常见典型应用题解答
四年级数学典型应用题

7.小明家有一片长方形的花园,长是18米,宽是10米。他想把这片花园分成4个相等的小区域,每个小区域的面积是多少平方米?
解答:花园的总面积是18米 × 10米 = 180平方米。每个小区域的面积是180平方米 ÷ 4 = 45平方米。
8.一箱鸡蛋里有30个鸡蛋。小明的家人每天早上吃4个鸡蛋,这箱鸡蛋能够供他们吃几
解答:每天吃4个鸡蛋,那么这箱鸡蛋能供他们吃30个鸡蛋 ÷ 4个鸡蛋/天 = 7.5天。因为不能吃半个鸡蛋,所以这箱鸡蛋能供他们吃7天。
9.一辆火车从城市A出发,以每小时60公里的速度行驶。到达城市B需要3小时。如果中途停留休息30分钟,那么从城市A到城市B一共需要多长
3.一家商店里有48颗苹果,每个苹果卖1.5元。如果一个顾客买了5颗苹果,他需要支付多少钱?
解答:每颗苹果1.5元,所以5颗苹果共需支付5 × 1.5 = 7.5元。
4.一块长方形的土地的长度是12米,宽度是8米。这块土地的面积是多少平方米?
解答:长方形的面积等于长度 × 宽度,所以面积是12米 × 8米 = 96平方米。
四年级数学典型应用题
1.小明有10块钱,他想买3本漫画书,每本书5块钱。他是否有足够的钱买这些书?
解答:小明需要支付3本书 × 5块/本 = 15块。因为他只有10块,所以他没有足够的钱买这些书。
2.一辆巴士上有32名学生,下车的时候有15名学生下车了。还有多少名学生
解答:巴士上的学生数量是32名 - 15名 = 17名学生。
5.一只箱子里有24个巧克力,如果将它们平均分给4个朋友,每个朋友会得到多少个巧
解答:每个朋友得到的巧克力数量等于总数除以朋友的数量,所以每个朋友得到24个巧克力 ÷ 4个朋友 = 6个巧克力。
小升初数学十六类典型应用题(有答案)

小升初数学十六类典型应用题1【平均数问题】1、算术平均数:数量之和÷数量的个数=算术平均数。
例1:五(1)班有48人共栽树453棵,五(2)班有42人,比五(1)班少栽树15棵。
两个班一起平均每人栽树多少棵?解:453+(453-15)=891棵 891÷(48+42)=9.9棵例2:欢欢上学期期末考试时,语文和数学这两门的平均分是89分,想要语文、数学、英语、三门平均分达到92分,英语必须考多少分?解:假设英语为x 分,则(89×2+x)÷3=92,解得x=982、差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
例3:小红跳绳前四次跳绳平均数是182下/分钟,第五次一分钟跳了214下,小红这五次跳绳平均每分钟多少下?解:(214-182)÷5=6.4 所以平均每分钟跳绳182+6.4=188.4下3、数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例4:一辆汽车以每小时 100 千米的速度从甲地开往乙地,到达乙地后,又以每小时 60 千米的速度从乙地开往甲地。
求这辆车的平均速度。
解:汽车以每小时 100 千米的速度从甲地开往乙地,所用的时间为t 1=1001,汽车从乙地到甲地速度为 60 千米/小时,所用的时间是 t 2=601 ,汽车共行的时间为 t 1+t2 ,汽车的平均速度为60110012 =75(千米/小时)2【归一问题】正归一:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
数量关系式:单一量×份数=总数量(正归一)例5:织布多少米?解:2520=1875米反归一:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
总数量÷单一量=份数(反归一)例6:一个织布工人,在七月份织布 4774 米,照这样计算,织布 6930 米,需要多少天?解: 6930 ÷( 4774 ÷ 31 ) =45 (天)3【归总问题】数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量。
一些典型的应用题

应用题一、行程问题1、某校组织学生排队去春游,步行速度为每秒1米,队尾的王老师以每秒2.5米的速度赶到排头,然后立即返回队尾,共用10秒,求队伍的长度是多少米?、解:速度差=2.5-1=1.5米/秒速度和=1+2.5=3.5米/秒设队伍长度为a米a/1.5+a/3.5=105a=3.5x1.5x10a=10.5米或者这样做第一次追及问题,第二次相遇问题速度比=1.5:3.5=3:7我们知道,路程一样,速度比=时间的反比因此整个过程,追及用的时间=10x7/10=7秒那么队伍长度=1.5x7=10.5米2、两列火车从甲乙两地同时相对开出,4小时后在距中点48千米的地方相遇,一直慢车是快车的5/7,他们的速度分别是?甲乙相距?解:已知慢车和快车的速度比为5:7那么相遇时,慢车行了全程的5/12快车行了全程的7/12那么全程=48/(1/2-5/12)=576千米两车的速度和=576/4=144千米/小时慢车速度=144x5/12=60千米/小时快车速度=144x7/12=84千米/小时3、在一个圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到B点,又过8分钟两人再次相遇,甲、乙环形一周各需多少分钟?解:解:将全部路程看作单位1第一次相遇后,再一次相遇,行驶的路程是1那么相遇时间=4+8=12分钟甲乙的速度和=1/12也就是每分钟甲乙行驶全程的1/126分钟行驶全程的1/12×6=1/2也就是说AB的距离是1/2那么6+4=10分钟甲到达B,所以甲的速度(1/2)/10=1/20甲环形一周需要1/(1/20)=20分钟乙的速度=1/12-1/20=1/30乙行驶全程需要1/(1/30)=30分钟4、某学校组织学生去100千米以外的夏令营.汽车只能坐一半人,另一半人步行,先坐车的人在途中某处下车步行,汽车则立刻回去接步行的另一半人,已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间).要使大家下午5点到达,需何时出发?设一半人步行的距离是X,因为二批人是同时出发又同时到达,所以,另一批人的步行距离也是X,那么二批人的乘车距离是:100-X 车从第一批人下车处到回来与第二批人相遇的距离是:100-2X车从出发到与第二批人相遇的时间与第二批人步行的时间相同,所以:[100-X+(100-2X)]/20=X/4X=25即步行距离是25千米,乘车距离是75千米所用时间是:25/4+75/20=10小时那么要在下午5点到,则应该在上午7点出发5、甲,乙两辆汽车同时从东站开往西站,甲车每小时比乙车多性12千米。
小学数学应用题10道(附带答案及详解)

以下是10道小学数学应用题,每道题都附有答案和详细解释。
题目1:班里有20个男生和15个女生。
男生人数占全班总人数的百分之几?解答:先计算男生人数占全班总人数的比例。
男生人数为20,全班总人数为20 + 15 = 35。
所以男生人数占总人数的比例为20/35。
将这个比例转化为百分数,可以得到(20/35) ×100% = 57.14%。
答案:男生人数占全班总人数的57.14%。
题目2:一辆汽车每小时行驶60公里。
如果一个人行走的速度是每小时5公里,那么他需要多长时间才能走完汽车行驶的距离的1/4?解答:汽车每小时行驶60公里,所以它行驶1/4的距离需要(1/4) ×60 = 15公里。
一个人行走的速度是每小时5公里,所以他需要走15/5 = 3小时。
答案:他需要走3小时才能走完汽车行驶距离的1/4。
题目3:在一家餐厅,一份披萨可以分给8个人吃。
如果有24个人,他们需要几份披萨才能每个人都吃到?解答:每份披萨可以分给8个人吃,所以24个人需要分成24/8 = 3份披萨。
答案:他们需要3份披萨才能每个人都吃到。
题目4:班上有30个学生,其中1/3的学生喜欢足球,1/6的学生喜欢篮球。
至少有几个学生喜欢足球或篮球?解答:先计算喜欢足球的学生人数,30 ×(1/3) = 10人。
然后计算喜欢篮球的学生人数,30 ×(1/6) = 5人。
但是这两个群体可能有重叠,所以我们需要将重叠的人数减去。
由于5人中有2人同时喜欢足球和篮球,所以总共有10+5-2=13个学生至少喜欢足球或篮球。
答案:至少有13个学生喜欢足球或篮球。
题目5:一个盒子里有12个苹果和8个橙子,小明闭上眼睛从盒子里随机摸出1个水果。
他拿到苹果的概率是多少?解答:总共有20个水果,其中12个是苹果,所以小明拿到苹果的概率是12/20。
答案:小明拿到苹果的概率是12/20或60%。
题目6:一家商店原价卖一件衣服为100元。
小学数学应用题典型例题(一)(含答案解析)

小学数学应用题典型例题(一)(含答案解析)1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
小学数学典型应用题100道附答案(完整版)

小学数学典型应用题100道附答案(完整版)1. 小明有10 个苹果,小红的苹果数是小明的2 倍,小红有多少个苹果?答案:10×2 = 20(个)2. 商店里有30 个篮球,卖出了15 个,还剩下多少个?答案:30 - 15 = 15(个)3. 一辆汽车每小时行驶80 千米,行驶4 小时,一共行驶了多少千米?答案:80×4 = 320(千米)4. 果园里有120 棵桃树,梨树比桃树少20 棵,梨树有多少棵?答案:120 - 20 = 100(棵)5. 一本书有200 页,小明每天看25 页,看了4 天,还剩多少页没看?答案:200 - 25×4 = 100(页)6. 工厂要生产500 个零件,已经生产了200 个,剩下的要在5 天内完成,平均每天生产多少个?答案:(500 - 200)÷5 = 60(个)7. 学校买了8 套桌椅,每套桌椅150 元,一共花了多少钱?答案:8×150 = 1200(元)8. 长方形的长是12 厘米,宽是8 厘米,它的面积是多少平方厘米?答案:12×8 = 96(平方厘米)9. 一根绳子长50 米,剪掉20 米,剩下的占全长的几分之几?答案:(50 - 20)÷50 = 3/510. 小红有80 元零花钱,花了30 元,还剩下零花钱的几分之几?答案:(80 - 30)÷80 = 5/811. 一个三角形的底是6 分米,高是4 分米,面积是多少平方分米?答案:6×4÷2 = 12(平方分米)12. 小明从家到学校,每分钟走60 米,走了10 分钟,小明家到学校有多远?答案:60×10 = 600(米)13. 一批货物,甲车单独运6 小时运完,乙车单独运8 小时运完,两车一起运,需要几小时运完?答案:1÷(1/6 + 1/8) = 24/7(小时)14. 鸡兔同笼,共有20 个头,56 条腿,鸡和兔各有多少只?答案:假设全是鸡,兔有(56 - 20×2)÷(4 - 2) = 8(只),鸡有20 - 8 = 12(只)15. 果园里苹果树和梨树共180 棵,苹果树是梨树的2 倍,苹果树和梨树各有多少棵?答案:梨树有180÷(2 + 1) = 60(棵),苹果树有120 棵。
小学数学30个典型应用题

小学数学30个典型应用题1. 甲乙两个人共有80元,甲比乙多10元,甲要减去1/5的钱给乙,剩下的钱甲还有多少元?解析:甲比乙多10元,即甲有x元,乙有x-10元。
甲要减去1/5的钱给乙,剩下的钱为4/5x。
所以4/5x = x-10,解得x=50,甲剩下的钱为(4/5)*50=40元。
2. 两个正整数的和是35,差是5,这两个数分别是多少?解析:设两个正整数分别为x和y,所以有x+y = 35和x-y=5。
将两个方程相加得到2x=40,解得x=20,代入第一个方程解得y=15。
所以这两个数分别是20和15。
3. 一辆汽车开车行驶了200公里,行驶速度为60千米每小时,行驶的时间是多少小时?解析:速度等于路程除以时间,所以时间等于路程除以速度。
这里路程为200公里,速度为60千米每小时,所以时间为200/60=3.33小时。
4. 一袋米重5千克,小明买了3袋米,他付了多少钱?如果他付了480元,那么每袋米多少钱?解析:小明买了3袋米,总重量为5千克*3=15千克。
如果他付了480元,那么每千克米的价格为480元/15千克=32元。
所以每袋米的价格为32元*5千克=160元。
5. 一盒饼干有24块,小明吃掉了其中的1/3,还剩下多少块饼干?解析:小明吃掉了1/3,剩下的饼干为原来的2/3。
所以剩下的饼干数量为24块*2/3=16块。
6. 一个苹果25克,小红买了6个苹果,她买了多少克苹果?解析:小红买了6个苹果,总重量为25克*6=150克。
7. 一路程为120公里的旅程,甲和乙同时从同一地点出发,乙的速度是甲速度的1.5倍,他们多少小时后会相遇?解析:设甲的速度为x千米每小时,乙的速度为1.5x千米每小时。
他们相遇时,甲行驶的时间为t小时,乙行驶的时间为1.5t小时。
根据路程等于速度乘以时间的公式,有xt+1.5xt=120,解得t=24/2.5=9.6小时。
所以他们9.6小时后会相遇。
8. 一辆公交车从A地出发,以每小时50千米的速度向B地行驶,另一辆公交车从B地同时以每小时60千米的速度向A地行驶。
小学数学典型应用题及答案(打印)

1、一筐苹果,第一次卖出全部的一半多2个,第二次卖出剩下的一半少3个,还剩15个。
这筐苹果原来一共有多少个?2、有一篮鸡蛋,第一次取出全部的一半多2个,第二次取出余下的一半少2个,篮里还剩20个,原来一共有多少个?3、小胖的奶奶带了一篮鸡蛋,第一次卖掉了一半多4个,第二次卖掉了余下的一半少3个,第三次又卖掉了余下的一半,最后篮子里还剩下4个鸡蛋。
小胖奶奶的篮子里原来有多少个鸡蛋。
4、亲亲读了一本书,第一天看了全部的一半多2页,第二天看了剩下的一半多3页.最后还剩下3页没读.这本书共有多少页?…………………………………⑤、37面彩旗按红黄蓝顺序排列最后一面是什么颜色?……………………………………6、有红黄蓝三种颜色的彩旗60面,按4面红旗、3面黄旗、2面蓝旗的顺序排列挂着,那么最后一面彩旗是什么颜色?红旗共有几面?7、有同样大小的红黄蓝弹子共270个,按照先2个红的,再3个黄的,再4个蓝的排列着,三种颜色的弹子各有多少个?8、南京长江大桥挂了许多彩灯,顺序是3盏红灯 4盏黄灯 2盏绿灯...这样重复排列,第500盏灯是什么颜色?这500盏灯里红灯有多少盏?9、教室里的彩灯按照5盏红灯2盏蓝灯2盏黄灯的顺序循环出现,则第60盏是( )色的,前60盏中有( )红灯?10、公园里有一串彩灯295个,按3个红灯,5个黄灯,1个绿灯的顺序排列。
问最后一个灯是什么色?…………………………11、一件衣服29元,两件49元,我有185元最多可买多少件?还剩多少钱?……………………12、妈妈计划买一部手机,价钱在1200~1500元之间,妈妈只带了950元,计算一下,妈妈最少还要取多少钱?最多要取多少钱?……13、王老师准备买8台录音机,每台录音机的价钱在80元到90元之间,王老师应带多少钱才能保证够用?…………14、李老师带全班39名同学去公园玩,带400元的门票钱够吗?成人票:16元一张,学生:10元一张15、李老师带领全班46名同学去公园玩,门票不分老幼每张15元,团体门票不少于50人,每张10元,怎么购票最省钱?16、王老师和李老师带45个学生去公园玩。
小学数学30种典型应用题和例题完美版

小学数学30种典型应用题和例题完美版1. 简介数学是我们日常生活中不可或缺的一部分。
在小学数学学习中,了解典型应用题和例题对学生的数学素养和问题解决能力的提升至关重要。
本文将为你介绍小学数学中的30种典型应用题和例题,帮助你更好地掌握数学知识。
2. 加减法例题1:小明有10本书,他借给小红3本,借给小芳2本。
请问小明还剩下几本书?解答:小明还剩下10本 - 3本 - 2本 = 5本书。
例题2:一根绳子长5米,小明用了2米,小华用了1米。
还剩下多长?解答:绳子还剩下5米 - 2米 - 1米 = 2米。
3. 乘除法例题1:小明今年考了六次数学考试,每次的成绩分别是85分、92分、78分、89分、90分和87分。
他的平均分是多少?解答:小明的总分是85分 + 92分 + 78分 + 89分 + 90分 + 87分 = 521分,平均分是521分 ÷ 6次 = 86.83分。
例题2:一个班级有40名学生,老师希望将他们分成4个小组,每个小组有多少名学生?解答:每个小组有40名学生 ÷ 4个小组 = 10名学生。
4. 分数例题1:小明吃了一个苹果的四分之三,还剩下四分之一。
苹果一共有多少份?解答:一个苹果的四分之三 + 四分之一 = 一份,即4分之3 + 4分之1 = 4分之4 = 1份。
例题2:小华走了整条路程的三分之二,还剩下400米。
整条路程有多长?解答:整条路程的三分之二 + 400米 = 整条路程,即3分之2 + 400 = 2分之3 = 整条路程。
5. 长方形和正方形例题1:一块长方形的地板长8米,宽4米。
计算地板的面积。
解答:地板的面积是8米 × 4米 = 32平方米。
例题2:一块正方形的地砖边长为6厘米。
计算地砖的周长。
解答:地砖的周长是4条边相加,即6厘米 × 4 = 24厘米。
6. 圆形例题1:一个圆的半径是5厘米,计算圆的周长。
解答:圆的周长是2 × 3.14 × 5厘米 = 31.4厘米。
小学数学典型的30道应用题:定义+数量关系+例题详解

小学数学典型的30道应用题:定义+数量关系+例题详解1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量;1份数量×所占份数=所求几份的数量;另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例 1.买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:买1支铅笔多少钱?0.6÷5=0.12(元)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要 1.92元。
例 2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例 3. 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)7辆汽车1次能运多少吨钢材?5×7=35(吨)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学应用题典型例题(含答案解析)

小学数学应用题典型例题(含答案解析)小学数学应用题典型例题(含答案解析)1. 甲乙两个人合伙经营生意,甲出资4000元,乙出资6000元,合作期满后,盈利12%归甲;如果甲出资比例增加到40%,则盈利归甲的比例是多少?解析:根据合伙人出资比例计算盈利归属比例,盈利归甲的比例为甲出资数额与合伙人总出资数额的比例。
合作期满后,盈利归甲的比例为12%。
现在甲出资比例增加到40%,则甲出资数额为4000元的40%,即4000×0.4=1600元,乙出资数额为6000元的60%,即6000×0.6=3600元。
合伙人总出资数额为4000元+6000元=10000元。
因此,盈利归甲的比例为1600元/10000元=16%。
2. 小明家的电费单如下所示:月份用电量(kWh) 电价(元/kWh)一月 120 0.5二月 150 0.6三月 180 0.6四月 100 0.5请计算小明四个月的电费总额。
解析:根据电费单中的用电量和电价,计算每个月的电费,并将各个月的电费相加得到总额。
一月电费=120kWh × 0.5元/kWh = 60元,二月电费=150kWh × 0.6元/kWh = 90元,三月电费=180kWh × 0.6元/kWh = 108元,四月电费=100kWh × 0.5元/kWh = 50元。
四个月的电费总额为60元 + 90元 + 108元 + 50元 = 308元。
3. 一辆汽车从A地到B地,全程120公里。
上午开了2小时,行驶了60公里;下午从B地返回A地,下午的速度是上午速度的120%。
请问,汽车在下午从B地返回A地需要的时间是多少?解析:上午行驶了60公里,耗时2小时,所以上午的速度为60公里/2小时 = 30公里/小时。
下午的速度为上午速度的120%,即30公里/小时 × 1.2 = 36公里/小时。
下午的行驶距离为60公里,根据速度和距离的关系,时间等于距离除以速度,下午返回A地所需时间为60公里/36公里/小时≈ 1.67小时,约等于1小时40分钟。
三十道典型应用题归纳总结

三十道典型应用题归纳总结在学习过程中,解决应用题是提高数学能力和应用能力的重要途径之一。
本文将对三十道典型的应用题进行归纳总结,通过这些题目的讲解和解答,帮助读者加深理解和掌握数学应用的方法和技巧。
一、简单的百分数问题1. 甲数是乙数的百分之几?(比率问题)解答:甲数除以乙数,然后乘以100%,即可得出结果。
2. 甲数比乙数多了百分之几?(增长率问题)解答:甲数与乙数之差除以乙数,然后乘以100%,即可得出结果。
二、简单的利息问题3. 存款利息问题解答:根据题目提供的利率以及存款的时间,可以计算出存款的利息。
4. 贷款利息问题解答:根据题目提供的利率以及贷款的时间和金额,可以计算出应还的利息。
三、简单的速度问题5. 一个人骑自行车从A地到B地,然后又从B地返回A地。
求整个过程中他的平均速度。
解答:将来回两次的总路程除以总时间,即可得出平均速度。
四、简单的比例问题6. 甲数和乙数的比值是多少?解答:甲数除以乙数,即可得出比值。
7. 甲数和乙数成比例,若甲数是10,乙数是4,求其他数。
解答:设其他数为x,根据比例关系式:10/4=x/y,解方程可得出其他数。
五、简单的平均数问题8. 求若干个数的平均数。
解答:将这些数相加后除以个数,即可得到平均数。
六、简单的问题解码9. 若今天是星期四,1000天后是星期几?解答:1000除以7得到142余数6,因此1000天后是星期四的后一天,即星期五。
七、简单的商品折扣问题10. 原价100元的商品打8折,打折后的价格是多少?解答:原价乘以折扣(8折即0.8),即可得到打折后的价格。
八、简单的图形面积问题11. 正方形的面积是多少?(已知边长)解答:正方形的面积等于边长的平方。
九、简单的图形周长问题12. 正方形的周长是多少?(已知边长)解答:正方形的周长等于边长乘以4。
十、简单的等比数列问题13. 求等比数列的第n项。
解答:根据等比数列的递推关系式,可以求得第n项的值。
第5部分 考点1 典型应用题

3.甲、乙两车同时从东、西两地相向开出,甲车每小时行 60 千米,乙车每小时 行 52 千米,两辆车在离中点 16 千米处相遇。东、西两地相距多少千米? (16×2)÷(60-52)×(60+52)=448(千米) 4.妈妈买了苹果和梨各 1 千克,共花 13.8 元。如果苹果的价钱是梨的 2 倍,每 千克苹果和梨各多少元? 9.2 4.6
3.(东莞 17-18B 卷)观察图形找规律,依据规律填空。
(1)观察图形并填表。
正方形个数 1 2 3
4…
圆形个数 3 5 ( 7 ) ( 9 ) …
上一页 返回首页 下一页
(2)思考问题并填空。 ①当正方形个数为 6 时,圆形有( 13 )个;正方形个数为 n 时,圆形有( 2n+1 ) 个。 ②当圆形个数为 81 时,正方形有( 40 )个。
上一页 返回首页 下一页
5.小明身上的钱是小华的 3 倍,小明如果给小华 60 元,那么两人的钱就一样多。 小明和小华原来各有多少元? 60×2÷(3-1)=60(元) 60×3=180(元) 6.相邻两根电线杆之间的距离是 45 米,从市图书馆到育英小学门口有 36 根电 线杆,再往前 585 米,共有多少根电线杆? [45×(36-1)+585]÷45+1=49(根)
上一页 返回首页 下一页
5.修一条水渠,原计划每天修 800 米,6 天修完。实际 4 天修完,每天修了多少 米? 800×6÷4=1200(米)
上一页 返回首页 下一页
6.按规律画一画。 (1)△□□△□□△□□ △□□ 、 △□□ 、 △□□ (2)根据规律画出被挡部分的珠子。
●●●●●●●●
上一页 返回首页 下一页
升学预测
1.超市购进一些大米和面粉。购进大米的质量是面粉质量的 5 倍,大米比面粉 多 720 千克。超市购进大米和面粉各多少千克? 720÷(5-1)=180(千克) 180×5=900(千克)
小学三年级数学应用题50道及参考答案(典型题)

小学三年级数学应用题50道一.解答题(共50题,共258分)1.一段公路,已经修好了468米,比没有修好的多176米。
这段公路一共长多少米?2.同学们去春游,低年级去了192人,中年级去了208人,高年级去了123人,去春游的一共有多少人?3.花坛里开了1500朵月季花、700朵百合花和180朵牡丹花。
(1)月季花比百合花多开了多少朵?(2)百合花和牡丹花一共开了多少朵?4.一辆摩托车价钱是3800元,一辆小汽车的价钱比一辆摩托车的10倍还多1200元,一辆小汽车的价钱是多少元?一辆小汽车比一辆摩托车的价钱多多少钱?5.学校买来800本书,准备用8个箱子装。
前7个箱子共装了735本,第8个箱子要装多少本?6.玩具汽车185元,玩具飞机139元,玩具轮船88元,300元能买哪两件玩具,还剩多少钱?7.小明有两根长短不一样的绳子,短绳长3分米,长绳长52厘米,它把两根绳子连结后长8分米,连结部分的长是多少厘米?8.果品公司收购苹果26吨,先运走6000千克,剩下的用载重为4吨的卡车一次运完,请问需要几辆这样的卡车?9.小明家装修买来一根长450米的电线,第一次用完了,又买来260米,一共用去电线多少米?10.体育馆原有256人,走了218人,来了146人,现在体育馆里有多少人?11.科技园上午有游客742人,中午有265人离去,下午又来了306位游客,这时园内有多少游客?12.百米赛跑,小明用了15秒,小红用了13秒,他俩谁跑得快?快了多长时间?13.超市卖裤子每条178元,羊毛衫每件289元,鞋每双165元,妈妈有700元,全部买下这三件物品够吗?14.植物园内上午有游客692人,中午有365人离开,下午又来了503位游客,这时园内有多少位游客?15.小乐家养了36只鸭,正好是母鸡的4倍,是公鸡的9倍。
小乐家一共养了多少只鸡?16.游乐园有3架飞机,每架限乘13人.我们有40名同学,能一次坐完吗?17.阳阳用走路的方法测量卧室的宽度,他的步长大约5分米,阳阳走了6步,卧室的宽大约是几米?18.工地上有536袋水泥,第一天用了143袋,第二天用了157袋,还剩多少袋?19.一本童话书厚8毫米,几本这样的童话书摞(luò)起来厚4厘米?20.运动场跑道每圈长400米,大雄每天跑5圈,他一星期(7天)跑多少米?21.希望小学320名同学乘7辆车去春游,前6辆车各坐48名同学,第7辆车要坐多少名同学?22.港口已停靠了196条船,又停靠了55条船,现在有多少条船?23.星期末,爸爸妈妈带我和弟弟到公园玩,公园的门票是:成人每位28元,儿童每位14元,这次游公园一共要花多少钱?24.学校组织二年级学生去参观博物馆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题一直是小学数学的一个重要内容。
也是一个难点。
由于应用题涉及很多方面的知识,小学生在没有辅导学习的情况下很难准确理解应用题的题意,其实很多典型应用题有其固定的解题规律,只要掌握,就容易做出正确答案。
在此整理了小学阶段常见典型应用题,与大家一起分享!
1. 小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了
2.8元的本子,最后剩下0.8元。
小明带了多少元钱?
解:还原问题的思考方法来解答。
买圆珠笔后余下2.8+0.8=3.6元,买钢笔后余下(3.6-0.5)×2=6.2元,小明带了(6.2+0.5)×2=13.4元
2. 儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄。
当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?
解:儿子20年后是6+20=26岁,父亲今年26+10=36岁。
父亲比儿子大36-6=30岁。
当父亲的年龄是儿子年龄的2倍时,儿子的年龄就和年龄差相同,那么到那时儿子30岁。
所以,是在30-6+2007=2031年时。
3. 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?
解:“恰好在中间”,我的理解是在蓝甲虫和黄甲虫的中点上。
假设一只甲虫A行在红甲虫的前面,并且让红甲虫一直保持在蓝甲虫和A甲虫的中点上。
那么A甲虫的速度每分钟行13×2-11=15厘米。
当A甲虫和黄甲虫相遇时,就满足条件了。
所以A甲虫出发时,与黄甲虫相距12×100-15×(30-20)=1050厘米。
需要1050÷(15+15)=35分钟相遇。
即红甲虫在9:05时恰好居于蓝甲虫和黄甲虫的中点上。
4. 一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到。
这支解放军部队的行程是多少千米?
解:车速提高1/9,所用的时间就是预定时间的1÷(1+1/9)=9/10,所以预定时间是20÷(1-9/10)=200分钟。
速度提高1/3,如果行完全程,所用时间就是预定时间的1÷(1+1/3)=3/4,即提前200×(1-3/4)=50分钟。
但却提前了30分钟,说明有30÷50=3/5的路程提高了速度。
所以,全程是72÷(1-3/5)=180千米。
这题我有一巧妙的,小学生容易懂的算术方法。
如将车速比原来提高9分之1,速度比变为10:9,所以时间比为9:10,原来要用时20*(10-9)=200分。
如一开始就提高3分之1,就会用时:3*200/4=150分,这样提前50分,而实际提前30分,
所以72千米占全程的1-30/50=20/50,
所以全程72/(20/50)=180千米。
回答者:纵览飞云 - 魔法师四级 1-9 18:56
5. 一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12
千米。
因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?
解:逆水行的18÷2=9千米,顺水要行12×2-9=15千米。
所以顺水速度是12÷(15-9)×15=30千米/小时。
逆水速度是30-12=18千米/小时。
所以两个码头相距18×2+9=45千米
解:后2小时比前2小时多行18千米,意味着前2小时只行到了离乙码头18/2=9千米的地方。
顺水比逆水每小时多行12千米,那么2小时就应该多行 12*2=24千米,实际上少了24-18=6千米,从而,顺水只行了:2-6/12=1.5小时。
逆水行9千米用了2-1.5=0.5小时,逆水速度是:9/0.5=18千米顺水速度是:18+12=30千米甲乙两码头的距离是:30*1.5=45千米。
18÷12=1.5(时)就是回来时顺水所用的时间,那么去时所用的时间就是4-1.5=2.5(时)
那么去时的速度就是18÷(2.5-1.5)=18(千米)
路程就是:18×2.5=45(千米)
6. 甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人?
解:甲班比乙班多2/3,说明乙班3份,甲班3+2=5份,份数刚好没有变。
说明乙班转走的9名同学刚好是4-3=1份。
所以这时乙班人数是9×3=27人。
解:乙班转走9人后两班人数之比为5:3
则这个9人就是乙班原来人数的1/4,现在的1/3。
所以乙班现在有9*3=27人`
7. 甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤?
解:后来甲堆有78÷(8+5)×5=30吨。
原来甲堆就有30÷(1-25%)=40吨。
原来乙堆就有78-40=38吨。
8. 一件工作,甲单独做要20天完成,乙单独做要12天完成,如果这件工作先由甲队做若干天,再由乙队做完,两个队共用了14天,甲队做了几天?
解:如果14天都是乙做的,那么就会多做14/12-1=1/6。
乙做一天就会多做1/12-1/20=1/30。
所以乙做了1/6÷1/30=5天。
如果全是乙队做要用12天,实际上两队做用了14天,比乙队独做多用了14-12=2天,
这是因为甲队的工作效率低的缘故。
甲队一天比乙队一天的工作量少;1/12-1/20=1/30
所以甲队做了:1/12*2/1/30=5天
回答者:晨雾微曦 - 高级经理六级 1-10 13:05
9. 某电机厂计划生产一批电机,开始每天生产50台,生产了计划的1/5后,由于技术改造使工作效率提高60%,这样完成任务比计划提前了3天,生产这批电机的任务是多少台?
解法一:
完成1-1/5=4/5的任务,由于提高了工作效率,
所以工作时间就相当于原来的4/5÷(1+60%)=1/2。
那么原计划的工作时间是3÷(1-1/5-1/2)=10天。
所以生产这批电机的任务是10×50=500台。
解法二:
生产了计划的1/5后,实际的天数:3÷60%=5天
计划的天数:5+3=8天
总计划的天数:8÷(1-1/5)=10天
总共有10×50=500台
生产了计划的1/5后,实际的天数:
3÷60%=5天
计划的天数:
5+3=8天
总计划的天数:
8÷(1-1/5)=10天
总共有10×50=500台
10. 两个数相除商9余4,如果被除数、除数都扩大到原来的3倍。
那么被除数、除数、商、余数之和等于2583.原来的被除数和除数各是多少?
解:当被除数和除数扩大到原来的3倍时,余数也会跟着扩大的,商不变。
因此商还是9,余数就变成了4×3=12。
所以,被除数=除数×9+12。
所以,被除数+除数+商+余数=除数×9+12+除数+9+12
整理可以知道:除数=(2583-12×2-9)÷(9+1)=255
所以被除数是255×9+12=2307。
所以原来的被除数是2307÷3=769,除数是255÷3=85。