北师大版九年级数学下册知识点归纳复习提纲
北师大版九年级下册数学知识点
北师大版九年级下册数学知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!北师大版九年级下册数学知识点北师大版九年级下册数学知识点大全数学演算题的特点就在于:解题方法虽然不同,但最后的答案一定只有一个,只要演算正确,就可殊途同归。
北师大九年级下数学知识点
北师大九年级下数学知识点作为数学的学科,可以说无处不在。
数学贯穿我们的生活,涵盖了各个领域,不仅仅是学校的教育内容,更是构建整个世界的基石。
在北师大九年级下数学课程中,有一些重要的知识点我们不能忽视。
本文将为您介绍几个重要的数学知识点。
一、平行线与相交线平行线与相交线是几何学中最基础的概念之一。
平行线是指在同一平面内永不相交的两条直线,而相交线则正相反,是指相交于一点的两条线。
在九年级下学期数学课程中,我们将学习到如何证明平行线的性质,如何利用平行线的特性解题等。
这些知识将为我们奠定几何学的基础。
二、相似三角形相似三角形是几何学中的重要概念。
相似三角形是指具有相同的形状但是大小不同的三角形。
在九年级下学期的数学中,我们将学习如何判断两个三角形是否相似,以及相似三角形的性质和运用。
相似三角形的概念在几何学中有着广泛的应用,如测量不可达距离、解决建筑工程问题等。
三、立体图形立体图形是三维空间中的图形,也是数学课程中的重要内容。
在九年级下学期的数学中,我们将学习到各种各样的立体图形,如长方体、正方体、圆柱体等。
我们将学会如何计算这些立体图形的体积、表面积等数值,并应用这些数值解决实际问题。
立体图形的学习将培养我们的空间想象能力和计算能力。
四、数列与函数数列与函数是代数学中的重要内容。
在九年级下学期的数学中,我们将学习到数列和函数的概念,如何判断一个数列是等差数列或等比数列,并掌握求解数列的通项公式等。
我们还将学会函数的概念以及函数的图像、性质和应用。
数列与函数的学习将培养我们的逻辑思维和问题解决能力。
五、几何投影几何投影是几何学中的一种重要工具。
在九年级下学期的数学中,我们将学习到点、线、面在不同投影面上的投影图形,以及利用几何投影解决实际问题。
几何投影是建筑、艺术和设计等领域中不可或缺的技术。
六、概率与统计概率与统计是数学中的重要分支。
在九年级下学期的数学中,我们将学习到概率的基础概念,如何计算事件发生的概率,并应用概率解决实际问题。
北师大版初中数学九年级(下册)知识点汇总
北师大版初中数学九年级(下册)知识点汇总函数1. 函数的定义函数是一种特殊的关系,它将一个自变量通过特定的规律映射为唯一的因变量。
函数的定义包括自变量与因变量的关系式及定义域、值域。
2. 函数的性质函数有唯一性和有界性两个重要性质,还有奇偶性、周期性等其他性质。
其中,绝对值函数、反比例函数、幂函数、指数函数等具有一定的特殊性质。
3. 函数图像函数图像是将函数的自变量与因变量的关系绘制在直角坐标系中所得到的图形。
在绘制函数图像的过程中,需要研究函数的单调性、零点、极值等特点。
三角函数1. 角度制与弧度制在三角函数中,角的度量单位可以是角度制和弧度制。
角度制是以度数作为单位,弧度制是以弧长所对应的圆心角的度数作为单位。
两种度量方式可以相互转换。
2. 常用三角函数常用三角函数有正弦函数、余弦函数、正切函数、余切函数等。
在计算中,需要掌握三角函数的各种性质和公式,如正弦定理、余弦定理、正切定理等。
3. 解三角形解三角形是指通过给定的三角形中的一些已知量求解其余未知量的过程。
在解三角形时,常用的方法包括正弦定理、余弦定理、正切定理等。
解析几何1. 平面直角坐标系平面直角坐标系是解析几何的基本工具。
在平面直角坐标系中,直线可以表示成一元一次方程,圆可以表示为二元二次方程。
2. 直线与圆的位置关系直线与圆的位置关系有相离、相切和相交三种情况。
通过圆心的坐标与半径,可以确定圆的位置关系。
3. 解析几何中的重点知识点解析几何中还有许多重要的知识点,如向量的基本概念与性质、平面向量的数量积和叉积、直线和平面的方程等。
概率统计1. 随机事件随机事件是指在试验过程中,其结果不能确定的事件。
随机事件可以用事件的概率来描述。
2. 概率和事件的运算概率是指某个随机事件在所有可能事件中出现的概率。
概率可以用加法原理、乘法原理和条件概率等进行计算。
3. 抽样调查和统计图表的制作概率统计的重要应用包括抽样调查和统计图表的制作。
在抽样调查中,需要考虑样本的大小与抽样误差;在统计图表的制作中,需要了解直方图、折线图、饼图等基本图形的制作方法。
九年级下数学北师大知识点
九年级下数学北师大知识点数学作为一门学科,无疑对学生的思维能力和逻辑分析能力有着极大的提升作用。
而在九年级下学期,北师大数学知识点扮演着重要的角色。
本文将重点介绍九年级下数学北师大知识点的重要性及其内容。
首先,九年级下数学北师大知识点的学习对理解高中数学知识打下了坚实的基础。
北师大数学在全国享有盛誉,其数学体系严谨、深入,能够提高学生的数学思维能力和问题解决能力。
通过学习北师大数学,学生能够形成正确的数学思维方式,培养出良好的数学品味。
一、代数与函数代数与函数是九年级下数学的重点内容之一。
在代数与函数中,我们学习了多项式的四则运算、整式的因式分解、分式方程以及根式的运算等等。
这些内容的学习与应用能够提高学生的抽象思维能力和数学建模能力。
代数与函数还与我们的日常生活息息相关,例如,分式方程可以应用于解决实际生活中的比例问题,而多项式的因式分解则可以帮助我们简化复杂的数学运算。
二、几何几何是另一个重要的数学知识点,九年级下数学北师大知识点中的几何部分主要包括三角形的性质、向量与坐标等内容。
通过学习几何,我们能够加深对图形性质的理解和把握,培养我们的几何直观、空间想象能力。
三、概率与统计在九年级下学期,概率与统计是数学知识体系中不可或缺的一部分。
概率与统计是对事物随机性和不确定性进行量化和描述的一门学科。
学习概率与统计,我们需要了解概率的基本概念、事件的计算、统计分布以及抽样调查等等。
通过这些知识的学习,我们能够更好地理解和解决生活中的一些概率与统计问题,例如评估事件发生的可能性、分析数据并得出结论等。
总之,九年级下数学北师大知识点的学习不仅能够提高学生的数学思维能力和解决问题的能力,还对学生的高中数学学习打下了坚实的基础。
代数与函数、几何以及概率与统计等内容涵盖了数学学科的不同领域,通过学习这些知识,我们能够全面地了解和应用数学在生活中的各个方面。
因此,我们应该重视九年级下数学北师大知识点的学习,不断提高自己的数学水平。
北师大版九年级下册数学第7讲《待定系数法求二次函数的解析式》知识点梳理
1 2 北师大版九年级下册数学第 7 讲《待定系数法求二次函数的解析式》知识点梳理【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式1. 二次函数解析式常见有以下几种形式 :(1)一般式: y = ax 2 + bx + c (a ,b ,c 为常数,a ≠0);(2)顶点式: y = a (x - h )2 + k (a ,h ,k 为常数,a ≠0);(3)交点式: y = a (x - x 1 )(x - x 2 ) ( x 1 , x 2 为抛物线与 x 轴交点的横坐标,a ≠0).2. 确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如 y = ax 2 + bx + c 或 y = a (x - h )2 + k ,或 y = a (x - x 1 )(x - x 2 ) ,其中 a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为 y = ax 2 + bx + c ;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为y = a (x - h )2 + k ;③当已知抛物线与 x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为 y = a (x - x )(x - x ) .【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线 经过 A ,B ,C 三点,当 时,其图象如图 1 所示.求抛物线的解析式,写出顶点坐标.⎩∴ ⎪图 1【答案与解析】设所求抛物线的解析式为 ( ).由图象可知 A ,B ,C 的坐标分别为(0,2),(4,0),(5,-3).⎧c = 2, ⎨16a + 4b + c = 0, ⎪25a + 5b + c = -3, 解之,得抛物线的解析式为该抛物线的顶点坐标为 .【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围 .2. (2016•丹阳市校级模拟)形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,顶点坐标是 (0,﹣5)的抛物线的关系式为 .【思路点拨】形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,因此可设顶点式为 y=﹣2(x ﹣h ) 2+k ,其中(h ,k )为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【答案】y=﹣2x 2﹣5.【解析】解:∵形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,设抛物线的关系式为 y=﹣2(x ﹣h )2+k ,将顶点坐标是(0,﹣5)代入,y=﹣2(x ﹣0)2﹣5,即 y=﹣2x 2﹣5.∴抛物线的关系式为y=﹣2x2﹣5.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.3.已知抛物线的顶点坐标为(-1,4),与轴两交点间的距离为6,求此抛物线的函数关系式.【答案与解析】因为顶点坐标为(-1,4),所以对称轴为,又因为抛物线与轴两交点的距离为6,所以两交点的横坐标分别为:,,则两交点的坐标为(,0)、(2,0);求函数的函数关系式可有两种方法:解法(1) :设抛物线的函数关系式为顶点式:(a≠0),把(2,0)代入得,所以抛物线的函数关系式为;解法(2) :设抛物线的函数关系式为两点式:y =a(x + 4()x- 2)(a≠0),把(-1,4)代入得,所以抛物线的函数关系式为:y=-4(x+4()x- 2);9【总结升华】在求函数的解析式时,要根据题中所给条件选择合适的形式.举一反三:【变式】(2014•永嘉县校级模拟)已知抛物线经过点(1,0),(﹣5,0),且顶点纵坐标为,这个二次函数的解析式.【答案】y=﹣x 2﹣2x+ .提示:设抛物线的解析式为y=a(x+2)2+,将点(1,0)代入,得a(1+2)2+=0,解得a=﹣,即y=﹣(x+2)2+ ,∴所求二次函数解析式为y=﹣x2﹣2x+ .类型二、用待定系数法解题⎩ ⎩4.(2015 春•石家庄校级期中)已知二次函数的图象如图所示,根据图中的数据,(1) 求二次函数的解析式;(2) 设此二次函数的顶点为 P ,求△ABP 的面积.【答案与解析】解:(1)由二次函数图象知,函数与 x 轴交于两点(﹣1,0),(3,0),设其解析式为:y=a (x+1)(x ﹣3),又∵函数与 y 轴交于点(0,2),代入解析式得,a ×(﹣3)=2,∴a=﹣ ,∴二次函数的解析式为:,即;(2) 由函数图象知,函数的对称轴为:x=1, 当 x=1 时,y=﹣×2×(﹣2)= ,∴△ABP 的面积 S===.【总结升华】此题主要考查二次函数图象的性质,对称轴及顶点坐标,另外巧妙设函数的解析式,从而来减少计算量.【答案与解析】(1)把 A(2,0),B(0,-6)代入 y = - 1 x 2 + bx + c 2得⎧-2 + 2b + c = 0, 解得⎧b = 4, ⎨c = -6, ⎨c = -6. ∴ 这个二次函数的解析式为 y = - 1 x 2 + 4x - 6 . 2(2)∵ 该抛物线的对称轴为直线 x = - 4 2 ⨯⎛ - 1 ⎫= 4 , 2 ⎪ ⎝ ⎭ ∴ 点 C 的坐标为(4,0),∴AC=OC-OA=4-2=2.∴S△ABC =1g AC g OB =1⨯ 2 ⨯ 6 = 6 .2 2【总结升华】求△ABC 的面积时,一般要将坐标轴上的边作为底边,另一点的纵(横)坐标的绝对值为高进行求解.(1)将A、B 两点坐标分别代入解析式求出b,c 的值.(2)先求出点C 的坐标再求出△ABC 的面积.举一反三:⎛0 3 ⎫【变式】已知二次函数图象的顶点是(-1,2) ,且过点 ⎝ ,⎪.2 ⎭(1)求二次函数的表达式;(2)求证:对任意实数m,点M (m,-m2 ) 都不在这个二次函数的图象上.【答案】(1)y =-1 x 2-x +3 ;2 2(2)证明:若点M (m,-m2 ) 在此二次函数的图象上,则-m2=-1(m+1)2+2.2得m2- 2m + 3 = 0 .△=4 -12 =-8 < 0 ,该方程无实根.所以原结论成立.。
数学北师大版九年级下册知识点
数学北师大版九年级下册知识点数学是一门关乎逻辑和分析的学科,让人们学会运用数学思维解决问题。
北师大版九年级下册数学知识点涵盖了较为广泛的内容,下面我们将对其中的一些关键知识点进行探讨。
首先,我们来聊聊代数方程。
代数方程是数学中非常重要的一环,它涉及到字母与数字的关系,让我们可以通过已知条件推算出未知量。
九年级下册数学教材中,代数方程的难度逐渐加深,从一元一次方程开始,到一元二次方程和二元一次方程等等。
学生需要学会从生活中的问题转化为数学方程,再通过方程求解得到答案。
在九年级下册数学中,还介绍了平方根与立方根的概念和运算规律。
平方根是指一个数的平方等于该数本身的正数解,而立方根则是指一个数的立方等于该数本身的正数解。
理解这两个概念对于后续学习数学非常重要,因为它们在实际问题中有广泛的应用,比如计算面积、体积等等。
另一个重要的数学知识点是二次根式。
二次根式是指形如√a的数,其中a是一个非负实数。
九年级下册数学课本中对二次根式的运算有详细的介绍,包括加减乘除的规则和简化方法。
通过学习二次根式,同学们可以更好地理解根式的概念,并能够自如地进行根式的运算。
除此之外,九年级下册数学还涉及到如数列、函数、几何、概率等知识点。
数列是一组按照一定规律排列的数,九年级下册数学课本介绍了等差数列和等比数列的概念及其求和公式。
函数是数学中的一种映射关系,它可以将一个数集中的每个数映射到另一个数集中的唯一一个数。
几何则是研究点、线、面和体等几何对象及其性质的学科,九年级下册数学课本主要涉及到三角形、四边形和圆等几何图形的性质和计算。
概率是数学中研究随机事件发生的可能性的学科,九年级下册数学课本中介绍了概率的基本概念、计算方法和应用。
总而言之,九年级下册数学知识点的学习是学生数学基础能力的提升和扩展的重要环节。
通过对代数方程、平方根与立方根、二次根式、数列、函数、几何和概率等知识点的学习,同学们可以更深入地理解数学的本质,培养解决实际问题的能力,为进一步学习高中数学打下坚实的基础。
北师大版九年级下册数学第12讲《圆的有关概念及圆的确定》知识点梳理
北师大版九年级下册数学第 12 讲《圆的有关概念及圆的确定》知识点梳理【学习目标】1.知识目标:理解圆的描述概念和圆的集合概念;理解半径、直径、弧、弦、弦心距、圆心角、同心圆、等圆、等弧的概念;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;了解不在同一直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的外接三角形的概念.2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,进行计算或证明;会过不在同一直线上的三点作圆.3.情感目标:在确定点和圆的三种位置关系的过程中体会用数量关系来确定位置关系的方法,逐步学会用变化的观点及思想去解决问题,养成学生之间发现问题、探讨问题、解决问题的习惯.【要点梳理】要点一、圆的定义1.圆的描述概念如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的集合概念圆心为O,半径为r 的圆是平面内到定点O 的距离等于定长r 的点的集合.平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.P rPrPr要点二、点与圆的位置关系点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.若⊙O 的半径为r,点P 到圆心O 的距离为d,那么:点P 在圆内⇔d <r ;点P 在圆上⇔d=r;点P 在圆外⇔d >r.“⇔”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号)∴直径AB 是⊙O 中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B 为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.4.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5.圆心角顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B 能作无数个圆,这些圆的圆心在线段AB 的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O 是△ABC 的外接圆,△ABC 是⊙O 的内接三角形,点O 是△ABC 的外心.外心的性质:外心是△ABC 三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形【答案】C.2.爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m 以外的安全区域.这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m 是否安全?【思路点拨】计算在导火索燃烧完的时间内人跑的距离与120m比较.【答案与解析】∵导火索燃烧的时间为18=2(0s)0.9相同时间内,人跑的路程为20×6.5=130(m)∴人跑的路程为130m>120m,∴点导火索的人安全.【总结升华】爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示.类型二、圆的有关计算3.已知,点P 是半径为5 的⊙O 内一点,且OP=3,在过点P 的所有的⊙O 的弦中,弦长为整数的弦的条数为( )A.2B.3C.4D.5【思路点拨】在一个圆中,过一点的最长弦是经过这一点的直径,最短的弦是经过这一点与直径垂直的弦.【答案】C.【解析】作图,过点P 作直径AB,过点P 作弦,连接OC则OC=5,CD=2PC,由勾股定理,得,∴CD=2PC=8,又∵AB=10,∴过点P 的弦长的取值范围是,弦长的整数解为8,9,10,根据圆的对称性,弦长为9 的弦有两条,所以弦长为整数的弦共4 条.故选C.【总结升华】利用垂径定理来确定过点P 的弦长的取值范围.根据圆的对称性,弦长为9 的弦有两条,容易漏解. 举一反三:【变式】平面上的一个点到圆的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cmB.6.5cmC. 2.5cm 或6.5cmD. 5cm 或13cm【答案】C.类型三、确定圆的条件的有关作图与计算4.已知:不在同一直线上的三点A、B、C,求作:⊙O 使它经过点A、B、C.【思路点拨】作圆的关键是找圆心得位置及半径的大小,经过两点的圆的圆心一定在连接这两点的线段的垂直平分线上,进而可以作出经过不在同一直线上的三点的圆.【解析】作法:1、连结AB,作线段AB 的垂直平分线MN;2、连接AC,作线段AC 的垂直平分线EF,交MN 于点O;3、以O 为圆心,OB 为半径作圆.所以⊙O 就是所求作的圆.【总结升华】通过这个例题的作图可以作出锐角三角形的外心(图一),直角三角形的外心(图二),钝角三角形的外心(图三).探究各自外心的位置.52 - 42【变式】(2015•江干区二模)给定下列图形可以确定一个圆的是( )A .已知圆心B .已知半径C .已知直径D .不在同一直线上的三个点【答案】D.提示:A 、已知圆心只能确定圆的位置不能确定圆的大小,故错误;B 、C 、已知圆的半径和直径只能确定圆的大小并不能确定圆的位置,故错误;D 、不在同一直线上的三点确定一个圆,故正确,故选 D .5. 如图,⊙O 的直径为 10,弦 AB=8,P 是弦 AB 上的一个动点,那么 OP 的长的取值范围是 .【思路点拨】求出符合条件的 OP 的最大值与最小值.【答案】3≤OP ≤5.【解析】OP 最长边应是半径长,为 5;根据垂线段最短,可得到当 OP ⊥AB 时,OP 最短.∵直径为 10,弦 AB=8∴∠OPA=90°,OA=5,由圆的对称性得 AP=4,由勾股定理的 OP= = 3 ,∴OP 最短为 3.∴OP 的长的取值范围是 3≤OP ≤5.【总结升华】关键是知道 OP 何时最长与最短.举一反三:【变式】已知⊙O 的半径为 13,弦 AB=24,P 是弦 AB 上的一个动点,则 OP 的取值范围是.【答案】 OP 最大为半径,最小为 O 到 AB 的距离.所以 5≤OP ≤13.。
北师大版九年级下册数学第18讲《弧长和扇形面积》知识点梳理
北师大版九年级下册数学第 18 讲《弧长和扇形面积》知识点梳理【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180 都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.3 (3) 扇形面积公式 ,可根据题目条件灵活选择使用,它与三角形面积公式 有点类似,可类比记忆;(4) 扇形两个面积公式之间的联系: .【典型例题】类型一、弧长和扇形的有关计算1. 如图(1),AB 切⊙O 于点 B ,OA= 2,AB=3,弦 BC∥OA ,则劣弧 B»C 的弧长为( ). A . 3 π B . 3 π 3 2 C .π D . 3π 2A图(1)【答案】A.【解析】连结 OB 、OC ,如图(2)则∠OBA =90︒ ,OB= , ∠A =30︒ , ∠AOB =60︒ ,由弦 BC ∥OA 得∠OBC =∠AOB = 60︒ ,所以△OBC 为等边三角形, ∠BOC =60︒ .则劣弧 B»C 的弧长为 60π 3 = 3π ,故选 A. 图(2) 180 3【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料, 试计算如图所示的管道的展直长度,即的长(结果精确到 0.1mm)3 C B O【答案】R=40mm,n=110∴的长= = ≈76.8(mm)因此,管道的展直长度约为76.8mm.2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC⊥AB,OM=MC= OC= OA.∴∠B=∠A=30°,∴∠AOB=120°∴S 扇形= .【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2 为半径的⊙A 与BC 相切于点D,交AB 于E,交AC 于F,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.4 -4πB.4 -8πC.8 -4πD.8 -8π 9 9 9 9A PE FB D C图(1)的面积是: 【答案】连结 AD ,则 AD ⊥BC ,△ABC 的面积是:BC•AD= ×4×2=4,∠A=2∠EPF=80°.则扇形 80π 22 EAF = 8π.360 9故阴影部分的面积=△ABC 的面积-扇形 EAF 的面积= 4- 8π. 图(2) 9故选 B .3.(2015•ft西模拟)如图,已知⊙O 是△ABC 的外接圆,AC 是直径,∠A=30°,BC=2,点 D 是 AB 的中点, 连接 DO 并延长交⊙O 于点 P ,过点 P 作 PF⊥AC 于点 F .(1) 求劣弧 PC 的长;(结果保留 π)(2) 求阴影部分的面积.(结果保留 π).【答案与解析】解:(1)∵点 D 是 AB 的中点,PD 经过圆心,∴PD⊥AB,∵∠A=30°,∴∠POC=∠AOD=60°,OA=2OD ,∵PF⊥AC,∴∠OPF=30°,∴OF=OP ,∵OA=OC,AD=BD ,∴BC=2OD,∴OA=BC=2,∴⊙O 的半径为 2,∴劣弧 PC 的长===π;(2)∵OF=OP ,∴OF=1,∴PF== ,∴S阴影=S 扇形﹣S△OPF=﹣×1×=π﹣.【总结升华】本题考查了垂径定理的应用,弧长公式以及扇形的面积公式等知识,求得圆的半径和扇形的圆心角的度数是解题的关键.类型二、组合图形面积的计算4.(2015•槐荫区三模)如图,AB 是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC= =2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S 扇形OBC=π×OC2= π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
初三数学知识点归纳北师大版
初三数学知识点归纳北师大版初三数学知识点归纳北师大版涵盖了初中数学的核心内容,为学生提供了一个系统性的复习框架。
以下是北师大版初三数学的主要知识点归纳:1. 数与式- 实数的概念和分类,包括有理数和无理数。
- 绝对值的性质和运算法则。
- 代数式的运算,包括加减乘除和乘方运算。
- 因式分解的方法,如提公因式法、公式法和分组分解法。
2. 方程与不等式- 一元一次方程的解法,包括移项和合并同类项。
- 一元二次方程的解法,如直接开平方法、配方法、公式法和因式分解法。
- 不等式的基本性质和解法,包括一元一次不等式和一元二次不等式。
- 含绝对值的不等式的解法。
3. 函数- 函数的概念,包括定义域、值域和对应法则。
- 一次函数的图象和性质,以及一次函数与一元一次方程的关系。
- 二次函数的图象和性质,包括开口方向、顶点坐标和对称轴。
- 反比例函数的图象和性质,以及反比例函数与一次函数的关系。
4. 几何图形- 线段、射线和直线的性质和关系。
- 角的概念和分类,包括锐角、直角、钝角和平角。
- 多边形的性质,如三角形的内角和定理和多边形的内角和定理。
- 圆的性质,包括圆心角、弧长和扇形面积的计算。
5. 统计与概率- 数据的收集和整理,包括统计表和统计图的绘制。
- 描述性统计,如众数、中位数和平均数的计算。
- 概率的基本概念,包括随机事件和概率的计算方法。
- 简单事件的概率计算,如古典概型和几何概型。
通过以上知识点的归纳,学生可以对初三数学有一个清晰的认识和掌握,为中考做好充分的准备。
在复习过程中,建议学生结合实际例题进行练习,以加深对知识点的理解和应用能力。
同时,定期进行模拟测试,以检验学习效果和查漏补缺。
(完整版)北师大版九年级数学下册知识点归纳复习提纲
图1 新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值30 º45 º 60 º sin α21 22 23 h i=h:lBC三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
北师大版数学九年级下册:二次函数知识点总结
北师大版数学九年级下册:二次函数知识点总结二次函数知识点总结一、二次函数概念:二次函数是指形如y=ax^2+bx+c(a、b、c为常数,a≠0)的函数。
需要注意的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式1.二次函数基本形式:y=ax^2的性质:a的绝对值越大,抛物线的开口越小,a的符号决定开口方向,顶点坐标在对称轴上方(a>0)或下方(a<0)。
性质:当x增大时,y随之增大,当x减小时,y随之减小,当x等于顶点时,y有最小值(a>0)。
当x增大时,y随之减小,当x减小时,y随之增大,当x等于顶点时,y有最大值(a<0)。
2.y=ax^2+c的性质:上加下减,a的符号决定开口方向,顶点坐标在对称轴上方(a>0)或下方(a<0)。
性质:当x增大时,y随之增大,当x减小时,y随之减小,当x等于顶点时,y有最小值c(a>0)。
当x增大时,y随之减小,当x减小时,y随之增大,当x等于顶点时,y有最大值c(a<0)。
3.y=a(x-h)^2的性质:左加右减,a的符号决定开口方向,顶点坐标为(h,k)。
性质:当x大于h时,y随之增大,当x小于h时,y随之减小,当x等于h时,y有最小值k。
当x大于h时,y随之减小,当x小于h时,y随之增大,当x等于h时,y有最大值k。
4.y=a(x-h)^2+k的性质:a的符号决定开口方向,顶点坐标为(h,k)。
性质:当x大于h时,y随之增大,当x小于h时,y随之减小,当x等于h时,y有最小值k。
当x大于h时,y随之减小,当x小于h时,y随之增大,当x等于h时,y有最大值k。
三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)^2+k,确定其顶点坐标(h,k)处,具体平移方法如下:保持抛物线y=ax^2的形状不变,将其顶点平移到(h,k),向上(k>0)或向下(k<0)平移|k|个单位。
新北师大版九年级数学下册知识点复习汇总
新北师大版九年级数学下册知识点汇总第一章 直角三角形边的关系一.锐角三角函数1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”;②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比;③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ; 3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值图1 图3 图4三.三角函数的计算 1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lh i tan == 5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
北师大数学九年级下知识点
北师大数学九年级下知识点数学,作为一门学科,对于每个人来说都是必修课之一。
而在九年级下学期,我们将继续深入学习数学的各个领域,包括代数、几何和概率统计等方面的知识点。
本文将对北师大数学九年级下的知识点进行分析和总结,帮助大家更好地理解和掌握这些知识。
1. 代数1.1 方程与不等式在九年级下学期,我们将学习到更加复杂的一元一次方程、一元二次方程和一元一次不等式。
通过解方程和不等式来确定未知数的取值范围,进而解决实际问题。
1.2 平方根与整式九年级下还将学习到平方根的概念和性质,包括有理数的开平方、无理数的性质等内容。
此外,我们还需要掌握整式的基本概念和运算规则,包括多项式的加减乘除、多项式的因式分解等内容。
2. 几何2.1 空间与图形在九年级下学期,我们将学习到三维图形的基本概念和性质,包括点、直线、平面、多面体等内容。
通过学习三维图形的性质,我们可以更好地理解空间几何形体的构造和计算。
2.2 相似与全等相似和全等是几何中重要的概念,我们将学习到相似三角形的判定条件,以及相似三角形的性质和比例运算等内容。
此外,我们还将学习到全等三角形的性质和判定条件。
3. 概率统计3.1 概率在九年级下学期,我们将学习到事件、随机事件和概率的概念。
通过学习概率的计算方法和概率的性质等内容,我们可以更好地理解和应用概率在实际问题中的作用。
3.2 统计统计是数学中重要的应用领域之一,我们将学习到频数、频率、中心极限定理等概念。
通过学习统计的基本方法和原理,我们可以更好地进行数据分析和解读。
通过对以上内容的学习,我们可以发现数学无处不在。
数学不仅是一门学科,更是一种思维方式和解决问题的工具。
九年级下学期的数学知识点将为我们打下坚实的数学基础,为高中和大学里更加深入的数学学习做好铺垫。
在学习数学的过程中,我们要注重理论与实践的结合,通过实际问题的应用来理解和运用数学知识。
同时,要注重培养逻辑思维和解决问题的能力,这将在数学以及其他学科的学习中都大有裨益。
北师大版九年级数学(下)全书知识总结
(2) 的值越大,梯子越陡。
(3) 的值越小,梯子越陡。
3、导出公式
(1) ; 。
(2) 。
(3) .
要点诠释:
(1)公式成立的条件是
(2)锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.
1.230°、45°、60°角的三角函数值
要点一、1.2 30°、45°、60°角的三角函数值
利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:
锐角
30°
45°
1
60°
要点诠释:
(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若 ,则锐角 .
(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.
(4)由锐角三角函数的定义知:
当角度在0°<∠A<90°间变化时, , ,tanA>0.
要点二、梯子的倾斜程度与梯子的关系
1、坡度:坡面的铅直高度 与水平宽度 的比称为坡度(或坡比),用字母 表示。设坡角为 ,则坡度 = = ,如图,坡度通常写成 的形式.
顶点坐标
对称轴
函数变化
最大(小)值
y=ax2
a>0
向上
(0,0)
y轴
x>0时,y随x增大而增大;
x<0时,y随x增大而减小.
当x=0时,
y最小=0
y=ax2
a<0
向下
(0,0)
y轴
x>0时,y随x增大而减小;
北师大版九年级数学知识点汇总
一、数与代数1.数的概念与数的读法2.数的比较大小3.整数的四则运算4.分数的概念与分数的四则运算5.小数的概念与小数的四则运算6.百分数的概念与百分数的四则运算7.有理数的概念与有理数的四则运算8.正数、负数与绝对值9.代数式与代数方程10.一次代数方程的解11.二次根式的概念与运算12.分式的概念与运算13.根式的概念与运算14.简单的函数与函数的图象二、几何1.平行线与平行四边形2.相交线与相交角3.三角形的分类与性质4.角的概念与角的分类5.直角三角形与斜角三角形6.相似三角形与比例7.圆的概念与性质8.圆内接四边形与正多边形9.三视图与棱柱、棱锥、棱台、圆柱、圆锥、圆台的概念三、统计与概率1.统计调查与统计图表2.频率分布直方图与频率分布折线图3.统计数据的分析与统计平均数、中位数、众数4.概率的概念与概率的计算四、函数与方程1.函数的概念与函数的性质2.函数关系与函数图象3.函数与方程的思想与方法4.一次函数的概念与性质5.一次函数图象与应用6.一次函数方程与问题7.二次函数的概念与性质8.二次函数的图象与应用9.二次函数方程与问题的解法五、计量与单位1.长度、面积与体积2.常用度量单位与换算3.时间与速度4.英制单位与国际单位六、解析几何初步1.平面直角坐标系2.点的坐标与位置关系3.直线的方程与性质4.圆的方程与性质5.解直线与圆的方程及几何应用七、三角函数的初步研究1.角的三要素2.角度与弧度3.正弦定理与余弦定理4.解三角形的问题以上是北师大版九年级数学的主要知识点汇总,涵盖了数与代数、几何、统计与概率、函数与方程、计量与单位、解析几何初步、三角函数的初步研究等各个方面。
对于学生来说,掌握这些知识点将有助于他们在九年级数学学习中取得更好的成绩。
北师大版初三(下)数学重点知识点汇总
初三(下)重点知识点汇总第1课锐角三角函数1.锐角三角函数的定义在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的______,记作sinA.即sinA=∠A的对边斜边=ac.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的______,记作cosA.即cosA=∠A的邻边斜边=bc.(3)正切:锐角A的对边a与邻边b的比叫做∠A的______,记作tanA.即tanA=∠A的对边∠A的邻边=ab.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2.锐角三角函数的增减性(1)锐角三角函数值都是___值.(2)当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).(3)当角度在0°≤∠A≤90°间变化时,0≤sinA≤1,0≤cosA≤1.当角度在0°<∠A<90°间变化时,tanA>0.3.互余两角三角函数的关系在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:(1)一个角的正弦值等于这个角的余角的______值,即sinA=(90°﹣∠A);(2)一个角的余弦值等于这个角的余角的______值,即cosA=sin(90°﹣∠A);也可以理解成若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.参考答案:1.(1)正弦;(2)余弦;(3)正切2.(1)正3.(1)余弦正弦第2课特殊角的三角函数值1.特殊角的三角函数值特指___、_____、_____角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;2.特殊角的三角函数值的应用(1)应用中熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐_______,余弦逐渐_______,正切逐渐_______;二是按特殊直角三角形中各边特殊值规律去记.(2)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.参考答案:1. 30°、45°、60°2.(1)增大减小增大第2课解直角三角形(1)1.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°;②三边之间的关系:__________;③边角之间的关系:sinA=∠A的对边:斜边=a:c,cosA=∠A的邻边:斜边=b:c,tanA=∠A的对边:邻边=a:b.(a,b,c分别是∠A、∠B、∠C的对边)2.特殊角的三角函数值特指___、_____、_____角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;参考答案:1.(2)a2+b2=c22. 30°、45°、60°第3课解直角三角形(2)1.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.2.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做_____,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.3.解直角三角形的应用-仰角俯角问题(1)概念:仰角是_____的视线与水平线的夹角;俯角是_____向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.4.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.参考答案:2.(1)坡比3.(1)向上看向下看第4课二次函数1.二次函数的定义(1)二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.判断函数是否是二次函数,首先是要看它的右边是否为_____,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是__________,对实际问题,自变量的取值范围还需使实际问题有意义.2.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是______________,对称轴直线____________,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向____,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向____,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.3.根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据_______的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.参考答案:1.(1)整式;(2)全体实数2.(﹣,)x=﹣①上;②下3.自变量第5课二次函数的图像1.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①_______:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②_______:在平面直角坐标系中描出表中的各点.③_______:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.2.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的______和_______.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大,开口就越___.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.3.二次函数图象与几何变换由于抛物线平移后的形状____,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.参考答案:1.(1)①列表;②描点;③连线;2.①开口方向大小小3.不变第6课二次函数解析式的判定1.二次函数解析式的三种常见形式二次函数的解析式有三种常见形式:①_________:y=ax2+bx+c(a,b,c是常数,a≠0);②_________:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③_________:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);2.待定系数法求二次函数解析式用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择________,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为________来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为_______来求解.参考答案:1.①一般式;②顶点式;③交点式2. 一般式 顶点式 交点式第7课 用函数观点看一元二次函数1.二次函数与一元二次方程的关系如果抛物线与x 轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此______就是方程ax bx c 20++=的一个根。
新北师大版九年级数学下册第一章直角三角形的边角关系知识点整理复习
直角三角形的边角关系知识点复习考点一、锐角三角函数的概念如图,在△ABC 中,∠C=90°正弦:_____sin =∠=斜边的对边A A 余弦:____cos =∠=斜边的邻边A A 正切:_____tan =∠∠=的邻边的对边A A A考点二、一些特殊角的三角函数值三角函数 30°45°60°sin α cos α tan α考点三、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin 22=+A A (3)倒数关系:tanA ∙tan(90°—A)=1 (4)商的关系:tanA=AAcos sin 考点四、锐角三角函数的增减性当角度在0°~90°之间变化时,(1) 正弦值随着角度的增大而_______;(2) 余弦值随着角度的增大而_______;(3) 正切值随着角度的增大而___________; 考点五、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:______________________(勾股定理) (2)锐角之间的关系:______________________(3)边角之间的关系:正弦sinA=___________,余弦cosA=____________,正切tanA=______________ (4) 面积公式:c ch ab s 2121==(h c 为c 边上的高) 考点六、解直角三角形应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
北师大版九年级下册数学知识点
北师大版九年级下册数学知识点北师大版九年级下册数学知识点1 二次函数及其图像二次函数(quadratic function)是指未知数的次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;顶点式y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x 3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
北师大版数学九年级下册:章节知识点总结
北师大版初中数学九年级(上册)各章标题第一章 证明(二) 第二章 一元二次方程 第三章 证明(三) 第四章 视图与投影 第五章 反比例函数 第六章 频率与概率北师大版初中数学九年级(下册)各章标题第一章 直角三角形边的关系 第二章 二次函数 第三章 圆第四章 统计与概率北师大版初中数学九年级(上册)各章知识点第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一判定:(1)三条边都相等的三角形是等边三角形 (2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1新北师大版九年级数学下册知识点总结第一章直角三角形边的关系一.锐角三角函数1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”;②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比;③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..:定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值30º45º60ºsinα212223图2hi=h:lABC三.三角函数的计算1.仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2.俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sinα≤1,0≤cosα≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度...........(或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA、OB、OC 的方位角分别为45°、135°、225°。
6.方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角...。
如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。
7.同角的三角函数间的关系:cosα232221tanα3313①互余关系sinA=cos(90°-A)、cosA=sin(90°-A )②平方关系:③商数关系:8.解直角三角形:在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。
由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形(须知一条边)。
9.直角三角形变焦关系:在△ABC 中,∠C 为直角,∠A、∠B、∠C 所对的边分别为a、b、c,则有(1)三边之间的关系:a 2+b 2=c 2;(2)两锐角的关系:∠A+∠B=90°;(3)边与角之间的关系:;cot ,tan ,cos ,sin a bA b a A c b A c a A ====;cot ,tan ,cos ,sin b aB a b B c a B cbB ====(4)面积公式:c ch ab 2121S ==∆(h c 为C 边上的高);(5)直角三角形的内切圆半径2cb a r -+=(6)直角三角形的外接圆半径cR 21=10.三角函数的应用教材第18页11.利用三角函数测高教材第22页第二章二次函数1.概念:一般地,若两个变量x,y 之间对应关系可以表示成c bx ax y ++=2(a 、b、c 是常数,a ≠0)的形式,则称y 是x 的二次函数....。
自变量x 的取值范围是全体实数。
在写二次函数的关系式时,一定要寻找两个变量之间的等量关系,列出相应的函数关系式,并确定自变量的取值范围........。
2.图像性质:(1)二次函数y=ax 2的图象:是一条顶点在原点且关于y 轴对称的抛物线...。
)0(2≠=a ax y 是二次函数c bx ax y ++=2的特例,此时常数b=c=0.(2)抛物线的描述:开口方向、对称性、y 随x 的变化情况、抛物线的最高(或最低)点、抛物线与x 轴的交点。
①函数的取值范围是全体实数;②抛物线的顶点在(0,0),对称轴是y 轴(或称直线x=0)。
③当a>0时,抛物线开口向上,并且向上方无限伸展。
当a<0时,抛物线开口向下,并且向下方无限伸展。
④函数的增减性:A、当a>0时⎩⎨⎧≥≤.,0;,0增大而增大随时增大而减小随时x y x x y x B、当a<0时⎩⎨⎧≥≤.,0;,0增大而减小随时增大而增大随时x y x x y x ⑤当|a|越大,抛物线开口越小;当|a|越小,抛物线的开口越大。
⑥最大值或最小值:当a>0,且x=0时函数有最小值,最小值是0;当a<0,且x=0时函数有最大值,最大值是0。
(3)二次函数c ax y +=2的图象:是一条顶点在y 轴上且与y 轴对称的抛物线,二次函数c ax y +=2的图象中,a 的符号决定抛物线的开口方向,|a|决定抛物线的开口程度大小,c 决定抛物线的顶点位置,即抛物线位置的高低。
(4)二次函数c bx ax y ++=2的图象:是以直线a bx 2-=为对称轴,顶点坐标为(ab 2-,ab ac 442-)的抛物线。
(开口方向和大小由a 来决定)|a|的越大,抛物线的开口程度越小,越靠近对称轴y 轴,y 随x 增长(或下降)速度越快;|a|的越小,抛物线的开口程度越大,越远离对称轴y 轴,y 随x 增长(或下降)速度越慢。
(5)二次函数c bx ax y ++=2的图象与y=ax 2的图象的关系:c bx ax y ++=2的图象可以由y=ax 2的图象平移得到:(利用顶点坐标)(6)二次函数k h x a y +-=2)(的图象:是以直线x=h 为对称轴,顶点坐标为(h,k)的抛物线。
(开口方向和大小由a 来决定)(7)二次函数c bx ax y ++=2的性质:二次函数c bx ax y ++=2配方成ab ac a b x a y 44)2(22-++=则抛物线的①对称轴:x=ab2-②顶点坐标:(a b 2-,ab ac 442-)③增减性:若a>0,当x<a b 2-时,y 随x 的增大而减小.....;当x>ab2-时,y 随x 的增大而增....大。
..若a<0,则当x<a b 2-时,y 随x 的增大而增大.....;当x>ab2-时,y 随x 的增大而...减小。
...④最值:若a>0,则当x=a b 2-时,a b ac y 442-=最小;若a<0,则当x=a b2-时,ab ac y 442-=最大3.确定二次函数的表达式:(待定系数法)(1)一般式:c bx ax y ++=2(2)顶点式:k h x a y +-=2)((2)交点式:y=a(x-x 1)(x-x 2)4.二次函数的应用:教材第46页几何方面教材第48页应用题5.二次函数与一元二次方程(1)二次函数c bx ax y ++=2的图象(抛物线)与x 轴的两个交点的横坐标x 1,x 2是对应一二次方程02=++c bx ax 的两个实数根(2)抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:ac b 42->0<===>抛物线与x 轴有2个交点;ac b 42-=0<===>抛物线与x 轴有1个交点;ac b 42-<0<===>抛物线与x 轴有0个交点(无交点);(3)当ac b 42->0时,设抛物线与x 轴的两个交点为A、B,则这两个点之间的距离:化简后即为:)04(||4||22>--=ac b a ac b AB 这就是抛物线与x 轴的两交点之间的距离公式。
第三章圆1.圆的定义:描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的圆形叫做圆.;固定的端点O 叫做圆心..;线段OA 叫做半径..;以点O 为圆心的圆,记作⊙O,读作“圆O”集合性定义:圆是平面内到定点距离等于定长的点的集合。
其中定点叫做圆心..,定长叫做圆的半径....,圆心定圆的位置,半径定圆的大小,圆心和半径确定的圆叫做定圆..。
对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)。
2.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>d<r;③点在圆外<===>d>r.其中点在圆上的数量特征是重点,它可用来证明若干个点共圆,方法就是证明这几个点与一个定点、的距离相等。
3.圆的对称性:(1)与圆相关的概念:①弦和直径:弦:连接圆上任意两点的线段叫做弦.。
直径:经过圆心的弦叫做直径..。
②弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。
劣弧:小于半圆的弧..。
优弧:大于半圆的弧叫做优弧叫做劣弧..。
(为了区别优弧和劣弧,优弧用三个字母表示。
)③弓形:弦及所对的弧组成的图形叫做弓形..。
④同心圆:圆心相同,半径不等的两个圆叫做同心圆...。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。
⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....(2).圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
圆是中心对称图形,对称中心为圆心。
定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等、所对的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.4.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分一般弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。