第一章_金属材料力学性能概要
金属材料的性能 重点概括

1、金属材料的性能包括:使用性能和工艺性能。
2、使用性能:是指金属材料在使用条件下所表现出来的性能,包括①物理性能(如密度、熔点、导热性、导电性、热膨胀性、磁性等)。
②化学性能(如抗腐蚀性、抗氧化性等)。
③力学性能(如强度、塑性、硬度、冲击韧性及疲劳强度等)。
④工艺性能。
力学性能的概念:力学性能是指金属在外力作用下所表现出来的性能。
3、力学性能包括:强度、硬度、塑性、冲击韧性a)金属在静载荷作用下,抵抗塑性变形或断裂的能力称为强度。
强度的大小用应力来表示。
b)根据载荷作用方式不同,强度可分为:抗拉强度、抗压强度、抗弯强度、抗剪强度和抗扭强度等。
一般情况下多以抗拉强度作为判别金属强度高低的指标。
4、金属材料受到载荷作用而产生的几何形式和尺寸的变化称为变形。
变形分为:弹性变形和塑性变形两种5、不能随载荷的去除而消失的变形称为塑形变形。
在载荷不增加或略有减小的情况下,试样还继续伸长的现象叫做屈服。
屈服后,材料开始出现明显的塑性变形。
Fs称为屈服载荷6、sb:强化阶段:7、随塑性变形增大,试样变形抗力也逐渐增加,这种现象称为形变强化(或称加工硬化)。
Fb:试样拉伸的最大载荷。
8、在拉伸试验过程中,载荷不增加(保持恒定),试样仍能继续伸长时的应力称为屈服点。
用符号σs表示,计算公式:σs=Fs/So对于无明显屈服现象的金属材料可用规定残余伸长应力表示,计算公式:σ0.2=F0.2/So9、(2)抗拉强度材料在拉断前所能承受的最大应力称为抗拉强度,用符号σb表示。
计算公式为:σb=Fb/So10、断裂前金属材料产生永久变形的能力称为塑性。
塑性由拉伸试验测得的。
常用伸长率和断面收率表示。
11、伸长率:试样拉断后,标距的伸长与原始标距的百分比称为伸长率。
用δ表示:计算公式:δ=(l1-l0)/l0×100%断面收缩率:试样拉断后,缩颈处横截面积的缩减量与原始横截面积的百分比称为断面收缩率。
用ψ表示12、材料抵抗局部变形特别是塑性变形压痕或划痕的能力称为硬度。
金属材料的力学性能

金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。
如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。
这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。
这种能力就是材料的力学性能。
金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。
钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。
在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。
金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。
力和变形同时存在、同时消失。
如弹簧:弹簧靠弹性工作。
塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。
(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。
塑性变形:在外力消失后留下的这部分不可恢复的变形。
2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。
强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。
材料在常温、静载作用下的宏观力学性能。
是确定各种工程设计参数的主要依据。
这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。
对于韧性材料,有弹性和塑性两个阶段。
弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。
当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。
弹性极限:弹性阶段的应力最高限。
第一章 金属材料的性能

表示直径为10mm的钢球在1000kgf 9.807kN) 10mm的钢球在1000kgf( 如120HBS10/1000/30 表示直径为10mm的钢球在1000kgf(9.807kN) 载荷作用下保持30s测得的布氏硬度值为120 30s测得的布氏硬度值为120。 载荷作用下保持30s测得的布氏硬度值为120。
洛氏硬度压痕
维氏硬度
维氏硬度试验原理
维HV表示,符号前的数字为硬度值, 维氏硬度用符号HV表示,符号前的数字为硬度值,后面的数字按顺序 HV表示 分别表示载荷值及载荷保持时间。 分别表示载荷值及载荷保持时间。 根据载荷范围不同,规定了三种测定方法—维氏硬度试验 、小负荷 根据载荷范围不同,规定了三种测定方法— 维氏硬度试验、显微维氏硬度试验。 维氏硬度试验、显微维氏硬度试验。 维氏硬度保留了布氏硬度和洛氏硬度的优点。 维氏硬度保留了布氏硬度和洛氏硬度的优点。
第一节 金属的力学性能
使用性能:材料在使用过程中所表现的性能。 使用性能:材料在使用过程中所表现的性能。包括力学性 能、物理性能和化学性能。 物理性能和化学性能。 工艺性能:材料在加工过程中所表现的性能。包括铸造、 工艺性能:材料在加工过程中所表现的性能。包括铸造、 锻压、焊接、热处理和切削性能等。 锻压、焊接、热处理和切削性能等。 材料在外力的作用下将发生形状和尺寸变化,称为变形。 材料在外力的作用下将发生形状和尺寸变化,称为变形。 外力去除后能够恢复的变形称为弹性变形。 外力去除后能够恢复的变形称为弹性变形。 外力去除后不能恢复的变形称为塑性变形。 外力去除后不能恢复的变形称为塑性变形。
洛氏硬度HR 洛氏硬度HR HR=( HR=(k-h)/0.002 根据压头类型和主载荷不同,分为九个标尺, 根据压头类型和主载荷不同,分为九个标尺,常用的标尺 为A、B、C。
金属材料力学性能第一章材料的拉伸性能

e
We = e ε e / 2 = e2 / (2E)
0
εe
ε
制造弹簧的材料要求高的弹性比功:( e
大 ,E 小)
四 弹性不完整性
1、滞弹性 (弹性滞后)
----在弹性范围内 快速加载或卸载后, 随时间延长产生附 加弹永生应变的现 象。
加载和卸载时的应力应变曲线不重合形成
一封闭回线 ------ 弹性滞后环
s = Fs / A0
对于拉伸曲线上没有屈服平台的材料,塑性 变形硬化过程是连续的,此时将屈服强度定义 为产生0.2% 残余伸长时的应力,记为σ0.2
s = σ0.2 = F0.2 / A0
抗拉强度b:
定义为试件断裂前所能承受的最大工程 应力,以前称为强度极限。取拉伸图上的最大 载荷,即对应于b点的载荷除以试件的原始截 面积,即得抗拉强度之值,记为σb
无机玻璃、陶瓷以及一些处于低温下的 脆性金属材料,在拉伸断裂前只发生弹性变形, 而不发生塑性变形,其拉伸曲线如图1-3(a)所 示。
➢ 在拉伸时,试件发生轴向伸长,也 同时发生横向收缩。将纵向应变el 与 横(径)向应变er之负比值表示为υ,即 υra=t-ioe)r/,e它l ,也是υ 称材料为的波弹桑性常比数(P。oisson’s
外力作用下,产生变形,这种变形在外力去除时随即消失 而恢复原状。 2. 特性: 1) 可逆性:外力去除时,变形消失,恢复原状。 2) 单值线性关系:应力与应变呈单值线性关系。(OE段) 3) 弹性变形量比较小,一般小于1%。 3. 实质: 金属材料弹性变形是其晶格中原子自平衡位置产生可逆位移 的反映。
1
2´
30.1
24.0
0
4
8.5
ε
17.8
材料力学性能

断面收缩率(ψ):
ψ =(S0-S1)/S0×100%
式中 L0-试样的原始长度
L1-试样拉断时的标距长度
S0-试样的原始截面积
S1-试样断裂处的横截面积
δ和ψ愈大,则塑性愈好。良好的塑性是金属 材料进行塑性加工的必要条件。
三、硬度
硬度:金属材料表面抵抗局部变形的能力
最常用的硬度指标有:布氏硬度(HB)、洛 氏硬度 (HR系列)和维氏硬度(HV)。
有些机件在工作时要受到高速作用的载荷冲击, 如锻压机的锤杆、冲床的冲头、汽车变速齿轮、 飞机的起落架等。
瞬时冲击引起的应力和应变要比静载荷引起的 应力和应变大得多,因此在选择制造该类机件 的材料时,必须考虑材料的抗冲击能力,即冲 击韧度。
TITANIC
TITANIC的沉没与船体材料脆性断裂失效有关!!!
冲击韧度:金属材料抵抗冲击载荷作用而不破
坏的能力。常用一次摆锤冲击试验来测定金属
材料的冲击韧度(大能量、一次冲断)。
试验表明,在冲击载荷不太大的值对组织缺陷很敏感,因此冲击试验是生 产上用来检验冶炼、热加工、热处理等工艺质 量的有效方法。
2F
N mm2
D(D D2 d 2 )
式中:F—试验力,N;D—压头 的直径,mm
2.洛氏硬度
试验时,先加初试验 力(预载荷),然后 加主试验力,压入试 样表面之后,去除主 试验力,在保留初试 验力的情况下,根据 试样残余压痕深度增 量来衡量试样的硬度 大小。
洛氏硬度试验原理图
四、冲击韧度(ak)
第一章 金属材料的力学性能
金属材料力学性能指标主要包括:强度、塑性、 硬度、韧性、疲劳强度等。
工程材料 第1章-金属材料的力学性能解读

F0 F1 100% 断面收缩率: F0
拉 伸 试 样 的 颈 缩 现 象
断裂后
第二节 硬度
材料抵抗其他更硬物质压入其表 面的能力,是表面局部变形的能力。 1、布氏硬度HB
HB 0.102 2P
D( D D 2 d 2 )
布 氏 硬 度 计
压头为钢球时,布氏硬度用符号 HBS表示,适用于布 氏硬度值在450以下的材料。 压头为硬质合金球时,用符号HBW表示,适用于布氏 硬度在650以下的材料。
体心立方金属具有韧脆转
变温度,而大多数面心立 方金属没有。
韧脆转变温度。
建造中的Titanic 号
TITANIC
TITANIC的沉没
与船体材料的质量
直接有关
Titanic 号钢板(左图)和近代船用钢板 (右图)的冲击试验结果
Titanic
近代船用钢板
第四节 疲劳强度
疲劳:材料在低于s的重复交变应力作用下发生断裂 的现象。
式中,σ—应力,单位MPa ;
F—外力,单位N; S—横截面积,单位mm2。
材料在外力的作用下将发生形状和尺寸变化,称为 变形。 外力去除后能够恢复的变形称为弹性变形。 外力去除后不能恢复的变形称为塑性变形。
五万吨水压机
第一节 强度和塑性
强度:材料在外力作用下抵
抗变形和破坏的能力。 屈服强度s:材料发生微 量塑性变形时的应力值。 单位是Mpa。
显微维氏硬度计 小 负 荷 维 氏 硬 度 计
第三节 冲击韧性
是指材料抵抗冲击载荷作 用而不破坏的能力。
指标为冲击
韧性值Ak(通
过冲击实验
测得)。
韧脆转变温度
材料的冲击韧性随温度 下降而下降。在某一温 度范围内冲击韧性值急 剧下降的现象称韧脆转 变。发生韧脆转变的温
金属材料的力学性能

钢铁材料:107次 非铁合金:108次
1
2
n
-1
N1 N2 Nn
Nc
N
Hale Waihona Puke 疲劳曲线部分工程材料的疲劳极限σ
-1(MPa)
三、提高材料疲劳极限的途径
1、设计方面 尽量使用零件避免交角、缺口和截面 突变,以避免应力集中及其所引起的疲劳裂纹。 2、材料方面 通常应使晶粒细化,减少材料内部存 在的夹杂物和由于热加工不当引起的缺陷。如疏 松、气孔和表面氧化等。 3、机械加工方面 要降低零件表面粗糙度值。 4、零件表面强化方面 可采用化学热处理、表面淬 火、喷丸处理和表面涂层等,使零件表面造成压 应力,以抵消或降低表面拉应力引起疲劳裂纹的 可能性。
二、洛氏硬度
1、洛氏硬度测量原理
洛氏硬度HR=K-h/s
式中,K为给定标尺的硬度数,S为给定标尺的单位, 通常以0.002为一个硬度单位。
洛氏硬度试验原理图
2、常用洛氏硬度标尺及适用范围
标 尺 硬度 符号 所用压 总试验力 头 F/N 适用范 围①HR 应用范围
A
HRA
金刚石 圆锥
588.4 20—88
一、布氏硬度
布氏硬度试验示意图
1、布氏硬度试验原理
HB 0.102 2P(N)
D(D - D 2 - d 2 )
式中 P—试验力(N); d—压痕平均直径(mm); D—硬质合金球直径(mm)
2、选择试验规范
根据被测金属材料的种类和试样厚度、选用不同大小的球 体直径D,施加的试验力F和试验力保持时间,按表1—1所 列的布氏硬变试验规范正确选择 。
3、试验优缺点
优点:与布氏、洛氏硬度试验比较,维氏硬度试验不存在 试验力与压头直径有一定比例关系的约束;也不存在压头 变形问题,压痕轮廓清晰,采用对角线长度计量,精确可 靠,硬度值误差较小。 缺点:其硬度值需要先测量对角线长度,然后经计算或查 表确定,故效率不如洛氏硬度试验高。
1、金属的力学性能

低碳钢拉伸试验
灰铸铁拉伸试验
低碳钢的“力——伸长曲线”
强度指标
屈服强度:当金属材料呈现屈服现象时的
应力点。分为上屈服强度(ReH)和下屈服 强度(ReL),一般使用下屈服强度代表屈 服强度。 抗拉强度(Rm):材料在断裂前所能承受 的最大力的应力称为抗拉强度。
压缩试验
破坏后(灰铸铁)
试验前 压缩试样
金属材料与热处理
金属的力学性能
什么是金属的力学性能?
金属材料在载荷作用下会产生几何形状和尺 寸的变化,即变形。这种在外力(或载荷)作用 下表现出来的性能就是金属材料的力学性能。 根据作用性质不同载荷分为:静载荷、冲击载荷、 交变载荷。 静载荷——大小变化不大或变化缓慢的载荷 冲击载荷——短时间内以较高速度作用于机件上的 载荷 交变载荷——大小和方向随时间做周期性变化的载 荷
刻划硬度试验
将欲检测的材料与一个或多个已知硬 度的材料相互刻划,在后者上留下划痕说 明硬度≥后者,反之≤后者硬度。 这类方法能够通过比较粗略估计硬度, 但不够精确。常用于矿石的硬度试验。
压入硬度试验
压入硬度用来反映一种物质抵抗形变 的能力。 在压入硬度测试里,被测物质经过数 次检测直到表面产生压痕。 压入硬度主要应用于工程学和冶金学, 它从多方面描述物质的抗形变性质,如抗 永久形变和特别的抗弹性形变。 常用的硬度试验法有:布氏硬度试验、 洛氏硬度试验和维氏硬度试验。
布氏硬度
布氏硬度主要用于测定铸铁、有色金 属及退火、正火、调质处理后的各种软钢 等硬度较低的材料。
材料 硬度
软木
硬木 铝 铜 碳钢 不锈钢 玻璃
1.6 HBS 10/100
2.6 - 7.0 HBS 15 HB 35 HB 120 HB 250 HB 550 HB
金属材料的力学性能

• •
ae =1/2×ζ e× ε e 弹簧是典型的弹性零件,要求有较大 的弹性比功。弹簧在实际工作中起缓冲和 存储能量作用。 • 实际设计时通过提高弹性极限ζ e ,提 高弹簧的弹性比功。
• 三、强度 • 强度是金属材料在外力的作用下,抵
抗变形和断裂的能力。根据零件的工作状 态不同分为:抗拉强度、抗压强度、抗弯强 度和抗剪强度等。 • 1、屈服强度和条件屈服强度 • 拉伸试样产生屈服现象(塑变)时的 应力。 ζ s=Fs/A0 • 对于许多没有明显屈服现象的金属材 料,工程中常以产生0.2%塑性变形时的应 力,作为该材料的条件屈服强度,用ζ 表示。
• §1—4 断裂韧度 • 机械零件的传统设计一般为强度设计、
刚度校核。强度设计标准为屈服强度。 • 零件在许用应力的条件下工作,不会发 生塑性变形和断裂。 • 实际工作情况往往不同。某些零件在远 远低于屈服强度条件下工作时会发生脆性 断裂,这种情况非常危险,称为低应力脆 断。 • 研究表明低应力脆断是由宏观裂纹扩展 引起的。
• 一、裂纹扩展的基本形式 • 裂纹扩展一般分为张开型、滑开型、撕
开性三种。其中以张开型最为危险。 • 二、应力场强度因子KI • 零件表面是凹凸不平的,在凸点和凹点 最容易引起应力集中,形成应力场。裂纹 的扩展与应力场有直接的关系。衡量应力 场的大小用应力场强度因子KI。
• 三、断裂韧度KIC及其应用 • KI随着和a的增大而增大。达到一定值
• §1—1 强度、刚度、弹性及塑性 • 金属材料的强度、刚度、弹性及塑性用
拉伸试验来测量。 • 一、拉伸曲线与 应力-应变曲线 • 1、拉伸曲线 • 拉伸过程分为 弹性变形、塑性变形和 断裂三个阶段。
• 几点说明:(书中图1-2) • 试件总伸长of,其中gf为弹性变形,og
第1章-金属材料的力学性能

零件抵抗变形和断裂能力的大小,是用零件所用材料的力学性 能指标来反映的。显然,掌握材料的力学性能不仅是设计零件、 选用材料时的重要依据,而且也是按验收技术标准来鉴定材料的 依据,以及对产品的工艺进行质量控制的重要参数。
常用的力学性能有:强度、塑性、刚度、弹性、硬度、冲击韧 度、断裂韧度和疲劳等。
第一章 金属材料的力学性能
金属材料的力学性能:是指金属在不同环境因素(温度、介质)下, 承受外加载荷作用时所表现的行为。这种行为通常表现为金属的 变形和断裂。因此,金属材料的力学性能可以理解为金属抵抗外 加载荷引起的变形和断裂的能力。
在机械制造业中,大多数机械零件或构件在不同的载荷与环境 下工作。如果金属材料不具备足够的抵抗变形和断裂的能力就会 使机件失去预定的效能而损坏,即产生“失效现象”。
2)有色金属N0 取108 、不锈钢及腐蚀介质作用下N0为 106 而不断裂的最大应力,为该材料的疲劳极限。
二、疲劳曲线与疲劳极限
疲劳曲线:交变应力与疲劳寿命(循环周次N)的关系曲 线称为疲劳曲线。
1-一般钢铁材料 2-有色金属、高强度钢等
疲劳极限:材料在无限多次交变载荷作用下,而不发生疲 劳断裂的最大应力。
实际测定时,材料不可能作无数次交变载荷试验,试验时 规定:
1)钢铁材料(曲线1)取循环周次N0为107时能承受的最 大循环应力为疲劳极限。
第一节 强度、刚度、弹性及塑性
一、力.伸长曲线与应力.应变曲线 (一)力-伸长曲线
曲线分三个阶段:1.弹性变形阶段:op、pe段 2.塑性变形阶段:es、sb段 3.断裂阶段:bk段
(二)应力-应变曲线
二、刚度和弹性
(一)弹性模量 弹性模量E是指金属材料在弹性状态下的应力
第1章-金属材料的力学性能

龙芯
联想计算机
没有高温高强度的结构材料,就不可能有今天的航空工业和宇航
工业。
飞机发动机叶片
在航天飞机表面装陶瓷防护瓦片
波音客机
没有低消耗的光导纤维,也就没有现代的光纤通讯。
二十世纪七十年代,人们把材料与能源和信息并列, 称作现代文明的三大支柱之一。
前苏联在1957年把第一颗人造卫星送入
太空,令美国人震惊不已,认识到在导
短试样 ( l0 = 5d0)
(3)试样材料
2020年4月29日星期三
➢退火低碳钢 ➢铸铁
1.1.1 拉伸试验 ——(4)拉伸曲线
图1-4 低碳钢的F-ΔL曲线 2020年4月29日星期三 韧性断口
图1-5 铸铁拉伸曲线 脆性断口
1.1.1 拉伸试验
➢低碳钢拉伸过程中的变形阶段
弹性变形阶段——(op、pe段) 屈服阶段—— (es段) 强化阶段——(sb段) 缩颈阶段——(bk段)
压痕直径 d/㎜
3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72
2.58
564
2.60
555
2.62
547
2.64
538
2.66
530
2.68
522
2.70
514
2.72
507
2.74
499
工程材料第一章--金属材料的力学性能

数值越大,表明材料的断裂韧性越好!
压痕法
试样表面抛光成镜面,在显微硬度仪上,以10Kg负 载在抛光表面用硬度计的锥形金刚石压头产生一压 痕,这样在压痕的四个顶点就产生了预制裂纹。根 据压痕载荷P和压痕裂纹扩展长度C计算出断裂韧性 数值(KIC)。
第一章 金属材料的力学性能
机械零部件在使用过程中一般不允许发生塑性变形,所以 屈服强度是零件设计时的主要依据,也是评定材料强度的 重要指标之一
(三)抗拉强度
表明试样被拉断前所能承载的最大应力
σb= Fb / A0
Fb :试样在破断前所承受的最大载荷
➢ 表示塑性材料抵抗大量均匀塑性变形的能力,也 表示材料抵抗断裂的强度,即断裂强度。
若F 确定,硬度值只与压痕投影的两对角线的平均长 度d有关,d越大,HV越小。
维氏硬度值一般只写数值。 硬度值+硬度符号+试验力大小(kgf)及试验力保持时 间(10-15s不标注)
提问
640HV30的具体意义?
表示在30kgf的试验载荷作用下,保持10-15s时 测得的维氏硬度值为640。
640HV30/20的具体意义?
布氏硬度值单位为N/mm2,但一般只写数值。 硬度值+硬度符号+球体直径+试验力大小及试验力保持 时间(10-15s不标注)
提问
170HBW10/1000/30的具体意义?
表示用直径10mm的硬质合金球,在9807 N(1000 kgf) 的试验载荷作用下,保持30s时测得的布氏硬度值为170。
530HBW5/750的具体意义?
➢ 抗拉强度是零件设计时的重要依据,也是评定金 属材料的强度重要指标之一。
金属材料的力学性能

金属材料的力学性能金属材料在现代工业生产中广泛应用,原因是因为金属材料的机械性能优异,其力学性能在诸多领域都是重要的参考指标。
一、强度金属材料中最为重要的力学性能莫过于强度。
强度是指材料在受到外力时抵抗变形和破坏的能力。
通俗地说,就是指物质能够承受多大的外部负荷。
强度分为屈服强度、抗拉强度和抗压强度。
其中屈服强度是指材料在受到一定压力后开始变形的压力值,抗拉强度是指材料在被拉伸时承受的最大拉力,抗压强度则是指材料在被挤压时所能承受的最大压力。
三者的单位均为N/mm2(纳牛/平方毫米)。
二、延展性金属材料的延展性代表了其受力后能够发生多大的形变,并且保持强大的耐久性。
在加工过程中,延展性的指标非常重要。
延展性又分为材料的伸长率和冷弯性。
伸长率是指材料在拉伸过程中能够延长的量,通常以百分比表示;冷弯性则是指材料在被弯曲或者压缩后仍然能够恢复成原来的形状,并且该过程不会破坏材料的结构。
三、弹性模量弹性模量是金属材料的另一个重要指标,是指材料在受到外来力量后,变形保持弹性状态的能力。
弹性模量越高,材料的抗弯性和抗扭性就越高,同时在结构加工方面也更加有利。
四、硬度硬度是金属材料的固有属性,它描述了材料的抗划痕和抗磨损能力。
硬度指标通常以维氏硬度(HV)表示,维氏硬度是指在标准试件被标准钢球压铸后,钢球和试件之间的形变深度。
五、疲劳强度金属材料的疲劳强度是个复杂的性质。
它是指材料在受到重复荷载后能够承受的最大荷载。
在使用时,金属材料常常会遭受到来自不同方向上的变化载荷,如果材料的疲劳强度不足,则容易出现疲劳破坏的现象。
总体而言,金属材料的力学性能是不可或缺的,它们的强度、延展性、弹性模量、硬度和疲劳强度可为工程师们提供参考指标,帮助他们更好地设计制造各种结构。
在材料科学和工程的领域中,力学性能是研究和开发新材料的基础,因此它对于推动现代工艺和工程技术的发展至关重要。
工程材料 第章金属材料力学性能

工程材料第章金属材料力学性能金属材料是工程领域中最常用的材料之一,其力学性能是影响其应用广泛性的主要因素之一。
本文将介绍金属材料的力学性能及其相关测试方法。
弹性弹性是物质受力后还原原状的能力,也可以理解为物质在接受外力作用后发生形变时,恢复到原来形态的能力。
材料的弹性大小是通过杨氏模量来描述的,即杨氏模量越大,材料的弹性越好。
塑性塑性是物质在外力作用下能够发生不可逆变形的性质。
材料的塑性大小是通过屈服强度来描述的,即材料在承受一定力量后,开始发生塑性变形的能力。
韧性韧性是物质在外力作用下发生断裂前能够吸收的能量的大小。
材料的韧性大小是通过抗拉伸强度和断裂韧性来描述的,即材料在受外力作用下能够承受多大的内部应力,以及在断裂前能够吸收多少能量。
硬度硬度是一种衡量材料抗划伤能力(耐磨性)的能力。
材料的硬度大小是通过摩擦因数或洛氏硬度来描述的。
相关测试方法拉伸测试拉伸测试是最常用的测试方法之一,用于测试材料的弹性和塑性。
测试时,将材料置于拉伸试验机中,对其施加外力,力逐渐增加,直到材料发生断裂。
通过拉伸测试得到材料的弹性模量、屈服强度和抗拉伸强度。
冲击测试冲击测试用于测试材料的韧性。
测试时,将样品夹在两个夹具之间,然后在样品中心以冲击枪或重锤进行打击,通过测试分析样品在冲击时发生的形变和断裂情况,得到材料的冲击韧性参数。
硬度测试硬度测试用于测试材料的硬度。
硬度测试可通过仪器测试或直接使用洛氏硬度试验仪。
直接测试需要使用钻石针、碳化硅或者硬质合金作为冲头,用一定力度压在待测试物的表面上,通过测试压头陷入材料的深度来得到硬度值。
金属材料的力学性能分为弹性、塑性和韧性三种。
弹性通过杨氏模量表示,塑性通过屈服强度表示,韧性通过抗拉伸强度和断裂韧性表示。
同时,硬度也是材料的重要力学性能之一。
测试中最常见和重要的方法为拉伸测试、冲击测试和硬度测试。
因此,金属材料的弹性、塑性、韧性和硬度数据,在实际工程材料的选择、设计与制造中具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.意义
材料有一定的塑性既能保证安全性,又能使材料便于 加工(工艺性能)。
3.常用的塑性指标 1)断后伸长率 =(L1-L0)/L0 2)断面收缩率ψ ψ =(S0-S1)/S0 客观的
一、定义
压痕或划痕的能力。 二、常用的硬度指标
硬度
硬度是指金属材料抵抗局部变形,特别是塑性变形、 可用硬度试验机测定。
金属材料强度与塑性的新、旧标准名词和符号对照表
新标准(GB/T228-2002) 性能名称 符号 旧标准(GB/T228-1987) 性能名称 符号
断面收缩率
断后伸长率 屈服强度
Z
A A11.3 Re
断面收缩率
断后伸长率 屈服强度
ψ
5 10
σs
上屈服强度
下屈服强度 规定非比例延 伸强度 抗拉强度
1.布氏硬度 (HBW、HBS) 2.洛氏硬度(HRA、HRB、HRC等)
3.和维氏硬度(HV)
硬度测试原理
各种硬度表示方法、特点及应用范围
硬度测定 方法 布氏硬度 (HB) 表示方法 特点 应用范围
450HBW5/750/20 不适测薄件或成品; 表示用直径5mm的硬 测试值稳定,准 常用于测HBW值小 质合金球,在750kgf 确,但测量费时, 于650的材料,如灰 载荷下保持20s,测定 且压痕较大。 铸铁、非铁合金及退 的布氏硬度值为450。 火、正火、调质钢等
性能
工艺性能
材料加工 时表现出 的性能
力的相关术语
1)载荷 金属材料在使用和加工过程中所受到的各种 外力统称为载荷,用符号 F表示。 载荷分为静载荷、冲击载荷及变动载荷三种。
2)变形 金属材料受到载荷作用而产生的几何变形和 尺寸的变化称为变形。 变形分为弹性变形和塑性变形。
3)应力(σ)/ˈælfə / 也就是单位面积所能承受的载荷大小。即σ=F/S
冲击韧性与疲劳极限
一、冲击韧性
动载荷
1.衡量指标:冲击吸收功AK 即 AK=mg(H-h)
举例:塑料制品冬天和夏天韧性不同 Ak与温度相关: Ak随温度升高而升高
用试样的断口处截面积SN(cm2)去除AK(J)即得到冲击韧度,用ak 表示(已不用),单位为J/cm2. aK=AK/SN
二、疲劳极限
1.疲劳概念
虽然零件所承受的交变应力数值小于材料的屈服强度, 但在长时间运转后也会发生断裂,这种现象称为疲劳断裂。
据统计,机械零件断裂中有 80%是由于疲劳引起。
对称循环交变应力
2.疲劳曲线与疲劳极限
1)试验证明,金属材料所受最大交变应力σmax 愈大, 则断裂前所受的循环周次N(定义为疲劳寿命)愈少,
三、提高材料疲劳极限的途径
1.设计方面 尽量使用零件避免交角、缺口和截面突变,
以避免应力集中及其所引起的疲劳裂纹。
2.材料方面 通常应使晶粒细化,减少材料内部存在 的夹杂物和由于热加工不当引起的缺陷。 如疏松、气孔和表面氧化等。
3.机械加工方面 要降低零件表面粗糙度值。 4.零件表面强化方面 可采用化学热处理、表面淬火、 喷丸处理和表面涂层等,使零件表面造成压应力,以 抵消或降低表面拉应力引起疲劳裂纹的可能性。
金属的力学性能
1.金属力学性能指标的本质、物理概念、实用
主要内容包括
意义,以及各种力学性能指标间的相互关系;
2.影响金属力学性能的因素,提高金属
力学性能的方向和途径;
3.金属力学性能指标的测试技术
使用性能
材料使用 时表现出 的性能
物理性能、化学性能
力学性能:材料受力时表现出来性能 热加工工艺性能:铸造、锻压、焊 接、热处理 冷加工工艺性能:切削加工
ReH
ReL Rp 例如Rp0.2 Rm
上屈服强度
下屈服强度
σsU
σsL
规定非比例延伸 σP 强度 σP0.2 抗拉强度 σb
强度 力 学 性 能 指 标
定义
总结
弹性极限 屈服强度 抗拉强度
具体的评价指标及其实用意义 定义
具体的评价指标及其实用意义 断面收缩率 定义 硬度 洛氏硬度 常用测试方法及适用场合 布氏硬度 维氏硬度 韧性:评价指标、韧脆转变温度 疲劳强度: 定义、提高措施
2)屈服点与屈服强度 金属材料开始产生屈服现象时的最低应力值称为屈 服点,用符号σs表示。 σs=Fs/Ao 式中Fs—试样发生屈服时的载荷(N); Ao—试样的原始横截面积(mm2)。
工业上使用的某些金属材料,如高碳钢、铸铁等,在拉伸过程中, 没有明显的屈服现象,无法确定其屈服点σs ,按GB/T2228规定, 可用屈服强度σ0.2来表示该材料开始产生塑性变形时的最低应力 值。
塑性
伸长率
操作迅速简便, 压痕小,不如布 50~55HRC,数值越大,氏硬度精确,一 表示材料越硬。 般需测不同部位 几处,求其算术 平均值。
洛氏硬度 (HR)
适宜大量生产成品检 验
维氏硬度 (HV)
特适测软、硬金属及 500Hv100/20表示 陶瓷等非金属材料, 在试验载荷100kgf下 载荷小,压痕浅. 尤其是极薄的零件和 保持20s测定的维氏硬 渗碳层的硬度;还可 度值为500 测显微组织硬度。
屈服强度为试样标距部分产 生0.2%残余伸长率时的应力 值,即 σ0.2=F0.2/Ao 式中
F0.2—试样标距产生的0.2% 残余伸长时载荷(N); Ao—试样的原始横截面积(mm2) 屈服强度的测定
3)抗拉强度 • 金属材料在断裂前所能承受的最大应力值称为抗拉强度, 用符号σ b表示。 σ b=Fb/Ao 式中 Fb—试样在断裂前所承受的载荷(N); Ao—试样原始横截面积(mm2)。 三、塑性 1.定义 金属材料的载荷作用下,断裂前材料发生不可逆永 久变形的能力测量和计算强度与塑性指标)
标准 试样
长试样: L0=10d0 短试样:L0=5d0
断后 试样
低碳钢拉伸曲线
op段,伸长量与载荷成正 比,属于弹性变形阶段
pe段,伸长量与载荷不 成正比,属于弹性变形 阶段 ek段,属于塑形变形阶段
二、强度
1.定义: 金属材料在载荷作用下抵抗塑性变形和断裂 的能力称为强度。 2.意义:强度指标是机器零件选材和设计的主要依据。 3.强度指标 1)弹性极限 材料受到外力时,产生弹性变形时所能承受的最大应力。 用符号σe表示。 σe=Fe/Ao 式中Fe—试样发生弹性变形时的最大载荷(N); Ao—试样的原始横截面积(mm2)。
这种交变应力σmax 与疲劳寿命N的关系曲线称
疲劳曲线或S—N曲线 2)工程上规定,材料经受相当循环周次不发生断裂 的最大应力称为疲劳极限,以符号σ-1表示。
钢铁材料:107次
1
2
非铁合金、超高强度钢:108次
n
-1
N1 N2 Nn
Nc
N
疲劳曲线
部分工程材料的疲劳极限σ-1(MPa)