吹扫捕集技术介绍

合集下载

地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定

地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定

地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定李义;董建芳;张宇【摘要】建立了吹扫捕集-气相色谱-质谱法同时测定地下水中卤代烃类、苯系物、氯代苯类等20多种挥发性有机物的方法.对吹扫捕集条件、气相色谱条件和质谱条件进行优化,并对实际水样进行测定.方法检出限为0.03~0.28μg/L,基体加标回收率为88.8%~111.0%,精密度(RSD,n=7)为2.21%~5.31%.方法准确,灵敏可靠,可满足地下水中痕量挥发性有机物的分析要求.【期刊名称】《岩矿测试》【年(卷),期】2010(029)005【总页数】5页(P513-517)【关键词】吹扫捕集;气相色谱-质谱法;地下水;挥发性有机物【作者】李义;董建芳;张宇【作者单位】河北省环境地质勘查院,河北,石家庄,050021;河北省环境地质勘查院,河北,石家庄,050021;中国矿业大学(北京)地球科学与测绘工程学院,北京,100083【正文语种】中文【中图分类】O657.63%O622%P641水是人类赖以生存的自然资源,然而近年来随着工农业的迅速发展,大量有机溶剂、增塑剂、农药、杀虫剂等的使用,油田开采过程中石油泄漏,垃圾填埋场的渗漏等造成地下水的有机物污染越来越严重,给生态环境和人类健康造成了极大的危害。

挥发性有机物(VOCs)是指沸点在50~260 ℃以下、蒸汽压大于13.33 Pa(20 ℃)的有机化合物。

这些污染物种类繁多,毒性大,具有迁移性、持久性,降解缓慢,被视为一种重要的环境污染物,并被列入优先污染物。

它可以通过呼吸道、消化道和皮肤进入人体而产生危害,其毒性主要表现在对人体具有致畸、致突变和致癌等作用,有的还能积累在组织内部改变细胞的DNA结构[1-9]。

因此,地下水的污染已经成为一个不容忽视的环境问题。

有机污染物的准确定性、定量的测试技术成为地下水监控以及污染防治的重要依据。

吹扫捕集进样技术是一种动态的顶空进样技术,是目前水质分析中最灵敏的样品前处理方法,具有样品用量少、组分损失少、检出限低、无溶剂污染、操作快捷方便等特点,被测水样中所有污染物全部集中送进仪器分析,而不像顶空进样法仅取气相中一部分进入仪器,灵敏度可以有数量级的提高,同时水体中的半挥发性有机物不会干扰分析测定;特别是与气相色谱-质谱(GC-MS)联用,可以对待测组分进行准确的定性和定量分析。

吹扫捕集-气相色谱质谱法测定水中氯丁二烯

吹扫捕集-气相色谱质谱法测定水中氯丁二烯
c hr om at o gr a phy ma s s s pe c t r o me t r y
XU Gu a n g - h o n g
( C h o n g q i n g Q i a n j i a n g D i s t r i c t E n v i r o n me n t a l Mo n i t o r i n g C e n t e r S t a t i o n, C h o n g q i n g 4 0 9 0 9 9 , C h i n a )
0. 0 6 g・ L 『 。
保存 。
1 . 2 吹扫捕集条件
吹扫气体为高纯 H e ,吹扫流速为 4 O a r L ・ m i n ;
吹扫样 品体 积 5 m L; t r a p 一 1 0型 捕 集 管 ;吹 扫 温 度 4 0 ℃, 吹扫时间 1 5 m i n ; 2 2 0 ℃解 析 , 解析时间 2 m i n ;
业 大学 , 兽医公 共卫 生专业 , 本科 , 从事工作 : 环境监测 。
2 0 1 7 年第 1 1 期
徐光宏 : 吹扫捕集 一气相 色谱质谱法测定水中氯丁二烯
用移液器准确移取 9 5 0 L甲醇和 5 O L氯丁二烯
标准溶液于 2 m L棕 色 样 品瓶 中混 匀 ,配 制浓 度 为
Ke y wo r d s : p u r g e a n d c a p t u r e ; g a s c h r o ma t o g r a p h y ma s s s p e c t r o me t r y ; c h l o r o p r e n e
氯丁二烯常温下为无色易挥发液体 ,在工业上 主要用于生产氯 丁橡胶 , 亦能 与苯 乙烯 、 丙烯腈 、 异 戊二烯等共聚 , 生产各种合成橡胶。 氯丁二烯是一种 具有辛辣气味的有毒有机物质 ,对人体呼吸系统和 神经 系统有毒害作用 , 损害人体肺 、 肝、 肾等组织…。 氯丁二烯 的广泛使 用会对水体 环境产生一 定的污 染, 是 我国《 地表水 环境质量标准》 ( G B 3 8 3 8 — 2 0 0 2 ) 中规定 的集 中式生活饮用水地表水源地特定测定项 目, 其最高允许浓度为 2 g ・ L - 。 地表水 中氯丁二烯 a Cl 添 加 量 优 化

吹扫捕集-GC-MS测定水中痕量氯乙酸的研究

吹扫捕集-GC-MS测定水中痕量氯乙酸的研究

取 1 . 2配制好的样品进行吹扫捕集进样 GC MS分析 。 —
2 结果与讨 论
2 1此 方 法最 低检 出限 。
以三倍性噪 比确 定此 方法一氯 乙酸、 氯乙酸、三氯乙酸 二
本课 题研究新 的检测 氯代 乙酸 的方 法一 吹扫 捕集~ 气质 联用法 ,旨在 发展 准确可靠、方便快捷 的测 定饮 用水 中痕量氯 代 乙酸含量 的技术 , 在水质监测实 际工作 中具 有重要的应用 它
乙酸含 量 的结 果是 :一 氯 乙酸 53 L .7 、二 氯 乙酸 l. L O8 g几、 三氯 乙酸 8 4l L 4} . g,。 7 a 【 键词 】 乙酸 ;G MS 固相萃 取 ;吹扫 捕集 ; 自来 水 关 氯 C— ; 【 图分 类号 1 5 中 06 [ 文献 标识 码 】 A 【 文章 编号 】0 716(0 0 —190 10—852 1)20 5—2 1
1 买 验 邵 分 11 仪 器 与 试 剂 .
吹 扫 捕 集 仪 (ea/ic g l 吸 附 阱 ) 、 T nxs i la e H 6 9 GC 5 7 1etMS 气相色谱 一 P 8 0 /9 3nr D 质谱联 用仪 ,涡旋 振荡 器 ,氮气吹干浓缩仪 ,固相萃取 仪 ,恒温水浴锅 ,所 用试 剂除 注明外均为分析纯 。D1 1固相萃取 柱 , 0 一氯 乙酸、二氯 乙酸 、 三氯 乙酸、 甲醇 、浓硫 酸、无水硫酸钠 :4 0 ℃下烘烤 4h 5 。
S ud n D e e m i to fTr c t y o t r na i n o a e Chl r a e i c dsi a e i o o c tcA i n W t r Usng Pur e a g nd Tr p・ C- S a - G - M

吹扫捕集_(动态顶空)进样技术

吹扫捕集_(动态顶空)进样技术

一、吹扫捕集进样技术的基本原理动态顶空是相对于静态顶空而言的。

与静态顶空不同,动态顶空不是分析牌平衡状态的顶空样品,而是用流动的气体将样品中的挥发性成分“吹扫”出来,再用一个捕集器将吹出来的物质吸附下来,然后经热解吸将样品送入GC进行分析。

因此,通常称为吹扫--捕集(Purge & Trap)进样技术。

在绝大部分吹扫--捕集应用中都采用氦气作为吹扫气,将其同通入样品溶液鼓泡。

在持续的气流吹扫下,样品中的挥发性组分随氦气逸出,并通过一个装有吸附剂的捕集装置进行浓缩。

在一定的吹扫时间之后,等测组分全部或定量地进入捕集器。

此时,关闭吹扫气,由切换阀将捕集器接入GC的开气气路,同时快速加热捕集的样品组分解吸后随载气进入GC分离分析。

所以,吹扫--捕集的原理就是:动态顶空萃取-吸附捕集热解吸-GC分析。

吹扫-捕集进样技术广泛应用于环境分析,如饮用水或废水中的有机污染物分析。

也用于食品中挥发物(如气味成分)的分析。

显然,许多用吹扫--捕集技术分析的样品也可以用静态顶空技术分析,只是前者灵敏度较高,且可分析沸点相对高(蒸气压低)的组分。

还有吹扫--捕集比静态顶空的平衡时间短。

二,吹扫--捕集操作条件选择1、温度吹扫--捕集分析中有三个温度需要控制,第一个是样品的吹扫温度。

水溶液大多在室温下吹扫,只要吹扫时间足够长,就能满足分析要求。

有时为缩短吹扫时间,也可对样品加热,但升高温度的副作用增加了水的挥发。

对于非水溶液,如某些肉类食品,则采用高一些的吹扫温度。

第二个捕集器温度。

这里又有吸附温度和解吸温度之别。

吸附温度常为室温,但对不易吸附的气体也可采用低温冷漠捕食技术。

即用冷气、液态二氧化碳或液氮控制捕集管的温度。

至于解吸温度,是吹扫--捕集技术的重要参数,应依据待测组分的性质和吸附的性质来优化确定。

商品化自动吹扫--捕集进样器的解吸温度最高可达450℃,但在部分环境分析的标准方法(如美国EPA方法)均采用200℃左右的吹扫温度.第三个是连接管路的温度,它应足够设防止样品冷凝.环境分析常用的连接管温度为80-150℃.2、吹扫气流与吹扫时间吹扫气流速取决于样品中待测物的浓度、挥发性、与样品基质的相互作用(如溶解度)以及其在捕集管中的吸附作用大小。

吹扫捕集/气相色谱-质谱法测定水中59种挥发性有机物

吹扫捕集/气相色谱-质谱法测定水中59种挥发性有机物
l50
广 东 化 工
wvcw.gdchem .tom
20I8年 第 4期 第 45卷总第 366期
吹扫捕集/气相色谱.质谱 法测定水 中 59种挥发性 有 机物
张艳 勤
(谱 尼测 试集 团上 海有 限 公司 ,上海 200000)
[摘 要】建 就一种 吹扫捕 集-气相 色 谱/质谱 法 , 同时分 析水 样 中 59种挥 发性 有机 物(rots)。采用 吹扫 捕集 、富 集并 解析 挥发 性有 机物 ,用
pg,L.The method has advantages ofgood separation,small interference,high sensitivity and accuracy,suitable ofwater sources. K eywords:volatile organic compounds; purge and trap; gas chrom atography/m ass spectrom eter: water
1试验部分
仪 器部分 :Agilent technologies 7890A/5975C气相 色谱/气 质 联 用仪 :美 国 O.1 Analytical 4660型吹 扫捕 集装 置 ,配 4551.A 型 自动 进样 器 ;超 纯水 装置 :Milli.Q/Q.POD Element。吹扫捕 集 条
2结果与讨论
2.1总 离子谱 图 59种 VOcs混合 标准 溶液 总离 子谱 图 如图 1所示 ,从 中可 以
看 出 ,DB 5MS 色谱 柱不 能把反 l,2一二 氯 乙烯 和 甲基 叔丁 基醚 完
全 分开 ,但 由于 两者 定量 离子 不 同 ,因此 不影 响 定量 ;间 、对 二 甲苯虽 然 定量离 子相 同,但地 表 水和 生活 饮用 水 卫生 标准 都对 二 甲苯总 量规 定限 制 .因此 不影 响结 果 ;其 余 VOCs都 能进 行有 效 的 分 离 。

吹扫捕集气相色谱法测定水中的挥发性有机物版

吹扫捕集气相色谱法测定水中的挥发性有机物版

实验一吹扫捕集-气相色谱法测定水样中的挥发性有机物一、实验目的(1)掌握气相色谱的原理、仪器构成与操作(2)掌握内标法定量分析方法(3)熟悉吹扫捕集技术的原理与操作以及挥发性有机物的测定方法二、实验原理挥发性有机化合物(volatile organic compounds,简称VOC)通常是指沸点等于或低于250℃的化学物质,主要成分为脂肪烃、芳香烃、卤代烃、醛类和酮类等化合物。

VOCs存在于大量的产品(如燃料、溶剂、油漆、粘合剂、除臭剂、冷冻剂等)中,也来源于不完全燃烧,特别是用氯消毒的饮用水中普遍存在卤仿类(THMs)。

VOCs在生产、销售、储存、处理和使用等过程中易释放到环境中,从而在大气、地表水、地下水以及土壤环境中常能检出此类化合物。

VOC具有迁移性、持久性和毒性,是一类重要的环境污染物,它们是形成烟雾的必要条件,与空气中的氮氧化物结合还可产生臭氧。

这些污染物通过呼吸道、消化道和皮肤进入人体而产生危害,对人体具有致畸、致突变和致癌等作用。

本实验中,水体样品中的挥发性有机物经高纯氮气吹扫富集于捕集管中,将捕集管加热并以高纯氮气反吹,被热脱附出来的组分进入气相色谱仪并分离后,采用氢火焰离子化(FID)检测器进行检测。

通过与待测目标物标准品的保留时间比对进行定性,以乙苯为内标物,采用内标法定量。

三、仪器与试剂1、仪器气相色谱仪,吹扫捕集装置,吹扫管,微量注射器(10 μL),一次性注射器(5 mL)2、试剂甲醇、苯、甲苯、氯苯、乙苯、对二甲苯、邻二甲苯(均为分析纯),氮气(%)。

四、实验内容与步骤1、标准溶液配制配制浓度为1000 mg/L的苯、甲苯、氯苯、乙苯、对二甲苯和邻二甲苯的单独标准储备液:分别移取一定体积的标准样品,用甲醇溶解定容至10 mL;配制10 mg/L的VOCs混合标准溶液:分别移取 mL上述化合物的标准储备液,用甲醇定容至25 mL(乙苯除外);配制100 mg/L苯标准溶液:移取1 mL的苯储备液(1000 mg/L),用甲醇定容至10 mL;配制100 mg/L邻二甲苯标准溶液:移取1 mL的邻二甲苯储备液(1000 mg/L),用甲醇定容至10 mL;配制10 mg/L乙苯内标储备液:移取 mL乙苯储备液(1000 mg/L),用甲醇定容至25 mL;配制模拟VOCs储备液:分别移取一定体积的苯、甲苯、氯苯、对二甲苯和邻二甲苯标准储备液(浓度均为1000 mg/L),加甲醇定容至25 mL备用。

吹扫捕集-气相色谱质谱法测定生活饮用水中26种挥发性有机物

吹扫捕集-气相色谱质谱法测定生活饮用水中26种挥发性有机物

根据世界卫生组织定义,挥发性有机物(volatile or ganic compounds,VOCs)是指在常温下,沸点50~260℃的各种有机化合物[1]。

大多数VOCs具有令人不适的特殊气味,并具有毒性、刺激性、致畸性和致癌作用,特别是苯、甲苯及甲醛等对人体健康会造成很大的伤害[2-3]。

水中VOCs一般是水受到污染或者在某些消毒净化过程中产生的副产物。

我国生活饮用水卫生标准GB/T 5749-2006中规定了该类物质的限值[4],GB/T5750-2006中制定了标准检验方法,均为气相色谱法检测[5-6]。

气相色谱方法前处理操作相对复杂繁琐,有的需要大量有机溶剂提取,使用的有机溶剂一方面又对环境造成污染,危害操作人员健康,同时还存在基质干扰。

且气相色谱法单次只能分析个别化合物,全面检测多种化合物时需消耗大量时间、人力[7-9]。

吹扫捕集技术具有进样量少、富集效率高、受基质干扰影响小、安全、简便等优点。

气质联用法同时具有毛细管色谱的高分离和质谱的精确鉴定等特点,适用于复杂混合物中多组分的定性及定量分析。

吹扫捕集串联气相色谱质谱法前处理简单,对环境和操作人员友好,可同时测定样品中多种挥发性有机物[10-12],高效快捷,灵敏度高,检出限低,适用于大批量水样中挥发性有机物的检测[13-14]。

DOI:10.16659/ki.1672-5654.2022.12.203吹扫捕集-气相色谱质谱法测定生活饮用水中26种挥发性有机物范雯谡,王姣,杜华楠,朱吉凯,张蕾齐齐哈尔市疾病预防控制中心,黑龙江齐齐哈尔161000[摘要]利用吹扫捕集-气相色谱质谱法测定生活饮用水中26种挥发性有机物含量。

结果表明,该方法测定条件下各物质分离效果良好,曲线线性均在99.5%以上,加标回收率为83.0%~111.2%,相对标准偏差(RSD)为1.21%~8.57%(n= 6)。

利用该方法检测齐齐哈尔市龙沙区水质监测点末梢水样品10份,2份检出1,2-二氯乙烷和一溴二氯甲烷,检出组分符合卫生标准要求,且含量较低。

吹扫-捕集气相色谱法测定水中三氯甲烷、四氯化碳

吹扫-捕集气相色谱法测定水中三氯甲烷、四氯化碳
工程师,
从事化工检测工作,
zhangjingat@。
Copyright©博看网 . All Rights Reserved.
94
总第 233 期 2021 年第 5 期(第 47 卷)
安 徽 化 工
出峰顺序:
①三氯甲烷;②四氯化碳;③一溴二氯甲烷;④二溴一氯甲烷;⑤三溴甲烷
可,
采用 4 min 即能满足要求。
烘烤时间:保证残留的物质烘烤完全,可采用较长
时间,
2 min 能够满足要求。
1.2.2 色谱柱条件
采用 DB624(123-1334)色谱柱。
[2]
密度及准确度,
降低了检测限 。
1 实验部分
1.1 仪器与试剂
GC-7890 气相色谱仪,带电子捕获检测器 ECD,美
氯甲烷、三溴甲烷、四氯化碳 5 种物质的标准曲线,并检测水厂实际水样,验证了此方法的精密度、准确度、加标回收率、选择性。
关键词:
吹扫-捕集气相色谱法;
三氯甲烷;
四氯化碳;
回收率;
精密度
doi:
10.3969/j.issn.1008-553X.2021.05.026
中图分类号:O657.71; O661.1
3 μg/L、
4 μg/L;
一溴二氯甲烷2.5 μg/L、
5.0 μg/L、
10 μg/L、
20 μg/L、30 μg/L、40 μg/L;二 溴 一 氯 甲 烷 2.5 μg/L、
5.0 μg/L、10 μg/L、20 μg/L、30 μg/L、40 μg/L;三溴甲烷
5 μg/L、10 μg/L、20 μg/L、40 μg/L、60 μg/L、80 μg /L。

吹扫捕集气相色谱质谱法_概述及解释说明

吹扫捕集气相色谱质谱法_概述及解释说明

吹扫捕集气相色谱质谱法概述及解释说明1. 引言1.1 概述吹扫捕集气相色谱质谱法是一种常用的分析技术,它结合了气相色谱和质谱两种方法,能够对复杂样品中的化合物进行高效、灵敏和选择性的检测和定量分析。

该方法主要通过样品中物质的汽化、分离、鉴定和定量来实现目标物质的检测。

1.2 文章结构本文将首先介绍吹扫捕集气相色谱质谱法的概述,包括其原理、方法步骤以及应用领域。

随后,文章将对吹扫技术原理、捕集器的作用与设计以及色谱质谱联用分析优势进行解释说明。

接下来,将给出一个具体实验案例,并对实验设置与条件、样品准备与处理方法以及结果分析进行描述。

最后,文章将总结主要发现,并讨论存在问题并提出改进建议,同时展望未来吹扫捕集气相色谱质谱法在研究方向上的应用前景。

1.3 目的本文旨在全面概述吹扫捕集气相色谱质谱法,并深入解释其原理和关键技术,以便读者能够全面了解和掌握该分析方法的应用。

通过实验案例及结果分析,进一步展示吹扫捕集气相色谱质谱法在实际应用中的可行性和优势。

最后,本文将提出改进建议,促进该领域未来研究的发展。

请问上述内容是否清晰明了?如果有其他需要补充或修改的地方,请告诉我。

2. 吹扫捕集气相色谱质谱法概述2.1 原理介绍吹扫捕集气相色谱质谱法是一种结合了吹扫技术、气相色谱和质谱的分析方法。

它主要通过将样品中的挥发性有机化合物吹入捕集器中,然后利用气相色谱仪将这些化合物分离出来,并通过质谱仪进行定性和定量分析。

该方法的原理是基于化合物具有不同的挥发性和分子大小,因此在特定条件下被吸附、解吸或排除,从而实现对样品中成分的分离和检测。

2.2 方法步骤在吹扫捕集气相色谱质谱法中,通常包括以下步骤:1) 样品准备:样品需要被适当地预处理,如固体样品的溶解、液体样品的稀释等。

2) 吹扫过程:使用一种惰性气体(如氮气)作为载气,将其通过样品中,使得挥发性有机化合物随着载气被带入到捕集器中。

3) 捕集步骤:通过调整温度和压力等条件,在捕集器中使得化合物被吸附或解吸,并及时转移到色谱柱进行分离。

吹扫捕集-气质联用法测定固体废物浸出液中64种挥发性有机物

吹扫捕集-气质联用法测定固体废物浸出液中64种挥发性有机物
转速:30r/min(正反交替转 1min);恒 温 温 度:23℃;振荡时间:18h。 132 吹扫捕集自动进样器条件
吹扫气:高纯氦气 (纯度 >99999%);吹扫 温度:45℃; 吹 扫 流 量:40mL/min; 吹 扫 时 间:
11min;预脱 附 时 间:120℃; 脱 附 温 度:190℃; 脱 附 时 间: 1min; 烘 焙 温 度: 210℃; 烘 焙 时 间:15min。 133 气相色谱 -质谱分析条件
标准溶液 1#:甲醇中 59种 VOC混合标准溶液 (CDGG -120788-01-1mL,2000mg/L, 美 国 O2Si);标准溶液 2#:甲醇中 56种 VOC混合标准 溶液 (CDGG-120778-03-02,2000mg/L,美国 O2Si);标准溶液 3#:甲醇中环氧氯丙烷 (CDGG -021069-02-02,2000mg/L,美国 O2Si);内标 标准溶液:甲醇中 EPA8260内标混标 (氟苯、氯 苯 -d5、1,4二氯苯 -d4) (CDGG-120004-02, 2000mg/L,美国 O2Si);替代物标准溶液 (CDGG-120005-01,2000mg/L,美 国 O2Si);甲醇 (HPLC级,经空白试验确认,在 保留时间内无干扰);冰醋酸:优级纯;氢氧化钠
序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
表 1 64种挥发性有机物的定量离子、辅助离子及检出限
气相色谱 -质谱仪 (AgilentGC-MS7890B+ 5977B,美国);吹扫捕集自动进样器 (Eclipse4760 +OI4100);色谱柱 (AgilentDB-624MSUI60m 032mm14μm,美 国);40mL吹 扫 捕 集 进 样 瓶; 5mL吹扫管;翻转式振荡器 (TCLP-12P,湖南昊 德仪器);零顶空提取器 (ZHE,湖南昊德仪器); 微孔滤膜 (孔径 08μm,直径 90mm)。 122 试剂及标准品

EST吹扫介绍

EST吹扫介绍

1 0 .0 0
1 1 .0 0
Centurion 吹扫液体自动进样器
• Introduced in 2003 • Developed to improve productivity with
– High throughput solutions – Internal Standard Programmability – Improved Reliability – Easy to use interface
– 可以检测低的ppt级浓度
• 最大的萃取效率

不会遗漏任何分析物质
• 大的样品体积 • 已经被广泛认知的技术
• 涵盖广泛的沸点范围
-30°C to 220°C
-30°C 到 220°C
吹扫捕集的关键因素
• • • • • • 吹扫效率 捕集效率 快速的解析 最小化残留效应 自动化 高效的除水装置
A b u n d a n c e T IC : 2 2 0 0 0 0 0 2 0 0 0 0 0 0 1 8 0 0 0 0 0 1 6 0 0 0 0 0 1 4 0 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 0 8 0 0 0 0 0 6 0 0 0 0 0 4 0 0 0 0 0 2 0 0 0 0 0 P C 0 3 0 5 .D
常规配置6通阀吹扫流路图
Vent
排放
Detector
检测器
Puras GC的载气 集 阱
GC
水管理器或除水阱
(吹扫时保持高温)
常规配置六通阀吹扫解析流路图
Detector
检测器
捕GC Carrier 集 Gas 阱 GC的载气
GC
水管理器或除水阱 (解析过程中低温除水)

四种气相色谱仪样品前处理方法 气相色谱仪解决方案

四种气相色谱仪样品前处理方法 气相色谱仪解决方案

四种气相色谱仪样品前处理方法气相色谱仪解决方案现今,随着各种各样仪器设备及检测手段的不断更新,即时、在线、灵敏地分析样本早已不是难事。

但样品的采集及前处理,一直都是化学分析领域中难点之一、传统的前处理方法存在耗时长、精度低、重现性茶、难于自动化、智能化的缺点,后在相关工作学者的不懈努力下,研发了多种更灵敏、牢靠的样品前处理方法。

据了解,气相色谱仪样品的预处理方法紧要顶空分析进样法、吹扫捕集法、吸附浓缩法(热脱附法)与固相萃取法四种。

一、顶空进样分析法:顶空进样法是气相色谱特有的一种进样方法,适用于挥发性大的组分分析。

测定时,精密称取标准溶液和供试品溶液各3—5 ml 分别置于容积为8 ml的顶空取样瓶中。

将各瓶在60摄氏度的水浴中加热30—40 min,使残留溶剂挥发达到饱和,再用在同一水浴中的空试管中加热的注射器抽取顶空气适量(通常为 1 ml)。

进样,重复进样3次,按溶剂直接进样法进行计算与处理。

另外,顶空进样分析法紧要用于固体、半固体、液体样品基质中挥发性有机化合物的分析,如水中的挥发性有机物(VOCs)、茶叶中香气成分、合成高分子材料中残留单体的分析等。

二、吹扫捕集法:吹扫捕集法,即向样品中连续通入惰性气体(一般为高纯氮气),液体或者固体样品挥发性组分即随该萃取气体从样品中“吹扫”出来,然后通过一个吸附装置(捕集器)将样品浓缩,后再将样品解析进入气相色谱分析。

这是一种连续的气相萃取,直到样品中的挥发性组分完全萃取出来,又被称为动态顶空分析,一般适用于固体、半固体、液体样品基质中挥发性有机化合物的富集和直接进入气相色谱仪进行分析。

其次,影响吹扫捕集测定结果的因素基本有两个,一是吹扫—捕集进样器本身,二是GC条件。

前者包括解吸温度、吹扫气流速度(易显现穿透现象),吹扫时间和解吸条件等,这些条件都应严格掌控其重现性。

而后者与一般GC相同,推举使用内标法或标准加入法进行定量,以削减操作条件波动对结果的影响。

EPA Method 5035吹扫和捕集 技术

EPA Method 5035吹扫和捕集 技术

METHOD 5035CLOSED-SYSTEM PURGE-AND-TRAP AND EXTRACTION FORVOLATILE ORGANICS IN SOIL AND WASTE SAMPLES1.0SCOPE AND APPLICATION1.1This method describes a closed-system purge-and-trap process for the analysis of volatile organic compounds (VOCs) in solid materials (e.g., soils, sediments, and solid waste). While the method is designed for use on samples containing low levels of VOCs, procedures are also provided for collecting and preparing solid samples containing high concentrations of VOCs and for oily wastes. For these high concentration and oily materials, sample collection and preparation are performed using the procedures described here, and sample introduction is performed using the aqueous purge-and-trap procedure in Method 5030. These procedures may be used in conjunction with any appropriate determinative gas chromatographic procedure, including, but not limited to, Methods 8015, 8021, and 8260.1.2The low soil method utilizes a hermetically-sealed sample vial, the seal of which is never broken from the time of sampling to the time of analysis. Since the sample is never exposed to the atmosphere after sampling, the losses of VOCs during sample transport, handling, and analysis are negligible. The applicable concentration range of the low soil method is dependent on the determinative method, matrix, and compound. However, it will generally fall in the 0.5 to 200 µg/kg range.1.3Procedures are included for preparing high concentration samples for purging by Method 5030. High concentration samples are those containing VOC levels of >200 µg/kg.1.4Procedures are also included for addressing oily wastes that are soluble in a water-miscible solvent. These samples are also purged using Method 5030..1.5Method 5035 can be used for most volatile organic compounds that have boiling points below 200E C and that are insoluble or slightly soluble in water. Volatile, water-soluble compounds can be included in this analytical technique. However, quantitation limits (by GC or GC/MS) are approximately ten times higher because of poor purging efficiency.1.6Method 5035, in conjunction with Method 8015 (GC/FID), may be used for the analysis of the aliphatic hydrocarbon fraction in the light ends of total petroleum hydrocarbons, e.g., gasoline. For the aromatic fraction (BTEX), use Method 5035 and Method 8021 (GC/PID). A total determinative analysis of gasoline fractions may be obtained using Method 8021 in series with Method 8015.1.7As with any preparative method for volatiles, samples should be screened to avoid contamination of the purge-and-trap system by samples that contain very high concentrations of purgeable material above the calibration range of the low concentration method. In addition, because the sealed sample container cannot be opened to remove a sample aliquot without compromising the integrity of the sample, multiple sample aliquots should be collected to allow for screening and reanalysis.1.8The closed-system purge-and-trap equipment employed for low concentration samples is not appropriate for soil samples preserved in the field with methanol. Such samples should be analyzed using Method 5030 (see the note in Sec. 6.2.2).CD-ROM5035 - 1Revision 0December 19961.9This method is restricted to use by or under the supervision of trained analysts. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1Low concentration soil method - generally applicable to and soils and other solid sampleswith VOC concentrations in the range of 0.5 to 200 µg/kg.Volatile organic compounds (VOCs) are determined by collecting an approximately 5-g sample, weighed in the field at the time of collection, and placing it in a pre-weighed vial with a septum-sealed screw-cap (see Sec. 4) that already contains a stirring bar and a sodium bisulfate preservative solution. The vial is sealed and shipped to a laboratory or appropriate analysis site. The entire vial is then placed, unopened, into the instrument carousel. Immediately before analysis, organic-free reagent water, surrogates, and internal standards (if applicable) are automatically added without opening the sample vial. The vial containing the sample is heated to 40E C and the volatiles purged into an appropriate trap using an inert gas combined with agitation of the sample. Purged components travel via a transfer line to a trap. When purging is complete, the trap is heated and backflushed with helium to desorb the trapped sample components into a gas chromatograph for analysis by an appropriate determinative method.2.2High concentration soil method - generally applicable to soils and other solid sampleswith VOC concentrations greater than 200 µg/kg.The sample introduction technique in Sec. 2.1 is not applicable to all samples, particularly those containing high concentrations (generally greater than 200 µg/kg) of VOCs which may overload either the volatile trapping material or exceed the working range of the determinative instrument system (e.g., GC/MS, GC/FID, GC/EC, etc.). In such instances, this method describes two sample collection options and the corresponding sample purging procedures.2.2.1The first option is to collect a bulk sample in a vial or other suitable containerwithout the use of the preservative solution described in Sec. 2.1. A portion of that sample is removed from the container in the laboratory and is dispersed in a water-miscible solvent to dissolve the volatile organic constituents. An aliquot of the solution is added to 5 mL of reagent water in a purge tube. Surrogates and internal standards (if applicable) are added to the solution, then purged using Method 5030, and analyzed by an appropriate determinative method. Because the procedure involves opening the vial and removing a portion of the soil, some volatile constituents may be lost during handling.2.2.2The second option is to collect an approximately 5-g sample in a pre-weighed vialwith a septum-sealed screw-cap (see Sec 4) that contains 5 mL of a water-miscible organic solvent (e.g., methanol). At the time of analysis, surrogates are added to the vial, then an aliquot of the solvent is removed from the vial, purged using Method 5030 and analyzed by an appropriate determinative method.2.3High concentration oily waste method - generally applicable to oily samples with VOCconcentrations greater than 200 µg/kg that can be diluted in a water-miscible solvent.Samples that are comprised of oils or samples that contain significant amounts of oil present additional analytical challenges. This procedure is generally appropriate for such samples when they are soluble in a water-miscible solvent.CD-ROM5035 - 2Revision 0December 19962.3.1After demonstrating that a test aliquot of the sample is soluble in methanol orpolyethylene glycol (PEG), a separate aliquot of the sample is spiked with surrogates and diluted in the appropriate solvent. An aliquot of the solution is added to 5 mL of reagent water in a purge tube, taking care to ensure that a floating layer of oil is not present in the purge tube.Internal standards (if applicable) are added to the solution which is then purged using Method 5030 and analyzed by an appropriate determinative method.2.3.2Samples that contain oily materials that are not soluble in water-miscible solventsmust be prepared according to Method 3585.3.0INTERFERENCES3.1Impurities in the purge gas and from organic compounds out-gassing from the plumbing ahead of the trap account for the majority of contamination problems. The analytical system must be demonstrated to be free from contamination under the conditions of the analysis by running method blanks. The use of non-polytetrafluoroethylene (non-PTFE) plastic coating, non-PTFE thread sealants, or flow controllers with rubber components in the purging device must be avoided, since such materials out-gas organic compounds which will be concentrated in the trap during the purge operation. These compounds will result in interferences or false positives in the determinative step.3.2Samples can be contaminated by diffusion of volatile organics (particularly methylene chloride and fluorocarbons) through the septum seal of the sample vial during shipment and storage.A trip blank prepared from organic-free reagent water and carried through sampling and handling protocols serves as a check on such contamination.3.3Contamination by carryover can occur whenever high-concentration and low-concentration samples are analyzed in sequence. Where practical, samples with unusually high concentrations of analytes should be followed by an analysis of organic-free reagent water to check for cross-contamination. If the target compounds present in an unusually concentrated sample are also found to be present in the subsequent samples, the analyst must demonstrate that the compounds are not due to carryover. Conversely, if those target compounds are not present in the subsequent sample, then the analysis of organic-free reagent water is not necessary.3.4The laboratory where volatile analysis is performed should be completely free of solvents. Special precautions must be taken to determine methylene chloride. The analytical and sample storage area should be isolated from all atmospheric sources of methylene chloride, otherwise random background levels will result. Since methylene chloride will permeate through PTFE tubing, all GC carrier gas lines and purge gas plumbing should be constructed of stainless steel or copper tubing. Laboratory workers' clothing previously exposed to methylene chloride fumes during common liquid/liquid extraction procedures can contribute to sample contamination. The presence of other organic solvents in the laboratory where volatile organics are analyzed will also lead to random background levels and the same precautions must be taken.4.0APPARATUS AND MATERIALS4.1Sample ContainersThe specific sample containers required will depend on the purge-and-trap system to be employed (see Sec. 4.2). Several systems are commercially available. Some systems employ 40-mL clear vials with a special frit and equipped with two PTFE-faced silicone septa. Other CD-ROM5035 - 3Revision 0December 1996systems permit the use of any good quality glass vial that is large enough to contain at least 5 g of soil or solid material and at least 10 mL of water and that can be sealed with a screw-cap containing a PTFE-faced silicone septum. Consult the purge-and-trap system manufacturer's instructions regarding the suitable specific vials, septa, caps, and mechanical agitation devices.4.2Purge-and-Trap SystemThe purge-and-trap system consists of a unit that automatically adds water, surrogates, and internal standards (if applicable) to a vial containing the sample, purges the VOCs using an inert gas stream while agitating the contents of the vial, and also traps the released VOCs for subsequent desorption into the gas chromatograph. Such systems are commercially available from several sources and shall meet the following specifications.4.2.1The purging device should be capable of accepting a vial sufficiently large tocontain a 5-g soil sample plus a magnetic stirring bar and 10 mL of water. The device must be capable of heating a soil vial to 40E C and holding it at that temperature while the inert purge gas is allowed to pass through the sample. The device should also be capable of introducing at least 5 mL of organic-free reagent water into the sample vial while trapping the displaced headspace vapors. It must also be capable of agitating the sealed sample during purging,(e.g., using a magnetic stirring bar added to the vial prior to sample collection, sonication, orother means). The analytes being purged must be quantitatively transferred to an absorber trap. The trap must be capable of transferring the absorbed VOCs to the gas chromatograph (see 4.2.2).NOTE:The equipment used to develop this method was a Dynatech PTA-30 W/S Autosampler. This device was subsequently sold to Varian, and is now availableas the Archon Purge and Trap Autosampler. See the Disclaimer at the front ofthis manual for guidance on the use of alternative equipment.4.2.2 A variety of traps and trapping materials may be employed with this method. Thechoice of trapping material may depend on the analytes of interest. Whichever trap is employed, it must demonstrate sufficient adsorption and desorption characteristics to meet the quantitation limits of all the target analytes for a given project and the QC requirements in Method 8000 and the determinative method. The most difficult analytes are generally the gases, especially dichlorodifluoromethane. The trap must be capable of desorbing the late eluting target analytes.NOTE:Check the responses of the brominated compounds when using alternative charcoal traps (especially Vocarb 4000), as some degradation has been notedwhen higher desorption temperatures (especially above 240 - 250E C) areemployed. 2-Chloroethyl vinyl ether is degraded on Vocarb 4000 but performsadequately when Vocarb 3000 is used. The primary criterion, as stated above,is that all target analytes meet the sensitivity requirements for a given project.4.2.2.1The trap used to develop this method was 25 cm long, with an insidediameter of 0.105 inches, and was packed with Carbopack/Carbosieve (Supelco, Inc.).4.2.2.2The standard trap used in other EPA purge-and-trap methods is alsoacceptable. That trap is 25 cm long and has an inside diameter of at least 0.105 in.Starting from the inlet, the trap contains the equal amounts of the adsorbents listedbelow. It is recommended that 1.0 cm of methyl silicone-coated packing (35/60 mesh,Davison, grade 15 or equivalent) be inserted at the inlet to extend the life of the trap. If CD-ROM5035 - 4Revision 0December 1996the analysis of dichlorodifluoromethane or other fluorocarbons of similar volatility is notrequired, then the charcoal can be eliminated and the polymer increased to fill 2/3 of thetrap. If only compounds boiling above 35E C are to be analyzed, both the silica gel andcharcoal can be eliminated and the polymer increased to fill the entire trap.4.2.2.2.12,6-Diphenylene oxide polymer - 60/80 mesh,chromatographic grade (Tenax GC or equivalent).4.2.2.2.2Methyl silicone packing - OV-1 (3%) on Chromosorb-W,60/80 mesh or equivalent.4.2.2.2.3Coconut charcoal - Prepare from Barnebey Cheney,CA-580-26, or equivalent, by crushing through 26 mesh screen.4.2.2.3Trapping materials other than those listed above also may be employed,provided that they meet the specifications in Sec. 4.2.3, below.4.2.3The desorber for the trap must be capable of rapidly heating the trap to thetemperature recommended by the trap material manufacturer, prior to the beginning of the flow of desorption gas. Several commercial desorbers (purge-and-trap units) are available.4.3Syringe and Syringe Valves4.3.125-mL glass hypodermic syringes with Luer-Lok (or equivalent) tip (other sizesare acceptable depending on sample volume used).4.3.22-way syringe valves with Luer ends.4.3.325-µL micro syringe with a 2 inch x 0.006 inch ID, 22E bevel needle (Hamilton#702N or equivalent).4.3.4Micro syringes - 10-, 100-µL.4.3.5Syringes - 0.5-, 1.0-, and 5-mL, gas-tight with shut-off valve.4.4Miscellaneous4.4.1Glass vials4.4.1.160-mL, septum-sealed, to collect samples for screening, dry weightdetermination.4.4.1.240-mL, screw-cap, PTFE lined, septum-sealed. Examine each vial priorto use to ensure that the vial has a flat, uniform sealing surface.4.4.2Top-loading balance - Capable of accurately weighing to 0.01 g.4.4.3Glass scintillation vials - 20-mL, with screw-caps and PTFE liners, or glass culturetubes with screw-caps and PTFE liners, for dilution of oily waste samples.4.4.4Volumetric flasks - Class A, 10-mL and 100-mL, with ground-glass stoppers. CD-ROM5035 - 5Revision 0December 1996CD-ROM 5035 - 6Revision 0December 19964.4.52-mL glass vials, for GC autosampler - Used for oily waste samples extracted withmethanol or PEG.4.4.6Spatula, stainless steel - narrow enough to fit into a sample vial.4.4.7Disposable Pasteur pipettes.4.4.8Magnetic stirring bars - PTFE- or glass-coated, of the appropriate size to fit thesample vials. Consult manufacturer’s recommendation for specific stirring bars. Stirring bars may be reused, provided that they are thoroughly cleaned between uses. Consult the manufacturers of the purging device and the stirring bars for suggested cleaning procedures.4.5Field Sampling Equipment4.5.1Purge-and-Trap Soil Sampler - Model 3780PT (Associated Design andManufacturing Company, 814 North Henry Street, Alexandria, VA 22314), or equivalent.4.5.2EnCore sampler - (En Chem, Inc., 1795 Industrial Drive, Green Bay, WI 54302),TM or equivalent.4.5.3 Alternatively, disposable plastic syringes with a barrel smaller than the neck ofthe soil vial may be used to collect the sample. The syringe end of the barrel is cut off prior to sampling. One syringe is needed for each sample aliquot to be collected.4.5.4Portable balance - For field use, capable of weighing to 0.01 g.4.5.5Balance weights - Balances employed in the field should be checked against anappropriate reference weight at least once daily, prior to weighing any samples, or as described in the sampling plan. The specific weights used will depend on the total weight of the sample container, sample, stirring bar, reagent water added, cap, and septum.5.0 REAGENTS5.1Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.5.2Methanol, CH OH - purge-and-trap quality or equivalent. Store away from other solvents.35.3Polyethylene glycol (PEG), H(OCH CH )OH - free of interferences at the detection limit 22n of the target analytes.5.4Low concentration sample preservative5.4.1Sodium bisulfate, NaHSO - ACS reagent grade or equivalent.45.4.2The preservative should be added to the vial prior to shipment to the field, andmust be present in the vial prior to adding the sample.5.5See the determinative method and Method 5000 for guidance on internal standards and surrogates to be employed in this procedure.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLINGRefer to the introductory material in this chapter, Organic Analytes, Sec. 4.1, for general sample collection information. The low concentration portion of this method employs sample vials that are filled and weighed in the field and never opened during the analytical process. As a result, sampling personnel should be equipped with a portable balance capable of weighing to 0.01 g.6.1Preparation of sample vialsThe specific preparation procedures for sample vials depend on the expected concentration range of the sample, with separate preparation procedures for low concentration soil samples and high concentration soil and solid waste samples. Sample vials should be prepared in a fixed laboratory or other controlled environment, sealed, and shipped to the field location. Gloves should be worn during the preparation steps.6.1.1Low concentration soil samplesThe following steps apply to the preparation of vials used in the collection of low concentration soil samples to be analyzed by the closed-system purge-and-trapequipment described in Method 5035.6.1.1.1Add a clean magnetic stirring bar to each clean vial. If the purge-and-trap device (Sec. 4.2) employs a means of stirring the sample other than a magneticstirrer (e.g., sonication or other mechanical means), then the stir bar is omitted.6.1.1.2Add preservative to each vial. The preservative is added to each vialprior to shipping the vial to the field. Add approximately 1 g of sodium bisulfate to eachvial. If samples markedly smaller or larger than 5 g are to be collected, adjust theamount of preservative added to correspond to approximately 0.2 g of preservative foreach 1 g of sample. Enough sodium bisulfate should be present to ensure a sample pHof #2.6.1.1.3Add 5 mL of organic-free reagent water to each vial. The water and thepreservative will form an acid solution that will reduce or eliminate the majority of thebiological activity in the sample, thereby preventing biodegradation of the volatile targetanalytes.6.1.1.4Seal the vial with the screw-cap and septum seal. If the double-ended,fritted, vials are used, seal both ends as recommended by the manufacturer.6.1.1.5Affix a label to each vial. This eliminates the need to label the vials inthe field and assures that the tare weight of the vial includes the label. (The weight ofany markings added to the label in the field is negligible).6.1.1.6Weigh the prepared vial to the nearest 0.01 g, record the tare weight,and write it on the label.6.1.1.7Because volatile organics will partition into the headspace of the vialfrom the aqueous solution and will be lost when the vial is opened, surrogates, matrixspikes, and internal standards (if applicable) should only be added to the vials after thesample has been added to the vial. These standards should be introduced back in the CD-ROM5035 - 7Revision 0December 1996CD-ROM 5035 - 8Revision 0December 1996laboratory, either manually by puncturing the septum with a small-gauge needle orautomatically by the sample introduction system, just prior to analysis.6.1.2High concentration soil samples collected without a preservativeWhen high concentration samples are collected without a preservative, a varietyof sample containers may be employed, including 60-mL glass vials with septum seals(see Sec. 4.4).6.1.3High concentration soil samples collected and preserved in the fieldThe following steps apply to the preparation of vials used in the collection of highconcentration soil samples to be preserved in the field with methanol and analyzed by the aqueous purge-and-trap equipment described in Method 5030.6.1.3.1Add 10 mL of methanol to each vial.6.1.3.2Seal the vial with the screw-cap and septum seal.6.1.3.3Affix a label to each vial. This eliminates the need to label the vials inthe field and assures that the tare weight of the vial includes the label. (The weight ofany markings added to the label in the field is negligible).6.1.3.4Weigh the prepared vial to the nearest 0.01 g, record the tare weight,and write it on the label.NOTE:Vials containing methanol should be weighed a second time on the day thatthey are to be used. Vials found to have lost methanol (reduction in weightof >0.01 g) should not be used for sample collection.6.1.3.5Surrogates, internal standards and matrix spikes (if applicable) shouldbe added to the sample after it is returned to the laboratory and prior to analysis.6.1.4Oily waste samples When oily waste samples are known to be soluble in methanol or PEG, sample vials maybe prepared as described in Sec. 6.1.3, using the appropriate solvent. However, when the solubility of the waste is unknown, the sample should be collected without the use of a preservative, in a vial such as that described in Sec. 6.1.2.6.2Sample collectionCollect the sample according to the procedures outlined in the sampling plan. As withany sampling procedure for volatiles, care must be taken to minimize the disturbance of the sample in order to minimize the loss of the volatile components. Several techniques may be used to transfer a sample to the relatively narrow opening of the low concentration soil vial.These include devices such as the EnCore sampler, the Purge-and-Trap Soil Sampler ,TM TM and a cut plastic syringe. Always wear gloves whenever handling the tared sample vials.6.2.1Low concentration soil samples6.2.1.1Using an appropriate sample collection device, collect approximately 5g of sample as soon as possible after the surface of the soil or other solid material hasbeen exposed to the atmosphere: generally within a few minutes at most. Carefully wipethe exterior of the sample collection device with a clean cloth or towel.6.2.1.2Using the sample collection device, add about 5 g (2 - 3 cm) of soil tothe sample vial containing the preservative solution. Quickly brush any soil off the vialthreads and immediately seal the vial with the septum and screw-cap. Store sampleson ice at 4E C.NOTE:Soil samples that contain carbonate minerals (either from natural sources or applied as an amendment) may effervesce upon contact with the acidicpreservative solution in the low concentration sample vial. If the amount ofgas generated is very small (i.e., several mL), any loss of volatiles as a resultof such effervescence may be minimal if the vial is sealed quickly. However,if larger amounts of gas are generated, not only may the sample lose asignificant amount of analyte, but the gas pressure may shatter the vial if thesample vial is sealed. Therefore, when samples are known or suspected tocontain high levels of carbonates, a test sample should be collected, addedto a vial, and checked for effervescence. If a rapid or vigorous reactionoccurs, discard the sample and collect low concentration samples in vialsthat do not contain the preservative solution.6.2.1.3When practical, use a portable balance to weigh the sealed vialcontaining the sample to ensure that 5.0 ± 0.5 g of sample were added. The balanceshould be calibrated in the field using an appropriate weight for the sample containersemployed (Sec. 4.5.5). Record the weight of the sealed vial containing the sample to thenearest 0.01 g.6.2.1.4Alternatively, collect several trial samples with plastic syringes. Weigheach trial sample and note the length of the soil column in the syringe. Use these datato determine the length of soil in the syringe that corresponds to 5.0 ± 0.5 g. Discardeach trial sample.6.2.1.5As with the collection of aqueous samples for volatiles, collect at leasttwo replicate samples. This will allow the laboratory an additional sample for reanalysis.The second sample should be taken from the same soil stratum or the same section ofthe solid waste being sampled, and within close proximity to the location from which theoriginal sample was collected.6.2.1.6In addition, since the soil vial cannot be opened without compromisingthe integrity of the sample, at least one additional aliquot of sample must be collected forscreening, dry weight determination, and high concentration analysis (if necessary). Thisthird aliquot may be collected in a 60-mL glass vial or a third 40-mL soil sample vial.However, this third vial must not contain the sample preservative solution, as an aliquotwill be used to determine dry weight. If high concentration samples are collected in vialscontaining methanol, then two additional aliquots should be collected, one for highconcentration analysis collected in a vial containing methanol, and another for the dryweight determination in a vial without either methanol or the low concentration aqueouspreservative solution.CD-ROM5035 - 9Revision 0December 1996CD-ROM 5035 - 10Revision 0December 19966.2.1.7If samples are known or expected to contain target analytes over a widerange of concentrations, thereby requiring the analyses of multiple sample aliquots, itmay be advisable and practical to take an additional sample aliquot in a lowconcentration soil vial containing the preservative, but collecting only 1-2 g instead of the5 g collected in Sec. 6.2.1.1. This aliquot may be used for those analytes that exceedthe instrument calibration range in the 5-g analysis.6.2.1.8The EnCore sampler has not been thoroughly evaluated by EPA asTM a sample storage device. While preliminary results indicate that storage in the EnCore TMdevice may be appropriate for up to 48 hours, samples collected in this device should betransferred to the soil sample vials as soon as possible, or analyzed within 48 hours.6.2.1.9The collection of low concentration soil samples in vials that contain methanol is not appropriate for samples analyzed with the closed-system purge-and-trapequipment described in this method (see Sec. 6.2.2).6.2.2High concentration soil samples preserved in the fieldThe collection of soil samples in vials that contain methanol has been suggested by some as a combined preservation and extraction procedure. However, this procedure is not appropriate for use with the low concentration soil procedure described in this method. NOTE:The use of methanol preservation has not been formally evaluated by EPA andanalysts must be aware of two potential problems. First, the use of methanol asa preservative and extraction solvent introduces a significant dilution factor thatwill raise the method quantitation limit beyond the operating range of the lowconcentration direct purge-and-trap procedure (0.5-200 µg/kg). The exactdilution factor will depend on the masses of solvent and sample, but generallyexceeds 1000, and may make it difficult to demonstrate compliance withregulatory limits or action levels for some analytes. Because the analytes ofinterest are volatile, the methanol extract cannot be concentrated to overcomethe dilution problem. Thus, for samples of unknown composition, it may still benecessary to collect an aliquot for analysis by this closed-system procedure andanother aliquot preserved in methanol and analyzed by other procedures. Thesecond problem is that the addition of methanol to the sample is likely to causethe sample to fail the ignitability characteristic, thereby making the unusedsample volume a hazardous waste.6.2.2.1When samples are known to contain volatiles at concentrations highenough that the dilution factor will not preclude obtaining results within the calibrationrange of the appropriate determinative method, a sample may be collected andimmediately placed in a sample vial containing purge-and-trap grade methanol.6.2.2.2Using an appropriate sample collection device, collect approximately 5g of sample as soon as possible after the surface of the soil or other solid material hasbeen exposed to the atmosphere: generally within a few minutes at most. Carefully wipethe exterior of the sample collection device with a clean cloth or towel.6.2.2.3Using the sample collection device, add about 5 g (2 - 3 cm) of soil tothe vial containing 10 mL of methanol. Quickly brush any soil off the vial threads andimmediately seal the vial with the septum and screw-cap. Store samples on ice at 4E C.。

吹扫捕集-气相色谱质谱法测定纺织品中多种异味物质

吹扫捕集-气相色谱质谱法测定纺织品中多种异味物质

我国GB 18401—2010《国家纺织产品基本安全技术规范》和GB/T 18885—2009《生态纺织品技术要求》以及国际生态纺织品标准STANDARD 100by OEKO-TEX 明确规定,纺织品不得有霉味、高沸程石油味、鱼腥味、芳香烃气味和香味等5大类异常气味。

GB 18383—2007《絮用纤维制品通用技术要求》和FZ/T 20027—2014《羊绒制品异味测定方法》也对这5类异味有明确的限制要求。

顾娟红1,严敏2,柳艳1,徐振东1(1.苏州海关综合技术中心,江苏苏州215104;2.苏州世标检测技术有限公司,江苏苏州215104)摘要:建立了气相色谱/质谱联用法测定纺织品中多种异味物质的方法。

样品经吹扫、捕集及热脱附后,用气相色谱/质谱联用仪(GC/MS )测定,采用外标法定量。

对GC/MS 的仪器条件、吹扫捕集器(P&T )影响因素(吹扫时间和温度、吹扫流速、脱附条件等)、基质效应、样品量等条件进行优化。

在最佳实验条件下,10种异味物质的质量分数与峰面积在一定范围内呈线性关系,方法的检出限为4.1~9.0μg/kg ,相关系数为0.9980~0.9999,平均加标回收率为77.29%~100.24%,相对标准偏差为2.3%~8.6%。

方法灵敏、简便、环境友好,可用于纺织品中10种异味物质的测定。

关键词:气相色谱/质谱法;异味物质;纺织品;吹扫捕集中图分类号:TS197文献标志码:C文章编号:1004-0439(2021)04-0055-05Determination of odour compounds in textiles by gas purge andtrap-gas chromatography/mass spectrometryGU Juanhong 1,YAN Min 2,LIU Yan 1,XU Zhendong 1(prehensive Technology Center of Suzhou Customs,Suzhou 215104,China;2.Suzhou WorldStandard Testing Technology Co.Ltd.,Suzhou 215104,China)Abstract:A gas chromatography /mass spectrometry method was established for the determination ofvarious odor compounds in textiles.After purging,trapping and thermal desorption,the samples were deter⁃mined by gas chromatography/mass spectrometry (GC/MS)and quantified by external standard method.The in⁃strument parameters of GC/MS,influence factors of purge and trap (P&T)collector (purging time and tempera⁃ture,purging flow rate,desorption conditions,etc.),matrix effect,sample amount were optimized.Under the optimal experimental condition,there was a linear relationship between the mass fraction of 10odor com⁃pounds and their peak area in a certain range of mass fraction.The detection limit of the method was 4.1~9.0μg /kg,the correlation coefficient was 0.9980~09999,the average standard substance recovery rate was 77.29%~100.24%,and the relative standard deviation was 2.3%~8.6%.The method was sensitive,rapid and en⁃vironmental friendly,and was suitable for the determination of 10odour compounds in textiles.Key words:gas chromatography/mass spectrometry;odour compounds;textiles;P&T吹扫捕集-气相色谱/质谱法测定纺织品中多种异味物质收稿日期:2019-05-09基金项目:南京海关科技计划项目(2017KJ27)作者简介:顾娟红,高级工程师,硕士,主要从事消费品检测,E-mail :*******************。

食品中溶剂残留检测方法

食品中溶剂残留检测方法

063在食品生产和加工过程中,势必会在成品中形成一定的溶剂残留或者由食品包装代入一些残留溶剂。

如果食品中含有超量的溶剂残留,就会对人体的身体健康造成危害。

因此,必须加强对食品中溶剂残留的检测,从而确保食品质量安全。

就目前而言,气相色谱法是最为常用的食品溶剂残留检测方法,其中,顶空进样、固相微萃取技术和吹扫捕集技术是对溶剂残留分析前常用的处理技术。

一、顶空进样顶空进样分为手工进样和机器进样。

顶空进样器是专为色谱分析中需要样品制备而特制的一种高性能低成本的经济型进样器,它利用顶空技术(气体萃取),免除了繁杂的样品前处理过程,可用于气体、液体或者固体样品中挥发性组分的定性、定量分析,具有方便、花费少、易于自动化的特点,主要用于气相色谱、气质联用的进样过程中难以得到液体样品的分析,比如淤泥中的甲烷、固体药品中的溶剂残留。

在对食品中溶剂残留进行检测时,采用顶空气相色谱法可以有效免除对样品的前处理,且不会受到材质的限制,因此得到广泛应用。

二、固相微萃取技术固相微萃技术是1989年由加拿大W a t e r l o o 大学Pawlinszyn及其合作者Arthur等提出的。

此技术是在原有的固相萃取技术中发展起来的一种集采样、萃取、浓缩和进样于一体的无溶剂样品微萃取分离新技术。

与固相萃取技术不同,此技术的操作更为便捷,且相关成本费用也较低,有效地缓解了固相萃取技术总回收率低、吸附剂孔道极易发生堵塞等缺点。

固相微萃取技术逐渐成为目前食品样品前处理技术中应用最为广泛的技术之一。

三、吹扫捕集技术在理论上讲,吹扫捕集技术也是一种动态的顶空技术,其主要是利用流动气体有效地将样品中易挥发的组分“吹扫”出来,并通过一个捕集器将“吹扫”出来的有机食品中溶剂残留检测方法物进行吸附,随后经过热解吸附将样品送到气相色谱仪进行分析的技术。

此技术对于样品没有特殊要求,待“吹扫”的样品既可以是固体,也可以是液体,一般采用高纯氦气作为吹扫气。

吹扫捕集技术

吹扫捕集技术

步骤
一、取一定量的样品计入到吹扫瓶中 二、将经过硅胶、分子筛和活性炭干燥净化的吹扫
气,以一定流量通入吹扫瓶,以吹脱出挥发性组分 三、吹脱出的组分被保留在吸附剂或冷阱中 四、打开六通阀,把吸附管置于气相色谱分析流路 五、加热吸附管进行脱附,挥发性组分被吹出并进
入分析柱 六、进行色谱分析
常见的挥发性及半挥发性有机化合物的前处 理技术:吹扫捕集、顶空、固相微萃取、固 相萃取、超临界流体萃取、微波辅助萃取、 液液萃取、超声振荡、索氏萃取和凝胶渗透 色谱等技术
液液萃取、静态顶空和动态顶空技术都耗时 较长,固相微萃取技术和最近发展的膜萃取 技术富集速度较快,但由于富集倍数低,对 超痕量的挥发性有机化合物无法分析检测。
吹扫捕集技术的应用
高红波
为什么要用吹扫捕集被测物特点 Nhomakorabea组分复杂、
浓度较低、干扰 物多、同种元素 以多相形式存在 和易受环境影响 而变化等特点。
处理: 通常都要经过复
杂的前处理后才能 进行分析测定,经 典的前处理方法, 如沉淀、络合、衍 生、吸附、萃取、 蒸馏、干燥、过滤、 透析、离心和升华
传统方法的弊端: 靠人工操作,重复性
特性
CO2,氨,乙烷, 装置昂贵,
乙烯,丙烯及水 不适合水

样分析
膜萃取
膜对待测 由高分子膜萃取样品中的待测 物质的吸 物,然后再用气体或液体萃取 附作用 出膜中的待测物
挥发及半挥发性 物质,支载液膜 萃取在不同pH值 下能离子化的化 合物
高分子膜,中空 纤维
膜对待测 物浓度变 化有滞后 性,待测 物受膜限
过程:
用氮气、氦气或其他惰性气体以一定的流量 通过液体或固体进行吹扫,吹出所要分析的 痕量挥发性组分后,被冷阱中的吸附剂所吸 附,然后加热脱附进入气相色谱系统进行分 析。

吹扫捕集(动态顶空)进样技术

吹扫捕集(动态顶空)进样技术

一、吹扫捕集进‎样技术的基‎本原理动态顶空是‎相对于静态‎顶空而言的‎。

与静态顶空‎不同,动态顶空不‎是分析牌平‎衡状态的顶‎空样品,而是用流动‎的气体将样‎品中的挥发‎性成分“吹扫”出来,再用一个捕‎集器将吹出‎来的物质吸‎附下来,然后经热解‎吸将样品送‎入GC进行‎分析。

因此,通常称为吹‎扫--捕集(Purge‎ & Trap)进样技术。

在绝大部分‎吹扫--捕集应用中‎都采用氦气‎作为吹扫气‎,将其同通入‎样品溶液鼓‎泡。

在持续的气‎流吹扫下,样品中的挥‎发性组分随‎氦气逸出,并通过一个‎装有吸附剂‎的捕集装置‎进行浓缩。

在一定的吹‎扫时间之后‎,等测组分全‎部或定量地‎进入捕集器‎。

此时,关闭吹扫气‎,由切换阀将‎捕集器接入‎G C的开气‎气路,同时快速加‎热捕集的样‎品组分解吸‎后随载气进‎入G C分离‎分析。

所以,吹扫--捕集的原理‎就是:动态顶空萃‎取-吸附捕集热‎解吸-GC分析。

吹扫-捕集进样技‎术广泛应用‎于环境分析‎,如饮用水或‎废水中的有‎机污染物分‎析。

也用于食品‎中挥发物(如气味成分‎)的分析。

显然,许多用吹扫‎--捕集技术分‎析的样品也‎可以用静态‎顶空技术分‎析,只是前者灵‎敏度较高,且可分析沸‎点相对高(蒸气压低)的组分。

还有吹扫--捕集比静态‎顶空的平衡‎时间短。

二,吹扫--捕集操作条‎件选择1、温度吹扫--捕集分析中‎有三个温度‎需要控制,第一个是样‎品的吹扫温‎度。

水溶液大多‎在室温下吹‎扫,只要吹扫时‎间足够长,就能满足分‎析要求。

有时为缩短‎吹扫时间,也可对样品‎加热,但升高温度‎的副作用增‎加了水的挥‎发。

对于非水溶‎液,如某些肉类‎食品,则采用高一‎些的吹扫温‎度。

第二个捕集‎器温度。

这里又有吸‎附温度和解‎吸温度之别‎。

吸附温度常‎为室温,但对不易吸‎附的气体也‎可采用低温‎冷漠捕食技‎术。

即用冷气、液态二氧化‎碳或液氮控‎制捕集管的‎温度。

多功能液固自动吹扫捕集仪技术指标

多功能液固自动吹扫捕集仪技术指标

多功能液/固自动吹扫捕集仪技术指标(1)至少80位样品瓶托盘。

(2)水样及内标处理:样品注射器以1ml为单位增量,取样范围1ml到25ml,取样精度<1%RSD;(3)气路控制3.1电子质量流量计精准控制流速在5-500ml/min3.2电子压力监控记录每个样品在吹扫和烘培时的压力3.3气体供应为高纯氦气或高纯氮气,进口压力为65-100psig*(4)内标注入系统规格4.1注入系统有3内标位,采用3态分流阀上配置的2通配置阀控制注入容量4.2容量:1,2,5,10,20ul的增量4.3精密度<10%RSD4.4精确度1ul±0.1ul4.5内标消耗量1ul的注入量可用1ul*4.6内标容器,配置3个15ml的内标容器,防紫外涂层保证样标稳定性,内标容器完全密封的保证标准浓度的恒定。

(5)检测液体样品5.1可选配5ml或25ml带滤器或不带滤器的U型吹扫管5.2水样可按如下比例设置自动稀释1:100,1:50,1:25,1:10,1:5,1:25.3系统可自动从纯水池抽取纯水添加标样后做空白样,全部的进样位可用于放置样品。

5.4吹扫捕集循环时间不超过20min(6)检测固体样品(一般土壤样品或者固体废物):6.1 3通道取样针,允许将蒸馏水或内标直接注入到样品瓶6.2样品瓶加热温度40℃-100℃6.3土壤样品可在3级可调速度下震荡混合均匀。

(7)高浓度固体样品(高浓度土壤样品或者固体废物)*7.1具有自动添加甲醇溶剂萃取系统7.2可编程自动稀释萃取液(8)仪器具有RS-232接口和USB接口可选。

(9)可针对任意样品自由设置方法,任何样品位最多可加入3个内标。

(10)系统可记录并保存所有样品、流程和方法信息的历史。

(11)整个系统的样品通路自动检漏。

内置有诊断系统,一旦发现漏气,系统会自动对下属3个系统进行检漏。

(12)系统内置测试横式,可对整个仪器的电子机械部分进行检测,包含:阀,加热器,样品瓶处理系统,液体传输系统,出入和输出。

气相色谱吹扫捕集

气相色谱吹扫捕集

气相色谱吹扫捕集
气相色谱吹扫捕集是一种常用的样品前处理技术,在有机物分析、环境监测、食品安全等领域广泛应用。

该技术通过将样品溶解在溶剂中,利用气流将挥发性有机物从样品中驱除,然后通过色谱柱进行分离和检测。

吹扫捕集技术具有灵敏度高、选择性好、重现性强等优点,可以有效地提高分析效率和准确度。

同时,该技术还可以与其他分离和检测技术相结合,如液相色谱、质谱等,进一步提高分析的精度和灵敏度,为科学研究和生产生活带来实际的应用价值。

- 1 -。

吹扫捕集技术

吹扫捕集技术

固体吸附 剂容易被
堵塞
固相微萃 取
待测物在 样品及萃 取涂层之 间的分配
平衡
将萃取纤维暴露在样品或其顶 空中萃取
挥发及半挥发性 有机物
具有选择吸附性 涂层
萃取涂层 易磨损, 使用寿命
有限
吹扫捕集技术
▪ 一、吹扫捕集的原理及操作步骤 ▪ 吹扫捕集技术与静态顶空技术
相同点:用氮气、氦气或其他惰性气体将被 测物从样品中抽提出来。 ▪ 不同点:吹扫捕集技术使气体连续通过样品, 将其中的挥发组分萃取后在吸附剂或冷阱中 捕集,再进行分析测定,是一种非平衡态的 连续萃取。因此又被称为动态顶空浓缩法。
影响因素
▪ 吹扫效率是在吹扫捕集过程中,被分析组分 能被吹出回收的百分数。
▪ 影响吹扫效率的因素主要有吹扫温度、样品 的溶解度、吹扫气的流速及流量、捕集效率 和解吸温度及时间等。
优点:对样品的前处理无需使用有机溶剂,对环境不造成二次污染,而且具有取样 量少、富集效率高、受基体干扰小及容易实现在线检测等优点。
缺点:易形成泡沫使仪器超载,伴随有水蒸气的吹出,不利于下一步的吸附,给非 极性气相色谱分离柱的分离带来困难,并且水对火焰类检测器也具有淬火作用。
前处理 方法
原理
分析方法
吹扫捕集技术
为什么要用吹扫捕集
被测物特点 组分复杂、浓
度较低、干扰物 多、同种元素以 多相形式存在和 易受环境影响而 变化等特点。
处理: 通常都要经过复杂 的前处理后才能进 行分析测定,经典 的前处理方法,如 沉淀、络合、衍生、 吸附、萃取、蒸馏、 干燥、过滤、透析、 离心和升华
传统方法的弊端: 靠人工操作,重复性差,
工作强度大,处理周期长, 又要使用大量有机溶剂等。 同时,处理复杂样品还需 多种方法配合,操作步骤 更多,更易产生系统与人 为误差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档