北师大版九年级上册数学[正方形(基础)知识点整理及重点题型梳理]

合集下载

北师大九年级数学上册

北师大九年级数学上册

北师大九年级数学上册一、章节知识点总结。

1. 特殊平行四边形。

- 矩形。

- 定义:有一个角是直角的平行四边形是矩形。

- 性质:- 四个角都是直角。

- 对角线相等。

- 既是轴对称图形(对称轴有两条,对边中点连线所在直线)又是中心对称图形(对称中心是对角线交点)。

- 判定:- 有一个角是直角的平行四边形是矩形。

- 对角线相等的平行四边形是矩形。

- 有三个角是直角的四边形是矩形。

- 菱形。

- 定义:有一组邻边相等的平行四边形是菱形。

- 性质:- 四条边都相等。

- 对角线互相垂直,且每条对角线平分一组对角。

- 是轴对称图形(对称轴是两条对角线所在直线),也是中心对称图形。

- 判定:- 有一组邻边相等的平行四边形是菱形。

- 对角线互相垂直的平行四边形是菱形。

- 四条边都相等的四边形是菱形。

- 正方形。

- 定义:有一组邻边相等且有一个角是直角的平行四边形是正方形。

- 性质:- 四条边都相等,四个角都是直角。

- 对角线相等且互相垂直平分,每条对角线平分一组对角。

- 既是轴对称图形(有四条对称轴,两条对角线所在直线和两组对边中点连线所在直线)又是中心对称图形。

- 判定:- 有一组邻边相等的矩形是正方形。

- 有一个角是直角的菱形是正方形。

2. 一元二次方程。

- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程,一般形式为ax^2+bx + c=0(a≠0)。

- 解法:- 直接开平方法:对于形如x^2=k(k≥slant0)的方程,x=±√(k)。

- 配方法:将方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后求解。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其解为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥slant0)。

九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。

2.三角形的外接圆的圆心叫做三角形的外心。

3.弦切角等于所夹的弧所对的圆心角。

4.三角形的内切圆的圆心叫做三角形的内心。

5.垂直于半径的直线必为圆的切线。

6.过半径的外端点并且垂直于半径的直线是圆的切线。

7.垂直于半径的直线是圆的切线。

8.圆的切线垂直于过切点的半径。

4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

当一个单项式的系数是1或—1时,“1”通常省略不写。

一个单项式中,全部字母的指数的和叫做这个单项式的次数。

假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。

1、多项式有有限个单项式的代数和组成的式子,叫做多项式。

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。

性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。

北师大版九年级数学第一章特殊平行四边形正方形的性质与判定

北师大版九年级数学第一章特殊平行四边形正方形的性质与判定

正方形【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点进阶:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点进阶:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点进阶:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、正方形的性质例1、已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.举一反三:【变式1】如图四边形ABCD是正方形,点E、K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.以线段DE、DG为边作DEFG.(1)求证:DE=DG,且DE⊥DG.(2)连接KF,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想.【变式2】如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是_______.类型二、正方形的判定例2、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.举一反三:【变式】(2015春•上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.类型三、正方形综合应用例3、E、F分别是正方形ABCD的边AD和CD上的点,若∠EBF=45°.(1)求证:AE+CF=EF.(2)若E点、F点分别是边DA、CD的延长线上的点,结论(1)仍成立吗?若成立,请证明,若不成立,写出正确结论并加以证明.例4、正方形ABCD的对角线交点为O,如图所示,AE平分∠BAC交BC于E,交OB于F,求证:EC=2FO.【变式】在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图①,易证EG=CG,且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.一.选择题1. 在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的有()A.1个 B.2个 C.4个 D.无穷多个2.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变.当∠B=90°时(如图甲),测得对角线BD的长为.当∠B=60°时(如图乙),则对角线BD的长为()A. B. C. 2 D.3. 如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积为S,则( )A.S=2 B.S=2.4 C.S=4 D.S与BE长度有关4.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.65. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为1S ,2S ,则12S S +的值为( ) A.16 B.17 C.18 D.196. 如图,四边形ABCD 中,AD =DC ,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD 面积为16,则DE 的长为( )A .3B .2C .4D .8二.填空题7.延长正方形ABCD 的BC 边至点E ,使CE =AC ,连结AE ,交CD 于F ,那么∠AFC 的度数为______,若BC =4cm ,则△ACE 的面积等于______.8. 在正方形ABCD 中,E 为BC 上一点,EF ⊥AC ,EG ⊥BD ,垂足分别为F 、G ,如果cm 25=AB ,那么EF +EG 的长为______.9.已知:如图,△ABC 中,∠ACB =90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D ,E ,F 分别是垂足,且BC =8cm ,CA =6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于______cm .10.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为_____.11.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.12.如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…S n (n为正整数),那么第8个正方形面积S8=.三.解答题13.如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,若点A的坐标为(1,),则点C的坐标?14.如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连结EB 、EA ,延长BE 交边AD 于点F .(1)求证:△ADE ≌△BCE ;(2)求∠AFB 的度数.15.如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连结DP 交AC 于点Q .(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ;(2)当点P 在AB 上运动到什么位置时,△ADQ 的面积是正方形ABCD 面积的61; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,△ADQ 恰为等腰三角形.。

数学北师大版九年级上册《正方形》复习课

数学北师大版九年级上册《正方形》复习课
(2)角
(3)对角线
(4)对称性
2、判定:四种方法
教学反思
教学准备
教学难点
熟练利用正方形的性质与判定定理进行证明与计算。
幻灯片
教学方法
自主学习与合作探究。
教学内容
师生活动
设计说明
过程与方法
一、组织教学
二、课前展示:
1、平行四边形有哪些性质与判定方法
2、矩形有哪些性质与判定方法。
3、菱形有哪些性质与判定方法。
三、引导学生梳理、归纳知识点:
1、填图:平行四边形、矩形、菱形、正方形之间的关系
小组合作学习进入数学课堂,学生成为学习的主体,学生的学习积极性有了很大的提高,自主、合作、探究正成为学生主要的学习方式之一
培养学生综合运用知识的能力,
培养学生归纳总结的能力
板书设计
四、正方形(复习)
(一)基础知识:(二)应用:(典型习题)
1、平行四边形、矩形、菱形、例
正方形之间的关系
2、性质:
(1)边:
2、填表格:总结、归纳正方形的性质与判定方法:
(1)正方形的性质:
边:
角:
对角线:
对称性:
(2)判定:
四种方法:①



学生结合大屏幕叙述平行四边形、矩形、菱形的性质、与判定。
(抽签)
学生结合表格,自己整理正方形的性质与判定方法
然后由学生叙述
教师指导学生归纳基础知识
记忆知识(小组同学可以互相Байду номын сангаас问)
教师抽查学生掌握的情况。
教学设计
课题
正方形
课型
复习课
授课教师
张振
教学目标
通过复习能够进一步掌握正方形的性质定理与判定方法,熟练运用正方形的性质定理与判定定理进行比较简单的综合推理与证明、计算,进一步提高学生的分析问题与解决问题的能力.通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育。

北师大版数学九年级上册知识点归纳

北师大版数学九年级上册知识点归纳

北师大版《数学》(九年级上册)知识点归纳第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。

(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。

(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。

(4)全等三角形的对应边相等、对应角相等。

推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。

二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。

(2)三线合一 判定:(1)三条边都相等的三角形是等边三角形 (2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。

四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。

北师大版九年级上册数学全册各章知识点汇总

北师大版九年级上册数学全册各章知识点汇总

最新新北师大版九年级数学(上册)知识点汇总
第一章特殊平行四边形
第二章一元二次方程
第三章概率的进一步认识
第四章图形的相似
第五章投影与视图
第六章反比例函数
第一章特殊平行四边形
1.1菱形的性质与判定
菱形的定义:一组邻边相等的平行四边形叫做菱形.
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.
菱形是轴对称图形,每条对角线所在的直线都是对称轴.
※菱形的判别方法:一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边都相等的四边形是菱形.
1.2 矩形的性质与判定
※矩形的定义:有一个角是直角的平行四边形叫矩形
.矩形是特殊的平行四边形.
..
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称
图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).
对角线相等的平行四边形是矩形.
四个角都相等的四边形是矩形.
※推论:直角三角形斜边上的中线等于斜边的一半.
1.3 正方形的性质与判定
正方形的定义:一组邻边相等的矩形叫做正方形.
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形.
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.


鹏翔教图3。

正方形的判定(4种题型)-2023年新九年级数学核心知识点与常见题型(北师大版)(解析版)

正方形的判定(4种题型)-2023年新九年级数学核心知识点与常见题型(北师大版)(解析版)

正方形的判定(4种题型)【知识梳理】一.正方形的判定正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.二.正方形的判定与性质(1)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质.(2)正方形的判定正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.【考点剖析】题型一:正方形判定定理的理解例1.(2023·湖北襄阳·统考模拟预测)满足下列条件的四边形是正方形的是()A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的菱形C.对角线相等的矩形D.对角线互相垂直平分的四边形【答案】A【分析】根据正方形的判定方法即可求解.【详解】解:A选项,对角线互相垂直且相等的平行四边形是正方形,故A选项正确,符合题意;B选项,对角线互相垂直的长方形是正方形,故B选项错误,不符合题意;C选项,对角线相等的菱形是正方形,故C选项错误,不符合题意;D选项,对角线互相垂直平分的长方形是正方形,故D选项错误,不符合题意;故选:A .【点睛】本题主要考查正方形的判定,掌握“对角线相互垂直的矩形是正方形”,“对角线相等的菱形是正方形”,“对角线互相垂直且相等的平行四边形是正方形”的知识是解题的关键. 【变式】(2023·江苏无锡·江苏省天一中学校考三模)如图,在矩形ABCD 中,对角线AC 与BD 相交O ,添加下列条件不能判定矩形ABCD 是正方形的是( )A .AB BC =B .AC BD = C .AC BD ⊥ D .12∠=∠【答案】B 【分析】根据正方形的判定方法即可一一判断.【详解】解:A 、正确.邻边相等的矩形是正方形,不符合题意;B 、错误.矩形的对角线相等,但对角线相等的矩形不一定是正方形,故符合题意;C 、正确.∵四边形ABCD 是矩形,∴OD OB =,OC OA =,∵AC BD ⊥,∴AD AB =,∴矩形ABCD 为正方形,故不符合题意;D 、正确,∵12∠=∠,AB CD ,∴2ACD ∠=∠,∴1ACD ∠=∠,∴AD CD =,∴矩形ABCD 是正方形,故不符合题意.故选:B .【点睛】本题考查了正方形的判定定理,解题的关键是熟练掌握正方形的判定方法.题型二:添加一个条件使四边形是正方形 例2.(2023·陕西西安·西安市铁一中学校考模拟预测)如图,D 是ABC 内一点,AD BC ⊥,E 、F 、G 、H 分别是AB BD CD AC 、、、的中点,添加下列哪个条件,能使得四边形EFGH 成为正方形()A .BD CD =B .BD CD ⊥C .AD BC = D .AB AC =【答案】C 【分析】根据三角形中位线的性质可证EF GH =,EH FG =,推出四边形EFGH 是平行四边形,再根据AD BC ⊥证明EF FG ⊥,可得四边形EFGH 是矩形,根据邻边相等的矩形是正方形可得选项C 为正确答案.【详解】解: E 、F 、G 、H 分别是AB BD CD AC 、、、的中点,∴ EF 是ABD △的中位线,CH 是ADC △的中位线,FG 是DBC △的中位线,EH 是ABC 的中位线, ∴12EF AD =,EF AD ∥,12GH AD =,GH AD ∥,12FG BC =,FG BC ∥,12EH BC =,EH BC ∥, ∴EF GH =,EH FG =,∴四边形EFGH 是平行四边形,EF AD ∥,FG BC ∥,AD BC ⊥,∴EF FG ⊥,∴四边形EFGH 是矩形,当AD BC =时,1122EF AD BC FG ===,可得四边形EFGH 是正方形.故选C .【点睛】本题考查三角形中位线的性质,正方形的判定,解题的关键是掌握正方形的判定方法,以及中位线的性质,即平行于三角形的第三条边,且等于第三边长度的一半.【变式】.(2023秋·河南郑州·九年级校考期末)数学活动课上,何老师布置了一道题目:如图,你能用一张锐角三角形纸片ABC 折出一个以A ∠为内角的菱形吗?石雨的折法如下:第一步,折出A ∠的平分线,交BC 于点D ,第二步,折出AD 的垂直平分线,分别交AB 、AC 于点E 、F ,把纸片展平,第三步,折出DE 、DF ,得到四边形AEDF ,(1)请根据石雨的折法在图中画出对应的图形,并证明四边形AEDF 是菱形;(2)ABC 满足什么条件时,四边形AEDF 是正方形?请说明理由.【答案】(1)见解析;(2)ABC 为直角三角形且90BAC ∠=︒,理由见解析.【分析】(1)根据要求画出图形,根据邻边相等的平行四边形是菱形证明即可;(2)根据正方形与菱形的关系即可得知ABC 为直角三角形且90BAC ∠=︒,有一个角为直角的菱形为正方形.【详解】(1)解:图形如图所示:理由:∵AD 是BAC ∠ 的平分线,∴BAD CAD ∠=∠,∵EF 是AD 的垂直平分线,∴EA ED =,∴EAD EDA ∠=∠,∴EDA CAD ∠=∠,∴ED AF ∥.同理AE FD ∥,∴四边形 AEDF 是平行四边形,又EA ED =,∴四边形 AEDF 是菱形.(2)ABC 为直角三角形且90BAC ∠=︒,理由如下:∵四边形 AEDF 是菱形,90BAC ∠=︒,∴四边形AEDF 是正方形.【点睛】本题考查作图——复杂作图,菱形的判定,正方形的判定,平行四边形的判定等知识解题的关键是理解题意,灵活运用所学知识解决问题.题型三:证明四边形是正方形例3.如图,等边△AEF 的顶点E ,F 在矩形ABCD 的边BC ,CD 上,且∠CEF =45°.求证:矩形ABCD 是正方形.【分析】先判断出AE =AF ,∠AEF =∠AFE =60°,进而求出∠AFD =∠AEB =75°,进而判断出△AEB ≌△AFD ,即可得出结论.【解答】解:∵四边形ABCD 是矩形,∴∠B =∠D =∠C =90°,∵△AEF 是等边三角形,∴AE =AF ,∠AEF =∠AFE =60°,∵∠CEF =45°,∴∠CFE =∠CEF =45°,∴∠AFD =∠AEB =180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.【点评】此题主要考查了矩形的性质,等边三角形的性质,全等三角形的判定和性质,正方形的判定,判断出∠AFD=∠AEB是解本题的关键.【变式1】如图所示,在△ABC中,∠ACB=90°,CD平分△ACB,DE⊥AC于E,DF⊥BC于F,求证:四边形CEDF是正方形.【分析】根据有三个角是直角的四边形是矩形判定四边形CEDF是矩形,再根据正方形的判定方法即可得出结论.【解答】证明:∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∠DFC=∠DEC=90°,又∵∠ACB=90°,∴四边形CEDF是矩形,∵DE=DF,∴矩形CEDF是正方形.【点评】本题考查正方形的判定、角平分线的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.【变式2】如图,已知点E,F,G,H分别是正方形ABCD四条边上的点,并且AE=BF=CG=DH.求证:四边形EFGH是正方形.【分析】可通过证明△AEH,△DHG,△CGF,△BFE全等,先得出四边形EFGH是菱形,再证明四边形EFGH 中一个内角为90°,从而得出四边形EFGH是正方形的结论【解答】解:四边形EFGH是正方形.证明:∵AE=BF=CG=GH,∴AH=DG=CF=BE.∵∠A=∠B=∠C=∠D=90°,∴△AEH≌△DHG≌△CGF≌△BFE,∴EF=EH=HG=GF,∠EHA=∠HGD.∴四边形EFGH是菱形.∵∠EHA=∠HGD,∠HGD+∠GHD=90°,∴∠EHA+∠GHD=90°.∴∠EHG=90°.∴四边形EFGH是正方形.【点评】本题主要考查了全等三角形的判定及性质、菱形的判定和性质、正方形的性质和判定,熟练掌握应用全等三角形的性质是解题的关键.题型四:根据正方形的判定与性质求线段长例4.如图所示△ABC中,∠C=90A,∠B的平分线交于D点,DE⊥BC于点E,DF⊥AC于点F.(1)求证:四边形CEDF为正方形;(2)若AC=6,BC=8,求CE的长.【分析】(1)直接利用矩形的判定方法以及角平分线的性质得出四边形CEDF为正方形;(2)利用三角形面积求法得出EC的长.【解答】(1)证明:过点D作DN⊥AB于点N,∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F,∴四边形FCED是矩形,又∵∠A,∠B的平分线交于D点,∴DF=DE=DN,∴矩形FCED是正方形;(2)解:∵AC=6,BC=8,∠C=90°,∴AB=10,∵四边形CEDF为正方形,∴DF=DE=DN,∴DF×AC+DE×BC+DN×AB=AC×BC,则EC(AC+BC+AB)=AC×BC,故EC==2.【点评】此题主要考查了正方形的判定以及三角形面积求法和角平分线的性质等知识,得出DF=DE是解题关键.【变式】如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=BC,∠D=45°,CD的垂直平分线交CD于E,交AD于F,交BC的延长线于G,若AD=a.(1)求证:四边形ABCF是正方形;(2)求BG的长.【分析】(1)先根据∠B=∠A=∠AFC=90°,判定四边形ABCF是矩形,再根据AB=BC,即可得到四边形ABCF是正方形;(2)先判定△CEG≌△DEF(AAS),得出CG=FD,再根据正方形ABCF中,BC=AF,即可得到AF+FD=BC+CG,即AD=BG=a.【解答】解:(1)∵CD的垂直平分线交CD于E,交AD于F,∴FC=FD,∴∠D=∠FCD=45°,∴∠CFD=90°,即∠AFC=90°,又∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABCF是矩形,又∵AB=BC,∴四边形ABCF是正方形;(2)∵FG垂直平分CD,∴CE=DE,∠CEG=∠DEF=90°,∵BG∥AD,∴∠G=∠EFD,在△CEG和△DEF中,,∴△CEG≌△DEF(AAS),∴CG=FD,又∵正方形ABCF中,BC=AF,∴AF+FD=BC+CG,∴AD=BG=a.【点评】本题主要考查了正方形的判定与性质,线段垂直平分线的性质以及全等三角形的判定与性质的综合应用,解决问题的关键是掌握:有一组邻边相等的矩形是正方形;线段垂直平分线上任意一点,到线段两端点的距离相等.题型五:中点四边形 例5(2023·陕西西安·校考二模)已知四边形ABCD 为菱形,点E 、F 、G 、H 分别AD 、AB 、BC 、CD 边的中点,依次连接E 、F 、G 、H 得到四边形EFGH ,则四边形EFGH 为( )A .平行四边形B .菱形C .矩形D .正方形【答案】C【分析】连接AC BD 、,根据三角形中位线定理得到1122HG EF BD FG EH AC ====,,根据菱形的性质得到AC BD ⊥,即可判断四边形EFGH 为矩形.【详解】连接AC BD 、交于O ,∵点E 、F 、G 、H 分别AD 、AB 、BC 、CD 边的中点,∴1122HG EF BD FG EH AC ====,,FG AC ∥,EF BD ∥,∴四边形EFGH 为平行四边形,∵四边形ABCD 为菱形,∴90AOB ∠=︒,∴90AOB BPF GFE ∠=∠=∠=︒,∴四边形EFGH 为矩形,故选:C .【点睛】本题考查的是中点四边形,掌握三角形中位线定理、矩形的判定、菱形的性质是解题的关键.【变式】(2023·山东临沂·统考一模)四边形ABCD 的对角线AC ,BD 交点O ,点M ,N ,P ,Q 分别为边AB , BC ,CD ,DA 的中点.有下列四个推断,①对于任意四边形ABCD ,四边形MNPQ 可能不是平行四边形;②若AC BD =,则四边形MNPQ 一定是菱形;③若AC BD ⊥,则四边形MNPQ 一定是矩形;④若四边形ABCD 是菱形,则四边形MNPQ 也是菱形. 所有正确推断的序号是_____________.【答案】②③【分析】根据四边形的性质及中位线的性质推导即可.【详解】解:点M ,N ,P ,Q 分别为边AB , BC ,CD ,DA 的中点,MN AC ∴∥且12MN AC =,PQ AC ∥且12PQ AC =,MN PQ ∴∥且MN PQ =,MNPQ ∴是平行四边形,故①错误; 点M ,N ,P ,Q 分别为边AB , BC ,CD ,DA 的中点,∴12MN AC =,12PN BD =,AC BD =,MN PN ∴=,MNPQ 是平行四边形,∴四边形MNPQ 是菱形,故②正确;点M ,N ,P ,Q 分别为边AB , BC ,CD ,DA 的中点,MN AC ∴∥,MQ BD ∥,AC BD ⊥,MN MQ ∴⊥,90QMN ∴∠=︒,MNPQ 是平行四边形,∴MNPQ 是矩形,故③正确;若要四边形MNPQ 是菱形,需满足AC BD =,当四边形ABCD 是菱形,AC 不一定等于BD ,故④错误;综上,正确的有:②③,故答案为:②③.【点睛】本题考查了中位线定理,菱形的判定和性质,矩形的判定和性质,平行四边形的判定和性质,熟练掌握知识点是解题的关键.【过关检测】一、单选题 A .AC BD =B .【答案】B 【分析】已知四边形ABCD 是矩形,要使它成为正方形只有两种方法:(1)一组邻边相等;(2)对角线互相垂直,据此求解即可.【详解】解:∵四边形ABCD 是矩形,∴当AC BD ⊥或当AD AB =或AB BC =或BC CD =或AD CD =时,四边形ABCD 是正方形;故选:B.【点睛】本题主要考查了正方形的判定,熟练地掌握正方形的判定方法是解题的关键.(1)一组邻边相等的矩形是正方形;(2)对角线互相垂直的矩形是正方形.2.(2023春·广东深圳·九年级深圳市福田区石厦学校校考开学考试)下列命题正确的是()A.对角线垂直的四边形是菱形B.一组对边平行,一组对边相等的四边形是平行四边形C.顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D.对角线互相垂直的四边形面积等于对角线乘积的一半【答案】D【分析】利用平行四边形、菱形及正方形的判定方法及菱形的面积计算方法等知识分别判断后即可确定正确的选项.【详解】解:A、对角线垂直的平行四边形是菱形,故原命题错误,不符合题意;B、一组对边平行,一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,不符合题意;C、顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是对角线相等且互相垂直的四边形,故原命题错误,不符合题意;D、对角线互相垂直的四边形面积等于对角线乘积的一半,正确,符合题意.故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形、菱形及正方形的判定方法及菱形的面积计算方法等知识.【答案】B【分析】根据正方形的判定方法,逐一进行判断即可.【详解】解:A、四边都相等的四边形是菱形,原命题是假命题,不符合题意;B、一组邻边相等的矩形是正方形,是真命题,符合题意;C、对角线互相垂直平分的四边形是菱形,原命题是假命题,不符合题意;D、对角线互相垂直且相等的四边形不一定是正方形,原命题是假命题,不符合题意;故选:B.【点睛】本题考查判断命题的真假.熟练掌握正方形的判定方法,是解题的关键.A .①③B .①②【答案】C 【分析】①根据正方形的性质和中位线定理可以解决问题;②利用①中结论可以证明OM MP ≠,可以解决问题;③利用①③中的结论,确定四边形EFNB 的面积与OMP 的面积比,正方形ABCD 面积与OMP 的面积比,可以解决问题.【详解】∵四边形ABCD 是正方形,BD 为对角线∴45ABO ADB CBD BDC ∠=∠=∠=∠=︒,90BAD BCD ∠=∠=︒∴ABD △、BCD △是等腰直角三角形∵E ,F 分别为BC ,CD 的中点,∴EF BD ∥,12EF BD =,CE CF =∵90ECF ∠=︒,CE CF =∴CEF △是等腰直角三角形∵AP EF ⊥,EF BD ∥∴90AOD AOB ∠=∠=︒又∴45ABO ADB ∠=∠=︒∴ABO 、ADO △是等腰直角三角形∴AO BO =,AO DO =∴BO DO =∴AOB AOD △≌△∴AO BD ⊥又∵OP BD ⊥∴A 、O 、P 三点共线 ∴12PE PF EF ==又∵M ,N 分别为BO ,DO 的中点∴F O P M MB ON P ND E =====连接PC ,如图,∵FD CF =,ON ND =∴NF 是CDO 的中位线,∴NF AC ∥∵90DNF ∠=︒,45FDB ∠=︒∴DNF △是等腰直角三角形∴NF ND ON ==∵90ONF NOP OPF ∠=∠=∠=︒∴四边形FNOP 是矩形∵NF ON =∴四边形FNOP 是正方形∴OM OP =∴OMP 是等腰直角三角形∴图中的三角形都是等腰直角三角形故①正确;∵OMP 是等腰直角三角形∵45FDB ∠=︒∴MP BC ∥∴四边形MPEB 是平行四边形,在Rt OMP △中,MP OM >即BE BM >∵BE BM ≠∴四边形MPEB 不是菱形故②错误;∵OM BM ON ==,SBEPM BM OP =⨯,1S 2OMP OM OP =⨯⨯,S ONFP ON OP =⨯ ∴S S 2S BEPM ONFP OMP == ∴S S S S 5S BEPM OMP OMP ONFP EFNB =++=正方形四边形 ∵11S 2222AOB OB OA OM OP =⨯⨯=⨯⨯⨯⨯ 即1S 44S 2AOB OMP OM OP =⨯⨯⨯= 又∵S 4S AOB ABCD =正方形 ∴S 16S OMP ABCD =正方形5S S 16ABCD EFNB =正方形四边形故③错误;故选:C .【点睛】此题考查了正方形的判定和性质,平行四边形的判定和性质,三角形的中位线定理、三角形全等的判定和性质、等腰直角三角形的判定和性质等知识,正确的识别图形是解题的关键.二、填空题【答案】【分析】四边形ABCD和四边形CEFG均为正方形,且G是AB的中点,AB=,如图所示,过点E作EH AD⊥于H,交BC于Q,AE与BC交于点P,可证(SAS)BCG QEC△≌△,(SAS)EQP ABP△≌△,根据勾股定理即可求解.【详解】解:∵四边形ABCD和四边形CEFG均为正方形,且G是AB的中点,AB=∴1122BG AG AB===,∴在Rt BCG中,52CG===,如图所示,过点E作EH AD⊥于H,交BC于Q,AE与BC交于点P,∵四边形CEFG为正方形,∴CE CG=,∵12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,在,BCG QEC△△中,1390EQC B CE CG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴(SAS)BCG QEC △≌△,∴EQ BC ==CQ GB ==,即Q 为BC 中点, 同理,可证(SAS)EQP ABP △≌△,∴1122QP BP BQ ====,12EP AP AE ==∴在Rt ABP 中,AP ====,∴22AE AP ===,故答案为:.【点睛】本题主要考查正方形与直角三角形勾股定理的综合,掌握正方形的性质,全等三角形的判定和性质,勾股定理是解题的关键. 6.(2023·湖南娄底·统考一模)如图,正方形ABCD 的对角线AC 、BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON OM ⊥,交CD 于点N .若四边形MOND 的面积是5,则AB 的长为______.【答案】【分析】如图,过O 作OE AD ⊥于E ,OF CD ⊥于F ,则四边形OEDF 是正方形,证明()ASA EOM FON ≌,则EOM FON S S =,5OEDF MOND S S ==四边形,即25OE =,解得OE =,根据2AB OE =,计算求解即可.【详解】解:如图,过O 作OE AD ⊥于E ,OF CD ⊥于F ,则四边形OEDF 是正方形,∴OE OF =,90EOF EOM MOF ∠=︒=∠+∠,∵90MON FON MOF ∠=︒=∠+∠,∴EOM FON ∠=∠,∵EOM FON ∠=∠,OE OF =,90OEM OFM ∠=∠=︒,∴()ASA EOM FON ≌, ∴EOM FON SS =,∴5OEDF MOND S S ==四边形,即25OE =,解得OE =OE =,∴2AB OE ==故答案为:【点睛】本题考查了正方形的判定与性质,全等三角形的判定与性质等知识.解题的关键在于对知识的熟练掌握与灵活运用. 7.(2023·四川凉山·统考一模)如图,正方形ABCD 的边长为2,,E F 分别是,AD AB 边上一点,且AE BF =,连接,BE CF 交于点P ,则线段DP 的最小值为___________1【分析】如图所示,线段DP 中,点P 运动的路径是以BC 中点为圆心,12BC 为半径的半圆,分类讨论,①当E F 、在线段AD AB 、上时;②当E F 、在线段AD AB 、延长线上时;图形结合,根据勾股定理即可求解.【详解】解:如图所示,线段DP 中,点P 运动的路径是以BC 中点为圆心,12BC 为半径的半圆,①当E F 、在线段AD AB 、上时,如图所示,∴当BE CF ⊥时,DP 的值最小,∵正方形ABCD 的边长为2,∴如图所示,由此,对角线的长为AC BD ===∴1122DP AB ===②当E F 、在线段AD AB 、延长线上时,如图所示,∴当BE CF ⊥时,即点,,O P D 在一条直线,DP 的值最小,如图所示,连接OP ,∵BE CF ⊥,∴90BPC ∠=︒, ∵112122OB OP OC BC ====⨯=,2CD AB ==,∴在Rt OCD △中,OD =∴1DP OD OP =−=;综上所示,DP 1,1. 8.(2023·安徽安庆·校考一模)如图,在矩形ABCD 中,8AB =,6AD =,E 为AB 边上一点,将BEC 沿CE 翻折,点B 落在点F 处.当AEF △为直角三角形时,AE =___________.【答案】2或5/5或2【分析】分90,90,90AEF AFE FAE ∠=︒∠=︒∠=︒三种情形计算.【详解】解:当90AFE ∠=︒时,连接AC ,∵四边形ABCD 是矩形,8AB =,6AD =,∴90ABC CFE ∠=∠=︒,10AC ==,6AD BC ==,∵90AFE ∠=︒,∴180AFE CFE ∠+∠=︒,∴,,A F C 三点共线,根据折叠的性质,得6,CF BC EF EB ===,∴4AF AC CF =−=,设AE x =,则8EF EB x ==−,根据勾股定理,得()22284x x =−+,解得5x =,故5AE =;当90AEF ∠=︒时,∵四边形ABCD 是矩形,8AB =,6AD =,∴90ABC CFE ∠=∠=︒,6AD BC ==,∵90AFE ∠=︒,∴四边形BCFE 是矩形,根据折叠的性质,得6,CF BC EF EB ===,∴四边形BCFE 是正方形,∴6CF BC EF EB ====,∴862AE AB BE =−=−=,故2AE =;当90=︒∠FAE 时,∵CD CF >,∴F 点不可能落到AD 上,故90=︒∠FAE 不成立,故2AE =或5AE =,故答案为:2或5.【点睛】本题考查了矩形的性质,折叠的性质,正方形的判定和性质,勾股定理,分类思想,熟练掌握矩形的性质,折叠的性质,正方形的判定和性质,勾股定理是解题的关键.9.(2023·福建·模拟预测)如图,在正八边形ABCDEFGH 中,AC 、AE 是两条对角线,则∠CAE 的度数为_________°.【答案】45【分析】连接AG 、GE 、EC ,易知四边形ACEG 为正方形,根据正方形的性质即可求解.【详解】解:连接AG 、GE 、EC ,如图所示:∵八边形ABCDEFGH 是正八边形∴AB BC CD DE EF FG GH HA=======,(82)1801358ABC BCD CDE DEF EFG FGH GHA HAB −︒∠=∠=∠=∠=∠=∠=∠=∠==︒∴ABC CDE EFG GHA ∆≅∆≅∆≅∆∴AC CE EG GA ===∴四边形ACEG 是菱形又1(180135)22.52BAC BCA ∠=∠=︒−︒=︒,1(180135)22.52HAG HGA ∠=∠=︒−︒=︒∴13522.522.590CAG BAH BAC HAG ∠=∠−∠−∠=︒−︒−︒=︒∴四边形ACEG 为正方形,∵AE 是正方形的对角线,∴∠CAE=119022CAG ∠=⨯︒=45°.故答案为:45.【点睛】本题考查了正多边形的性质、正方形的性质,正确作出辅助线是解决问题的关键.二、解答题 10.(2023·陕西渭南·统考二模)如图,在ABC 中,90ACB ∠=,CD 为角平分线,DE AC ⊥于点E ,DF BC ⊥于点F .求证:四边形DECF 是正方形.【答案】见解析 【分析】先证明四边形DECF 是矩形,再由角平分线的性质得出DE DF =,即可得出结论.【详解】CD 是角平分线,DE AC ⊥,DF BC ⊥,DE DF ∴=,90CED CFD ∠=∠=︒,90ACB ∠=︒,∴四边形DECF 是矩形,又DE DF =,∴四边形DECF 是正方形.【点睛】本题考查了正方形的判定方法、矩形的判定方法、角平分线的性质;熟练掌握正方形的判定方法,11.(2023·山西太原·太原市实验中学校考一模)已知,如图,矩形ABCD 中,6AD =,7DC =,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,DA 上,2AH =,连接CF .(1)如图1,若2DG =,求证四边形EFGH 为正方形;(2)如图2,若4DG =,求△FCG 的面积;(3)当DG 为何值时,△FCG 的面积最小.【答案】(1)见解析(2)3(3)当DG =△FCG 的面积最小为7【分析】(1)由于四边形ABCD 为矩形,四边形HEFG 为菱形,那么90D A ∠=∠=︒,HG HE =,而2AH DG ==,易证AHE DGH ≌,从而有DHG HEA ∠=∠,等量代换可得90AHE DHG ∠+∠=︒,易证四边形HEFG 为正方形;(2)过F 作FM DC ⊥,交DC 延长线于M ,连接GE ,由于AB CD ,可得AEG MGE ∠=∠,同理有HEG FGE ∠=∠,利用等式性质有AEH MGF ∠=∠,再结合90A M ∠=∠=︒,HE FG =,可证AHE MFG △△≌,从而有2FM HA ==(即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2),进而可求三角形面积;(3)先设DG x =,由第(2)小题得,7FCG S x ∆=−,在AHE 中,7AE AB ≤=,利用勾股定理可得253HE ≤,在Rt DHG 中,再利用勾股定理可得21653x +≤,进而可求x ≤,从而可得当x GCF ∆的面积最小.【详解】(1)四边形ABCD 为矩形,四边形HEFG 为菱形,90D A ∴∠=∠=︒,HG HE =,又2AH DG ==,()Rt Rt HL AHE DGH ∴≌,DHG HEA ∴∠=∠, 90AHE HEA ∠+∠=︒,90AHE DHG ∴∠+∠=︒,90EHG ∴∠=︒,∴四边形HEFG 为正方形;(2)过F 作FM DC ⊥,交DC 延长线于M ,连接GE , ∥AB CD ,AEG MGE ∴∠=∠,HE GF ∥,HEG FGE ∴∠=∠,∴∠=∠AEH MGF ,在AHE 和MFG 中,90A M ∠=∠=︒,HE FG =,AHE MFG ∴≌,2∴==FM HA ,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此()11274322FCG S FM GC =⨯⨯=⨯⨯−=;(3)设DG x =,则由第(2)小题得,7FCG S x ∆=−,在AHE ∆中,7AE AB ≤=,253HE ∴≤,21653x ∴+≤,x ∴FCG S ∆∴的最小值为7DG∴当DG =FCG ∆的面积最小为(7.【点睛】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.(2023·山东青岛·山东省青岛第二十六中学校考二模)如图,在平行四边形ABCD 中,AC BD ,相交于点O ,点E ,F 在AC 上,且AE CF =,连接BE DF ,.(1)求证:BOE DOF ≌;(2)连接BF DE ,,若AB AD =,线段OE 满足什么条件时,四边形BEDF 为正方形.【答案】(1)证明见解析(2)当OE OD =时,四边形BEDF 为正方形,理由见解析【分析】(1)由平行四边形的性质得到OD OB OA OC ==,,再证明OE OF =即可利用SAS 证明BOE DOF ≌;(2)根据对角线互相垂直平分且相等的四边形是正方形进行求解即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,AC BD ,相交于点O ,∴OD OB OA OC ==,,∵AE CF =,∴OA AE OC CF −=−,即OE OF =,又∵DOF BOE ∠=∠,∴()SAS BOE DOF ≌△△;(2)解:当OE OD =时,四边形BEDF 为正方形,理由如下:∵四边形ABCD 是平行四边形,AB AD =,∴四边形ABCD 是菱形,∴AC BD OD OB OA OC ==⊥,,,∵AE CF =,∴OA AE OC CF −=−,即OE OF =,又∵OE OD =,∴OE OD OF OB ===,∴EF 与BD 互相垂直平分且相等,∴四边形BEDF 为正方形.【点睛】本题主要考查了平行四边形的性质,正方形的判定,全等三角形的判定,灵活运用所学知识是解题的关键. (1)求证:①EFB EBF ∠=∠②矩形DEFG 是正方形;(2)求AG AE +的值.【答案】(1)①见解析;②见解析(2)【分析】(1)①过E 作EM AD ⊥于M ,EN AB ⊥于N 利用正方形的性质和角平分线的性质得到()SAS ADE ABE ≌,EM EN =进而得到DE BE =,再证明四边形ANEM 是矩形,又四边形DEFG 是矩形和全等三角形的判定证明()ASA EMD ENF ≌,得到EF BE =,利用等腰三角形的性质可证得结论;②根据正方形的判定可得结论;(2)根据正方形的性质和全等三角形的判定证明()SAS ADG CDE ≌△△得到AG CE =,进而得到AG AE AC +=即可求解.【详解】(1)证明:过E 作EM AD ⊥于M ,EN AB ⊥于N ,则90EMA EMD ENF ENB ∠=∠=∠=∠=︒,∵四边形ABCD 是正方形,∴45EAD EAB ∠=∠=︒,AD AB =,又AE AE =,∴()SAS ADE ABE ≌,EM EN =,∴DE BE =,∵90EMA ENA DAB ∠=∠=∠=︒,∴四边形ANEM 是矩形,又四边形DEFG 是矩形,∴90MEN DEF ∠=∠=︒,∴90DEM FEN MEF ∠=∠=︒−∠,又90EMD ENF ∠=∠=︒,EM EN =,∴()ASA EMD ENF ≌,则DE EF =,∴EF BE =,则EFB EBF ∠=∠;②∵四边形DEFG 是矩形,DE EF =,∴四边形DEFG 是正方形;(2)解 :∵四边形DEFG 是正方形,四边形ABCD 是正方形,∴DG DE =,DC DA =,90GDE ADC ∠=∠=︒,∴ADG CDE ∠=∠,∴()SAS ADG CDE ≌△△,∴AG CE =,∴AG AE CE AE AC +=+===【点睛】本题主要考查了正方形的判定与性质、矩形的性质、全等三角形的判定与性质,熟练掌握正方形的判定与性质、全等三角形的判定与性质是解答的关键.14.(2023·山东聊城·统考三模)如图,已知四边形ABCD 为正方形,E 为对角线AC 上一点,连接DE ,过点E 作EF DE ⊥,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .(1)求证:矩形DEFG 是正方形;(2)求证:CG 平分DCF ∠.【答案】(1)证明见解析(2)证明见解析【分析】(1)过点E 分别作EM BC ⊥于点M ,EN CD ⊥于点N ,先证出四边形EMCN 为正方形,根据正方形的性质可得EM EN =,90MEN ∠=︒,再根据矩形的性质可得90DEF ∠=︒,从而可得DEN FEM ∠=∠,然后根据ASA 定理证出DEN FEM ≅,根据全等三角形的性质可得ED EF =,最后根据正方形的判定即可得证;(2)先根据正方形的性质可得,DE DG AD CD ==,ADE CDG ∠=∠,再根据SAS 定理可得ADE CDG ≅,根据全等三角形的性质可得45DCG DAE ∠=∠=︒,由此即可得证.【详解】(1)证明:如图,过点E 分别作EM BC ⊥于点M ,EN CD ⊥于点N ,∵四边形ABCD 是正方形,∴90BCD ∠=︒,45ECN ∠=︒,∴90EMC ENC BCD ∠=∠=∠=︒,∴NE NC =,∴四边形EMCN 为正方形,∴EM EN =,90MEN ∠=︒,∵四边形DEFG 是矩形,∴90DEF ∠=︒,∴90DEN NEF FEM NEF ∠+∠=∠+∠=︒,DEN FEM ∴∠=∠,在DEN 和FEM △中,90DNE FME EN EM DEN FEM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴()ASA DEN FEM ≅,∴ED EF =,∴矩形DEFG 为正方形.(2)证明:∵矩形DEFG 为正方形,DE DG ∴=,90EDC CDG EDG ∠+∠=∠=︒,∵四边形ABCD 是正方形,AD CD ∴=,90ADE EDC ADC ∠+∠=∠=︒,45DAE =︒∠,∴ADE CDG ∠=∠,在ADE V 和CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ADE CDG ≅,∴45DCG DAE ∠=∠=︒,∵90DCF ∠=︒,∴CG 平分DCF ∠.【点睛】本题考查了矩形的性质、正方形的判定与性质、三角形全等的判定与性质等知识点,熟练掌握正方形的判定与性质是解题关键.(2)应用(1)中的结论解决问题:如图2,中山公园有一块菱形场地,其面积为19200m地上修建一个正方形花圃,并且要使正方形花圃的四个顶点分别落在菱形场地的四条边上,则该正方形花圃的边长为________m.+【答案】(1)a b(2)48【分析】(1)连接CE ,利用等积法解答即可;(2)如解析图,设菱形CDEF 的两条对角线分别为2,2CE a DF b ==,根据菱形的性质可求出2009600a b ab +=⎧⎨=⎩,然后判定OPGQ 为正方形,且这个正方形为直角三角形COF 的“所容正方形”,再根据(1)的结论求解.【详解】(1)解:连接CE ,如图,设正方形DEFC 的边长为x ,则DE EF x ==,∵在ACB △中,90C ∠=︒,AC b BC a ==,, ∴()111111222222ABC S AC DE BC EF bx ax x a b ab =⋅+⋅=+=+=, ∴abx a b =+; 故答案为:aba b +;(2)如图,设菱形CDEF 的两条对角线交于点O ,且其长度分别为2,2CE a DF b ==,则,,CE DF CO EO a FO DO b ⊥====, 根据题意可得:22400122192002a b a b +=⎧⎪⎨⨯⨯=⎪⎩,整理得:2009600a b ab +=⎧⎨=⎩,若正方形MNGH 为在这个菱形场地上修建的正方形花圃,则根据菱形和正方形的对称性可得,GN DF GH CE ⊥⊥,则四边形OPGQ 也为正方形,且这个正方形为直角三角形COF 的“所容正方形”, 则由(1)的结论可得:这个正方形的边长960048200ab a b ===+m ;故答案为:48.【点睛】本题考查了勾股定理的拓展、菱形的性质以及正方形的判定和性质等知识,正确理解题意、熟练掌握相关图形的性质、合理利用所求的相关结论作答是解题的关键. (1)求证:ABF ECF ≌;(2)若AE AD =,连接BE ,当线段OF 与【答案】(1)证明见解析(2)当BD =时,四边形ABEC 为正方形,证明见解析【分析】(1)利用平行四边形的性质得出ABF ECF ∠=∠,BAF CEF ∠=∠,进而利用全等三角形的判定得出即可;(2)首先判定四边形ABEC 是平行四边形,进而利用矩形的判定定理可得四边形ABEC 是矩形,结合BD =,证明BE CE =,从而可得结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD ∥,AB CD =,OA OC =,。

北师大版九年级上册 1.3正方形的性质和判定课堂讲义及练习(含答案)

北师大版九年级上册 1.3正方形的性质和判定课堂讲义及练习(含答案)

1.3正方形的性质和判定【正方形的性质】1.正方形的定义一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.温馨提示:①正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形②既是矩形又是菱形的四边形是正方形③正方形不仅是特殊的平行四边形,而且是特殊的矩形,还是特殊的菱形2.正方形的性质(1)具有平行四边形的一切性质:两组对边平行且相等;两组对角相等;对角线相互平分.(2)具有矩形的一切性质:四个角都是直角;对角线相等.(3)具有菱形的一切性质:四条边相等;对角线互相垂直,并且每条对角线平分一组对角.(4)边:对边平行,四条边相等;角:四个角都是直角;对角线:对角线互相垂直平分且相等,并且每一条对角线平分一组对角;对称性:是轴对称图形,有4条对称轴 . 又是中心对称图形,对角线的交点为对称中心.正方形中相等的线段:AB = CD = AD = BC.OA = OC = OB = OD.正方形中相等的角:∠AOB = ∠DOC = ∠AOD = ∠BOC = 90°.∠OAB = ∠OBA = ∠OBC = ∠OCB=∠OCD = ∠ODC = ∠OAD= ∠ODA=45°.正方形中的全等三角形:全等的等腰直角三角形有:点拨:有关正方形问题可转化为等腰直角三角形的问题来解决 (转化思想).温馨提示:①正方形的性质=矩形的性质+菱形的性质;②正方形具有四边形、平行四边形、矩形、菱形的所有基本性质;③一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°。

两条对角线把正方形分成四个全等的等腰直角三角形。

【练习】1.如图,正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,F为垂足,那么FC=________.第1题第3题第5题第7题2.如图,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.3.如图,在正方形ABCD的外侧作等边三角形ADE,则∠AEB的度数为( )A.10° B.12.5° C.15° D.20°4.如图,四边形ABCD是正方形,△EBC是等边三角形.(1)求证:△ABE≌△DCE;(2)求∠AED的度数.5.如图,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是________.6.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.7.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.8.如图,正方形ABCD的边长为,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB的延长线于点F,则EF的长为________.8题9题第10题9.如图,将边长为8 cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是________.10.,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,11.如图1-3-15,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.【正方形的判定】1. 正方形的判定定理(1)平行四边形+一组邻边相等+一个角为直角(定义法); (2)矩形+一组邻边相等; (3)矩形+对角线互相垂直; (4)菱形+一个角为直角;(5)菱形+对角线相等。

北师大版九年级上册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

北师大版九年级上册数学(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习菱形(基础)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC ,根据菱形的性质可得AC 平分∠DAE ,CD=BC ,再根据角平分线的性质可得CE=FC ,然后利用HL 证明Rt △CDF ≌Rt △CBE ,即可得出DF=BE .【答案与解析】证明:连接AC ,∵四边形ABCD 是菱形,∴AC 平分∠DAE ,CD=BC ,∵CE ⊥AB ,CF ⊥AD ,∴CE=FC ,∠CFD=∠CEB=90°.在Rt △CDF 与Rt △CBE 中,,∴Rt △CDF ≌Rt △CBE (HL ),∴DF=BE .【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式1】(2015•温州模拟)如图,在菱形ABCD 中,点E 是AB 上的一点,连接DE 交AC 于点O ,连接BO ,且∠AED=50°,则∠CBO= 度.【答案】50;解:在菱形ABCD 中,AB ∥CD ,∴∠CDO=∠AED=50°,CD=CB ,∠BCO=∠DCO ,∴在△BCO 和△DCO 中,,∴△BCO ≌△DCO (SAS ),∴∠CBO=∠CDO=50°.【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ).A.21B.4C.1D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1.类型二、菱形的判定2、如图所示,在△ABC中,CD是∠ACB的平分线,DE∥AC,DF∥BC,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE∥AC,DF∥BC知四边形DECF是平行四边形,再由∠1=∠2=∠3得到邻边相等即可.【答案与解析】解:四边形DECF是菱形,理由如下:∵DE∥AC,DF∥BC∴四边形DECF是平行四边形.∵CD平分∠ACB,∴∠1=∠2∵DF∥BC,∴∠2=∠3,∴∠1=∠3.∴CF=DF,∴四边形DECF是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.举一反三:【变式】如图所示,AD是△ABC的角平分线,EF垂直平分AD,分别交AB于E,交AC 于F,则四边形AEDF是菱形吗?请说明理由.【答案】解:四边形AEDF是菱形,理由如下:∵EF垂直平分AD,∴△AOF与△DOF关于直线EF成轴对称.∴∠ODF=∠OAF,又∵AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴EO=OF又∵AEDF的对角线AD、EF互相垂直平分.∴AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵CE平分∠ACB,∠BAC=90°,EF⊥BC,∴AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵EF⊥BC,AD⊥BC,∴EF∥AD.∴∠4=∠5.∴∠3=∠5.∴AE=AG.∴EF AG.∴四边形AEFG是平行四边形.又∵AE=AG,∴四边形AEFG是菱形.方法二:∵CE平分∠ACB,∠BAC=90°,EF⊥BC,∴AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵EF⊥BC,AD⊥BC,∴EF∥AD.∴∠4=∠5.∴∠3=∠5.∴AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴AG=FG.∴AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A 点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)ABCD中,AB∥CD,AB=CD∵E、F分别为AB、CD的中点∴DF=12DC,BE=12AB∴DF∥BE.DF=BE∴四边形DEBF为平行四边形∴DE∥BF(2)证明:∵AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形又∵F为边CD的中点.∴BF=12DC=DF又∵四边形DEBF为平行四边形∴四边形DEBF是菱形类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】一.选择题1.(2015•潍坊模拟)下列说法中,错误的是()A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边C.菱形的对角线互相垂直 D. 对角线互相垂直的四边形是菱形2.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直3.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD 的周长是( )A.4B.8C.12D.164.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.55.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40°B.50°C.80°D.100°6.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )A.1B. 2C. 2D. 3二.填空题7.已知菱形的周长为40cm,两个相邻角度数之比为1∶2,则较长对角线的长为______cm.8.(2015•南充)如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD 长之比为.9. 已知菱形ABCD两对角线AC =8cm, BD =6cm, 则菱形的高为________.10. (2016•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE= .11. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_____.12.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为_______.三.解答题13.如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB +PE的最小值是3,求AB的值.14.如图,在平行四边形ABCD中,E、F分别为边AB,CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.15(2015春•泰安校级期中)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C 作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【答案与解析】一.选择题1.【答案】D;2.【答案】D【解析】∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.3.【答案】D;【解析】BC=2EF=4,周长等于4BC=16.4.【答案】B;【解析】∵∠BCD=120°,∴∠B=60°,又∵ABCD是菱形,∴BA=BC,∴△ABC是等边三角形,故可得△ABC的周长=3AB=15.5.【答案】C;【解析】∵四边形ABCD是菱形,∴∠BAC=12∠BAD,CB∥AD,∵∠BAC=50°,∴∠BAD=100°,∵CB∥AD,∴∠ABC+∠BAD=180°,∴∠ABC=180°-100°=80°.6.【答案】D;【解析】∠DAF=∠FAO=∠OAE=30°,所以2BE=CE=AE,3BE=3,BC=3BE =3.二.填空题7.【答案】103;【解析】由题意,菱形相邻内角为60°和120°,较长对角线为222105103-=. 8.【答案】1:;【解析】如图,设AC,BD相较于点O,∵菱形ABCD的周长为8cm,∴AB=BC=2cm,∵高AE长为cm,∴BE==1(cm),∴CE=BE=1cm,∴AC=AB=2cm,∵OA=1cm,AC⊥BD,∴OB==(cm),∴BD=2OB=2cm , ∴AC:BD=1:. 9.【答案】245cm ; 【解析】菱形的边长为5,面积为168242⨯⨯= ,则高为245cm . 10.【答案】.【解析】∵四边形ABCD 为菱形,∴AC ⊥BD ,OB=OD=BD=3,OA=OC=AC=4,在Rt △OBC 中,∵OB=3,OC=4,∴BC==5,∵OE ⊥BC ,∴OE•BC=OB•OC,∴OE==.故答案为. 11.【答案】60;【解析】因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB 中利用勾股定理求出OB =12,BD =2OB =24,DE =2OC =10,BE =2BC =26,△BDE 的周长为60.12.【答案】(3,4);【解析】过B 点作BD ⊥OA 于D ,过C 点作CE ⊥OA 于E ,BD =4,OA =x ,AD =8-x ,()22284x x =-+,解得5x =,所以OE =AD =8-5=3,C 点坐标为(3,4).三.解答题13.【解析】解:∵∠ABC =120°∴∠BCD =∠BAD =60°;∵菱形ABCD 中, AB =AD∴△ABD 是等边三角形;又∵E 是AB 边的中点, B 关于AC 的对称点是D ,DE ⊥AB连接DE ,DE 与AC 交于P ,PB =PD ;DE 的长就是PB +PE 的最小值3;设AE =x ,AD =2x ,DE =()22233x x x -==,所以1x =,AB =22x =.14.【解析】四边形BFDE 是菱形,证明:∵AD⊥BD,∴△ABD 是直角三角形,且AB 是斜边,∵E 为AB 的中点,∴DE=12AB=BE,∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵F为DC中点,E为AB中点,∴DF=12DC,BE=12AB,∴DF=BE,DF∥BE,∴四边形DFBE是平行四边形,∵DE=EB,∴四边形BFDE是菱形.15.【解析】证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习矩形(基础)【学习目标】1. 理解矩形的概念.2. 掌握矩形的性质定理与判定定理.【要点梳理】要点一、矩形的定义有一个内角是直角的平行四边形叫做矩形.要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质1、(2015•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.【思路点拨】(1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP.【答案与解析】解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN∥AD,∴∠PAN=∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN=∠PNA,∴AP=PN,∵AB=CD=4,M,N分别为AB,CD的中点,∴DN=2,设AP=x,则PD=6﹣x,在Rt△PDN中PD2+DN2=PN2,∴(6﹣x)2+22=x2,解得:x=所以AP=.【总结升华】本题主要考查了矩形的性质、勾股定理等知识的综合运用,难度不大,根据角的倍差关系得到∠PAN=∠PNA,发现AP=PN是解决问题的关键.举一反三:【变式】如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P 分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是_________ .【答案】;提示:因为ECFP为矩形,所以有EF=PC.PC最小时是直角三角形斜边上的高.类型二、矩形的判定2、(2016•济宁一模)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点.(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.【思路点拨】(1)因为AF∥BC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,故有BD=DC;(2)由(1)知,AF=DC且AF∥DC,可得四边形AFDC是平行四边形,又因为AD=CF,故可有一个角是直角的平行四边形是矩形进行判定.【答案与解析】(1)证明:∵AF∥BC,∴∠AFE=∠DCE(1分)∵E是AD的中点,∴AE=DE.(2分)∵∠AEF=∠DEC,∴△AEF≌△DEC.(3分)∴AF=DC,∵AF=BD∴BD=CD,∴D是BC的中点;(4分)(2)四边形AFBD是矩形,(5分)证明:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°,(6分)∵AF=BD,AF∥BC,∴四边形AFBD是平行四边形,(7分)∴四边形AFBD是矩形.【总结升华】本题考查矩形的判定和全等三角形的判定与性质.要熟知这些判定定理才会灵活运用,根据性质才能得到需要的相等关系.举一反三:【变式】如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.求证:四边形ADCE是矩形.【答案】证明:∵四边形ABDE是平行四边形,∴AE∥BC,AB=DE,AE=BD∵D为BC的中点,∴CD=BD∴CD∥AE,CD=AE∴四边形ADCE是平行四边形∵AB=AC∴AC=DE∴平行四边形ADCE是矩形.3、如图所示,ABCD四个内角的角平分线分别交于点E、F、G、H.求证:四边形EFGH是矩形.【思路点拨】AE、BE分别为∠BAD、∠ABC的角平分线,由于在ABCD中,∠BAD+∠ABC=180°,易得∠BAE+∠ABE=90°,不难得到∠HEF=90°,同理可得∠H=∠F =90°.【答案与解析】证明:在ABCD中,AD∥BC,∴∠BAD+∠ABC=180°,∵AE、BE分别平分∠BAD、∠ABC,∴∠BAE+∠ABE=12∠BAD+12∠ABC=90°.∴∠HEF=∠AEB=90°.同理:∠H=∠F=90°.∴四边形EFGH是矩形.【总结升华】(1)利用角平分线、垂线得到90°的角,选择“有三个直角的四边形是矩形”来判定.(2)本题没有涉及对角线,所以不会选择利用对角线来判定矩形.类型三、直角三角形斜边上的中线的性质4、如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【答案】C;【解析】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.举一反三:【变式】如图所示,已知平行四边形ABCD,AC、BD相交于点O,P是平行四边形ABCD 外一点,且∠APC=∠BPD=90°.求证:平行四边形ABCD是矩形.【答案】解:连接OP.∵四边形ABCD是平行四边形.∴AO=CO,BO=DO,∵∠APC=∠BPD=90°,∴OP=12AC,OP=12BD,∴AC=BD.∴四边形ABCD是矩形.新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】一.选择题1.(2015春•宜兴市校级期中)下列说法中正确的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 平行四边形的对角线平分一组对角D. 矩形的对角线相等且互相平分2.若矩形对角线相交所成钝角为120°,短边长3.6cm,则对角线的长为( ).A. 3.6cmB. 7.2cmC. 1.8cmD. 14.4cm3.矩形邻边之比3∶4,对角线长为10cm,则周长为( ).A.14cmB.28cmC.20cmD.22cm 4.(2016•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°5. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三角形是否都为直角6. 如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.23B.33C.4D.43二.填空题7.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.8.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.9. (2016•巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 度.10.(2015•重庆模拟)如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为.11.如图,ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为_______.12. 如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是______.三.解答题13.如图,矩形ABCD的对角线相交于点O,OF⊥BC,CE⊥BD,OE∶BE=1∶3,OF=4,求∠ADB的度数和BD的长.14.如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.15.(2015•通州区一模)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形ECGD是矩形.【答案与解析】一.选择题1.【答案】D;【解析】∵对角线相等的平行四边形是矩形,∴A不正确;∵对角线互相垂直的四边形不一定是菱形,∴B不正确;∵平行四边形的对角线互相平分,菱形的对角线平分一组对角,∴C不正确;∵矩形的对角线互相平分且相等,∴D正确;2.【答案】B;【解析】直角三角形中,30°所对的边等于斜边的一半.3.【答案】B;【解析】由勾股定理,可算得邻边长为6cm和8cm,则周长为28cm.4.【答案】C.【解析】过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.5.【答案】D;6.【答案】A;【解析】先证△ADF≌△BEF,则DF为△ABC中位线,再证明四边形BCDE是矩形,BE=3,可求面积.二.填空题7.【答案】5,53;【解析】可证△AOB为等边三角形,AB=AO=CO=BO.8.【答案】34 2;【解析】由勾股定理算得斜边AB=34,CD=12AB=342.9.【答案】15.【解析】连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.10.【答案】5;【解析】∵矩形ABCD中,E是BC的中点,∴AB=CD,BE=CE,∠B=∠C=90°,可证得△ABE≌△DCE(SAS),∴AE=DE,∵∠AED=90°,∴∠DAE=45°,∴∠BAE=90°﹣∠DAE=45°,∴∠BEA=∠BAE=45°,∴AB=BE=AD=×10=5.11.【答案】3;【解析】根据平行四边形的性质求出AD=BC,DC=AB,证△ADC≌△CBA,推出△ABC的面积是3,求出AC×AE=6,即可求出阴影部分的面积.12.【答案】12;【解析】推出四边形FCGE是矩形,得出FC=EG,FE=CG,EF∥CG,EG∥CA,求出∠BEG=∠B,推出EG=BG,同理AF=EF,求出矩形CFEG的周长是CF+EF+EG+CG=AC+BC,代入求出即可.三.解答题13.【解析】解:由矩形的性质可知OD=OC.又由OE∶BE=1∶3可知E是OD的中点.又因为CE⊥OD,根据三线合一可知OC=CD,即OC=CD=OD,即△OCD是等边三角形,故∠CDB=60°.所以∠ADB=30°.又因为CD=2OF=8,即BD=2OD=2CD=16.14.【解析】证明:∵四边形ABCD是矩形,∴AD∥BC,DC=AB.∴∠DAE=∠AFB.∵DE=DC,∴DE=AB.∵DE⊥AG,∴∠DEA=∠ABF=90°.∴△ABF≌△DEA.15.【解析】证明:∵CF=BC,∴C点是BF中点,∵点G是DF中点,∴CG是△DBF中位线,∴CG∥BD,CG=,∵四边形ABCD是菱形,∴A C⊥BD,DE=,∴∠DEC=90°,CG=DE,∵CG∥BD,∴四边形ECGD是矩形.新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习正方形(基础)【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、正方形的性质1、(2016•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A .50B .55C .70D .75【思路点拨】由平角的定义求出∠CED 的度数,由三角形内角和定理求出∠D 的度数,再由平行四边形的对角相等即可得出结果.【答案】C .【解析】解:∵四边形CEFG 是正方形,∴∠CEF=90°,∵∠CED =180°﹣∠AEF ﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED ﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD 为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C .【总结升华】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D 的度数是解决问题的关键.举一反三:【变式1】已知:如图,E 为正方形ABCD 的边BC 延长线上的点,F 是CD 边上一点,且 CE =CF ,连接DE ,BF .求证:DE =BF .【答案】证明:∵四边形ABCD 是正方形,∴BC=DC ,∠BCD=90°∵E 为BC 延长线上的点,∴∠DCE=90°,∴∠BCD=∠DCE.在△BCF 和△DCE 中, BC DC BCF DCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∴△BCF≌△DCE(SAS ),∴BF=DE .【变式2】(2015•咸宁模拟)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A.75°B.60°C.55°D.45°【答案】B;提示:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△A DE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.2、如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.【思路点拨】要证明△ABE≌△DAF,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF的长,需要求出AF和AE的长.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△DAF≌△ABE.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=11 2AD∴A F3∵△ABE≌△DAF,∴AE=DF=1,∴EF=31【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.举一反三:【变式】如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF和正方形BCMN连接FN,EC.求证:FN=EC.【答案】证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,∵AB=2BC,即BC=BN=12 AB∴BN=12BE,即N为BE的中点,∴EN=NB=BC,∴△FNE≌△ECB,∴FN=EC.类型二、正方形的判定3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【答案与解析】解:是正方形,理由如下:作DG⊥AB于点G.∵AD平分∠BAC,DF⊥AC,DG⊥AB,∴DF=DG.同理可得:DG=DE.∴DF=DE.∵DF⊥AC,DE⊥BC,∠C=90°,∴四边形CEDF是矩形.∵DF=DE.∴四边形CEDF是正方形.【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.举一反三:【变式】如图,点O是线段AB上的一点,OA=OC,OD平分∠AO C交AC于点D,OF 平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AO C多少度时,四边形CDOF是正方形?并说明理由.【答案】(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠CO B=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),∴∠C DO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.类型三、正方形综合应用4、如图,在平面直角坐标系xoy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;。

北师版九年级数学上册第1章3正方形的性质与判定

北师版九年级数学上册第1章3正方形的性质与判定

2. 常见的中点四边形 (1)任意四边形的中点四边形是平行四边形; (2)平行四边形的中点四边形是平行四边形; (3)矩形的中点四边形是菱形; (4)菱形的中点四边形是矩形; (5)正方形的中点四边形是正方形.
知4-讲
知4-讲
知4-讲
特别提醒 中点四边形的形状实质取决于原四边形两条对角线的
位置关系和数量关系.如两条对角线互相垂直的四边形的 中点四边形的四个角是直角(矩形或正方形);两条对角线 相等的四边形的中点四边形的四条边相等(菱形或正方形).
数学表达式
∵四边形ABCD 是正方形, ∴ CD ∥ AB,AD ∥ BC; AD ⊥ DC,DC ⊥ CB, CB ⊥ BA,BA ⊥ AD; AD=DC=CB=BA
性质
图形

四个角都相等, 都等于90°
两条对角线互 对 相垂直平分且 角 相等,每条对 线 角线平分一组
对角
知2-讲
数学表达式
∵四边形ABCD 是正方形, ∴∠ ADC= ∠ DCB= ∠ CBA=∠ BAD =90°
对角线互相平分
对角相等
对角线互相垂直平分,每条 对角线平分一组对角
四个角都 是直角
对角线互相平分且相等
四个角都 对角线互相垂直平分且相等, 是直角 每条对角线平分一组对角
特别提醒
知2-讲
正方形的特殊性质:

1.正方形的一条对角线把正方形分成两个全等的等腰直角
三角形;两条对角线把正方形分成四个全等的等腰直角
(4)从菱形出发:① 有一个角是直角的菱形是正方形;② 对角线相等的菱形是正方形.
方法点拨
知3-讲
判定正方形的常见思路 :
1.从边上证明.
邻边相等

北师大版九年级(上册)数学复习知识点和例题

北师大版九年级(上册)数学复习知识点和例题

数学九年级上册知识点总结第一章特殊的平行四边形复习中考考点综述:特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及灵活运用数学思想方法解决问题的能力。

内容主要包括:矩形、菱形、正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。

知识目标掌握矩形、菱形、正方形等概念,掌握矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。

重难点:1.矩形、菱形性质及判定的应用2.相关知识的综合应用知识点归纳矩形菱形正方形性质边对边平行且相等对边平行,四边相等对边平行,四边相等角四个角都是直角对角相等四个角都是直角对角线互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。

·是矩形,且有一组邻边相等;·是菱形,且有一个角是直角。

对称性既是轴对称图形,又是中心对称图形一.矩形矩形定义:有一角是直角的平行四边形叫做矩形.【强调】矩形(1)是平行四边形;(2)一一个角是直角.矩形的性质性质1矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。

;矩形的判定矩形判定方法1:对角线相等的平行四边形是矩形.注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等矩形判定方法2:四个角都是直角的四边形是矩形.矩形判断方法3:有一个角是直角的平行四边形是矩形。

例1:若矩形的对角线长为8cm,两条对角线的一个交角为600,则该矩形的面积为例2:菱形具有而矩形不具有的性质是()A.对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补例3:已知:如图,□ABCD各角的平分线分别相交于点E,F,G,•H,•求证:•四边形EFGH是矩形.二.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.菱形判定方法2:四边都相等的四边形是菱形.例1已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.例2已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.例3、如图,在 ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.例4、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M ,若AB=AE,∠EAD=2∠BAE 。

北师大版九上数学1.3正方形的性质与判定知识点精讲

北师大版九上数学1.3正方形的性质与判定知识点精讲

知识点总结
正方形
正方形是本章最后一个特殊的四边形,它既是特殊平行四边形,又是特殊的菱形,也是特殊的矩形,下面,让我们一起来学习正方形正方形的概念
正方形的定义:有一个角是直角,且有一组邻边相等的平行四边形是正方形
从定义可以看出,正方形也是从平行四边形进化来的,一组邻边相等,说明它也是菱形,有一个角是直角,说明它也是矩形,所以,同时满足菱形和矩形要求的四边形,就是正方形
正方形的性质
如上述对正方形定义的解读,正方形具有平行四边形、菱形、矩形的一切性质
性质1:正方形的四个角都是直角,四条边相等
性质2:正方形的对角线相等且相互垂直平分
性质3:既是中心对称图形,也是轴对称图形,对称轴有4条
几种四边形之间的性质关系
正方形的判定
同矩形和菱形的判定一样,正方形的判定需要先证明四边形是矩形或菱形,再进一步证明正方形
几种四边形之间的判定关系
知识链接
1.有一个角是直角的菱形是正方形。

2.对角线互相垂直的平行四边形是矩形。

3.四边相等的四边形是菱形。

典例分析。

北师大版初中数学九年级上册1.3 第1课时 正方形的性质1

北师大版初中数学九年级上册1.3 第1课时 正方形的性质1
北师大初中数学
北师大初中
数学
九年级
重点知识精

1. 3 正 方 形 的 性
质与判定
掌握知识点,多做练习 题,基础知识很重要!
北师大初中数学 和你一 起共同进步学业有成!
第 1 课时 正方形的性质
1.了解正方形的有关概念,理解并掌 握正方形的性质定理;(重点)
2.会利用正方形的性质进行相关的计 算和证明.(难点)
平面几何的内在价值.
证明:连接 AC,PC,如图. ∵四边形 ABCD 为正方形, ∴BD 垂直平分 AC, ∴AP=CP. ∵PE⊥BC,PF⊥CD,∠BCD=90°, ∴四边形 PECF 为矩形, ∴PC=EF,∴AP=EF. 方法总结:(1)在正方形中,常利用对 角线互相垂直平分证明线段相等;(2)无论 是正方形还是矩形,经常连接对角线,这
注意:正方形既是特殊的矩形,又是 特殊的菱形,即:有一组邻边相等的矩形 是正方形或有一个角是直角的菱形是正方 形.
二、合作探究 探究点一:正方形的性质
如图,四边形 ABCD 是正方形, 对角线 AC 与 BD 相交于点 O,AO=2,求 正方形的周长与面积.
解:∵四边形 ABCD 是正方形, ∴AC⊥BD,OA=OD=2. 在 Rt△AOD 中,由勾股定理,得 AD= OA2+OD2= 22+22= 8. ∴正方形的周长为 4AD=4 8=8 2, 面积为 AD2=( 8)2=8. 方法总结:结合勾股定理,充分利用 正方形的四边相等、四角相等、对角线相 等且互相垂直平分的性质,是解决与正方 形有关的题目的关键. 探究点二:正方形的性质的应用
如图,已知过正方形 ABCD 的对 角 线 BD 上 一 点 P, 作 PE⊥BC 于 点 E, PF⊥CD 于点 F,求证:AP=EF.

北师大版九年级数学3 .正方形(基础)知识讲解+练习

北师大版九年级数学3 .正方形(基础)知识讲解+练习

北师大版九年级数学正方形(基础)【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】【高清课堂特殊的平行四边形(正方形)知识要点】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.【典型例题】类型一、正方形的性质1、(2015•扬州校级一模)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形=2+.其中正确的个数为()ABCDA.1B.2C.3D.4【思路点拨】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【答案与解析】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,∴S正方形ABCD=2+,④说法正确,∴正确的有①②④.故选C.【总结升华】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.举一反三:【变式1】已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.【答案】证明:∵四边形ABCD 是正方形,∴BC=DC ,∠BCD=90° ∵E 为BC 延长线上的点, ∴∠DCE=90°, ∴∠BCD=∠DCE. 在△BCF 和△DCE 中,BC DC BCF DCE CF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△BCF≌△DCE(SAS ), ∴BF=DE .【高清课堂 特殊的平行四边形(正方形) 例1】 【变式2】(2015•咸宁模拟)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45° 【答案】B ;提示:∵四边形ABCD 是正方形, ∴∠BAD=90°,AB=AD ,∠BAF=45°, ∵△ADE 是等边三角形, ∴∠DAE=60°,AD=AE ,∴∠BAE=90°+60°=150°,AB=AE , ∴∠ABE=∠AEB=(180°﹣150°)=15°, ∴∠BFC=∠BAF+∠ABE=45°+15°=60°; 故选:B .2、如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连接AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.【思路点拨】要证明△ABE≌△DAF,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF的长,需要求出AF和AE的长.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△DAF≌△ABE.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=11 2AD=∴A F∵△ABE≌△DAF,∴AE=DF=1,1【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.举一反三:【变式】如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF 和正方形BCMN连接FN,EC.求证:FN=EC.【答案】证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,∵AB=2BC,即BC=BN=12 AB∴BN=12BE,即N为BE的中点,∴EN=NB=BC,∴△FNE≌△ECB,∴FN=EC.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).类型二、正方形的判定3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE ⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【答案与解析】解:是正方形,理由如下:作DG⊥AB于点G.∵ AD平分∠BAC,DF⊥AC,DG⊥AB,∴ DF=DG.同理可得:DG=DE.∴ DF=DE.∵ DF⊥AC,DE⊥BC,∠C=90°,∴四边形CEDF是矩形.∵ DF=DE.∴四边形CEDF是正方形.【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.举一反三:【变式】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.【答案】(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠CO B=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.类型三、正方形综合应用4、如图,在平面直角坐标系xoy 中,边长为a (a 为大于0的常数)的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O),顶点C 、D 都在第一象限.(1)当∠BAO =45°时,求点P 的坐标;(2)求证:无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 都在∠AOB 的平分线上;【答案与解析】解:(1)当∠BAO =45°时,∠PAO =90°,在Rt △AOB 中,OA =2AB =2,在Rt △APB 中,PA =2AB =2.∴ 点P 的坐标为,22a a ⎛⎫⎪ ⎪⎝⎭.(2)如图过点P 分别作x 轴、y 轴的垂线垂足分别为M 、N ,则有∠PMA =∠PNB =∠NPM =∠BPA =90°, ∵∠BPN +∠BPM =∠APM +∠BPM =90° ∴∠APM =∠BPN ,又PA =PB , ∴ △PAM ≌△PBN , ∴ PM =PN ,又∵ PN ⊥ON ,PM ⊥OM于是,点P 在∠AOB 的平分线上.【总结升华】根据题意作出辅助线,构造全等的直角三角形是解题关键.【巩固练习】一.选择题1. 正方形是轴对称图形,它的对称轴共有()A.1条 B.2条 C.3条 D.4条2. (2015•漳州一模)正方形具有而菱形不一定具有的性质是()A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等cm.3. 如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为( )2A.6B.8C.16D.不能确定4. 顺次连结对角线互相垂直的四边形各边的中点,所得的四边形是 ( )A. 矩形B. 菱形C. 正方形D. 梯形5.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A1 B.3116.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个 B.6个 C.8个 D.10个二.填空题7.若正方形的边长为a,则其对角线长为______,若正方形ACEF的边是正方形ABCD的对角线,则正方形ACEF与正方形ABCD的面积之比等于______.8. 如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_________.9. 如图,将边长为2cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A B C ''',若两个三角形重叠部分的面积是12cm ,则它移动的距离AA '等于____cm .10. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_______.11. 如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是______.12.(2015•长春)如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .三.解答题13.已知:如图,正方形ABCD 中,点E 、M 、N 分别在AB 、BC 、AD 边上,CE =MN , ∠MCE =35°,求∠ANM 的度数.14.(2015•铁力市二模)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E;PF⊥CD于点F,连接EF,给出下列五个结论:①AP=EF;②AP⊥EF;③∠PFE=∠BAP;④PD=EC;⑤PB2+PD2=2PA2,正确的有几个?.15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后,得到正方形EFCG,EF 交AD于H,求DH的长.【答案与解析】一.选择题1.【答案】D;【解析】正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.2.【答案】D;【解析】正方形的性质:正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,并且每一条对角线平分一组对角;菱形的性质:菱形的四条边相等,对角线互相垂直平分,并且每一条对角线平分一组对角;因此正方形具有而菱形不一定具有的性质是:对角线相等;故选:D.3.【答案】B;【解析】阴影部分面积为正方形面积的一半.4.【答案】A;5.【答案】D;【解析】利用勾股定理求出CM即ME的长,有DM=DE,所以可以求出DE1,进而得到DG的长.6.【答案】C ;二.填空题7.,2∶1 ;【解析】正方形ACEF 与正方形ABCD .8.【答案】AC =BD 或AB⊥BC;【解析】∵在四边形ABCD 中,AB =BC =CD =DA∴四边形ABCD 是菱形∴要使四边形ABCD是正方形,则还需增加一个条件是AC =BD 或AB⊥BC .9.【答案】1;【解析】移动距离为B C x '=,重叠部分面积为CE ×1B C '=,所以()21x x -=,得()210x -=,所以1x =.10.【答案】1;【解析】由题可知△DEO≌△BFO,阴影面积就等于三角形BOC 面积.11.1;【解析】1D E D C ''==,重叠部分面积为)121112⨯⨯⨯=. 12.【答案】5;【解析】解:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8, ∴×AB ×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.三.解答题13.【解析】解:作NF⊥BC 于F .∵ABCD 是正方形,∴CD =BC =FN则在Rt △BEC 和Rt △FMN 中,∠B=∠NFM=90°,CE MN BC FN=⎧⎨=⎩ ∴Rt △BEC≌Rt △FMN∴∠MNF=∠MCE=35°∴∠ANM=90°-∠MNF=55°14.【解析】解:①正确,连接PC ,可得PC=EF ,PC=PA ,∴AP=EF ;②正确;延长AP ,交EF 于点N ,则∠EPN=∠BAP=∠PCE=∠PFE ,可得AP ⊥EF ; ③正确;∠PFE=∠PCE=∠BAP ;④错误,PD=PF=CE ;⑤正确,PB 2+PD 2=2PA 2.所以正确的有3个:①②③.15.【解析】解:如图,连接CH ,∵正方形ABCD 绕点C 按顺时针方向旋转30°,∴∠BCF=30°,则∠DCF=60°,在Rt△CDH 和Rt△CFH 中,CH CH CD CF=⎧⎨=⎩ ∴Rt△C DH ≌Rt△CF H , ∴∠DCH=∠FCH=12∠DCF=30°,在Rt △CDH 中,DH =x ,CH =2x ,CD 3=,∴DH。

北师大版9年级上正方形的性质和判定讲义

北师大版9年级上正方形的性质和判定讲义

正方形性质与判定讲义一、知识梳理①性质:边:角:对角线:面积:对称性:②正方形的判别方法:⑴(定义)⑵⑶(4)注意:任意连接平行四边形各边中点所得的四边形是任意连接矩形各边中点所得的四边形是任意连接菱形各边中点所得的四边形是任意连接正方形各边中点所得的四边形是任意连接等腰梯形各边中点所得的四边形是【例题1】(正方形的判定)下列条件中,能判定四边形是正方形的有()A.4个角都是直角B.对角线互相平分且垂直C.对角线相等且互相平分D.对角线相等. 互相垂直,且互相平分【例题2】我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.在学习《重点四边形》时,小明和小亮产生了很大的意见分歧:小明说:如果一个四边形的中点四边形是菱形,则原四边形一定是矩形;小亮说:如果一个四边形的中点四边形是菱形,则原四边形一定是对角线相等的四边形,而不一定是矩形.(1)你认为谁的观点错误的,请画图举一个反例,并作简单说明;(2)如果该四边形的对角线互相垂直,则中点四边形为______;(3)如果该四边形的对角线相等,则中点四边形为_______;(4)如果该四边形的对角线互相垂直且相等,则中点四边形为________.【练习】如图,任意四边形ABCD,对角线AC、BD交于O点,过各顶点分别作对角线AC、BD的平行线,四条平行线围成一个四边形EFGH.试想当四边形ABCD的形状发生改变时,四边形EFGH的形状会有哪些变化?完成以下题目:①当ABCD为任意四边形时,EFGH为___________;②当ABCD为矩形时,EFGH为___________;③当ABCD为菱形时,EFGH为___________;④当ABCD为正方形时,EFGH为___________;【例题3】(四种特殊四边形的综合)如图,四边形ABCD是平行四边形,下列说法不正确的是( )A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形C.当AC⊥BD时,四边形ABCD是菱形D.当∠DAB=90°时,四边形ABCD是正方形【例题4】(综合)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN 的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.(3) 矩形ABCD满足什么条件时,四边形MPNQ是正方形?并证明.【课堂练习】1. 下列条件中,不能判定四边形是正方形的是()A.对角线互相垂直且相等的四边形B.一条对角线平分一组对角的矩形C.对角线相等的菱形D.对角线互相垂直的矩2.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②75AEB ∠=o ;③BE+DF=EF ;④23ABCD S =+正方形;其中正确的序号是 (把你认为正确的都填上)3. 下列命题中错误的是( )1)对角线相等的平行四边形是菱形; 2)平行四边形、菱形、矩形都是轴对称图形;3)一组对边平行,另一组对边相等的四边形是平行形四边形;4)若连结一个四边形四边中点所得的图形是矩形,则原四边形一定是菱形.A. 1个B. 2个C. 3个D. 4个4. (1)如图矩形ABCD 的对角线AC . BD 交于点O ,过点D 作DP ∥OC ,且DP =OC ,连接CP ,判断四边形CODP 的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.5. 如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.二、课堂检测1.如图,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF的面积为DH FECBAB CPMNDAFMEDCBA第1题第2题第3题2.如图,已知菱形ABCD的两条对角线长分别为6和8,M,N分别是边BC,CD的中点,点P是对角线BD上一点,则PM+PN的最小值是3.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A.45°B.50°C.60°D.不确定4.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①△ABG≌△AFG ②BG=GC ③AG∥CF ④S△FGC=3.6其中正确结论的个数是()A、1B、2C、3D、45.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)试说明:四边形ABCD是菱形;(2)若∠AED=2∠EAD,试说明:四边形ABCD是正方形O DE CBA6. 如图,在△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO 并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.7.已知AC ,EC 分别是四边形ABCD 和EFDC 的对角线,点E 在△ABC 内,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF .1)求证:△CAE ∽△CBF ;2)若BE=1,AE=2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且k FCEF BC AB ==时,若BE=1,AE=2,CE=3,则k = ;(直接写出结果,不必写出解答过程)(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE=m ,AE=n ,CE=p ,试探究m ,n ,p 三者之间满足的等量关系是 .(直接写出结果,不必写出解答过程)。

最新北师大版初中九年级数学上册1.3 第1课时正方形的性质1重点习

最新北师大版初中九年级数学上册1.3 第1课时正方形的性质1重点习

最新北师大版初中九年级数学上册1.3 第1课时正方形的性质1重点习1.3 正方形的性质与判定第1课时正方形的性质一、填空题1.正方形的一边长5cm,则周长为cm,面积为cm22.E是正方形ABCD对角线AC上一点,且AE=AB,则∠ABE= 3.E是正方形ABCD 内一点,且△EAB是等边三角形,则∠ADE=4.正方形ABCD中,对角线BD长为16cm,P是AB上任意一点,则点P到AC、BD的距离之和等于cm条对称轴。

5.正方形有6.如图(1),在正方形ABCD的边BC的延长线上取一点E,使CE=AC,连结AE交CD于F,则∠AFC=(1) (2)7.如图(2),E是正方形ABCD内一点,如果△ABE是等边三角形,那么∠DCE= DE 的延长线交BC于G,则∠BEG=,如果8.F是正方形ABCD的对角线AC上一点,AF=AD,FG⊥AC于F,交CD于G,那么∠DFG=9.如图(3),截去正方形ABCD的∠A、∠C后,∠1、∠2、∠3、∠4的和为(3)(4)10.如图(4),正方形的对角线相交于O,∠BAC的平分线交BD于E,若正方形的周长是20cm,则DE=二、选择1.正方形具有而矩形不一定具有的特征是()A.四个角都是直角 B.对角线互相平分 C.对角线互相垂直 D.对角线相等2.如图(5),在正方形ABCD中,∠DAF=25°,AF交对角线BD于E 点,则∠BEC =( ) A.45°(5) (6) 3.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A.平行四边形B.等腰三角形 C.等边三角形D.菱形B.60°C.70°D.75°4.如图(6),正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( A.30) B.34C.36D.40)5.如右图,以A、B为顶点作位置不同的正方形,一共可以作( A.1个B.2个C.3个D.4个三、解答题1.图中的矩形是由六个正方形组成,其中最小的正方形的面求这个矩形的长和宽各是多少?2.如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数。

2020北师大版九年级数学上册 特殊平行四边形-正方形知识点2

2020北师大版九年级数学上册 特殊平行四边形-正方形知识点2

【文库独家】北师大版九上数学第一章特殊平行四边形-正方形【基础知识概述】1.正方形定义:(1)有一组邻边相等并且有—个角是直角的平行四边形叫做正方形.(2)正方形既是有一组邻边相等的矩形,又是有—个角是直角的菱形.(3)既是矩形又是菱形的四边形是正方形.2.正方形的特征:正方形具有四边形、平行四边形、矩形、菱形的一切特征.(1)边——四边相等、邻边垂直、对边平行.(2)角——四角都是直角.(3)对角线——①相等;②互相垂直平分;③每条对角线平分一组对角.(4)是轴对称图形,有4条对称轴.3.正方形的识别方法:(1)一组邻边相等的矩形是正方形.(2)—个角是直角的菱形是正方形.4.正方形与矩形、菱形、平行四边形的关系:矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图12-2-13.5.正方形的面积:正方形的面积等于边长的平方或者等于两条对角线乘积的一半.【例题精讲】例1如图12-2-14,已知过正方形ABCD对角线BD上一点P,作PE⊥BC于E,作PF ⊥CD于F.试说明AP=EF.分析:由PE⊥BC,PF⊥CD知,四边形PECF为矩形,故有EF=PC,这时只需证AP=CP,由正方形对角线互相垂直平分知AP=CP.解:连结AC、PC,∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.注意:①在正方形中,常利用对角线互相垂直平分证明线段相等.②无论是正方形还是矩形经常通过连结对角线证题,这样可以使分散条件集中.思考:由上述条件是否可以得到AP⊥EF.提示:可以,延长AP交EF于N,由PE∥AB,有∠NPE=∠BAN.又∠BAN=∠BCP,而∠BCP=∠PFE,故∠NPE=∠PFE,而∠PFE+∠PEF=90°,所以∠NPE+∠PEF=90°,则AP⊥EF.例2如图12-2-15,△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,试说明四边形BEDF是正方形.解:∵∠ABC=90°,DE⊥BC,∴DE∥AB,同理,DF∥BC,∴BEDF是平行四边形.∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF.又∵∠ABC=90°,BEDF是平行四边形,∴四边形BEDF是正方形.思考:还有没有其他方法?提示:(有一种方法可以证四边形DFBE为矩形,然后证BE=DE,可得.另一种方法,可证四边形DFBE为菱形,后证一个角为90°可得)注意:灵活选择正方形的识别方法.例3 如图12-2-16所示,四边形ABCD是正方形,△ADE是等边三角形,求∠BEC的大小.分析:等边三角形和正方形都能提供大量的线段相等和角相等,常能产生一些等腰三角形,十分便于计算.在本题中,必须注意等边三角形与正方形不同的位置关系.在(1)图中,△ABE和△DCE都是等腰三角形,顶角都是150°,可得底角∠AEB与∠DEC都是15°,则∠BEC为30°.而在(2)图中,等边三角形在正方形内部,△ABE和△DCE是等腰三角形,顶角是30°,可得底角∠AEB和∠DEC为75°,再利用周角可求得∠BEC=150°.解:(1)当等边△ADE在正方形ABCD外部时,AB=AE,∠BAE=90°+60°=150°,所以∠AEB=15°.同理可得∠DEC=15°,则∠BEC=60°-15°-15°=30°.(2)当等边△ADE在正方形ABCD内部时,AB=AE,∠BAE=90°-60°=30°,所以∠AEB=75°.同理可得∠DEC=75°,则∠BEC=360°-75°-75°-60°=150°.【中考考点】会用正方形的性质来解决有关问题,并能用正方形的定义来判断四边形是否为正方形.【命题方向】本节出题比较灵活,填空题、选择题、证明题均可出现.正方形是特殊的平行四边形,考查正方形的内容,实质上是对平行四边形知识的综合,涉及正方形知识的题型较多,多以证明题形式出现.【常见错误分析】已知如图12-2-18,△ABC中,∠C=90°,分别以AC和BC为边向外作正方形ACFH和正方形BCED,HM⊥BA的延长线于M,DK⊥AB的延长线于K.试说明AB=DK+HM.错解:延长DK到S,使KS=HM,连结SB.∵∠2=∠3,∠2+∠4=90°,∴∠3+∠4=90°.在△ABC和△SDB中,∵∠ACB=∠SBD=90°,BC=BD,∠2=90°-∠4=∠5∴△ABC与△SDB重合,∴AB=SD=SK+DK,即AB=HM+DK.分析指导:由于S、B、C三点共线未经证明,所以∠2=∠3的理由是不充足的,因此又犯了思维不严密的错误.正解:如图12-2-18,延长DK交CB延长线于S,下面证KS=MH.在△ACB和△SBD中,∵BD=BC,∠SBD=∠ACB=90°,又∠2=∠3=∠5,∴△ACB与△SBD重合,∴AB=DS,BS=AC=AH.在△BKS和△AMH中,∵∠1=∠2=∠3,∠AMH=∠SKB=90°,BS=AH,∴△BKS与△AMH重合,∴KS=HM,∴AB=DK+HM.【学习方法指导】正方形是最特殊的平行四边形,它既是一组邻边相等的矩形,又是有一个角为直角的菱形,所以它的性质最多,易混淆.故最好把平行四边形、矩形、菱形、正方形列表写出它们的定义、性质、判定,这样更容易记忆和区分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新北师大版九年级上册初中数学重难点突破知识点梳理及重点题型巩固练习正方形(基础)【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、正方形的性质1、(2016•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75【思路点拨】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【答案】C.【解析】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.【总结升华】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.举一反三:【变式1】已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.【答案】证明:∵四边形ABCD 是正方形,∴BC=DC ,∠BCD=90°∵E 为BC 延长线上的点,∴∠DCE=90°,∴∠BCD=∠DCE.在△BCF 和△DCE 中,BC DC BCF DCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∴△BCF≌△DCE(SAS ),∴BF=DE .【变式2】(2015•咸宁模拟)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45°【答案】B ;提示:∵四边形ABCD 是正方形,∴∠BAD=90°,AB=AD ,∠BAF=45°,∵△ADE 是等边三角形,∴∠DAE=60°,AD=AE ,∴∠BAE=90°+60°=150°,AB=AE , ∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B .2、如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连接AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF 的长.【思路点拨】要证明△ABE≌△DAF,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF的长,需要求出AF和AE的长.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△DAF≌△ABE.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=11 2AD=∴A F∵△ABE≌△DAF,∴AE=DF=1,1【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.举一反三:【变式】如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF 和正方形BCMN连接FN,EC.求证:FN=EC.【答案】证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,∵AB=2BC,即BC=BN=12 AB∴BN=12BE,即N为BE的中点,∴EN=NB=BC,∴△FNE≌△ECB,∴FN=EC.类型二、正方形的判定3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE ⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【答案与解析】解:是正方形,理由如下:作DG⊥AB于点G.∵ AD平分∠BAC,DF⊥AC,DG⊥AB,∴ DF=DG.同理可得:DG=DE.∴ DF=DE.∵ DF⊥AC,DE⊥BC,∠C=90°,∴四边形CEDF是矩形.∵ DF=DE.∴四边形CEDF是正方形.【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.举一反三:【变式】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AO C多少度时,四边形CDOF是正方形?并说明理由.【答案】(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠CO B=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF 是矩形;(2)当∠AOC=90°时,四边形CDOF 是正方形;理由如下:∵∠AOC=90°,AD =DC ,∴OD=DC ;又由(1)知四边形CDOF 是矩形,则四边形CDOF 是正方形;因此,当∠AOC=90°时,四边形CDOF 是正方形.类型三、正方形综合应用4、如图,在平面直角坐标系xoy 中,边长为a (a 为大于0的常数)的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O),顶点C 、D 都在第一象限.(1)当∠BAO =45°时,求点P 的坐标;(2)求证:无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 都在∠AOB 的平分线上;【答案与解析】解:(1)当∠BAO =45°时,∠PAO =90°,在Rt △AOB 中,OA =2AB =2,在Rt △APB 中,PA =2AB =2.∴ 点P 的坐标为,22a a ⎛⎫ ⎪ ⎪⎝⎭.(2)如图过点P 分别作x 轴、y 轴的垂线垂足分别为M 、N ,则有∠PMA =∠PNB =∠NPM =∠BPA =90°,∵∠BPN +∠BPM =∠APM +∠BPM =90°∴∠APM =∠BPN ,又PA =PB ,∴ △PAM ≌△PBN ,∴ PM =PN ,又∵ PN ⊥ON ,PM ⊥OM于是,点P 在∠AOB 的平分线上.【总结升华】根据题意作出辅助线,构造全等的直角三角形是解题关键.。

相关文档
最新文档