西安电子科技大学线性代数试卷及参考答案
线性代数期末试卷及解析(4套全)2018科大

线性代数期末试卷一一、填空题(本题共6小题,每小题4分,满分24分,把答案填在题中横线上)(5)设矩阵210120001⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,矩阵B 满足*2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则||=B __________.解:||=B 19.显然||3=A ,在等式*2=+ABA BA E 两端右乘A 得36=+AB B A (36)-=A E B A 上式取行列式03030||3003=-B故 1||9=B . 方法二:因||3=A ,则*31||||9-==A A将**2=+ABA BA E 移项得 *(2)-=A E BA E 两端取行列式得1||91⋅⋅=B ,故1||9=B .二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A )010100.101⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭. (C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.解:(D )正确. 由题意12=AE B ,其中12010100001⎛⎫⎪= ⎪ ⎪⎝⎭E 为第一种类型初等矩阵,23(1)=BE C ,其中23100(1)011001⎛⎫ ⎪= ⎪ ⎪⎝⎭E 为第三种类型初等矩阵.于是有 1223(1)==AE E C AQ则 1223010100011(1)100011100001001001⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭Q E E与所给答案比较,选(D ).(12)设,A B 为满足=AB 0的任意两个非零矩阵,则必有 (A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关. (D )A 的行向量组线性相关,B 的列向量组线性相关. 解:(A )正确.设A 为m n ⨯矩阵,B 为n p ⨯矩阵,因为 =AB 0故 ()()r r n +≤A B ,其中(),()r r A B 分别表示矩阵,A B 的秩.又因为,A B 皆是非零矩阵,故()0,()0r r >>A B ,所以()r n <A ,()r n <B .因此A 的列秩数,B 的行秩数小于n ,这说明A 的列向量组线性相关,B 的行向量组线性相关,故选(A ).取101000⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB , 由B 的列向量组线性无关知(B )、(D )错误.取101010-⎛⎫= ⎪⎝⎭A ,100110⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则0000⎛⎫= ⎪⎝⎭AB ,由A 的行向量组线性无关知(C )错误.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题满分9分) 设有齐次线性方程组121212(1)0,2(2)20,(2)()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有11111111222220000aa a a a n n n n a na a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B L L L L L L L L L L. 当0a =时,()1r n =<A ,故方程组有非零解,其同解方程组为120n x x x +++=L , 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数. 当0a ≠时,对矩阵B 作初等行变换,有(1)1111000221002100.001001n n a a n n +⎛⎫++⎛⎫ ⎪⎪⎪-⎪-→→⎪ ⎪⎪ ⎪ ⎪ ⎪-⎪⎝⎭-⎝⎭B L L L L L L L L LL可知(1)2n n a +=-时,()1r n n =-<A ,故方程组也有非零解,其同解方程组为 1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. 解法2 方程组的系数行列式为111112222(1)||.2n aa n n a a nnn n a-+++⎛⎫==+ ⎪⎝⎭+A L L L LL当||0=A ,即0a =或(1)2n n a +=-时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有1111111122220000,0000n n n n ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A L L L L L L L L L L 故方程组的同解方程组为120,n x x x +++=L 由此得基础解系为T T T121(1,1,0,,0),(1,0,1,,0),,(1,0,0,,1)n -=-=-=-ηηηL L L L ,于是方程组的通解为1111n n x k k --=++ηηL ,其中11,,n k k -L 为任意常数.当(1)2n n a +=-时,对系数矩阵A 作初等行变换,有 11111111222220000aa a a an n n n a na a ++⎛⎫⎛⎫⎪⎪+-⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A L L LLL L L L L L . 1111000021002100.00101a n n +⎛⎫⎛⎫⎪⎪--⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭L L LL L L L L L L 故方程组的同解方程组为1213120,30,0,n x x x x nx x -+=⎧⎪-+=⎪⎨⎪⎪-+=⎩M由此得基础解系为T(1,2,,)n =ηL , 于是方程组的通解为x k =η,其中k 为任意常数. (21)(本题满分9分)设矩阵12314315a -⎛⎫⎪=-- ⎪ ⎪⎝⎭A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.解:A 的特征多项式为1232201431431515a aλλλλλλλ-----=-------11010(2)143(2)13315115aa λλλλλλ-=--=---------2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根,则有22161830a -++=,解得2a =-.当2a =-时,A 的特征值为2,2,6,矩阵1232123123-⎛⎫⎪-=- ⎪ ⎪--⎝⎭E A 的秩为1,故2λ=对应的线性无关的特征向量有两个,从而A 可相似对角化.若2λ=不是特征方程的二重根,则28183a λλ-++为完全平方,从而18316a +=,解得23 a=-.当23a=-时,A的特征值为2,4,4,矩阵32341032113⎛⎫⎪-⎪-= ⎪⎪--⎪⎝⎭E A的秩为2,故4λ=对应的线性我关的特征向量只有一个,从而A不可相似对角化.线性代数期末试卷二一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中的横线上.) (6)同数学(一)一、(5).二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项目前的字母填在题后的括号内.) (13)同数学(一)二、(11). (14)同数学(一)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.解法1 对方程组的系数矩阵A 作初等行变换,有111111112222200.33333004444400aa a a a a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪=→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭A B 当0a =时,()14r =<A ,故方程组有非零解,其同解方程组为 12340x x x x +++=.由此得基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当0a ≠时,11111000021002100,3010301040014001a a ++⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭B 可知10a =-时,()34r =<A ,故方程组也有非零解,其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为 T(1,2,3,4)=η,于是所求方程组的通解为 k =x η,其中k 为任意常数. 解法2 方程组的系数行列式311112222||(10)33334444aa a a a a++==+++A .当||0=A ,即0a =或10a =-时,方程组有零解. 当0a =时,对系数矩阵A 作初等行变换,有11111111222200003333000044450000⎛⎫⎛⎫⎪⎪⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭A , 故方程组的同解方程组为12340.x x x x +++= 其基础解系为T T T123(1,1,0,0),(1,0,1,0),(1,0,0,1)=-=-=-ηηη,于是所求方程组的通解为112233k k k =++x ηηη,其中123,,k k k 为任意常数. 当10a =-时,对A 作初等行变换,有911191112822201000337330010*******0010--⎛⎫⎛⎫⎪ ⎪--⎪ ⎪=→⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭A91110000210021003010301040014001-⎛⎫⎛⎫⎪⎪--⎪ ⎪→→⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 故方程组的同解方程组为2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为T(1,2,3,4)=η,于是所求方程组的通解为x k =η,其中k 为任意常数. (23)(本题满分9分) 同数学(一)三、(21).线性代数期末试卷三一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(4)二次型222123122331(,,)()()()f x x x x x x x x x =++-++的秩为_________.解:秩为 2 .222123122331(,,)()()()f x x x x x x x x x =++-++ 222123121323222222x x x x x x x x x =++++-于是二次型f 的表示矩阵为211121112⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A易求得()2r =A ,故二次型f 的秩为2.二、选择题(本题8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.) (12)设n 阶矩阵A 与B 等价,则必有 (A )当||(0)a a =≠A 时,||a =B . (B )当||(0)a a =≠A 时,||a =-B . (C )当||0≠A 时,||0=B . (D )当||0=A 时,||0=B . 解:(D )正确.因为n 阶矩阵A 与B 等价,故存在n 阶可逆矩阵,P Q 使 =PAP B故 ||||||||=B P A Q当||0=A 时,自然有||0=B ,故(D )正确.当||0≠A 时,由||,||P Q 皆不为零,故||0≠B ,所以(C )错误.当||0a =≠A 时,||||||a =B P Q ,仅由A 与B 等价,无法推出||||1=±P Q ,故(A )、(B )不正确.当,A B 相似时,(A )才正确.(13)设n 阶矩阵A 的伴随矩阵*≠A 0,若1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,则对应的齐次线性方程组=Ax 0的基础解系.(A )不存在. (B )仅含一个非零解向量. (C )含有两个线性无关的解向量. (D )含有三个线性无关的解向量. 解:(B )正确.因*=A 0,故*A 中至少有一个非零元素. 由于*A 中元素恰为A 的1n -阶代数余子式所组成,故A 至少有一个1n -阶子式非零,这表明()1r n ≥-A .现断言()r n ≠A ,否则A 可逆,则线性方程组=Ax b 有惟一解,这与12,ξξ是非齐次线性方程组=Ax b 不同的解矛盾.由此必有()1r n =-A ,所以齐次线性方程组=Ax 0的解空间维数为(1)1n n --=,即=Ax 0的基础解仅含一个非零解向量. 可见(B )正确,(A )错误.尽管从1234,,,ξξξξ是非齐次线性方程组=Ax b 的互不相等的解,可以得出=Ax 0有三个不同的非零解,如121314,,,---ξξξξξξ但是它们是成比例的线性相关解,也就是说=Ax 0不会有两个,更不会有三个线性无关的解向量,即(C )、(D )不正确.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (20)(本题分13分)设T T T 123(1,2,0),(1,2,3),(1,2,2)a a b a b ==+-=---+ααα,T(1,3,3)=-β. 试讨论当,a b为何值时,(I )β不能由123,,ααα线性表示;(II )β可由123,,ααα惟一地线性表示,并求出表示式;(III )β可由123,,ααα线性表示,但表示式不惟一,并求出表示式. 解:设有数123,,k k k ,使得112233k k k ++=αααβ. (*) 记123(,,)=A ααα. 对矩阵()Aβ施以初等行变换,有1111()22230323a b a a b -⎛⎫ ⎪=+-- ⎪ ⎪-+-⎝⎭A β111101000a b a b -⎛⎫ ⎪→- ⎪ ⎪-⎝⎭.(I )当0,a b =为任意常数时,有1111()0010001b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A β.可知()()r r ≠A A β. 故方程组(*)无解,β不能由123,,ααα线性表示.(II )当0a ≠,且a b ≠时()()3r r ==A A β,故方程组(*)有惟一解 123111,,0,k k k a a=-== 则β可由123,,ααα惟一地线性表示,其表示式为1211(1)a a=-+βαα.(III )当0a b =≠时,对()A β施以初等行变换,有110011()011.0000a a ⎛⎫- ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭A β. 可知()()2r r ==A A β,故方程组(*)有无穷多解,其全部解为123111,(),k k c k c a a=-=+=,其中c 为任意常数.β可由123,,ααα线性表示,但表示式不惟一,其表示式为12311(1)()c c a a=-+++βααα. (21)(本题满分13分)111b b bb b b ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭A L L M M M L. (I )求A 的特征值和特征向量;(II )求可逆矩阵P ,使得1-P AP 为对角矩阵. 解:(I )1º当0b ≠时,11||1b b b b bbλλλλ-------=---E A L LM M ML1[1(1)][(1)]n n b b λλ-=-----.故A 的特征值为121(1),1n n b b λλλ=+-===-L .对于11(1)/n b λ=+-,设A 的属于特征值1λ的一个特征向量为1ξ,则1111[1(1)]1b b b b n b b b ⎛⎫⎪ ⎪=+- ⎪ ⎪ ⎪⎝⎭ξξL L M M M L , 解得T1(1,1,,1)=ξL ,所以全部特征向量为T1(1,1,,1)k k =ξL (k 为任意非零常数).对于21n b λλ===-L ,解齐次线性方程组[(1)]0b --=E A x ,由111000(1)000b b b b b b b b b b ---⎛⎫⎛⎫⎪ ⎪---⎪ ⎪--=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭E A L L LL M M M M M M L L, 解得基础解系T2(1,1,0,,0)=-ξL ,T3(1,0,1,,0)=-ξL ,… …T(1,0,0,,1)n =-ξL .故全部特征向量为2233n n k k k +++ξξξL (2,,n k k L 是不全为零的常数). 2º当0b =时,特征值11n λλ===L ,任意非零列向量均为特征向量. (II )1º当0b ≠时,A 有n 个线性无关的特征向量,令12(,,,)n =P ξξξL ,则 1diag{1(1),1,,1}.n b b b -=+---P AP L 2º当0b =时,=A E ,对任意可逆矩阵P ,均有 1-=P AP E .注:T1(1,1,,1)=ξL 也可由求解齐次线性方程组1()λ-=E A x 0得出.线性代数期末试卷四一、填空题(本题共6小题,每小4分,满分24分. 把答案填在题中横线上.)(4)设1010100,001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭A B P AP ,其中P 为三阶可逆矩阵,则200422-=B A _________. 解:300030001⎛⎫ ⎪ ⎪ ⎪-⎝⎭. 由010100001-⎛⎫ ⎪= ⎪ ⎪-⎝⎭A 得2100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A ,故4=A E ,其中E 是3阶单位阵,所以2004=A E .由1-=B P AP 得200412004-==B P A P E于是 20042210020030022010020030001002001-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭BA E A . (5)设33()ij a ⨯=A 是实正交矩阵,且T 111,(1,0,0)a b ==,则线性方程组=Ax b 的解是__________.解:T (1,0,0).在方程=Ax b 两端左乘TAT T =A Ax A b 则 2131T 122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭x A b将 12131a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭x 代回=Ax b 有2131122232121323331311100a a a a a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由此得22121311a a ++=因A 为实矩阵,故12130a a ==,因此=Ax b 的解为100⎛⎫ ⎪= ⎪ ⎪⎝⎭x .二、选择题(本题共8小题,每小题4分,满分32分. 在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内.)(12)同数学(三)二、(12).三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.)(20)(本题满分13分)设线性方程组1234123412340,220,3(2)(4)41,x x x x x x x x x x x x λμλμ+++=⎧⎪+++=⎨⎪+++++=⎩已知T(1,1,1,1)--是该方程组的一个解. 试求(I )方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II )该方程组满足23x x =的全部解.解:将T (1,11,1)--代入方程组,得λμ=. 对方程组的增广矩阵施以初等变换,得 1102112032441λλλλ⎛⎫ ⎪= ⎪ ⎪++⎝⎭A 102101311.002(21)2121λλλλλλ---⎛⎫ ⎪→ ⎪ ⎪---⎝⎭(I )当12λ≠时,有 1001011010.221100122⎛⎫ ⎪ ⎪ ⎪→-- ⎪ ⎪ ⎪ ⎪⎝⎭A 因()()34r r ==<A A ,故方程组有无穷多解,全部解为T T 11(0,,,0)(2,1,1,2)22k =-+--ξ, 其中k 为任意常数.当12λ=时,有 11101220131100000⎛⎫-- ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭A .因()()24r r ==<A A ,故方程组有无穷多解,全部解为T T T 121(,1,0,0)(1,3,1,0)(1,2,0,2)2k k =-+-+--ξ, 其中12,k k 为任意常数.(II )当12λ≠时,由于23x x =,即 1122k k -+=-. 解得12k =,方程组的解为T T T 111(0,,,0)(2,1,1,2)(1,0,0,1)222=-+--=-ξ. 当12λ=时,由于23x x =,即 121132k k k --=. 解得121142k k =-,故全部解为 T T 2111311(,,,0)(,,,2)444222k =-+---ξ, 其中2k 为任意常数.[注]:在题(II )中,12λ=时,解得21122k k =-时,全部解也可以表示为 T T 1(1,0,0,1)(3,1,1,4)k =-+-ξ,其中1k 为任意常数.(21)(本题满分13分)设三阶实对称矩阵A 的秩为122,6λλ==是A 的二重特征值. 若T T T 123(1,1,0),(2,1,1),(1,2,3)===--ααα都是A 的属于特征值6的特征向量. (I )求A 的另一特征值和对应的特征向量;(II )求矩阵A .解:(I )因为126λλ==是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个. 由题设可得123,,ααα的一个极大无关组为12,αα,故12,αα为A 的属于特征值6的线性无关的特征向量.由()2r =A 可知,||0=A ,所以A 的另一特征值30λ=. 设30λ=所对应的特征向量为T 123(,,)x x x =α,则有T T120,0==αααα,即 121230,20.x x x x x +=⎧⎨++=⎩ 解得此方程组的基础解系为T (1,1,1)=-α,即A 的属于特征值30λ=的特征向量为T (1,1,1)c c =-α,(c 为不为零的任意常数).(II )令矩阵123(,,)=P ααα,则1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭P AP ,所以 1600060000-⎛⎫ ⎪= ⎪ ⎪⎝⎭A P P .又1011112333111333-⎛⎫ ⎪- ⎪ ⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭P , 故422242.224⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A。
西安电子科技大学线性代数试卷及参考答案3

α1 = (1,1, 0 ) ,
T
α 2 = ( 0, 0,1)
T
同理,当 λ2 = 0 时,得线性无关的特征向量为 α 3 = ( −1,1, 0 ) .
T
将 α1 , α 2 , α 3 单位化得
η1 =
1 1 T T T (1,1, 0 ) ,η2 = ( 0, 0,1) ,η3 = ( −1,1, 0 ) 2 2
n
0 0
L
0 0
L L
n −1 1− n
L
三、 (12 分)问 a, b 为何值时,线性方程组
⎧ x1 + x2 + 2 x3 + 3 x4 = 1; ⎪ x + 3 x + 6 x + x = 3; ⎪ 1 2 3 4 ⎨ ⎪3 x1 − x2 − ax3 + 15 x4 = 3; ⎪ ⎩ x1 − 5 x2 − 10 x3 + 12 x4 = b.
故 λ1 = −1 为 A 的三重特征值.
⎛ −3 1 −2 ⎞ ⎛ 1 0 1 ⎞ ⎜ ⎟ ⎜ ⎟ 解 (λ1 E − A) X = 0 .因 − E − A = −5 2 −3 → 0 1 1 ⎜ ⎟ ⎜ ⎟ ⎜ 1 0 1 ⎟ ⎜ 0 0 0⎟ ⎝ ⎠ ⎝ ⎠
得其基础解系中只含一个解向量 α = (−1, −1,1) ,从而属于 λ1 = −1 的线性无关的特征向
⎛1 ⎜ 0 初等行 三 解: A ⎯⎯⎯ →⎜ ⎜0 ⎜ ⎜0 ⎝
( −1) 或
2
n −1
( n + 1)! )
1 2 3 −1 1 2 0 2−a 2 0 0 3
1 ⎞ ⎟ 1 ⎟ = A1 4 ⎟ ⎟ b+5 ⎟ ⎠
电子科大数学真题答案解析

电子科大数学真题答案解析技大学是中国一所著名的高等学府,以其优秀的教学与研究成果而闻名于世。
其数学学科一直以来在国内乃至国际上都具有很高的声誉。
本文将对大数学真题中的一个题目进行详细解析,希望能够帮助读者更好地理解数学的基本概念与解题思路。
首先,我们来看一道大数学真题:已知函数 f(x) 在区间 [a, b] 上具有二阶导数,且满足f(a)=f(b)=0,证明:存在ξ∈(a, b) 使得f''(ξ) = 0。
首先,我们来理解题目的要求。
题目要求证明对于任意满足条件的函数 f(x),在区间 [a, b] 上必然存在一个点ξ,使得f''(ξ) = 0。
这个结论其实是关于函数极值或拐点的一个基本定理,也可以理解为导函数的性质。
那么,我们应该如何证明这个结论呢?我们可以采用反证法的思路来进行证明。
首先,我们假设不存在这样的点ξ,即对于任意满足条件的函数 f(x),在区间 [a, b] 上f''(x) ≠ 0。
根据f''(x) ≠ 0,我们可以得出两种情况:要么 f''(x) > 0,要么 f''(x) < 0。
假设 f''(x) > 0,那么我们可以得到 f'(x) 单调递增(因为导函数与函数的单调性相反)。
根据单调函数的性质可知,若 f'(x) 单调递增,则 f(x) 在 [a, b] 上也单调递增。
因为 f(a) = f(b) = 0,所以在 [a, b] 上 f(x) 恒等于 0。
然而,根据题目条件,我们知道函数 f(x) 在 [a, b] 上有二阶导数,且满足 f(a) = f(b) = 0。
这意味着函数 f(x) 在 [a, b] 上至少有一个拐点(二阶导数正负变换的点)。
这与我们的假设矛盾,因此我们的假设不成立,即存在ξ∈(a, b) 使得f''(ξ) = 0。
西安电子科技大学线性代数试卷及参考答案1

{
x1 + x2 + x3 = 0, 2 x1 + 2 x2 + x3 = 0, xi ∈ R} ,则 dim V =
3.已知向量组 α1 , α 2 , α 3 , α 4 线性无关,而向量组 β 1 = 4α 1 + α 2 , β 2 = α 2 + α 3 ,
β 3 = α 3 + α 4 , β 4 = α 4 + 2λα 1 线性相关,则 λ =
经正交变换化为标准形
2
2
2
f ( y1 , y 2 , y3 ) = 2 y1 + 5 y 2 + 5 y3
2
2
2
, 求参数 a ,b 及用的正交变换。
⎛2 ⎜ ⎜1 六、 (6 分) 已知四阶方阵 A ,X 满足关系式 AXA − 2 A = XA , 且A=⎜ 0 ⎜ ⎜0 ⎝
2
5 3 0 0
0 0 4 7
(1) a ≠ −2 且 a ≠ 1 时,有唯一解 (2) a = −2 时,因为: R ( A) ≠ R( B) ,所以方程组无解。 (3) a = 1 时,因为: R ( A) = R( B) =1<3,所以方程组有无穷多解。
⎛ − 1⎞ ⎛ − 1⎞ ⎛ x1 ⎞ ⎛ 2 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 其通解为 ⎜ x 2 ⎟ = ⎜ 0 ⎟ + k1 ⎜ 1 ⎟ + k 2 ⎜ 0 ⎟ ⎜1⎟ ⎜0⎟ ⎜ x ⎟ ⎜ 0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ 3⎠ ⎝ ⎠
3n + 1 3 L 3 3 3n + 1 3 L 3 3 c1 + c 2 3n + 1 4 L 3 3 r2 − r1 0 1 L 0 0 c1 + c3 L L L L L r3 − r1 L L L L L = 3n + 1 二 解: Dn 3n + 1 3 L 4 3 0 0 L 1 0 M M 0 L 0 1 c1 + c n 3n + 1 3 L 3 4 rn − r1 0
2016年电子科技大学835线性代数真题

1 2 22 四(20分) 设 A , 规定2阶实矩阵线性空间 R 上的线性变换 A 为: 3 4
A : R 22 R 22 , B AB BA, B R 22 .
1 0 0 1 0 0 0 0 (1) 试计算线性变换 A 在 R 22 的标准基 , , , 下的矩阵. 0 0 0 0 1 0 0 1
T T
用写求解过程).
(2) 设非零向量 , R n . 证明: 存在正交矩阵 A 使得 A 当且仅当 T T 0 .
八(20 分). 设 A 是 3 阶实对称矩阵, 各行元素之和均为 0, 且 R 2 I A 2 , A 3I 不可逆.
电子科技大学 2016 年攻读硕士学位研究生入学考试试题 考试科目:835 线性代数
注意事项:所有答案必须写在答卷纸上,否则答案无效。 符号说明: I 表示单位矩阵, A* 表示伴随矩阵, R 表示实数域.
一(15 分) 已知 3 阶矩阵 A 1 , 2 , 1 , B 2 , 1 , 2 , 其中 1 , 2 , 1 , 2 都是 3 维列向量. 若 A 4, B 5 , 求 3 A 2 B . 二(20 分) 是否存在满足如下条件的矩阵? 如果有, 请写出一个或一对这样的矩阵(不必说明 理由). 如果没有, 请说明理由. (1) 两个秩为 2 的矩阵 A43 与 B34 使得 AB O . (2) 3 阶矩阵 C 使得 C 3 O , 但是 C 4 O . (3) 2 阶正交矩阵 F 和 G 使得 F G 也是正交矩阵. (4) 2 阶矩阵 U, W 使得 UW WU I . 三(20 分) 设 2 阶矩阵 A, B 满足 AB 3 A 2 B . (1) 证明: AB BA .
电子科技大学 线性代数试题

一. 填空题(21 分): 1. 设 3 阶矩阵 A 满足| A | = 2, 则 | −(3A* )−1 |= ________.
→
→
2. 设三角形的顶点为原点 O 及 A = (1, 2, − 1), B = (1, 1, 0), 则 OA× OB = _____
___,
面积 SΔOAB = ________.
⎛ 0 1 0 ⎞2005 ⎛ 1 2 3 ⎞ ⎛ 0 0 1 ⎞2006
3.
⎜ ⎜
1
0
0
⎟ ⎟
⎜ ⎜
4
5
6
⎟ ⎟
⎜ ⎜
0
1
0
⎟ ⎟
=_______.
⎜⎝ 0 0 1 ⎟⎠ ⎜⎝ 7 8 9 ⎟⎠ ⎜⎝ 1 0 0⎟⎠
4. R3 中, 方程 z − x2 − y2 = 0 所确定的曲面形状称为____ 22
第 2 页 共 3页
电子科技大学
学院
姓名
学号
任课老师
选课号
………密………封………线………以………内………答………题………无………效……
注意: 在第七、第八题中任选做一题!
七 (7 分 ). 在 R3 中 , 求 线 性 变 换 σ (x1, x2 , x3 ) = (2x1 − x2 , x2 + x3, x1) 在 基 ε1 = (1, 0, 0),
_____.
⎛k 1 1⎞
5.
设矩阵A
=
⎜ ⎜
1
k
1 ⎟⎟的秩R( A) < 3, 则 k = _________.
⎜⎝ 1 1 k ⎟⎠
6. 若二次型 2x12 + x22 + x32 + 2x1x2 + tx2 x3 是正定的, 则 t 的取值范围是________.
西安电子科技大学2021数电期末试题

考试时间 120 分钟一、基础部分(共40分)1.(2分)完成下列数制转换:(25.25)10 = ( )2= ( )16 2.(2分)将十进制数转换为相应的编码表示。
(12)10 = ( )8421BCD= ( )余3码3.(4分)按照反演规则和对偶规则分别写出下列函数的反函数和对偶函数。
F =AB +E̅̅̅̅̅̅̅̅̅̅̅∙D +BC F̅ =__________________________________ F ∗=_________________________________4.(3分)按照要求写出下列函数的等价形式:5.(9分)已知某逻辑函数F 表达式如下,试完成下列内容:F =A̅C ̅+A ̅B ̅+BC +A ̅C ̅D ̅(1)在下图基础上完成该逻辑函数的卡诺图(下画线处也需要填写)(3分)。
===+=BC B A F (或与式) (与非与非式) (与或非式)(2)用卡诺图化简,写出该逻辑函数的最简与或式(2分)。
(3)根据化简结果,列出函数F的真值表(2分)。
(4)根据最简与或式画出该逻辑函数的电路图(2分)。
6.(6分)下图所示电路用于产生2相时钟信号,按照要求完成下述内容。
CQ1Q2(1)分别写出该电路的输出Q1和Q2的逻辑表达式(2分)。
(2)完成下列波形图,并说明在A 取不同值的情况下电路功能(初态为0)(4分)。
C Q Q2AQ1该电路的功能:_______________________________________________________ ____________________________________________________________________。
7.(6分)74194是双向移位寄存器,试判断下列电路的功能,并画出其状态表和状态图。
1(1)在下表中填写电路的状态表,并画出状态图(4分)状态图如下:(2)该电路的功能是:__________________________;(2分)装 订 线8.(8分)阅读如下电路,完成各项以下内容。
线性代数

学习中心/函授站_ 汉中学习中心姓 名 粟深波 学 号 7016140241001西安电子科技大学网络与继续教育学院2015学年上学期《线性代数》期末考试试题(综合大作业)考试说明:1、大作业于2015年4月3日公布,2015年5月9日前在线提交;2、考试必须独立完成,如发现抄袭、雷同、拷贝均按零分计。
一、填空题(每空2分,合计50分) 1、=-===ij n ij n a D a a D 则若, (1) ;2、()的系数是中在函数321112x xx x xxx f ---= (2) 3、对于方程⎪⎩⎪⎨⎧=-+-=-++-=+-.,,013222321321321x x x x x x x x x ,其系数矩阵A = (3) ;4、排列()()32121 --n n n 的逆序数等于 (4) ;5、n 阶行列式共有 (5) 项,正负号由 (6) 决定.6、对于行列式|A |,当i=j ,时,=∑=nk kj kiA a1(7) .7、用克拉默法则解方程组的两个条件:系数行列式不等于0和 (8) .8、若n 元线性方程组有解,且其系数矩阵的秩为r ,则当 (9) 时,方程组有无穷多解. 9、矩阵与行列式有本质的区别,一个数字行列式经过计算可求得其值,而矩阵仅仅是 (10) ,它的行数和列数可以不同.10、333231232221131211a a a a a a a a a = (11) ; 11、最少可经排列n n i i i i 121 - (12) ; 121i i i i n n -次对换后变为排列12、对于方程⎪⎩⎪⎨⎧=-+-=-++-=+-.,,013222321321321x x x x x x x x x ,其增广矩阵B = (13) ;13、=+=*-A A A A 32,1,1且为三阶矩阵设 (14) ;14、n 阶行列式每项都是位于不同行、不同列的 (15) 个元素的乘积.15、行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于(16). 16、用克拉默法则解方程组的两个条件: (17) 和方程组中未知数个数与方程个数相等. 17、若n 元线性方程组有解,且其系数矩阵的秩为r ,则当 (18) 时,方程组有唯一解. 18、矩阵与行列式有本质的区别,行列式是 (19) ,数字行列式经过计算可求得其值. 19、只有当两个矩阵是 (20) 矩阵时,才能进行加法运算.20、若A 、B 为同阶方阵且均可逆,则AB 亦可逆,且(AB )-1= (21) . 21、若A 方阵可逆,则矩阵方程AX =B 的解X = (22) .22、矩阵等价具有的三个性质为: (23) 、 对称性 、 (24) .23、矩阵的初等行变换包括j i r r ↔、 (25) 、j i kr r +三种. 二、选择题(每题2分,合计20分)1、设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231332221131211a a a a a a a a a ,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++133312321131131211232221a a a a a a a a a a a a P 1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,P 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001,则必有( ).A .AP 1P 2=B B .AP 2P 1=BC .P 1P 2A=BD .P 2P 1A=B2、设A 是三阶矩阵,A*是其转置伴随矩阵,又k 为常数k ≠0,1±,则(kA)*=( ). A .kA* B .k 2A* C .k 3A* D .31A* 3、若r(A)=r<n,则n 元线性代数方程Ax=b( ).A .有无穷多个解B .有唯一解C .无解D .不一定有解 4、下列说法中正确的是( ).A .对向量组k αα,,1 ,若有全不为零的数k c c ,,1 使011=++k k c c αα ,则k αα,,1 线性无关B .若有全不为零的数k c c ,,1 使011≠++k k c c αα ,则k αα,,1 线性无关C .若向量组k αα,,1 线性相关,則其中每个向量皆可由其余向量线性表示D .任何n+2个n 维向量必线性相关5、设A 为n 阶矩阵,x 为n 维向量,则以下命题成立的是( )。
《线性代数、概率统计》期末考试试卷及详细答案 二

《线性代数、概率论》期末考试试卷答案一、选择题(每小题后均有代号分别为A, B, C, D的被选项, 其中只有一项是正确的, 将正确一项的代号填在横线上,每小题2分,共40分):1.行列式G的某一行中所有元素都乘以同一个数k得行列式H,则------------C-------------;(A) G=H ;(B) G= 0 ;(C) H=kG ;(D) G=kH 。
2.在行列式G中,A ij是元素a ij的代数余子式,则a1j A1k+ a2j A2k+…+a nj A nk--------D------;(A) ≠G (j=k=1,2,…,n时) ;(B) =G(j, k=1,2,…,n; j≠k时) ;(C) =0 (j=k=1,2,…,n时) ;(D) =0(j, k=1,2,…,n ;j≠k时) 。
3.若G,H都是n⨯ n可逆矩阵,则----------B------------;(A) (G+H)-1=H-1+G-1;(B) (GH)-1=H-1G-1;(C) (G+H)-1=G-1+H-1;(D) (GH)-1=G-1H-1。
4.若A是n⨯ n可逆矩阵,A*是A的伴随矩阵, 则--------A----------;(A) |A*|=|A|n-1;(B) |A*|=|A|n ;(C) |A*|=|A|n+1;(D) |A*|=|A|。
5.设向量组α1, α2,…,αr (r>2)线性相关, 向量β与α1维数相同,则------------C----------- (A) α1, α2,…,αr-1 线性相关;(B) α1, α2,…,αr-1 线性无关;(C) α1, α2,…,αr ,β线性相关;(D) α1, α2,…,αr ,β线性无关。
6.设η1, η2, η3是5元齐次线性方程组AX=0的一组基础解系, 则在下列中错误的是D-------------------(A) η1, η2, η3线性无关;(B) X=η1+η2+ η3是AX=0的解向量;(C) A的秩R(A)=2;(D) η1, η2, η3是正交向量组。
西安电子科技大学《线性代数》2020试题A及答案

西安电子科技大学考试时间 120 分钟试 题1.考试形式闭卷□√ 开卷□ ;2.本试卷共八大题,满分100分一、单项选择题(每小题3分,共15分)1.方程0184211111111132=--x x x 的根是( )(A )1,-1(B )1,2,-2(C )0,1,2(D )1,-1,22.设A 为n 阶方阵,且25A A E O +-=,则1(2)A E -+=( )(A)A E -, (B)E A +, (C)1()3A E +, (D)1()3A E -. 3.设矩阵,AB 都是n 阶矩阵,且0AB=,则矩阵A 和B 的秩( )(A )至少有一个为0 , (B)都小于n,(C )一个是0一个是n, (D)它们的和不大于n. 4.若向量组123,,ααα线性无关,124,,ααα线性相关,则( )(A )1α必不可由234,,ααα线性表示, (B )1α必可由234,,ααα线性表示, (C )4α必不可由123,,ααα线性表示, (D )4α必可由123,,ααα线性表示. 5. 二次型()22212312313,,224f x x x x x x x x =++-的正惯性指数为( ) (A )0, (B )1 , (C )2 , (D )3.二、填空题(每小题4分,共20分)1.若⎥⎦⎤⎢⎣⎡=9491A ,⎥⎦⎤⎢⎣⎡=0110P ,则矩阵=20212020AP P2.向量空间(){}123123123,,|0,,,Tx x x x x x x x x ==-+=∈V x R 的维数是3.已知R(B )=2,且矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9-75654321A ,则R(AB )= 4.向量()T23,=β在2R 的一组基()1=1,1Tα()2=0,1T-α下的坐标为5.已知三阶矩阵A 的特征值为1,3,-2,那么 |A 2+2A -2E | = 三、(10分)计算n 阶行列式5333353333533335 =n D四、(15分)当b a ,为何值时,线性方程组()⎪⎩⎪⎨⎧-=-+--+=++=++bx a x x b x x x x x x 22428852432321321321有唯一解、无解、无穷多解?在有无穷多解时求其通解。
西安电子科技大学高等代数机算与应用作业题参考答案

1
成绩:
1 0 -1 1 -1 1 -1 0 -1 1 -1 0 1 -1 0 0 -1 60606 06600 00606
(2)计算 ABT , BT AT 和 AB100
>> (a*b)' ans =
11000 32222 21222 31212 01010 >> b'*a' ans = 11000 32222 21222 31212 01010 >> (a*b)^100 ans = 1.0e+078 *
2x1 9x2 21x3 7x4 10
>> a=[2,1,2,4;-14,17,-12,7;7,7,6,6;-2,-9,21,-7]
a=
2124
-14 17 -12 7
7766
-2 -9 21 -7
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
线性代数试卷

学习中心/函授站_姓 名学 号西安电子科技大学网络与继续教育学院2022学年上学期《线性代数》期末考试试题(综合大作业) 题号一 二 三 总分 题分25 30 45 得分考试说明:1、大作业试题公布时间:2022年4月22日;2、考试必须独立完成,如发现抄袭、雷同均按零分计;3、答案须用《西安电子科技大学网络与继续教育学院2022春期末考试答题纸》(个人专属答题纸)手写完成,要求字迹工整、卷面干净、整齐;4、拍照要求完整、清晰,一张图片对应一张个人专属答题纸(A4纸),正确上传。
一、简算题。
(共5小题,每题5分,共25分)1. 利用对角线法则计算下列行列式(1) (2) (3) 381141102---b a c a c b c b a 222111c b a c b a 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数;(1) 1 2 3 4; (2)4 1 3 2;二、计算题(共3题,每题10分,共30分)1. 已知线性变换:, ⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.2. 设, 求A k . ⎪⎪⎭⎫ ⎝⎛=λλλ001001A3. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系: ;⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x 三、证明题(共3题,每题15分,共45分)(1) 证明=(a -b )3 1112222b b a a b ab a + (2) 由a 1=(1, 1, 0, 0)T , a 2=(1, 0, 1, 1)T 所生成的向量空间记作V 1,由b 1=(2, -1, 3, 3)T , b 2=(0, 1, -1, -1)T 所生成的向量空间记作V 2, 试证V 1=V 2.(3) 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.。
西科大网络教育线性代数指导书练习题参考答案

西科大网络教育《线性代数》指导书练习题参考答案1、计算排列3,2,1,4,5和3,4,1,2,5的逆序数,并说明奇偶性。
答:3>2,3>1,2>1,所以3,2,1,4,5逆序数为3,是奇数;同理,3>1,3>2,4>1,4>2,所以3,4,1,2,5逆序数为4 ,是偶数。
2、由行列式性质2(P26)知a 11 a12 a13 a11 a12 a1310a21 10a2210a23=10a21a22a23=10×2=20a31 a32a33a31a32a333、答: 1 -2 5 0 1 -2 5 0 1 -2 5 0 1 -2 5 0D= -2 3 -8 -1 = 0 -1 2 -1 = 0 -1 2 -1 = 0 -1 2 -13 1 -24 0 7 -17 4 0 0 -3 -3 0 0 -3 -31 42 -5 0 6 -3 -5 0 0 9 -11 0 0 0 -20=1×(-1)×(-3)×(-20)=60(用行列式性质化上三角行列式)4、答: 1 0 -1 2 0 1 0 1 2D= 1 2 0 ,M11= 3 2 =4,M12= -1 2 =2,M13= -1 3 =5-1 3 2 1A11=(-1)1+1M11=4,A12=(-1)1+2M12=-2,A13=(-1)1+3M13=51 1 1 1 1 4 16 645、答:D4= 4 3 7 -5 1 3 9 2716 9 49 25 = 1 7 49 343 =(-5-4)(-5-3)(-5-7)(7-4)64 27 343 -125 1 -5 25 -125 (7-3)(3-4)=10368P426、答: 1 2 -1 2 1 2 -1 2 1 2 -1 -8 1 2 -8D= 3 0 1 5 = 3 0 1 5 =3 0 1 15 =(-1)4+3(-1) 3 0 15 1-2 0 3 0 -4 1 1 0 -4 1 11 0–4 11-2 -4 1 6 0 0 –1 10 0 0 -1 01 2 -13 2 -13 2 -13= 3 0 0 =3×(-1)2+1 =-3 =3×2×(-15)=900 -4 11 -4 11 0 -15(尽可能出现较多0,注意行列变换时,要在前自加“-”号)7、答:0 1 1 1 3 1 1 1 1 1 1 1 1 0 0 0D= 1 0 1 1 = 3 0 1 1 =3 1 0 1 1 =3 1 -1 0 01 1 0 1 3 1 0 1 1 1 0 1 1 0 -1 01 1 1 0 3 1 1 0 1 1 1 0 1 0 0 -1=3×1×(-1)×(-1)×(-1)=-38、答:x+y-2z=-4 1 1 -2 1 0 0 -7 –31 -7 -31 5x-2y-7z=-7 A= 5 -2 -7 = 5 -7 –31 = = =14 2x-5y-3z=1 2 -5 -3 2 -7 -13 -7 –13 0 -2-4 1 -2 0 -19 -14 -19 -14 19 14 19 14A 1 = -7 -2 -7 = 0 -37 -28 = = = =14 1 -5 -3 1 -5 -3 -37 -28 37 28 -1 01 -4 -2 1 -2 -2 1 -2 -2 5 -7 5 -7A 2 = 5 -7 -7 = 5 0 -7 = 5 0 -7 =(-2)(-1)1+2=2 =-14 2 1 -3 2 4 -3 4 0 -7 4 -7 -1 01 1 -4 1 0 -4 1 0 -4 1 -4 1 -4A 3 = 5 -2 -7 = 5 -7 -7 = 5 -7 -7 =(-7)(-1)2+2=-7 =28 2 -5 1 2 -7 1 -3 0 8 -3 8 -3 0 由克莱姆法则x =A A 1 =1, y =A A 2 =-1, z = AA 1 =2x=1∴线性方程组解为 y=-1 z=29、答:设f(x)=ax3+bx2+cx+d (a ≠0),由f(0)=0,f(1)=-1,f(2)=4,f(-1)=1 0+0+0+d=0 d=0得: a+b+c+d=-1 a+b+c=-1 ① 8a+4b+2c+d=4 ∴ 8a+4b+2c=4 ② ①+③得2b=0∴b=0 -a+b-c+d=1 -a+b-c=1 ③a+c=-1 a=1∴ 8a+2c=4 ∴ c=-2 ∴f(x)=x 3-2x10、答: 1 a 1 a 12…a 1n-11 a2 a 22…a 2n-1范得蒙行列式 ∏(a i -a j )≠0系数行列式A= …………… 1≤j ≤i ≤n1 a n a n 2…a n n-1∵ a i ≠a j (i ≠j;i,j=1,2,…,n)1 a 1 … a 1n-1 1 1 a 12 … a 1n-1A 1= 1 a 2 … a 2n-1 =A, A 2= 1 1 a 22 … a 2n-1=0, 同理,A 3=A 4=…=A n =0…………… ………………1 a n … a n n-1 1 1 a n2 … a n n-1∴由克莱姆法则x 1= A A 1 =A A =1,x 2 =AA 2= 0=x 3=…=x n =0 ∴线性性方程组解为 x 1=1x 2=0 … x n =02 1 -1 -43 3 2 1 -1 -4 3 -311、答:由 -3 1 1 -2x= 1 -1 -3 得 -3 -1 1 - 1 -1 -3 =2x 6 –2 2 3 -1 1∴2x= -4 0 4 ∴x= -2 0 2 1 2 3 1 2 0 1×1+2×0+3×3 4 -1 10 4 -112 、答:AB= -2 1 2 0 1 1 = 4 -3 -1 = 4 –3 -1 3 0 -11 -1 3 -1 123 2 7 6 8 13、答:AB= 1 -2 1 3 0 -1 1 = -5 3 5 3 2 2 1 2 2 -5 2 -5(AB)T = 7 3 B T A T =(AB)T= 7 3 6 5 6 5 8 3 8 3 a b 2 -1 0 1 1 2 a=1,b=2 14、答:由 = = 得 c d b -c 1 0 -c b c=-c,d=b∴a=1,b=2,c=0,d=215、答:∵A 为任一方阵 ∴(A+A T )T =A T +(A T )T =A T +A=A+A T(AA T )T =(A T )T A T =AA T (矩阵性质)∴A+A T ,AA T均为对称阵16、答:∵n 阶方阵可逆∴ A ≠0,且AA -1=I n =1 ∴ A -1A = n I ∴A *AA=I n∴(A *)-1=AA[同时可证明(A *)-1=(A -1)*]17、答: 3 -2 | 0 05 -3 | 0 0 A 1 03 -2A= --------|-------- =A1=0 0 |3 4 0 A 25 -30 0 | 1 2A 1*=-3 2 A 1 =1∴A 1 = 11A A*=A 1*= -3 2-5 3, -5 33 42 -42 -4 1 -2A 2 = 1 2 A 2*= -1 3 A 2 =2, A 2-1=21 -1 3 = 21-23A 1-10 -3 2 0 0∴A -1= P 90 –5 3 0 00 A 20 0 1 -20 0 21-2318、答:方法1:P80方法方法2: 1 –4 -3|1 0 0 1 -4 -3 1 0 0 1 –5 -3|0 1 0 0 -1 0 -1 1 0 -1 6 4|0 0 1 0 0 1 -1 2 1 1 -4 0 -2 6 3 1 0 0|2 2 3 0 1 0 1 -1 0 0 1 0|1 –1 0 0 0 1 -1 2 1 0 0 1|-1 2 1 2 2 3∴A -1= 1 -1 0-1 2 1P107-108,注意:用初等变换方法求逆矩阵时只用行初等或只用列初等变换,不能行列初等变换混用,即一直用行初等或列初等变换使(A ,I ) (I ,A -1)19、答:AX=B ,若A -1存在,则A -1AX=A -1B 即X=A -1B 1 1 -1 1 1 -1|1 0 0 1 1 -1 1 0 0A= 0 2 2 0 2 2 |0 1 0 0 2 2 0 1 0 1 -1 0 , 1 -1 0|0 0 1 0 –2 1 -1 0 11 1 -1 1 0 0 1 1 0 32 31 31 02 2 0 1 0 0 2 0 32 3132-0 0 3 -1 1 1 0 0 3 -1 1 11 1 0 32 31 31 1 0 0|31 61 321 0 0 31 61 31- 0 1 1 |31 6131-0 0 1 31- 31 31 0 0 1|31- 31 3131 61 32 31 61 321 -1 ∴A -1= 31 61 31- ∴X=A -1B= 31 61 31-1 1 3131- 31- 31- 31 312 1=35 21 61- 21-3211 0 2|1 0 0 1 02 1 0 020、答:(A ,I )= 0 3 4|0 1 0 0 3 4 0 1 0 1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0 0 1 2 1 0 1 0 1 2 1 0 1 0 1 2 1 0 12321- 23 1 0 0| -2 1 -3 -2 1 -30 1 0| -2 1 -2 ∴A -1= -2 1 -20 0 1|23 21- 23 2321- 23此题也可只用么列初等变换使 A II A -1用A -1=A1 A *求也方便。
西电线性代数大作业

线性代数大作业学院:电子工程学院班级:021131姓名:XXX学号:02113XXX一、编程求逆程序代码如下:举例如下:1)输入矩阵为非方阵请输入矩阵A=[1 2 5 4;4 5 6 8;7 2 5 9]A =1 2 5 44 5 6 87 2 5 9输入不正确,要求A是n阶矩阵2)输入矩阵为方阵,但矩阵行列式值为0请输入矩阵A=[1 2 5 4;4 5 6 8;1 2 5 4;7 2 5 9]A =1 2 5 44 5 6 81 2 5 47 2 5 9|A|=0,矩阵A不可逆3)输入矩阵为方阵,矩阵行列式值不为0请输入矩阵A=[0 1 1 3;1 -1 0 2;1 -2 3 0;2 1 1 0]A =0 1 1 31 -1 0 21 -23 02 1 1 0矩阵A的行列式值为:a =50矩阵A的逆为:C =-0.2000 0.3000 -0.0600 0.38000.2000 -0.3000 -0.1400 0.22000.2000 -0.3000 0.2600 0.02000.2000 0.2000 -0.0400 -0.0800二、编程将二次型转化为标准型程序代码如下:举例如下:1)请输入二次型的矩阵A=[0 1 1 -1;1 0 -1 1;1 -1 0 1;-1 1 1 0]A =0 1 1 -11 0 -1 11 -1 0 1-1 1 1 0 二次型的标准型为:f =-3*y1^2+y2^2+y3^2+y4^22)请输入二次型的矩阵A=[5 -1 3;-1 5 -3;3 -3 3]A =5 -1 3-1 5 -33 -3 3二次型的标准型为:f =9*y2^2+4*y3^2三、编程实现以下流程:任意输入一个矩阵A→判断是否为方阵程序代码如下:举例如下:1)输入矩阵为非方阵请任意输入一个矩阵A=[1 4 5 6;7 5 3 1;1 4 5 7]A =1 4 5 67 5 3 11 4 5 7矩阵A不是方阵矩阵A的秩为k =32)输入矩阵为方阵,其行列式值不为0请任意输入一个矩阵A=[1 1 1 1;1 1 -1 -1;1 -1 1 -1;1 -1 -1 1]A =1 1 1 11 1 -1 -11 -1 1 -11 -1 -1 1矩阵A的行列式值为a =-16矩阵A的逆矩阵为:C =0.2500 0.2500 0.2500 0.25000.2500 0.2500 -0.2500 -0.25000.2500 -0.2500 0.2500 -0.25000.2500 -0.2500 -0.2500 0.25003)输入矩阵为方阵,其行列式值为0,矩阵不对称请任意输入一个矩阵A=[1 -1 2 -2;2 0 4 4;3 2 -1 0;-1 2 -4 2]A =1 -12 -22 0 4 43 2 -1 0-1 2 -4 2矩阵A的行列式值为|A|=0矩阵A不可逆矩阵A不对称4)输入矩阵为方阵,其行列式值为0,矩阵对称请任意输入一个矩阵A=[-8 2 -2;2 -5 -4;-2 -4 -5]A =-8 2 -22 -5 -4-2 -4 -5矩阵A的行列式值为|A|=0矩阵A不可逆矩阵A对称,是某个二次型的矩阵二次型的标准型为:f =-9*y2^2-9*y3^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试 题 二 (考试时间:120分钟)
一、填空(每小题4分,共32分) 1.若矩阵A 相似于矩阵{}2,1,1−diag ,则3
1−A
= 。
2.设33)(×=ij a A 是实正交矩阵且111=a ,T
b )0,0,1(=,则方程组A X =b 的解为 3.设n 阶方阵A 满足2
340A A E −+=,则1
)4(−+E A = 。
4.设A 为4×3阶矩阵,且R (A )=2,又⎟⎟⎟
⎠
⎞
⎜⎜⎜⎝⎛=301020204B ,则R (A B)- R (A )=
5.若二次型
31212
322213212224),,(x x x tx x x x x x x f ++++=是正定的,则
t 满足 。
6.已知三阶方阵A 的特征值为2,3,4,则A 2= 。
7.已知五阶实对称方阵A 的特征值为0,1,2,3,4,则R (A )= 。
8.设⎟⎟⎠
⎞⎜
⎜⎝⎛=1201A 则=k
A 。
(k 为正整数)。
二、(10分)计算行列式:112230000000
00000011
1
1
1
n n a a a a a D a a −−−=
−L L L M M M O M M L L 三、(10分)设线性方程组⎪⎩⎪
⎨⎧=+−+=+−+=+−+3
23432424321
43214321x x x x x x x x x x x x λ
讨论λ为何值时,方程组无解,有解?在有解的情况下,求出全部解。
四、(10分)已知二次型322
32
22
13214332),,(x x x x x x x x f +++=
(1)把二次型f 写成Ax x x x x f T
=)(321,,的形式; (2)求矩阵A 的特征值和特征向量;
(3)求正交阵Q,使f 通过正交变换X QY =化为标准形。
五、(10分)已知向量组T
)2,0,4,1(1=α,T
)3,1,7,2(2=α,T a ),1,1,0(3−=α,
T
b )4,,10,3(=β,试讨论(1)a,b 取何值时,β不能由331,,ααα线性表出;
(2)a,b 取何值时,β可以由331,,ααα线性表出。
此时写出具体的表达式。
六、(10分)设3阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值,
()T
0,1,11=α,()T 1,1,22=α,()T 3,2,13−−=α都是A 的属于特征值6的特征向量。
(1)求A 的另一个特征值和对应的特征向量; (2)求矩阵A 。
七、(12分)已知R 3
中两组基T
)
0,0,1(1=εT )0,1,0(2=ε,T )1,0,0(3=ε;及()T 0,0,11=α,
()T 0,1,12=α,T )1,1,1(3=α。
(1) 求由基321,,εεε到基331,,ααα的过渡矩阵A ;
(2) 设由基331,,ααα到基321,,βββ的过渡矩阵为⎟
⎟⎟⎠⎞
⎜⎜⎜
⎝
⎛−−=100001111B ,求321,,βββ;
(3) 已知向量ξ在基321,,βββ的坐标为()T
3,2,1,求ξ在基331,,ααα的坐标。
八、设T uu E A −=,E 为n 阶单位阵,u 为n 维非零向量,T u 为u 的转置,
证明: (1)A A =2
的充要条件是1=u u T ;
(2)当1=u u T
时,A 是不可逆的。
试题二参考答案
一、填空
1、 – 1/8 2 、(1,0,0)T
3、 –( A-7E)/31
4、0
5、22<<−t
6、192
7、4
8、⎟
⎟⎠
⎞
⎜
⎜⎝⎛1201k 二 解:提示,第i 列加至第i+1列,i=1,…,n,则D=
1
21000
021+−−n a a L M M M M L L =(-1)n
(n+1)∏=n
i i a 1. 三 解:增广矩阵B=⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡−−→⎥
⎥⎥⎦⎤⎢⎢
⎢⎣⎡−−−110 404 000010101332 44 121131121λλ (1) 当λ=4时,R(B)=3,R(A)=2,所以无解。
(2) 当4≠λ时,R(B)=R(A)=3<4,方程组有无穷解。
令03=x , 得一特解T
),0,1,(41440−−−=λλη;易得方程组的基础解系 T
)0,1,0,1(=η。
所以方程组的通解为0ηη+=k x 。
四 解:(1)⎟
⎟⎟⎠⎞
⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝
⎛==321321*********),,(x x x x x x Ax x f T
.
(2) 由03
2
23
00
02
=−−−−−=
−λλλλA E ,得5,2,1321===λλλ。
当11=λ 时,得对应的特征向量T
)110(1−=α; 当22=λ时,得对应的特征向量T )00
1(2=α;
当53=λ时,得对应的特征向量T
)110(3=α;
(3) 将321,,ααα正交化后得正交阵Q=⎥⎥⎥⎦
⎤
⎢⎢⎢
⎣
⎡−2121212100
010,相应的正交变换为X=QY,使得 2
3
222152y y y f ++=。
五 解:令 A=(321,,ααα),X=),,(321x x x T
,B=β,既讨论方程组AX=B 是否有解。
由 ⎥
⎥
⎥⎥⎦
⎤
⎢⎢⎢⎢⎣⎡−−−−→⎥⎥⎥⎥⎦⎤⎢⎢⎢
⎢⎣⎡−=200001002110302143211010174
3021)(b a a b AB
(1) 当≠b 2时,方程组无解,故β不能由321,,ααα线形表出。
(2) 当b=2时且1≠a 时方程组有唯一解,且β=212αα+−, 当b=2时且1=a 时方程组有无穷解,由⎩⎨⎧+=−−= 221 32
3
1x x x x ,R x ∈3
得β=321)2()21(αααk k k +++−−。
六 解:(1) 由621==λλ是A 的2重特征值,所以A 的属于特征值6的线性无关的特征向量有2个,由题设可得的一个极大无关组是,,21αα故21,αα为A 的属于特征值6的线性无关的特征向量。
由R(A)=2可得|A|=0.所以03=λ。
设03=λ所对应的特征向量为α=),,(321x x x T
,则0,021==ααααT
T ,即
⎩⎨
⎧=++=+
0 2032121x x x x x 得基础解系α=(-1,1,1)T
,所以属于03=λ的特征向量为c α. (2) 令),,(321ααα=P ,则⎟⎟⎟
⎠
⎞⎜⎜
⎜⎝
⎛=−06
61
AP P ,所以
⎟⎟⎟⎠⎞⎜⎜⎜
⎝
⎛−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−4222422240661P P A 。
七 解: (1) (321,,ααα)=),,(321εεεA=),,(321εεε⎟⎟⎟⎠
⎞⎜⎜⎜
⎝
⎛10011
0111. (2) ),,(321βββ=(321,,ααα)B=),,(321εεε A B
=),,(321εεε⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛100110111⎟
⎟⎟⎠⎞⎜⎜⎜
⎝
⎛−−100001111=)
,,(321εεε⎟⎟⎟⎠
⎞
⎜⎜⎜⎝⎛100101010。
所以1β=(0,1,0)T
, 2β=(1,0,0)T
,3β=(0,1,1)T。
(3) ξ= ),,(321βββ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛321= (321,,ααα)⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−100001111⎟⎟⎟
⎠
⎞⎜⎜⎜⎝⎛321=(321,,ααα)⎟⎟⎟⎠⎞
⎜⎜⎜⎝⎛−312
所以ξ在321,,ααα下的坐标为(-2,1,3)T。
八 证明:当ξ是n 维列向量时,ξ
ξT 是n 阶方阵,ξT ξ是数。
(1) 因为 T T T T T
T
T
T
I I I I A ξξξξξξξξξξξξξξξξ)(22))((2
+−=+−=−−=
=T T
T I ξξξξ
ξξ)(2+−。
从而 由A 2
=A 可写为:T T T
T
I I ξξξξξξξξ−=+−)(2,化简得:
(1−ξξ
T
)T ξξ=0.
因为 ξ是非零向量所以T
ξξ0≠,故A 2
=A 当且仅当ξξT
=1。
(2) 用反证法:ξξ
T
=1时,由(1)知A 2=A。
如果A 可逆,则有A A A A 121−−=,从而有A=I,
这与已知矛盾。
从而A 不可逆。