频响应 H (jω ) = |ω |,图形如下: H (jω ) = |ω | π ω −π 0 π 1, |ω | < π ; sin(πt) F T (2) x(t) = πt ← → X (jω ) = 0, 其它. −ωe−j 2ω , −π < ω | < 0; FT y (t) = x(t) ∗ h(t) ← → Y (jω ) = X (jω ) · H (jω ) = ωe−j 2ω , 0 < ω| < π. |ω |e−j 2ω , |ω | < π ; = 0, |ω | > π .
解: (1) 由条件 (I), y [n] 的非零区间范围为 3 n 9,则可知当 n < 0 或 n > 2 时,
h[n] = 0,故可设 h[n] = aδ [n] + bδ [n − 1] + cδ [n − 2],因此可得: h[n] ← → H (z ) = a + bz −1 + cz −2

电子科技大学半导体物理期末考试试卷B试题答案

电子科技大学半导体物理期末考试试卷B试题答案

电子科技大学二零 九 至二零 一零 学年第 一 学期期 末 考试半导体物理 课程考试题 B 卷 ( 120分钟) 考试形式: 闭卷 考试日期 2010年 元月 18日一、 填空题: (共16分,每空1 分)简并半导体一般是 重 掺杂半导体,忽略。

3.5. 在半导体中同时掺入施主杂质和受主杂质,它们具有 杂质补偿 的作用,在制造各种半导体器件时,往往利用这种作用改变半导体的导电性能。

6. ZnO 是一种宽禁带半导体,真空制备过程中通常会导致材料缺氧形成氧空位,存在氧空位的ZnO 半导体为 N/电子 型半导体。

9. 有效质量 概括了晶体内部势场对载流子的作用,可通过回旋共振实验来测量。

10. 某N 型Si 半导体的功函数W S 是4.3eV ,金属Al 的功函数W m 是4.2 eV , 该半导体和金属接触时的界面将会形成 反阻挡层接触/欧姆接触 。

11. 有效复合中心的能级位置靠近 禁带中心能级/本征费米能级/E i 。

12. MIS 结构中半导体表面处于临界强反型时,表面少子浓度等于内部多子浓度,表面13. 金属和n 型半导体接触形成肖特基势垒,若外加正向偏压于金属,则半导体表面电二、 选择题(共15分,每题1 分)如果对半导体进行重掺杂,会出现的现象是 D 。

A. 禁带变宽B. 少子迁移率增大C. 多子浓度减小D.简并化2. 已知室温下Si 的本征载流子浓度为310105.1-⨯=cm n i 。

处于稳态的某掺杂Si 半导体中电子浓度315105.1-⨯=cm n ,空穴浓度为312105.1-⨯=cm p ,则该半导体 A 。

A.存在小注入的非平衡载流子 B. 存在大注入的非平衡载流子 C. 处于热平衡态 D.是简并半导体3. 下面说法错误的是 D 。

A. 若半导体导带中发现电子的几率为0,则该半导体必定处于绝对零度B. 计算简并半导体载流子浓度时不能用波尔兹曼统计代替费米统计C. 处于低温弱电离区的半导体,其迁移率和电导率都随温度升高而增大D.半导体中,导带电子都处于导带底E c 能级位置4. 下面说法正确的是 D 。

电子科技大学半导体物理期末考试试卷a试题答案..讲解学习

电子科技大学半导体物理期末考试试卷a试题答案..讲解学习

电子科技大学二零 九 至二零 一零 学年第 一 学期期 末 考试半导体物理 课程考试题 A 卷 ( 120分钟) 考试形式: 闭卷 考试日期 2010年 元月 18日课程成绩构成:平时 10 分, 期中 5 分, 实验 15 分, 期末 70 分一、选择题(共25分,共 25题,每题1 分)A )的半导体。

A. 不含杂质和缺陷B. 电阻率最高C. 电子密度和空穴密度相等D. 电子密度与本征载流子密度相等2、如果一半导体的导带中发现电子的几率为零,那么该半导体必定( D )。

A. 不含施主杂质B. 不含受主杂质C. 不含任何杂质D. 处于绝对零度3、对于只含一种杂质的非简并n 型半导体,费米能级E F 随温度上升而( D )。

A. 单调上升B. 单调下降C. 经过一个极小值趋近EiD. 经过一个极大值趋近Ei4、如某材料电阻率随温度上升而先下降后上升,该材料为( C )。

A. 金属 B. 本征半导体 C. 掺杂半导体 D. 高纯化合物半导体5、公式*/m q τμ=中的τ是半导体载流子的( C )。

A. 迁移时间 B. 寿命 C. 平均自由时间 D. 扩散时间6、下面情况下的材料中,室温时功函数最大的是( A ) A. 含硼1×1015cm -3的硅 B. 含磷1×1016cm -3的硅 C. 含硼1×1015cm -3,磷1×1016cm -3的硅 D. 纯净的硅7、室温下,如在半导体Si 中,同时掺有1×1014cm -3的硼和1.1×1015cm -3的磷,则电子浓度约为( B ),空穴浓度为( D ),费米能级为( G )。

将该半导体由室温度升至570K ,则多子浓度约为( F ),少子浓度为( F ),费米能级为( I )。

(已知:室温下,n i ≈1.5×1010cm -3;570K 时,n i ≈2×1017cm -3)A 、1×1014cm -3B 、1×1015cm -3C 、1.1×1015cm -3D 、2.25×105cm -3E 、1.2×1015cm -3F 、2×1017cm -3G 、高于EiH 、低于EiI 、等于Ei8、最有效的复合中心能级位置在( D )附近;最有利陷阱作用的能级位置在( C )附近,常见的是( E )陷阱。

电子科大 2009半导体B卷答案

电子科大 2009半导体B卷答案

………密………封………线………以………内………答………题………无………效……电子科技大学二零 至二零 学年第 学期期 考试半导体物理学 课程考试题 B 卷( 120 分钟) 考试形式: 闭卷 考试日期 20 10 年 3 月 3 日课程成绩构成:平时 20 分, 期中 分, 实验 分, 期末 80 分物理常数:电子电量1.6⨯10-19C ,氢原子基态能量13.6eV ,基态轨道半径oA 53.0,普朗克常数6.63⨯10-34J ⋅s ,玻尔兹曼常数1.38⨯10-23 J/K一、选择题(共30分,共 15题,每题2 分)1、每个硅原子周围有( ③ )个价电子,每个砷原子周围有( ④ )个价电子,每个镓原子周围有( ② )个价电子。

①二个 ②三个 ③四个 ④五个2、设一维晶格的晶格常数为a ,则晶格中电子势函数V 和能量E 的周期性表达式为( ③ )。

①()()sa x V x V +=,()()na k E k E +=,其中n 和k 为整数 ②()⎪⎭⎫⎝⎛+=a s x V x V ,()()na k E k E +=,其中n 和k 为整数 ③()()sa x V x V +=,()⎪⎭⎫⎝⎛+=a n k E k E ,其中n 和k 为整数 3、在外力f 作用下,电子波矢k 随时间t 变化率与作用力f 的关系为( ③ )。

①t k hf = ②dt dk f = ③dtdk h f = 4、半导体禁带宽度的数量级为( ① )。

① 1.0 eV ② 10.0 eV ③ 100.0 eV5、硅材料中空位表现出(② )作用,间隙原子表现出(① )作用。

锗材料中位错表现出(③ )作用。

①施主 ②受主 ③施主和受主6、费米分布函数()E f 的物理意义为( ④ ),而()[]E f -1的物理意义为( ③ )。

①能级为E 的一个量子态上占据的空穴数 ②能级为E 的一个量子态上占据的电子数………密………封………线………以………内………答………题………无………效……③能级为E 的一个量子态被空穴占据的概率 ④能级为E 的一个量子态被电子占据的概率7、能量在c E E =和()2*28100L m h E E n c +=之间单位体积中的量子态数为( ③ )。

电子科技大学2009-2010光电检测试卷B答案

电子科技大学2009-2010光电检测试卷B答案

一、简答题(共40分,共5题,每题8分)1. p-n结在外加正向偏压时,外加电压削弱内建电场,使空间电荷区变窄,载流子的扩散运动加强,构成少数载流子的注入,从而在p-n结附近产生导带电子和价带空穴的复合。

一个电子和一个空穴的一次复合将释放出与材料性质有关的一定复合能量,这些能量会以热能、光能或部分热能和部分光能的形式辐射出来,产生电致发光现象,这就是LED的发光机理。

因为p-n结在外加正向偏压时,即使没有光照,电流也随着电压指数级在增加,所以有光照时,光电效应不明显。

p-n结必须在反向偏压的状态下,有明显的光电效应产生,这是因为p-n结在反偏电压下产生的电流要饱和,所以光照增加时,得到的光生电流就会明显增加。

2. 当半导体材料受光照时,由于对光子的吸收引起载流子浓度增大,因而导致材料电导率增大,这种现象称为光电导效应,是一种内光电效应。

材料对光的吸收有本征型和非本征型,所以光电导效应也有本征型和非本征型两种。

当光照射PN结时,只要入射光子能量大于材料禁带宽度,就会在结区产生电子-空穴对。

光生电子——空穴对就被内建电场分离开来,空穴留在P区,电子通过扩散流向N区,这种光照零偏PN结产生开路电压的效应,称为光伏效应.当光照射到某种物质时,若入射的光子能量 h足够大,那么它和物质中的电子相互作用,可致使电子逸出物质表面,这种现象称为光电发射效应,又称为外光电效应。

3. 所谓光电效应是指,光辐射入射到光电材料上时,光电材料发射电子,或者其电导率发生变化,或者产生感生电动势的现象。

光电效应实质上是入射光辐射与物质中束缚于晶格的电子或自由电子的相互作用所引起的。

光电效应就对光波频率(或波长)表现出选择性。

在光子直接与电子相互作用的情况下,其响应速度一般比较快。

按照是否发射电子,光电效应又分为内光电效应和外光电效应。

具体有光电子发射效应、光电导效应、光生伏特效应、光子牵引效应和光电磁效应等。

光热效应的实质是探测元件吸收光辐射能量后,并不直接引起内部电子状态的改变,而是把吸收的光能变为晶格的热运动能量,引起探测元件温度上升,温度上升的结果又使探测元件与温度有关的电学性质或其他物理性质发生变化。

半导体物理真题

半导体物理真题

第一章1、Si、GaAs半导体材料的导带底、价带顶分别在k空间什么位置?其晶体结构和解理面分别是什么?哪个是直接带隙,哪个是间接带隙?(2006)2、对于金刚石结构的硅Si和闪锌矿结构的砷化镓GaAs,在(111)晶面上,其原子面密度和面间距都是最大,为什么Si的解理面是(111),而GaAs不是?(2007)3、半导体材料的禁带宽度Eg、N型半导体杂质激活能△Ed以及亲和势X分别表示半导体电子的什么状态特性?(2009年简答题7分)4、与真空电子运动相比,半导体中电子的运动有何不同?(2009年简答题7分)(1-9题63分,每小题7分(2010))Array 5、如图是一个半导体能带结构的E–k关系;1)哪个能带具有x方向更小的有效质量?2)考虑两个电子分别位于两个能带中的十字线处,哪个电子的速度更大些?6、写出硅(Si)和砷化镓(GaAs)的晶体结构、禁带宽度和解理面。

?(2011年简答题6分)第二章3、高阻的本征半导体材料和高阻的高度补偿的半导体材料的区别是什么?(2006)• 1 深能级杂质和浅能级杂质概念(西交大)•1以硅为例,举例说明掺入浅能级和深能级杂质的目的和作用?(西电)• 2.什么是浅能级杂质?什么是深能级杂质?列举出半导体硅中各一种杂质元素的例子。

半导体中掺入这些杂质分别起什么作用? (2011)• 11、定性画出N 型半导体样品,载流子浓度n 随温度变化的曲线(全温区),讨论各段的物理意义,并标出本征激发随温度的曲线。

设该样品的掺杂浓度为ND 。

比较两曲线,论述宽带隙半导体材料器件工作温度范围更宽。

(2006-20分)• 4、室温下,一N 型样品掺杂浓度为Nd ,全部电离。

当温度升高后,其费米能级如何变化?为什么?一本征半导体,其费米能级随温度升高如何变化?为什么?(2007)• 4、一块N 型半导体,随温度升高,载流子浓度如何变化?费米能级如何变化?(2009)• 7、定性说明掺杂半导体费米能级与掺杂浓度和温度的关系是怎样的?(2010)• 10、(20分)设某一种半导体材料室温下(300 K )本征载流子浓度为1.0 × 1010cm−3,价带和导带有效状态密度N V = N C = 1019 cm−3, • 1) 求禁带宽度;• 2) 如果掺入施主杂质N D = 1016 cm−3,求300 K 下,热平衡下的电子和空穴浓度;• 3) 对于上面的样品,在又掺入N A = 2 × 1016 cm−3的受主杂质后,求新的热平衡电子和空穴浓度(300 K )。

2009西安电子科技大学微机原理试题A(正考)试题答案A

2009西安电子科技大学微机原理试题A(正考)试题答案A
15、将DL中保存的字母ASCII码变换成相应的小写字母的ASCII码的逻辑指令为OR DL,20H,而把它变换成相应的大写字母的ASCII码的逻辑指令为AND AL,5FH
16、若(AX)=565BH,则CPU执行:SUB AX,C546H指令后,CF=1,OF=1;执行:AND AX,8219H指令后,OF=0。
MOV DX,280H
MOV AL,01H
LOP:OUT DX,AL ;使Q0对应的LED发光二极管亮
CALL DELAY1S ;调用1秒延时子程序
ROL AL,1
JMP LOP
4、在以8086构成的最大方式系统中,有一片8254的端口地址分别为301H、303H、305H和307H,给定的外部时钟为512kHz。要求利用计数器1和2产生如图2所示的周期信号,画出8254与8086最大方式系统(地址线只使用 A0~A9)的连接图。并编写初始化程序。(8分)
Var2 DB’XiDian’,’2010’,’LUCK’
3.在缓冲区buf1中留出100个字节的存储空间;
Buf1 DB 100 DUP(?)
4.在缓冲区buf2保存5个字节的55H,再保存10个字节的240,并将这一过程重复7次;
Buf2 DB 7 DUP (5 DUP(55H),10 DUP (240))
对于计数器1,工作方式可以选用方式2或方式3,一般采用方式3,这样可以使产生的信号(近似)对称,其时常数CR1 = 1.5ms/1.μs = 768 ,需要采用16位的时常数表示。对于计数器2,工作方式只能选用方式2,其时常数CR2 =(3s +1.5ms)/ 1.5ms = 2001,也需要采用16位的时常数表示。
MOV DX,307H;写计数器2方式控制字

电子科技大学半导体物理期末考试试卷试题答案

电子科技大学半导体物理期末考试试卷试题答案

电子科技大学二零零六至二零零七学年第一学期期末考试半导体物理课程考试题卷 120分钟考试形式:闭卷考试日期 200 7年 1 月 14日注:1、本试卷满分70分;平时成绩满分15分;实验成绩满分15分;2.、本课程总成绩=试卷分数+平时成绩+实验成绩..课程成绩构成:平时分; 期中分; 实验分; 期末分一、选择填空含多选题2×20=40分1、锗的晶格结构和能带结构分别是 C ..A. 金刚石型和直接禁带型B. 闪锌矿型和直接禁带型C. 金刚石型和间接禁带型D. 闪锌矿型和间接禁带型2、简并半导体是指 A 的半导体..A、EC -EF或EF-EV≤0B、EC -EF或EF-EV≥0C、能使用玻耳兹曼近似计算载流子浓度D、导带底和价带顶能容纳多个状态相同的电子3、在某半导体掺入硼的浓度为1014cm-3; 磷为1015 cm-3;则该半导体为 B 半导体;其有效杂质浓度约为 E ..A. 本征;B. n型;C. p型;D. 1.1×1015cm-3;E. 9×1014cm-34、当半导体材料处于热平衡时;其电子浓度与空穴浓度的乘积为 B ;并且该乘积和E、F 有关;而与 C、D 无关..A、变化量;B、常数;C、杂质浓度;D、杂质类型;E、禁带宽度;F、温度5、在一定温度下;对一非简并n型半导体材料;减少掺杂浓度;会使得 C 靠近中间能级Ei;如果增加掺杂浓度;有可能使得 C 进入 A ;实现重掺杂成为简并半导体..A 、E c ;B 、E v ;C 、E F ;D 、E g ; E 、E i ..67、如果温度升高;半导体中的电离杂质散射概率和晶格振动散射概率的变化分别是C.. A 、变大;变大 B 、变小;变小 C 、变小;变大 D 、变大;变小8、最有效的复合中心能级的位置在D 附近;最有利于陷阱作用的能级位置位于C 附近;并且常见的是 E 陷阱..A 、E A ;B 、E B ;C 、E F ;D 、E i ; E 、少子;F 、多子..9、一块半导体寿命τ=15μs;光照在材料中会产生非平衡载流子;光照突然停止30μs 后;其中非平衡载流子将衰减到原来的 C .. A 、1/4 B 、1/e C 、1/e 2 D 、1/210、半导体中载流子的扩散系数决定于该材料中的 A .. A 、散射机构; B 、复合机构; C 、杂质浓度梯度; C 、表面复合速度..11、下图是金属和n 型半导体接触能带图;图中半导体靠近金属的表面形成了D .. A 、n 型阻挡层 B 、p 型阻挡层 C 、p 型反阻挡层 D 、n 型反阻挡层 12、欧姆接触是指 D 的金属-半导体接触.. A 、W ms =0 B 、W ms <0C 、W ms >0D 、阻值较小并且有对称而线性的伏-安特性13、MOS 器件中SiO 2层中的固定表面电荷主要是 B ;它能引起半导体表面层中的能带 C 弯曲;要恢复平带;必须在金属与半导体间加 F ..A .钠离子;B 硅离子.;C.向下;D.向上;E. 正电压;F. 负电压二、证明题:8分由金属-SiO 2-P 型硅组成的MOS 结构;当外加的电压使得半导体表面载流子浓度n s 与内部多数载流子浓度P p0相等时作为临界强反型层条件;试证明:此时半导体的表面势为: 证明:设半导体的表面势为V S ;则表面的电子浓度为:200exp()exp()S i S s p p qV n qVn n KT p KT == 2分当n s =p p0时;有:20exp(),Sp i qV p n KT= 1分 0exp()2Sp i qV P n KT= 1分另外:0exp()exp()exp()F V i F B p V i i E E E E qVp N n n KT KT KT --=-=-= 2分 比较上面两个式子;可知V S =2V B 饱和电离时;P p0=N A ;即:exp()2S A i qVN n KT= 1分故:22ln As B iN KT V V q n ==1分 三、简答题32分1、解释什么是Schottky 接触和欧姆接触;并画出它们相应的I-V 曲线 8分答:金属与中、低掺杂的半导体材料接触;在半导体表面形成多子的势垒即阻挡层;其厚度并随加在金属上的电压改变而变化;这样的金属和半导体的接触称为Schottky 接触..2分金属和中、低掺杂的半导体材料接触;在半导体表面形成多子的势阱即反阻挡层;或金属和重掺杂的半导体接触;半导体表面形成极薄的多子势垒;载流子可以隧穿过该势阱;形成隧穿电流;其电流-电压特性满足欧姆定律..2分Schottky 势垒接触的I-V 特性 欧姆接触的I-V 特性2分 2分2、试画出n 型半导体构成的理想的MIS 结构半导体表面为积累、耗尽、反型时能带图和对应的的电荷分布图 3×3分=9分解:对n 型半导体的理想MIS 结构的在不同的栅极电压下;当电压从正向偏置到负电压是;在半导体表面会出现积累、耗尽、反型现象;其对应的能带和电荷分布图如下:3、 试画出中等掺杂的Si 的电阻率随温度变化的曲线;并分析解释各段对应的原因和特点8分 解:ρAB ;杂质散射导致迁移率也升高;故电阻率ρ随温度T BC :;载流子浓度基本不变..晶格振动散射导致E vE iE F a 堆积E iE Fc 反型E F E i迁移率下降;故电阻率ρ随温度T 升高上升;2分 CD :本征激发为主..晶格振动散射导致迁移率下降;但载流子浓度升高很快;故电阻率ρ随温度T 升高而下降;2分4、试比较半导体中浅能级杂质和深能级杂质对其电学参数的影响;并说明它们在实践中的不同应用..7分 答:在常温下浅能级杂质可全部电离;可显着地改变载流子的浓度;从而影响半导体材料的电导率..深能级杂质在常温下;较难电离;并且和浅能级杂质相比;掺杂浓度不高;故对载流子的浓度影响不大;但在半导体中可以起有效的复合中心或陷阱作业;对载流子的复合作用很强..4分所以;在实际的应用中;通过浅能级杂质调节载流子的浓度、电阻率;改变材料的导电类型;而通过深能级杂质提供有效的复合中心;提高器件的开关速度..3分四、计算题 2×10分1、设p 型硅能带图如下所示;其受主浓度N A =1017/cm 3;已知:W Ag =4.18eV;W Pt =5.36eV;N V =1019/cm 3;E g =1.12eV;硅电子亲和能χ=4.05eV;试求:10分 1室温下费米能级E F 的位置和功函数W S ;2不计表面态的影响;该p 型硅分别与Pt 和Ag 接触后是否形成阻挡层 3若能形成阻挡层;求半导体一边的势垒高度..已知W Ag =4.81eV; W Pt =5.36eV; N v =1019cm -3; E g =1.12eV; Si 的电子亲和能Χ=4.05eV解:1室温下;杂质全部电离;本征激发可以忽略;则:0exp()F VA v E E p N N kT-==- 1分191710ln 0.026ln 0.1210V F V V V A N E E kT E E eV N =+===+ 2分∴ 0.12 1.120.12 1.0n g E E eV =-=-= 1分所以;功函数为: 1.0 4.05 5.05()s n W E eV χ=+=+= 1分2 不计表面态的影响;对P 型硅;当W s >W m 时;金属中的电子流向半导体;使得表面势V s >0;空穴附加能量为qV s ;能带向下弯;形成空穴势垒..故p 型硅和Ag 接触后半导体表面形成空穴势垒;即空穴的阻挡层;而Wpt=5.36eV 大于Ws=5.05eV; 所以p 型硅和Pt 接触后不能形成阻挡层.. 3分3 Ag 和p-Si 接触后形成的阻挡层的势垒高度为:4.815.060.24()D m s qV W W eV =-=-=- 2分5、一个理想的MOS 电容器结构;半导体衬底是掺杂浓度N A =1.5×1015cm -3的p 型硅..如氧化层SiO 2的厚度是0.1μm 时;阈值电压V T 为1.1V;问氧化物层的厚度为0.1μm 时;其V T 是多少 10分 解: 00002S S T S B r Q d QV V V C εε=-+=-+ 2分 ∴100012ST Br Q V V d εε--=10100()2S T B r Q V d V εε=-+ 1分 ∴100012ST Br Q V V d εε--=代入 20200()2ST B r Q V d V εε=-+ 1分可得:022111010.2(2)2(2)2220.1T T B B T B B T B d m V V V V V V V V V d mμμ=-+=-+=- 2分 因为:200exp()exp()S i S s p p qV n qV n n KT p KT==0exp()exp()F B A i i Ei E qVP N n n KT KT -=== 2分 所以;15101.510ln 0.026ln 0.30()1.510A B i F i N kT V E E V q n ⨯=-==⨯=⨯ 1分 故22 1.120.3 1.6()T V V =⨯-⨯= 1分朱俊2006-12-28。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档