(完整版)线性代数试题和答案(精选版)

合集下载

线性代数试题及详细答案

线性代数试题及详细答案

线性代数试题及详细答案线性代数试题及详细答案————————————————————————————————作者:————————————————————————————————日期:线性代数(试卷一)一、填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,=-1230120011A,则=*A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分)1. 向量组r ααα,,,21Λ线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A(A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数试题(附参考答案)

线性代数试题(附参考答案)

《 线性代数 》课程试题(附答案)一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。

二、 计算行列式的值。

(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。

(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。

(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。

六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。

(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。

(15分)《线性代数》课程试题参考答案一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题4分,共20分)1. 设A为3阶方阵,且|A|=2,则|-2A|=()A. -4B. -8C. 4D. 82. 设向量α=(1,2,3),β=(4,5,6),则向量α与β的点积为()A. 32B. 14C. 22D. 43. 设矩阵A=\[\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{bmatrix}\],则矩阵A的秩为()A. 1B. 2C. 3D. 04. 设A为3阶方阵,且A的行列式为0,则A()A. 可逆B. 不可逆C. 有逆矩阵D. 没有逆矩阵5. 设矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],B=\[\begin{bmatrix}2 & 0\\1 & 2\end{bmatrix}\],则AB-BA=()A. \[\begin{bmatrix}0 & 0\\0 & 0\end{bmatrix}\]B. \[\begin{bmatrix}-2 & 0\\-2 & 0\end{bmatrix}\]C. \[\begin{bmatrix}2 & 0\\2 & 0\end{bmatrix}\]D. \[\begin{bmatrix}0 & 2\\2 & 0\end{bmatrix}\]二、填空题(每题5分,共20分)6. 设矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],B=\[\begin{bmatrix}5 & 6\\7 & 8\end{bmatrix}\],则AB=()。

7. 设向量α=(1,2,3),β=(2,3,4),则向量α与β的叉积为()。

(完整版)线性代数习题集(带答案)

(完整版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。

(A) 0 (B )1- (C) 1 (D) 25。

=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210。

若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。

(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数习题及解答完整版

线性代数习题及解答完整版

线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

线性代数(完整版)

线性代数(完整版)

线性代数复习题一、选择题1、 课本P44第5题四元素乘积243241k i a a a a 是四阶行列式ij a (i,j=1,2,3,4)中的一项,i,k 的取值及该项前应冠以的符号,有下列四种可能情况:(1)i=3,k=1,前面冠以正号 (2)i=3,k=1,前面冠以负号 (3)i=1, k=3,前面冠以正号 (4)i=1.k=3,前面冠以负号 选项正确的是(C )A 、1.3正确B 、1.4正确C 、2.3正确D 、2.4正确 解:当i=3,k=1时,N(3241)+N(1432)=4+3=7,该项前面冠以负号当i=1,k=3时,N(1243)+N(1432)=1+3=4,该项前面冠以正号 故选择C2、 课本P44第7题 下列选项中不属于五阶行列式ij a (i,j=1,2…5)中的一项的是(C )A 、5445322311a a a a a B 、2534431251a a a a a -C 、4521345213a a a a a -D 、1122334455a a a a a解:选项C 中,N(15324)+N(32415)=4+4=8,前面应该冠以正号,而选项中是负号,故不属于五阶行列式中的一项3、 3、课本P45第9题若行列式D=,1333231232221131211=a a a a a a a a a 则行列式3332313123222121131211111324324324a a a a a a a a a a a a D ---==( A ) A 、-12 B 、12 C 、-24 D 、24解:333231232221131211333231232221131111333231312322212113121111343434242424324324324a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---+=--- =333231232221131211)3(*40a a a a a a a a a -+=(—12)*1=—12设行列式D=333231232221131211a a a a a a a a a ,则行列式313332313121231221211113121111423312693423a a a a a a a a a a a a a a a --+-+----=( B ) A 、12D B 、24D C 、-24D D 、36D解:313332313121231221211113121111423312693423a a a a a a a a a a a a a a a --+-+----=—3313332313121231221211113121111423423423a a a a a a a a a a a a a a a ------ =—3(313331312123212111131111434343a a a a a a a a a a a a ---+313332312123122111131211424242a a a a a a a a a a a a ------) =—3313332312123122111131211424242a a a a a a a a a a a a ------=(-3)*(-2)313332312123122111131211444a a a a a a a a a a a a --- =6313332312123122111131211444a a a a a a a a a a a a ---=6(333231231221*********a a a a a a a a a +313231211221111211a a a a a a a a a ---) =6333231231221131211444a a a a a a a a a =6*4333231231221131211a a a a a a a a a =24D ,故选择B5、 课本P46第12题设aa 0100200001000=—1,则a=( A )A 、—1/2B 、1/2C 、—1D 、1解:aa 0100200001000=1*41)1(+-0200100a =(—1)*(—2a )=2a=—1,则a=—1/2,选择答案A876543210000000a a a a a a a a 中的7a 的代数余子式为( B )A 、542632a a a a a a -B 、632542a a a a a a -C 、542631a a a a a a -D 、854863a a a a a a -解:7a 的代数余子式为0000)1(6543241a a a a a +-=-(542632a a a a a a -)=632542a a a a a a -,选择B7、 课本P47第17题行列式vud c y x b a000000=( C )A 、abcd-xyuvB 、adxv-bcyuC 、(ad-bc )(xv-yu )D 、(ab-cd )(xy-uv )解:vud c y x b a000000=a*vud yx 0000)1(11+-+c*vuy x b 0000)1(31+-=a (xdv-ydu )+c (byu-bxv )=ad (xv-yu )+bc (yu-xv )=(ad-bc )(xv-yu ),选择答案C8、 课本P48第23题若齐次线性方程组⎪⎩⎪⎨⎧=++=-+=+-0002321321321x x kx x kx x x x x 有非零解,则k 必须满足( D )A 、k=4B 、k=—1C 、k ≠—1且k ≠4D 、k=—1或k=4解:1111112kk D --==1111211kk --=kkk k +----1103120112=kkk +----+11312)1(211=(-2k-1)(1+k)-3(1-k ²)=(1+k )(k-4)由于齐次线性方程组有非零解,所以D=0,即(1+k )(k-4)=0,解得k=-1或者k=4,选D9、 课本P48第24题若第8题中的齐次线性方程组仅有零解,则K 必须满足( C )A 、k=4B 、k=—1C 、k ≠—1且k ≠4D 、k ≠—1或k ≠4解:由于齐次线性方程组仅有零解,则D ≠0,所以(1+k )(k-4)≠0,解得k ≠—1且k ≠4,选C 10、 课本P105第1题有矩阵2*33*22*3,,C B A ,下列矩阵运算可行的是( B ) A 、AC B 、ABC C 、BAC D 、AB-BC解:只有左边矩阵的列数与右边矩阵的行数一样,两者才可以相乘, 如3*22*3*B A 是可以相乘的,但是2*32*3*C A 不可以相乘的。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。

答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。

答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。

答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。

答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。

答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。

答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。

答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。

(完整版)线性代数试题和答案(精选版)

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。

m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。

130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。

13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。

120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。

设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。

6C。

2 D. –24。

设A是方阵,如有矩阵关系式AB=AC,则必有( )A。

A =0 B. B≠C时A=0C. A≠0时B=C D。

|A|≠0时B=C5。

已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。

2C。

3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。

有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。

有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。

设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。

(完整word版)线性代数试题和答案(精选版)

(完整word版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题(共28分)、单项选择题(本大题共 14小题,每小题2分,共28分)在每小题列出①四个选项中只有 一个是符合题目要求◎,请将其代码填在题后①括号内。

错选或未选均无分。

A. -6 C. 24. 设A 是方阵,如有矩阵关系式 AB =AC ,则必有( A. A = 0C. A =0 时 B =C5. 已知3X 4矩阵A O 行向量组线性无关,则秩( A. 1 C. 3 D.46.设两个向量组a 1, a 2,…,a s 和B 1, 3 2,…,3 s 均线性相关,则()A. 有不全为0 O 数入1,入2,…,入s 使入1 a 什入2 a 2+…+入s a s =0和入1 3什入2 3 2+…入s 3 s =0B. 有不全为0 O 数入1,入2,…,入s 使入1 ( a 1+ 3 1) +入2 ( a 2+ 3 2) +…+入s ( a s + 3 s ) =0C. 有不全为0 O 数入1,入2,…,入s 使入1 ( a 1- 3 1) +入2 ( a 2- 3 2)+…+入s ( a s - 3 s ) =0D. 有不全为0 O 数入1,入2,…,入s 和不全为0 O 数卩1 ,卩2,…,卩s 使入1 a 计入2a 2+…+入 s a s =0 和卩 1 3 1+ 卩 2 3 2+ …+ 卩 s 3 s =0 7. 设矩阵A O 秩为r ,则A 中( )A. m+n C. n-a11a12a13a11=m ,a 21 a 22a 23 a 21a11 a 12 ' a13a 21 a 22 亠a 23B. - (m+n)D. m- n等于(2•设矩阵A =3.设矩阵 ■‘3 -1 21 0 -1 V-2 14丿中位于 (1 , 2)0兀素是(B. 6 D.-)B. B = C 时 D. | A0 时 B =C A T)等于( )B. 2 1•设行列=n ,则行列式(10 2 VP 0 A. C.0,则A -1等于(3丿,A *是A ①伴随矩阵,则 A A =A.所有r- 1阶子式都不为0C.至少有一个r阶子式不等于08.设Ax=b是一非齐次线性方程组,n 1,A. n什n 2是Ax=0 O—个解B.所有r- 1阶子式全为0D.所有r阶子式都不为0n 2是其任意2个解,则下列结论错误O是1 1B. —n 1+ n 2是Ax=b O—个解C. n i -n 2 是 Ax=O ①一个解D.2 n 1- n 2 是 Ax=b ①一个解 9•设n 阶方阵A 不可逆,则必有( ) A.秩(A )<n B.秩(A )=n- 1 C. A=0 D.方程组Ax=0只有零解 10•设A 是一个n (>3)阶方阵,下列陈述中正确①是( )A. 如存在数入和向量a 使A a =入a,则a 是A ①属于特征值 入①特征向量B. 如存在数入和非零向量a,使(入E - A ) a =0,则入是A ①特征值C. A O 2个不同①特征值可以有同一个特征向量D. 如入1,入2,入3是A O 3个互不相同①特征值, a 1, a 2, a 3依次是A ①属于入i ,入2,入3①特征向量,贝U a 1, a 2, a 3有可能线性相关 11. 设入o 是矩阵A ①特征方程①3重根,A ①属于入°①线性无关①特征向量①个数为 k ,则必有( ) A. k < 3B. k <3C. k=3表示|A |中元素a j ①代数余子式(i,j=1,2,3 ),则2 218. 设向量(2, -3, 5)与向量(-4, 6, a )线性相关,贝y a= 一 . 19. ______________ 设A 是3X 4矩阵,其秩为3,若n 1, n 2为非齐次线性方程组 Ax=b O 2个不同①解,则它 ◎通解为 .20.设A 是m x n 矩阵,A ①秩为r (<n ),则齐次线性方程组 Ax=0①一个基础解系中含有解①个 数为D. k>312. 设A 是正交矩阵,则下列结论错误①是(A.| A|2必为 1 -1 ■ T C. A = A13. 设A 是实对称矩阵,C 是实可逆矩阵,A. A 与B 相似B. A 与B 不等价C. A 与B 有相同①特征值D. A 与B 合同 14.下列矩阵中是正定矩阵①为()i'2 3:A. I I 母4丿'1 0 0C. 0 2-3©-35」)B.| A 必为1D. A ①行(列)向量组是正交单位向量组 B =C AC .则()4 6」、1 12 0第二部分 、填空题(本大题共 10小题,每小题 小题①空格内。

线性代数试题及答案

线性代数试题及答案

线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

c)(A *kA )(B *A k n)(C *-A kn 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。

答案:基的向量个数2. 矩阵A的行列式表示为_________。

答案:det(A)3. 线性变换的矩阵表示是_________。

(完整)线性代数 期末测试题及其答案

(完整)线性代数 期末测试题及其答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1。

若022150131=---x ,则=χ__________. 2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵. 4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-t B 。

5454<<-t C.540<<t D 。

2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A 。

3B 。

-2 C.5 D.—58.设A 为n 阶可逆矩阵,则下述说法不正确的是( )A 。

0≠AB 。

01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y xC.14322+=+=-z y x D 。

24322+=+=z y x10.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A 。

4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11。

设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T =-)(, 求X 。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。

A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。

A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。

A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。

A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。

A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。

A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。

A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。

A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。

A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。

A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)第一章【1】填空题 (1) 二阶行列式2a ab bb=___________。

(2) 二阶行列式cos sin sin cos αααα-=___________。

(3) 二阶行列式2a bi b aa bi+-=___________。

(4) 三阶行列式xy zzx y yzx =___________。

(5) 三阶行列式a bc c a b c a bbc a+++=___________。

答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。

【2】选择题(1)若行列式12513225x-=0,则x=()。

A -3;B -2;C 2;D 3。

(2)若行列式1111011x x x=,则x=()。

A -1, B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。

A -70;B -63;C 70;D 82。

(4)行列式00000000a ba b b a ba=()。

A 44a b -;B ()222a b-;C 44b a -;D 44a b 。

(5)n 阶行列式0100002000100n n -=()。

A 0;B n !;C (-1)·n !;D ()11!n n +-•。

答案:1.D ;2.C ;3.A ;4.B ;5.D 。

【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。

【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。

答案:(1)τ(134782695)=10,此排列为偶排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解D.2η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值C.Aの2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1C.A-1=A TD.Aの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。

错填或不填均无分。

15.11135692536=.16.设A=111111--⎛⎝⎫⎭⎪,B=112234--⎛⎝⎫⎭⎪.则A+2B= .17.设A=(a ij)3×3,|A|=2,A ij表示|A|中元素a ijの代数余子式(i,j=1,2,3),则(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2= .18.设向量(2,-3,5)与向量(-4,6,a)线性相关,则a= .19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=bの2个不同の解,则它の通解为.20.设A是m×n矩阵,Aの秩为r(<n),则齐次线性方程组Ax=0の一个基础解系中含有解の个数为.21.设向量α、βの长度依次为2和3,则向量α+β与α-βの内积(α+β,α-β)= .22.设3阶矩阵Aの行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为.23.设矩阵A =010********---⎛⎝ ⎫⎭⎪⎪⎪,已知α=212-⎛⎝ ⎫⎭⎪⎪⎪是它の一个特征向量,则α所对应の特征值为 .24.设实二次型f(x 1,x 2,x 3,x 4,x 5)の秩为4,正惯性指数为3,则其规范形为 . 三、计算题(本大题共7小题,每小题6分,共42分)25.设A =120340121-⎛⎝ ⎫⎭⎪⎪⎪,B =223410--⎛⎝ ⎫⎭⎪.求(1)AB T ;(2)|4A |.26.试计算行列式3112513420111533------.27.设矩阵A =423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程AB =A +2B .28.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3の线性组合;若是,则求出组合系数。

29.设矩阵A =12102242662102333334-----⎛⎝⎫⎭⎪⎪⎪⎪. 求:(1)秩(A );(2)A の列向量组の一个最大线性无关组30.设矩阵A=022234243----⎛⎝ ⎫⎭⎪⎪⎪の全部特征值为1,1和-8.求正交矩阵T 和对角矩阵D ,使T -1AT =D .31.试用配方法化下列二次型为标准形f(x 1,x 2,x 3)=x x x x x x x x x 12223212132323444+-+--,并写出所用の满秩线性变换。

四、证明题32.设方阵A 满足A 3=0,试证明E -A 可逆,且(E -A )-1=E +A +A 2.33.设η0是非齐次线性方程组Ax=b の一个特解,ξ1,ξ2是其导出组Ax=0の一个基础解系.试证明(1)η1=η0+ξ1,η2=η0+ξ2均是Ax=b の解; (2)η0,η1,η2线性无关。

答案:一、单项选择题(本大题共14小题,每小题2分,共28分) 1.D 2.B 3.B 4.D 5.C 6.D 7.C 8.A 9.A 10.B 11.A 12.B 13.D 14.C二、填空题(本大题共10空,每空2分,共20分) 15. 6 16. 337137--⎛⎝⎫⎭⎪17. 4 18. –1019. η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 20. n -r 21. –5 22. –2 23. 124. z z z z 12223242++-三、计算题(本大题共7小题,每小题6分,共42分)25.解(1)AB T=120340121223410 -⎛⎝⎫⎭⎪⎪⎪--⎛⎝⎫⎭⎪⎪⎪=861810310⎛⎝⎫⎭⎪⎪⎪.(2)|4A|=43|A|=64|A|,而|A|=1203401212 -=-.所以|4A|=64·(-2)=-12826.解311251342011153351111113100105530------=-----=5111111550----=5116205506255301040 ---=---=+=.27.解AB=A+2B即(A-2E)B=A,而(A-2E)-1=2231101211431531641--⎛⎝⎫⎭⎪⎪⎪=-----⎛⎝⎫⎭⎪⎪⎪-.所以B=(A-2E)-1A=143153164423110123-----⎛⎝⎫⎭⎪⎪⎪-⎛⎝⎫⎭⎪⎪⎪=386 296 2129-----⎛⎝⎫⎭⎪⎪⎪.28.解一----⎛⎝⎫⎭⎪⎪⎪⎪−→−-----⎛⎝⎫⎭⎪⎪⎪⎪2130130102243419053213010112013112−→−--⎛⎝⎫⎭⎪⎪⎪⎪−→−⎛⎝⎫⎭⎪⎪⎪⎪1035011200880014141035011200110000−→−⎛⎝⎫⎭⎪⎪⎪⎪1002010100110000,所以α4=2α1+α2+α3,组合系数为(2,1,1). 解二 考虑α4=x 1α1+x 2α2+x 3α3,即 -++=-=-+=+-=⎧⎨⎪⎪⎩⎪⎪230312243491231223123x x x x x x x x x x .方程组有唯一解(2,1,1)T ,组合系数为(2,1,1).29.解 对矩阵A 施行初等行变换A −→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102000620328209632 −→−-----⎛⎝ ⎫⎭⎪⎪⎪⎪−→−----⎛⎝ ⎫⎭⎪⎪⎪⎪1210203283000620002171212032830003100000=B . (1)秩(B )=3,所以秩(A )=秩(B )=3.(2)由于A 与B の列向量组有相同の线性关系,而B 是阶梯形,B の第1、2、4列是B の列向量组の一个最大线性无关组,故A の第1、2、4列是A の列向量组の一个最大线性无关组。

(A の第1、2、5列或1、3、4列,或1、3、5列也是)30.解 A の属于特征值λ=1の2个线性无关の特征向量为ξ1=(2,-1,0)T , ξ2=(2,0,1)T .经正交标准化,得η1=255550//-⎛⎝ ⎫⎭⎪⎪⎪,η2=2515451553///⎛⎝ ⎫⎭⎪⎪⎪.λ=-8の一个特征向量为ξ3=122-⎛⎝ ⎫⎭⎪⎪⎪,经单位化得η3=132323///.-⎛⎝ ⎫⎭⎪⎪⎪所求正交矩阵为 T =25521515135545152305323////////--⎛⎝ ⎫⎭⎪⎪⎪.对角矩阵 D =100010008-⎛⎝ ⎫⎭⎪⎪⎪.Fpg(也可取T=25521515130532355451523////////---⎛⎝⎫⎭⎪⎪⎪.)31.解f(x1,x2,x3)=(x1+2x2-2x3)2-2x22+4x2x3-7x32=(x1+2x2-2x3)2-2(x2-x3)2-5x32.设y x x xy x xy x11232233322=+-=-=⎧⎨⎪⎪⎩⎪⎪,即x y yx y yx y112223332=-=+=⎧⎨⎪⎩⎪,因其系数矩阵C=120011001-⎛⎝⎫⎭⎪⎪⎪可逆,故此线性变换满秩。

相关文档
最新文档