公考行测图形推理之折、拆纸盒问题
图形推理之折纸盒
图形推理之折纸盒、拆纸盒问题一般来说,图形推理题目可以按照图形数量变化来划分,可以按照图形位置变化来划分,可以按照图形形状变化来划分。
但是,近年来,图形推理题目出现了一个新的趋势,那就是按照图形的立体变化来出题目。
立体变化,顾名思义,就是利用图形在空间中的“平面——立体”、“立体——平面”变化来考察考生的空间想象能力。
平面图形与立体图形的这两种相互转化,我们分别称之为折纸盒问题——平面图形的空间还原、拆纸盒问题——立体图形的平面展开。
一、折纸盒问题——平面图形的空间还原平面图形的空间还原,就是给出一个平面图形,即立体图形的平面展开图,让考生将这个平面图形还原成空间图形。
这类题型经常出现在智商测验中,公务员考试借鉴此类题型来测查考生的空间想象能力等基本素质。
由平面到立体的这种本质性的变化直接对考生的能力提出了挑战,要想做好此类题目必须要多加练习,熟悉题目的特点,找出其中的解题技巧和规律。
下面,我们来看几道题目。
【例题1】【答案】D【解析】这个题目相当简单,通过观察可知只有D可以由左边的纸板折叠而成。
因为侧面没有阴影。
因此,正确答案是D。
【例题2】右边四个选项中的哪个不是左边图形折叠而成的。
()【答案】A【解析】这个题目不是很难,5的四个临面是4、2、3、1,而且1和4是平行面,2和3是平行面,故答案选择A,因为2和3不可能是临面。
【例题3】(2008年中央)下面四个所给的选项中,哪—个选项的盒子不能由左边给定的图形做成( )【答案】C【解析】这个题目和上个题目有点类似都是选择不符合的项,由于题干中没有只给出一条对角线的面,故不能由左边的图形折成,因此答案选择C。
【例题4】(2010年中央)左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?【答案】B【解析】自己用折纸法,得出是B。
空白面与横线面应该在对面的面上,所以排除C、D。
A项中上表面的对角线应该与右表面的对角线相交在一个顶点上。
故答案选择B项。
空间型图形推理-折纸盒问题
折、拆纸盒问题折纸盒,泛指题干为平面展开图,四个选项均为立体图形,提问方式一般为“将题干图形折叠后,得到的图形是?”拆纸盒,泛指题干为立体图形,四个选项均为平面展开图,提问方式一般为“将题干图形展开后应为?”针对这一类问题,根据选项情况可采用区分相邻面及相对面、时针法、标点法来应对。
一、区分相邻面及相对面平面图形中相邻的两个面折成立体图形后也相邻,立体图形中相对的两个面拆成平面图形后不相邻,区别相邻面与相对面往往能快速排除错误选项,得出符合要求的答案。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?解析:左边的图形折成立体图形后,有两个空白面相对,含有圆点的两个面相对,含有斜线的面与另外一个空白面相对。
A项,应有两个空白面相对,故A 项错误;B项,可由左边纸盒折成;C项,含有圆点的两个面相对,故C项错误;D项,带斜线的面不可能与两个空白面两两相邻,故D项错误。
由此,可确定正确答案为B。
例题:下列四个选项中,哪个可以折出左边指定的图形?解析:左边给定的立体图形中,带阴影的两个面相对。
折成立方体后,A、C、D三项的两个阴影面相邻,所以是错误的;B项折成后带阴影的面相对,因此,应选择B项。
提醒:区分相对面与相邻面是解决空间型图形推理的基础。
分清相对面与相邻面往往也能快速地排除一些选项,从而更快地解决问题。
二、时针法对于立方体纸盒,折成后只能看到图形的三个面,时针法就是比较这三个面在立体图形与平面图形中的旋转方向来判断选项的正确与否。
时针法只适用于解决面中的小图形不涉及方向的折纸盒问题。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?解析:首先通过相对面与相邻面可排除C项,C项中1和2应为相对的面,不可能相邻。
A项,按1-4-6的顺序,顺时针旋转,题干平面图形中1-4-6则按逆时针旋转,如下图所示,两者的旋转方向不一致,则A项不能由左边的图形折成;同理可判定B项可由左边图形折成,D项不能由左边图形折成。
公务员行测指导三种方法应对折拆纸盒问题
公务员行测指导:三种方法应对折、拆纸盒问题一、区分相邻面及相对面平面图形中相邻的两个面折成立体图形后也相邻,立体图形中相对的两个面拆成平面图形后不相邻,区别相邻面与相对面往往能快速排除错误选项,得出符合要求的答案。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?解析:左边的图形折成立体图形后,有两个空白面相对,含有圆点的两个面相对,含有斜线的面与另外一个空白面相对。
A项,应有两个空白面相对,故A项错误;B项,可由左边纸盒折成;C项,含有圆点的两个面相对,故C项错误;D项,带斜线的面不可能与两个空白面两两相邻,故D项错误。
由此,可确定正确答案为B。
例题:下列四个选项中,哪个可以折出左边指定的图形?解析:左边给定的立体图形中,带阴影的两个面相对。
折成立方体后,A、C、D三项的两个阴影面相邻,所以是错误的;B项折成后带阴影的面相对,因此,应选择B项。
提醒:区分相对面与相邻面是解决空间型图形推理的基础。
分清相对面与相邻面往往也能快速地排除一些选项,从而更快地解决问题。
二、时针法对于立方体纸盒,折成后只能看到图形的三个面,时针法就是比较这三个面在立体图形与平面图形中的旋转方向来判断选项的正确与否。
时针法只适用于解决面中的小图形不涉及方向的折纸盒问题。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?解析:首先通过相对面与相邻面可排除C项,C项中1和2应为相对的面,不可能相邻。
A项,按1-4-6的顺序,顺时针旋转,题干平面图形中1-4-6则按逆时针旋转,如下图所示,两者的旋转方向不一致,则A项不能由左边的图形折成;同理可判定B项可由左边图形折成,D项不能由左边图形折成。
三、标点法折、拆纸盒的实质就是一个点与点重合、边与边重合的过程,当确定两个点重合并确定该点放置的位置时,该纸盒也就确定了。
标点法就是根据已知点确定由这个点出发的线条的情况,从而确定“纸盒”的形式。
下面介绍标点法的具体应用。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?如上图所示,分析中间的平面图形,我们可发现折成纸盒后,重合的点为A与M、B与L、C与K、D与J、E与I、F与H。
公务员行测判断推理——图形推理之六面体
公务员行测判断推理——图形推理之六面体一、出题形式:折纸盒与拆纸盒。
折纸盒,左边给定的是纸盒的外表面,下列哪项能由它折叠而成?A B C D拆纸盒:右边四个图形中只有一个是左侧图形的展开图,请把找出来。
A B C D不论是折纸盒还是拆纸盒,都是要求立体图形和平面展开图的对应。
二、解题思路1、定位特征面所谓特征面,是指图案有特点、与众不同的面。
因为能和别的面进行区分,所以做题时可以看特征面和其他面之间的关系。
2、利用相对面排除选项(1)相对面的定义所谓相对面,是指立体图形中,两个相对的面。
如下图,共有前后、左右、上下三组相对面。
(2)相对面的特性在立体图形中,在同一视角能看到的三个面中,每次一定能并且只能看到每组相对面的其中一个。
即:能看到前面,就看不到它的相对面——后面,同理,能看到上面就看不到下面,能看到右面就看不到左面。
(3)相对面的判定相对面在平面展开图中的呈现形式,如下图:(1)间隔面法:图①中,1和2两个面中间只隔了一个面,因此1和2两个面是一组相对面。
同理,3和4也是一组相对面。
(相间必相对)(2)Z字型两端:是指在立体图形的平面展开图中,两个面能连成Z字型,则这两个面是一组相对面。
如图②中1和2两个面能连成Z字型,这两个面是一组相对面。
注意:在图③中,1-2、1-3都能连成Z字型,但是只有1和2两个面是一组相对面,而1和3不是相对面,即Z型中间只能隔一行或者一列。
3.利用相邻面确定选项(1)相邻面的判定在六面体立体图形中,两个面存在公共边,即为相邻关系。
相邻面的判定,主要是判定公共边的情况,即哪一条边是公共边,哪一个端点对应哪一个端点。
具体来说,可以用以下几种方法判定:①有公共边。
如下图,1和2两个面,有公共边,属于相邻面。
②直角边是相邻边。
如下图,1的右边和6的上边,属于垂直角的两条边,折叠之后为重合边,所以l和6为相邻面。
③一列两端首尾相连。
如下图,1和4两个面分别为一列的头和尾,并且中间一列有四个面,所以1和4首尾相连,即1面的上边和4面的下边在立体图形中是同一条边。
行测纸盒折叠方法解题技巧
行测纸盒折叠方法解题技巧
摘要:
一、引言:简要介绍行测纸盒折叠问题的背景和重要性
二、主体部分:详细解析纸盒折叠问题的解题技巧
1.观察特殊图形法
2.相对面不相邻法
三、结尾部分:总结纸盒折叠问题的解题策略,并对考生提出建议
正文:
【引言】
在公务员行测考试中,图形推理题是必考题型之一。
其中,纸盒折叠问题因其独特的考察方式和对考生空间想象能力的较高要求,常常让许多考生感到困惑。
然而,只要掌握了一定的解题技巧,即使空间想象能力不强,也能顺利解答此类问题。
【主体部分】
接下来,我们将详细解析纸盒折叠问题的解题技巧。
首先,我们要掌握的是观察特殊图形法。
这种方法要求我们直接观察题目所给出的目标图形中的特殊面,或者特殊图形连接的位置,然后对比选项,不符的直接排除。
其次,相对面不相邻法也是解题的重要策略。
这种方法要求我们抓住某两个相邻面或对立面的图形特征,从而可以利用排除法选择正确答案。
【结尾部分】
总的来说,纸盒折叠问题虽然看似简单,实则需要考生具备较强的空间想象能力。
但是,只要我们善于运用一些技巧,如观察特殊图形法和相对面不相邻法,就能在很大程度上提高解题的准确率和效率。
行测推行推理之折纸盒——相对面
行测推行推理之折纸盒——相对面【答题妙招】折纸盒问题是图形推理试题中的常青树,在解答这类题目时,一定要抓住相对面的图形特征,从而快速通过排除法选择正确答案。
【例1】左边给定的是纸盒的外表面,下面哪一项能由它折叠而成()【答案】C。
解析:根据相对面特征快速排除A.B项:空白面和有一条对角线的面是相对面,根据相对不相邻原则,排除A;同理,有圆形的面与有两条对角线的面也是相对面,不能同时出现。
此外,D项中的顶面应该是梯形面,也应该排除,故答案选择C。
【例2】如白、灰、黑三种颜色的油漆为正方体盒子的6个面上色,且两个相对面上的颜色都一样,以下哪一个不可能是该盒子外表图的展开图()【答案】C。
解析:在平面图形中,判定相对面的方法是:(1)相间排列;(2)位于“Z”字型的两端,选项A.B.D都符合相对面“颜色相同”的要求,只有C不符合,正确答案为C。
【例3】左边给定的是纸盒的外表面,下面哪一项能由它折叠而成()【答案】B。
解析:左边的图形折成立体图形后,有两个空白面相对,含有圆点的两个面相对,含有斜线的面与另外一个空白面相对。
A项,应有两个空白面相对,故A项错误;B项,可由左边纸盒折成;C项,含有圆点的两个面相对,故C项错误;D项,带斜线的面不可能与两个空白面两两相邻,故D项错误。
由此,可确定正确答案为B。
【考点链接】(一)相对面的判定1.相间面是相对面一个平面展开图中,几个面处在同一直线上,则其中间隔一个面的两个面是一对相对面,在折成的立体图形中不可能相邻。
上面的四个面中,“1”和“3”是相对面,“2”和“4”是相对面;注意:相间的面只能是两者之间间隔一个面。
3和5,2和6不属于相对面,因为他们不在一条直线上。
2.“Z”字型的两个端点处的面是相对面上面三幅图形中,每一个图形中的两个阴影面是一对相对的面,即“Z”字的两端处的两个面是一对相对面,不可能相邻,并且要注意“Z”的两端的距离是相等的。
(二)相对面的特性1.相对面不相邻,相邻面不相对2.一组相对面能且只能看到其中一个面。
行测图形推理技巧:纸盒应该怎么折.doc
行测图形推理技巧:纸盒应该怎么折行测图形推理技巧:纸盒应该怎么折图形推理一直以来都是行测中的重点题型,并且以其题型众多,规律难找的特定荣登很多同学心目中的难点之首。
图形推理当中的立体图形问题,由于需要一些空间想象能力而成为了难中之难,一直都困扰着很多同学,感觉无从下手。
但立体图形的题目如果能够掌握一定的方法,是很容易就能迅速做对的。
今天就其中的折纸盒问题和大家一起探讨一下。
方法一:画橡皮折纸盒问题通常情况涉及到的都是正方体的折叠,所以大家在考场上完全可以利用手边的橡皮完成题目:按照题干当中展开图,依次将图画在橡皮的6个面上,那么接下来,大家就可以直接通过翻滚橡皮,并将其与选项对照,来确定最终答案。
方法二:相对面正方体一共涉及到6个面,分别两两相对,所以我们完全可以通过相对面不相邻的的原则迅速排除一部分选项。
那么相对面应该如何确定呢?1.(同行/列)隔一个的情况在这个图形中,两个灰色,两个白色,两个黑色就分别是三对相对面。
2.在图形中构成了“Z”/“N”字形,则其首尾两个面就是相对面。
在这个图形中,两个灰色,两个白色,两个黑色就分别是三对相对面。
方法三:相邻面1.选项中如果出现展开图当中就相邻的面,那么先关注这两个面的相对位置。
CE两个面本身就是相邻面,并且以展开图去看的话,若C的位置正确,则E应该在右侧面,故可以排除此图。
2.若选项中的面在展开图上并不相邻(而且不是相对面),则可以通过旋转的方法确定图形方向是否正确。
3.位置相邻并且可以通过展开图确定其位置正确,因此唯一需要判定的就是顶面图形形状及方向。
我们根据图示可知顶面应该是1面,但是由于距离比较远,所以可以通过旋转的办法来确定其方向。
以上就是讲解的折纸盒问题所涉及到的所有知识点了。
希望通过今天的分享大家可以学会折纸盒问题的技巧,并且回去多多练习一些题目,做到熟练运用。
也希望能够对大家的考试有所帮助,提高准确率,祝大家顺利“成公”。
图形推理之折纸盒秘籍
【分享】立方体折叠专题一一.判断给定的平面图形是否属正方体表面展开图1.最长的一行(或列)在中间,可为2、3、4个,超过4•个或长行不在中间的不是正方体表面展开图.2.在每一行(或列)的两旁,每旁只能有1个正方形与其相连,超过1个就不是.3.规律:①每一个顶点至多有3个邻面,不会有4个或更多个.②“一”形排列的三个面中,两端的面一定是对面,字母相同.③“L”形排列的三个面中,没有相同的字母,即没有对面,只有邻面.二.快速确定正方体的“对面” 口诀是:相间、“Z”端是对面如下图,我们先来统一以下认识:把含有图(1)所示或可由其作旋转后的图形统称为“I”型图;把所给平面图中含有(2)、(3)、(4)所示或可由其作旋转后的图形统称为“Z ”型图。
结论:如果给定的平面图形能折叠成一个正方体,那么在这个平面图形中所含的“I”型图或“Z”型图两端的正方形(阴影部分)必为折成正方体后的对面。
应用上面的结论,我们可以迅速地确定出正方体的“对面”。
例1.如图,一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是.分析:自—信—沉—着—超,构成了竖着的Z字型,所以“自”与“超”对应,故应填“自”.三. 间二、拐角邻面知中间隔着两个小正方形或拐角型的三个面是正方体的邻面.例2.如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是()分析:我们把画有圆的一面记为a面,正方形阴影面记为b面,三角形阴影面记为c 面.在选项A中,由Z字型结构知b与c对面,与已知正方体bc相邻不符,应排除;在选项B中,b面与c面隔着a面,b面与c面是对面,也应排除;在选项D中,虽然a、b、c三面成拐角型,是正方体的三个邻面,b面作为上面,a面为正面,则c面应在正方体的左面,与原图不符,应排除,故应选(C).四. 正方体展开图:相对的两个面涂上相同颜色五. 找正方体相邻或相对的面1.从展开图找.(1)正方体中相邻的面,在展开图中有公共边或公共顶点.如,•或在正方形长链中相隔两个正方形.如中A与D.(2)在正方体中相对的面,在展开图中同行(或列)中,中间隔一个正方形.如ABCD中,A与C,B与D,或和中间一行(或列)•均相连的两正方形亦相对.例1 右图中哪两个字所在的正方形,在正方体中是相对的面.解“祝”与“似”,“你”和“程”,“前”和“锦”相对.例2在A、B、C内分别填上适当的数.使得它们折成正方体后,对面上的数互为倒数,则填入正方形A、B、C•的三数依次是:(A)12,13,1 (B)13,12,1(C)1,12,13(D)12,1,13分析A与2,B与3中间都隔一个正方形,C与1分处正方形链两边且与其相连,选(A).例3 在A、B、C内分别填上适当的数,使它们折成正方体后,对面上的数互为相反数.分析A与0,B与2,C和-1都分处正方形链两侧且与其相连,∴A─0,B─-2,C─1.例4 找出折成正方体后相对的面.解A和C,D和F,B和E是相对的面.2.从立体图找.例5 正方体有三种不同放置方式,问下底面各是几?分析先找相邻的面,余下就是相对的面.上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,•和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,•下底面依次是2、5、1.例6由下图找出三组相对的面.分析和2相连的是1、3、5、6,相对的是4,和3相连的是2、4、5、6,相对的是1,和6相连的是1、2、3、4,相对的是5.五. 由带标志的正方体图去判断是否属于它的展开图例7 如下图,正方体三个侧面分别画有不同图案,它的展开图可以是().分析基本方法是先看上下,后定左右,图A图B都是□和+两个面相对,不合题意,图C“□”和“○”之上,从立体图看“+”在右,符合要求.图D•“□”和“+”之上,“○”在右,而立体图“○”应在左,不合要求,故选(C).例8 下面各图都是正方体的表面展开图,若将它们折成正方体,•则其中两个正方体各面图案完全一样,它们是().分析首先找出上下两底,(1)是+和*,(2)是+和*,(3)(4)都是□和×,排除(1)(2),再检查侧面,(3)(4)顺序相同,所以选(3)(4).【分享】立方体折叠专题二专题一的知识主要是介绍了如何寻找各种正方体及其展开图的对面。
省考行测立体图形之折纸盒问题最佳五种解法
省考行测立体图形之折纸盒问题最佳五种解法在公务员行测考试中,图形推理均是判断推理部分的必考版块之一,而其中的立体图形的折叠问题(折纸盒问题)是常考考点。
所谓折纸盒问题即题干左面给大家一个正方体的平面展开图形,右面给大家四个选项,让大家从中找出一个可以由左面的平面图形折成的立体图形。
对于这种题型,很多空间想象能力不高的同学经常感觉一头雾水、无从下手。
鉴于此,中公教育专家给大家提供几种解题思路,保证大家在考场上看到这类题目便喜笑颜开。
方法一:根据相对面法则排除法相对面法则即在立体图形中,比如正方体、长方体等都有六个面,而这六个面中有三组相对面。
而在平面中表现立体图形时往往只能表现三个相邻面。
因此,三组相对的两个面在选项中的立体图形中必须出现而且只能出现一个面。
相对面如何判断?以下给大家列举几种常见的情况。
下图中的两个阴影面均属于相对面,折成立体图形后,相对的两个面不能相邻。
例:根据相对面排除法可知,两个阴影面是相对关系,所以可以排除A、C、D,选B。
方法二:时针法对于立方体纸盒,折成后只能看到图形的三个面。
所谓时针法就是比较这三个面在立体图形与平面图形中的旋转方向来判断选项的正确与否。
然而并非任意三个面都可以画时针,时针法应用的前提有两点:1、画时针的三个面必须不存在平行面;2、画时针的时候必须保证这三个面至少两对面两两有交点。
如在下面两个图中,两个平面图中的1、2、3三个面都不平行,满足了时针法的第一个前提。
此外,第一个图形中1、2两个面有两个交点(红点),2、3两个面有一个交点(蓝点);第二个图形中1、2两个面的交点为a、b,1、3两个面的交点为b、c,2、3两个面的交点为b。
第一个图形中两对面两两有交点,第二个图形中三对面都两两有交点,所以满足时针法的第二个前提。
因此,这两个图都可以用时针法解决的。
方法三:公共顶点法在平面中相交于同一个公共顶点下的三个面,其面上的图形与公共顶点的位置关系保持不变。
2019国考行测备考:一“点”判断解决折纸盒题
2019国考行测备考:一“点”判断解决折纸盒题本栏目小编今天收集了2019国考行测备考:一“点”判断解决折纸盒题,更多行测备考资讯将持续更新,敬请及时关注本网站。
2019国考行测备考:一“点”判断解决折纸盒题在各类公职行测考试中,图形推理部分往往偏爱于考查折纸盒问题,即左边给一个小纸盒的展开图,问右侧哪一项可以由它折成。
这类题目对于广大考生而言,常常需要一定的空间想象能力,如若空间想象能力较差,则解决此题不仅消耗很多时间,也浪费很大精力。
其实,解决此类问题,只需要结合一个“点”来综合判断即可,下面为广大考生做详细介绍:一、纸盒特征在行测考试中,我们最常见的纸盒形状为正六面体,即正方体。
由左图可知,红色点连接着正面、上面和右侧面三个面,因此称之为三个面的公共点。
在正方体的纸盒中8个顶点,每个顶点均连着三个面,所以我们可以借助这一特征,在展开图通过公共点找相连的三个面,从而确定其相对位置关系。
二、在展开图中找公共点所谓公共点,是指在展开图的外围,距离确定公共点距离为1的点是公共点。
由左图可知,点1为已经确定的公共点,即连接着A、B、C三个面,同理点2和点3也为确定的公共点。
所以,从确定的公共点出发,沿着展开图的外围,距离点3为1的点为公共点,可找出两个点4,连接着A、D、E三个面,可确定。
继续从已确定的公共点4出发,沿着展开图的外围走距离1,可确定两个点5,连接着A、E两个面,又因为点1往上1的距离为点5,所以点1往左1的距离也为点5,即点5连着的第三个面为B。
继续从已确定的公共点5出发,距离点5距离为1的点为下一个公共点,即点6,连着B、F、E三个面,可确定。
从已确定的公共点6出发,距离点6距离为1的点为公共点7,连着D、E、F三个面,可确定。
继续从已确定的公共点7出发,距离点7距离为1的公共点为下一公共点,即点8连着C、D、F三个面,可确定。
三、公共点法解折纸盒问题例题:左边给定的是正方体的外表面展开图,下面哪一项能由它折叠而成?解析:观察选项可知,有公共点的三个面是存在线条的三个面,所以在展开图中去找这个公共点即可。
公务员行测三种方法应对折、拆纸盒问题
一、区分相邻面及相对面平面图形中相邻的两个面折成立体图形后也相邻,立体图形中相对的两个面拆成平面图形后不相邻,区别相邻面与相对面往往能快速排除错误选项,得出符合要求的答案。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?解析:左边的图形折成立体图形后,有两个空白面相对,含有圆点的两个面相对,含有斜线的面与另外一个空白面相对。
A项,应有两个空白面相对,故A项错误;B项,可由左边纸盒折成;C项,含有圆点的两个面相对,故C项错误;D项,带斜线的面不可能与两个空白面两两相邻,故D项错误。
由此,可确定正确答案为B。
例题:下列四个选项中,哪个可以折出左边指定的图形?解析:左边给定的立体图形中,带阴影的两个面相对。
折成立方体后,A、C、D三项的两个阴影面相邻,所以是错误的;B项折成后带阴影的面相对,因此,应选择B项。
提醒:区分相对面与相邻面是解决空间型图形推理的基础。
分清相对面与相邻面往往也能快速地排除一些选项,从而更快地解决问题。
二、时针法对于立方体纸盒,折成后只能看到图形的三个面,时针法就是比较这三个面在立体图形与平面图形中的旋转方向来判断选项的正确与否。
时针法只适用于解决面中的小图形不涉及方向的折纸盒问题。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?解析:首先通过相对面与相邻面可排除C项,C项中1和2应为相对的面,不可能相邻。
A项,按1-4-6的顺序,顺时针旋转,题干平面图形中1-4-6则按逆时针旋转,如下图所示,两者的旋转方向不一致,则A项不能由左边的图形折成;同理可判定B项可由左边图形折成,D项不能由左边图形折成。
三、标点法折、拆纸盒的实质就是一个点与点重合、边与边重合的过程,当确定两个点重合并确定该点放置的位置时,该纸盒也就确定了。
标点法就是根据已知点确定由这个点出发的线条的情况,从而确定“纸盒”的形式。
下面介绍标点法的具体应用。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?如上图所示,分析中间的平面图形,我们可发现折成纸盒后,重合的点为A与M、B 与L、C与K、D与J、E与I、F与H。
公务员考试行测之判断推理图形推理解题规律总结
公务员考试行测之判断推理图形推理解题规律总结在公务员录用考试行政职业能力测验考试的判断推理中的图形推理解题规律主要有平移、旋转、翻转、叠加、数量变化、对称、重心、笔画、位置变化、元素重组、共性、还原、重组等十三大规律,本篇将通过实例来逐一说明。
一、平移:一般是图形的某些元素在发生有规律的移动。
例:【解析】第一组图形中,下边阴影方块在向左平移,第二组图形中的阴影方块向右平移。
故选B。
二、旋转:图形整体或图形的某些元素按某一角度和方向进行有规律的旋转。
一般情况下是按45度或90度或135度或180度的角度顺时或逆时针方向旋转。
例1:【解析】本题第一组图形中,第一个图形中的圆圈顺时针旋转120度得第二个图形,再顺时针旋转120度得第三个图形。
依此规律,在第二组图形中,第一个图形的丁字图形顺时针旋转120度得第二个图形,再顺时针旋转120度得出D图形。
例2:【解析】去同存异。
第一组图中,第一、二个图形叠加后去掉相同的部分后得第三个图形,第二组图形依此规律,第三个图形应为第一个图形去掉第二个图形,故选C。
三、翻转:图形整体或图形的某些元素进行有规律的翻转,也称镜像原则。
例:【解析】第一组图形的第一个图形以竖直边为轴向右翻转得到第二个图形,第二个图形以水平边为轴向下翻转得到第三个图形,第二组也是此规律,所以依此规律,得出第三组的最后一图为C。
四、叠加:每一幅图中两个图经组合、复合或叠加后得到第三个图。
图形叠加中有直接叠加、去同存异、去异存同题型,还有图形叠加中的黑白变化规律。
例1:【解析】以第一个图形为底,与第二个图形叠加,形成第三个图形,选D。
五、数量变化:一般涉及到图形数或图形中元素个数增减、角和边的增减变化,交点的数量增减等,新题型涉及到数学上的数量关系。
例1:【解析】图形的数量按3、4、5、6的规律变化,所以下一个图形数是7个,选A。
例2:【解析】前组图形的角的个数分别为3,4,5,6,故第5个图形的角的个数应为7,选A。
历年国考行测高频题型解读之折纸盒题
历年国考行测高频题型解读之折纸盒题图形推理是公务员考试中非常常见的一类问题,而在这其中,立体图形问题,尤其是折纸盒问题,考察的频率越来越高。
通常情况下,如果考生第一次遇到这种类型的题目,往往要思考比较长的时间,从而耽误了考试整体的进度,中公教育在这里就给考生几个关于解决折纸盒问题的小技巧,相信对于考生在解决此类问题时有所帮助和启发。
我们先拿一个正六面体体纸盒的外表面举例子。
如上图,任何的一个正六面体的外表面,都可以画成四块排成一行,上下各有一块的形式,我们就以这个图为例子来进行讲解折纸盒的一些性质。
一、相对的不相邻。
图中的六块图形,有三组是永远不会相邻的,折成纸盒之后,他们会成为相对的两个面。
这三组分别为:“A和C”、“B和D”、“E和F”。
可以通过这条性质根据选项,来迅速的做排除法,从而得到答案或者缩小范围。
二、相邻的相对位置不变。
如果两块图形相邻,那么无论怎样转动这个折成的纸盒,他们俩的相对位置永远不会变化。
例如,“A和B”这两块图形的顺序是并排的,那么,下面三幅图形都是“A和B”的正确顺序,他们无论怎样转动,相对位置都是不变的。
我们也可以根据这条性质来进一步做排除法。
三、上下两块可以分别在上下区域转动。
仍然以最开始给出的纸盒来说,若折成纸盒的话,被红色线标注的两条边其实应为纸盒的同一条楞于是我们可以得到下右图的变换。
因为通常给出的选项为呈现出3面的立体图形,这样的变化可以有效的变换成我们想要的那三块相邻的图块,直接与选项进行比对即可得到答案,例如CDE 这三块,就可以得到如下右的立体图形,从而得到答案。
四、四块并排的左右可直接移动。
例子中的六面体,虽然折成纸盒后A和D 是连在一起的,但是从平面上来看,无法直观的进行想象,而有的时候,可能选项中会出现A、D在一起的情况,这时候只需要直接的把A移动到最右端或者D 移动到最左端即可。
相信通过以上几条性质,考生们可以把需要空间想象力的折纸盒问题变的更加的直观,更加的容易操作。
公事员行测指导三种方式应付折拆纸盒问题
公事员行测指导:三种方式应付折、拆纸盒问题一、区分相邻面及相对面平面图形中相邻的两个面折成立体图形后也相邻,立体图形中相对的两个面拆成平面图形后不相邻,区别相邻面与相对面往往能快速排除错误选项,得出符合要求的答案。
例题:左侧给定的是纸盒的外表面,下面哪一项能由它折叠而成?解析:左侧的图形折成立体图形后,有两个空白面相对,含有圆点的两个面相对,含有斜线的面与另外一个空白面相对。
A项,应有两个空白面相对,故A项错误;B项,可由左侧纸盒折成;C项,含有圆点的两个面相对,故C项错误;D项,带斜线的面不可能与两个空白面两两相邻,故D项错误。
由此,可确信正确答案为B。
例题:下列四个选项中,哪个能够折出左侧指定的图形?解析:左侧给定的立体图形中,带阴影的两个面相对。
折成立方体后,A、C、D三项的两个阴影面相邻,因此是错误的;B项折成后带阴影的面相对,因此,应选择B项。
提示:区分相对面与相邻面是解决空间型图形推理的基础。
分清相对面与相邻面往往也能快速地排除一些选项,从而更快地解决问题。
二、时针法关于立方体纸盒,折成后只能看到图形的三个面,时针法确实是比较这三个面在立体图形与平面图形中的旋转方向来判定选项的正确与否。
时针法只适用于解决面中的小图形不涉及方向的折纸盒问题。
例题:左侧给定的是纸盒的外表面,下面哪一项能由它折叠而成?解析:第一通过相对面与相邻面可排除C项,C项中1和2应为相对的面,不可能相邻。
A项,按1-4-6的顺序,顺时针旋转,题干平面图形中1-4-6则按逆时针旋转,如下图所示,二者的旋转方向不一致,则A项不能由左侧的图形折成;同理可判定B项可由左侧图形折成,D项不能由左侧图形折成。
三、标点法折、拆纸盒的实质确实是一个点与点重合、边与边重合的进程,当确信两个点重归并确信该点放置的位置时,该纸盒也就确信了。
标点法确实是依照已知点确信由那个点动身的线条的情形,从而确信“纸盒”的形式。
下面介绍标点法的具体应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
折、拆纸盒问题
空间形式图形推理是近几年考查热点。
而在空间形式图形推理的考查中,折纸盒与拆纸盒问题,更是常见考点。
折纸盒,泛指题干为平面展开图,四个选项均为立体图形,提问方式一般为“将题干图形折叠后,得到的图形是?”拆纸盒,泛指题干为立体图形,四个选项均为平面展开图,提问方式一般为“将题干图形展开后应为?”
针对这一类问题,根据选项情况可采用区分相邻面及相对面、时针法、标点法来应对。
一、区分相邻面及相对面
平面图形中相邻的两个面折成立体图形后也相邻,立体图形中相对的两个面拆成平面图形后不相邻,区别相邻面与相对面往往能快速排除错误选项,得出符合要求的答案。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?
解析:左边的图形折成立体图形后,有两个空白面相对,含有圆点的两个面相对,含有斜线的面与另外一个空白面相对。
A项,应有两个空白面相对,故A项错误;B项,可由左边纸盒折成;C项,含有圆点的两个面相对,故C项错误;D项,带斜线的面不可能与两个空白面两两相邻,故D项错误。
由此,可确定正确答案为B。
例题:下列四个选项中,哪个可以折出左边指定的图形?
解析:左边给定的立体图形中,带阴影的两个面相对。
折成立方体后,A、C、D三项的两个阴影面相邻,所以是错误的;B项折成后带阴影的面相对,因此,应选择B项。
提醒:区分相对面与相邻面是解决空间型图形推理的基础。
分清相对面与相邻面往往也能快速地排除一些选项,从而更快地解决问题。
二、时针法
对于立方体纸盒,折成后只能看到图形的三个面,时针法就是比较这三个面在立体图形与平面图形中的旋转方向来判断选项的正确与否。
时针法只适用于解决面中的小图形不涉及方向的折纸盒问题。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?
解析:首先通过相对面与相邻面可排除C项,C项中1和2应为相对的面,不可能相邻。
A项,按1-4-6的顺序,顺时针旋转,题干平面图形中1-4-6则按逆时针旋转,如下图所示,两者的旋转方向不一致,则A项不能由左边的图形折成;同理可判定B项可由左边图形折成,D项不能由左边图形折成。
三、标点法
折、拆纸盒的实质就是一个点与点重合、边与边重合的过程,当确定两个点重合并确定该点放置的位置时,该纸盒也就确定了。
标点法就是根据已知点确定由这个点出发的线条的情况,从而确定“纸盒”的形式。
下面介绍标点法的具体应用。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?
如上图所示,分析中间的平面图形,我们可发现折成纸盒后,重合的点为A与M、B 与L、C与K、D与J、E与I、F与H。
A项,看右上角的立体图形,我们先确定右侧面为平面图形中的面③,根据前面判断的点重合情况,可得出顶面为平面图形中的面④(MLGF),正面为平面图形中的面①(ABCN),由此得出A项不正确。
B项,看左下角的立体图形,我们先确定顶面的方位为平面图形中的面③,根据前面判断的点重合情况,可得出正面为平面图形中的面②(CDEN),右侧面为平面图形中的面⑥(HIJG),由此得出B项不正确。
C项,右侧面和正面与平面图形中的面⑤和面⑥对应,分析发现向外无法折出C项所示的方位。
D项,可由纸盒的外表面折成,见右下角图形。
因此,应选择D项。
提醒:标点法的实质就是假定选项中某一个面(或两个面)的方位正确,然后判定其他面正确与否的一种方法。
我们在实际解题过程中,往往不会真正去标注出所有的点,而是根据一些特殊面来判定其他面的方位。
例题:左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?
解析:线条类图形,要注意线条的指向。
首先区分相对面与相邻面,折叠后空白面和有水平线的一面为相对面,B、D中这两个面相邻,排除;
A项,假设正面和顶面正确,即顶面为平面展开图中带横线面正下方的面,则右侧面为带横线面右边的面,A可由左侧图形折成;
C项,假设正面和顶面正确,则右侧面的对角线错误。
综上,应选择A。
例题:下图左边的正方体,如果把它展开,可以是选项哪个图形?
解析:首先区分相对面与相邻面,正方形、圆、三角形阴影两两相邻,排除D;根据左图中圆所在面的两条边都与阴影边相接,排除A、C。
由此选择B。
小结:对于折、拆纸盒这类问题,优先考虑利用相邻面与相对面来排除错误选项,再利用时针法、标点法。
对于要考虑线条或小图形的指向的题目,只能采用标点法来排除:先找出各个立体图形中最特殊的面,假定其方位正确,然后判断其他面的方位是否正确的方法。
阅读了本文的人还阅读了。