双声道BTL功放电路的设计
双声道BTL功放电路板制作与组装

项目一通孔安装工艺技能实训任务单2一、任务布置1.利用线路板雕刻机制作印制电路板。
2.利用化学制版系统制作印制电路板。
3.学会分立元件的手动焊接的操作。
4.学会鉴别手工焊接的缺陷。
二、相关知识按照印刷电路板的制作工艺要求,利用线路板雕刻机或化学蚀刻的方法,制作出合格的印刷电路板。
雕刻机制版废除传统电路板制作的“胶片、感光、定影、腐蚀、清洗、钻孔”过程,制作一张线路板只需要完成Protel的PCB文件设计,其他由机器自动完成。
同时也避免了传统方法对环境造成的化学污染,那么线路板雕刻机如何进行电路板的制作呢?1.印刷电路板的雕刻法制作步骤(1)连接好雕刻机和电脑(2)剪板与处理(3)雕刻线路(4)钻孔(5)切边2.印刷电路板的化学制版制作步骤(1)配腐蚀液(2)剪板(3)去污(4)打印PCB设计图(5)图形转移(6)检差修补(7)蚀刻(8)检查清洗(9)钻元件孔(10)研磨焊盘(11)涂助焊剂3.手工焊接操作步骤(1)对于热容量大的焊件,采用五步焊接法即:准备施焊→加热焊件→送入焊丝→移开焊丝→移开烙铁,一个焊点完成时间大约为2~5秒钟。
(2)对于热容量小的焊件,可将五步焊接法简化为三步即:准备施焊→加热与送丝→去丝移烙铁,三步焊接的焊点小,一般在3秒内完成。
三、技能要点(一)印刷电路板的雕刻法制作过程雕刻法的主要设备是一台线路板雕刻机,再配一台个人电脑联机便可以制作PCB。
雕刻法制作电路板的工作流程如图2.1所示。
图2.1雕刻法制作电路板工作流程(1)前期准备①在电脑上设计出PCB图,并生成雕刻需要的相关文档。
②在电脑上安装PCAM软件。
③使用RS232线将雕刻机与电脑连接起来。
图2.2 EP2002电路板雕刻机图2.3 雕刻法制作的电路板图2.4 数控钻基本控制操作图图2.5数控钻工作状态图(2)雕刻参数设置及调试①建立新数据②设定成形外框③路径计算④路径检查⑤开始加工⑥设定加工参数选择:雕刻下刀深度;钻孔下刀深度;成型下刀深度⑦排版、移动:将电路板数据进行自动复制;移动欲加工的电路板到你想放置的地方⑧加工区域检查⑨设定定位孔⑩定位孔钻孔(3)电路板钻孔按下电路板钻孔键,按照换刀提示更换钻头逐批钻孔。
双声道BTL功放电路的课程设计报告书

双声道BTL功放电路的设计报告书目录摘要第一章课题背景 (2)1.1 电子技术课程设计概要 (2)1.1.1 电子技术课程设计的目的与意义 (2)1.1.2 电子技术课程设计的方法和步骤 (2)1.2 双声道BTL功放电路的设计内容与要求 (4)1.2.1设计目的 (4)1.2.2 设计任务及主要技术指标 (4)1.3设计思想 (5)第二章方案论证及整体电路工作原理 (5)2.1 方案确定与论证 (5)2.2 整体电路工作原理 (6)第三章电路单元模块设计 (6)3.1电源电路的设计 (6)3.2 前置放大器的设计 (7)3.3 功率放大器的设计 (8)3.3.1音量大小调节及限频电路的设计 (9)3.3.2 TDA2030 (9)3.3.3 TDA2030的负反馈网络 (10)3.3.4 TDA2030的保护网络 (10)3.3.5 电源退耦电路的设计 (10)3.3.6 输出退耦电路的设计 (11)3.3.7 负载 (11)第四章器件选择及参数计算 (11)4.1 稳压电源 (11)4.2 前置放大器模块 (13)4.3 功率放大器模块的参数 (14)5.1 直流电源 (15)5.2 前置放大器 (16)5.3 功率放大器 (16)5.4 输出功率及效率 (18)心得体会 (21)参考文献 (23)第一章课题背景1.1 电子技术课程设计概要1.1.1 电子技术课程设计的目的与意义电子技术是一门实践性很强的课程,加强工程训练,特别是技能的培养,对于培养工程人员的素质和能力具有十分重要的作用。
在电子信息类本科教学中,课程设计是一个重要的实践环节,它包括选择课题、电子电路设计、组装、调试和编写总结报告等实践内容。
通过课程设计要实现以下两个目标:一、学生初步掌握电子线路的设计、组装及调试方法。
即学生根据设计要求,查阅文献资料,收集、分析类似电路的性能,并通过组装调试等实践活动,使电路达到性能要求;二、课程设计为后续的毕业设计打好基础。
BTL功放电路

BTL功放电路的原理与应用实例2012年11月3日星期六集成功率放大器由于不仅具有体积小、重量轻、成本低、外围元件少、安装调试简单、使用方便的优点;而且在性能上也优于分立元件,例如温度稳定性好,功耗小、失真小,特别是集成功率放大器内部还设置有过热、过电流、过电压等自动保护功能的电路对电路自行进行保护。
由于集成功率放大器具有分立元件不具有的很多优点,近年来集成功率放大器件发展很快,使用相当广泛。
产品有单通道和双通道、单功放、双功放及多功放等器件。
集成功放在实际应用中通常接成OCL电路,或OTL电路,接成BTL(Balanced Transformer Less,一说是Bridge Transformerless)电路却很少,而BTL电路的优点是电源利用率比前面两种电路高4倍。
本文从BTL电路的结构、原理出发,分析BTL电路输入、输出信号特点,最后介绍如何用集成功率放大器件构成BTL电路。
1.1BTL电路的组成及工作原理大家知道OCL和OTL两种功放电路的效率很高,但是他们的缺点就是电源的利用率都不高,其主要原因是在输入正弦信号时,在每半个信号周期中,电路只有一个晶体管和一个电源在工作。
为了提高电源的利用率,也就是在较低电源电压的作用下,使负载获得较大的输出功率,一般采用平衡式无输出变压器电路,又称为BTL电路。
电路如图1所示。
在输入信号 U i正半周时,V1,V4导通,V2,V3截止,负载电流由V CC经V1,R L,V4流到虚地端。
如图1中的实线所示。
在输入信号Ui负半周时,V1,V4载止,V2,V3导通,负载电流由V CC经V2,R L,V3流到虚地端。
如图1中虚线所示。
可见:(1)该电路仍然为乙类推挽放大电路,利用对称互补的2个电路完成对输入信号的放大;其输出电压的幅值为:U OM≈V CC最大输出功率为:(2)同OTL电路相比,同样是单电源供电,在V CC,R L相同条件下,BTL电路输出功率为OTL电路输出功率的4倍,即BTL电路电源利用率高;(3)BTL电路的效率在理想情况下,仍近似为78.5%。
可直接設定為橋接(BTL)的TDA—7294双声道功率扩大器

可直接設定為橋接(BTL)的TDA—7294双声道功率扩大器TDA7294是歐洲著名的SGS-THOMSON意法微電子公司於90年代推出的一款頗有新意的DMOS大功率的集成功放電路。
它一掃以往線性集成功放和厚膜集成的生、冷、硬的音色,廣泛應用於HI-FI領域,ST所推出的TDA-7294,具有較寬範圍的工作電壓(VCC VEE)=80V輸出功率更高達100W,輸出電流更達10A之譜,有著不錯的特性與音質表現﹗這個功率OP在連續大功率輸出時,仍能維持極低的總諧波失真率,周邊電路簡潔易懂,因此安裝簡單且成功率極高,讓DIY族輕易擁有一款具備專業素質的高功率後級。
TDA7294的價格堪稱低廉,但由於音質優異,因此廣泛的被Hi-End音響名廠採用,如美國Jeff Rowland及英國LINN,均以TDA7294為核心,推出單價高昂的商品,評價極高。
由於輸出電流高達10A,因此TDA7294也可以透過橋接技巧,將輸出功率輕易的橋接到250W以上﹗在它原始的DATA SHEET上就包含著標準及橋接方式的電路圖,就筆者看了一下,差異不大,為何不在原來的雙聲道板子上做些設計,讓他可以簡單的把左右兩聲道,快速的變成橋接(BTL)單聲道。
以下是TDA-7294的單聲道原始圖:以下是其BTL的電路圖:大家應可看出其差異不太,為了方便電路板LAYOUT我把其電路合併成下圖,但把靜音開關取消了。
多了四個Jumper,平常Jumper沒插上時,電路工作於雙聲道狀態,當你想要把它設定成BTL時,只要將這四個Jumper插上,電路馬上成為大功率輸出的BTL狀態。
在製作過程及實際聆聲的感上,有以下一些結論:1. 當它處於正常的雙聲道時,輸出感覺力道不錯,但音感有點生硬,就好像LM3886沒加SERVO電路時的感覺,但音域真的算是不錯的品質了。
2. 當它處於BTL狀態時,突然一聽,有點驚訝,怎會比雙聲道分別輸出時好聽那麼多! 生硬的感覺不見了,音場覺得很寛廣,在沒有任何前級或緩沖級的情形下,竟然就有這麼好的音質,真的物超所值。
TDA7294功放板BTL应用接线图

注:BTL应用时两块功放板需配对,具体方法是找出OUT端口标有+,和OUT端口标有-的两块为一对。
BTL应用接线说明:
1.两块功放板的BTL-J1,BTL-J2,BTL-J3的短路针必须插好,普通应用时是要断开这三处短路针。
2.板A的BTL-F1处,与板B的BTL-F1处,用一根普通的软导线连接好(连接线已附送)。
5.发货默认是BTL连接方式,所有的断路针都已连成BTL形式,如做为标准应用时一定要把所有的断路针全部拔掉.
6.BTL应用时,2块功放板要配对使用,功放板上有配对标记,查看功放板的A与B为一对.
简易接线参考:
+VCC
GND
-VCC 音频信号从A板输入
扬声器8欧扬声器8欧
TDA7294功放板BTL应用接线说明
3.音箱+ 接功放板(A)带有BTLOUT+端子上,音箱- 接功放板(B)BTLOUT-端子上。
(两块功放板各 各连接一条喇叭线。
分清 + - ,千万不要接错),BTL应用时,两块功放板音频输出端的GND (地端)闲置不用。
4.与电源板的接线请参考,标准版接线说明。
路针。
资料 双声道BTL功放电路的设计

双声道BTL功放电路的设计
该电路由TDA2030组成的负反馈电路,二极管D1、D2起保护作用,一是限制输入信号过大,二是防止电源极性接反。
1欧电阻和0. 1uF组成输出相移校正网络,使负载接近纯电阻。
电容1uF 是输入耦合电容,其大小决定功率放大器的下限频率。
电源旁边的电容100uF是低频旁路电容,0. 1uF是高频旁路电容,目的是将混有高频电流和低频电流的交流电中的高频成分旁路掉的电容,电位器RP是音量调节电位器。
TDA2030是许多电脑有源音箱所采用的Hi-Fi功放集成块。
1脚(黄线为同相输入端,2脚(白线)为反相输入端,4(绿线)脚为输出端,3脚(黑线)接地,5脚(红线)接正电源。
电路特点是引脚和外接元件少,其接法分单电源和双电源两种,这里接的是单电源OTL功率放大电路。
实用电子产品制作任务1 双声道BTL功放电路板设计

项目一 通孔安装工艺技能实训
平顶山工业职业技术学院
1
项目一:通孔安装工艺技能实训
任务1:双声道BTL功放电路板设计
知识目标
1
熟悉电子产品制作室工作环境,了解 实训室主要仪器设备的作用与用途
2 了解常用元器件性能和检测方法
3
熟悉Protel DXP 2004绘制电路原理图 和印制电路板PCB图的方法
2 BTL功放工作原理
1 V1和V2是一组OCL电路输出级,V3和 V4 是另一组OCL电路输出级。
2 两组功放的两个输入信号的大小相等、方向相反。 3 两组功放的两个输入信号的大小相等、方向相反。
4 输入信号-Ui为正半周,+Ui为负半周时V1,V4截止,
V2,V3导通,此时负载上的电流通路从右到左。
6
一、相关知识介绍
(一)OCL功放工作原理
功率放大器简称“功放”,又俗称“扩音机”,它的作用就 是把来自音源或前级放大器的弱信号放大,推动音箱发声。
1 OCL功放电路结构
OCL(Output Condensert Less)称为无输出电容功放电路。
(1)采用双电源供电方式 (2)省去了输出耦合电容
7
利用Protel DXP 2004绘制双声道BTL 功放印制电路板PCB图
3
项目一:通孔安装工艺技能实训
素质目标
1
培养学生团队协作意识
2 培养学生耐心、细致、认真的做事习惯
3 培养学生创新意识、环保意识、成本意识
4
项目一:通孔安装工艺技能实训
任务布置
1
运用已有的模拟电子、集成电路知识, 按要求设计双声道BTL功放
图1-1-1 OCL功放电路
BTL功率放大器典型电路设计

BTL功率放大器典型电路设计作者:郭玉山来源:《科技资讯》2011年第03期摘要:BTL功率放大器的基础是OCL电路,差分放大OCL电路有良好的温度稳定特性,对OCL的输出中点起到了良好的稳定作用。
在OCL电路的基础上加以改进,用两个性能完全相同对称的OCL电路加以组合构成了桥式平衡功放电路,使得功放电路的性能如:输出的灵敏度、信号的噪声比、输出功率有了很大的改进。
关键词:BTL功率放大器 TDA2030A中图分类号:TN73 文献标识码:A 文章编号:1672-3791(2011)01(c)-0070-01功率放大器是扩音机的后级,是高保真音响设备的关键的核心部分。
它的作用是对音频信号进行不失真的功率放大,以足够的电功率去推动扬声器。
随着电子应用技术的进步和各种元器件的变革,其电路结构形式已经发生了很大的变化,从传统的变压器耦合式推挽电路,发展为OTL、OCL、BTL以及全对称、全直流等多种形式。
目前使用较多的是OCL、BTL。
下面我就应用原理进行了一个简单的功率放大电路的设计。
1 BTL电路的基本结构和工作原理BTL功放电路又称桥式平衡功放电路。
实质上它是两个特性对称的OCL放大器的组合,其基本电路是用一组电源供电,把两个OCL放大器的功率输出管组成桥式接法,四只功率管分别是桥的四臂,静态时,OCL电路相互对称,因而电桥处于平衡状态,所以负载上无直流电流流动,从而可以不接输出电容而采用直接耦合。
动态时,输入信号由倒向电路分离,在同一时间内分别输出正负半周信号去推动这两组输出电路。
BTL的最大输出功率是OCL电路的四倍,当然理论数值实际上还要考虑到管子的饱和压降,发射极电阻的损耗等。
BTL电路的电流利用率高,可在低电源电压下得到较大的输出功率。
电路的输出中点。
即扬声器中心始终保持零电位,因而,电冲击比其他无变压器电路要小得多。
此外,由于电路的对称性,使的同相输入干扰能基本上互相抵消,把偶次谐波干扰也减到最小程度,电路的交流声和失真度极小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双声道BTL功放电路的设计
双声道BTL 功放电路的设计
一、任务
根据设计课题的要求,音频功率放大器主要有电源电路、前置放大电路、音量控制电路、功率放大电路等四部分构成,构成框图见图所示。
二、要求
(1)设计产生±14V 的直流电源。
(2)设计前置放大器为左、右声道各提供
一级同向比例运算放大器(电压串联负反馈电路)进行电压放大,电压放大倍数约为6,可消除高频杂波。
(3)设计双声道BTL 功放电路, 8 负载上
的输出功率大于20W 。
三、思考题
音量控制 功率放大 扬声器
前置放大 音
电 源 电 路
1、音调控制电路由那些滤波器所构成
【设计参考】:
(1)电源电路
直流电源电路有降压变压器、全波整流、滤波和稳压电路构成。
由于我们选择TDA2030作为
功放管,其直流供电电压为6V ~18V ,因此为了产生±14V 的直流电源,我们选择100W 的环牛变压器,输出双12V 交流电,负载为8Ω扬声器。
整流电路,见图1.4所示:
Tr1
1
2
3
4
RL D1
D2
D3
D4
+
-
u 1
+A
-B
u 2
+-
图1.4 整流电路
u1正半周时,Tr1次级A 点电位高于B 点电位,二极管D1、D3导通,电流自上而下流过RL ;u1负半周时,Tr1次级A 点电位低于B 点电位,二极管D2、D4导通,电流自上而下流过RL 。
于是RL 两端产生单方向全波脉动直流电压uo 。
负载和整流二极管上的电压和电流:
负载电压: =10.8V 负载电流:
二极管的平均电流: =0.65A
2
9.0U U =L
2
L
09.0R U
R U I =
=
02
1
I I D =
二极管承受反向峰值电压:
=26.8V
电容的容量为:C=(3~5)R T
2≈375uF ~625uF
实际电容容量考虑到滤波的效果,各项参数留出一定的余量,容量选择为2200uF 或3300uF ,耐压值选择为25V ,整流桥耐压值选择为25V ,额定电流选择为3A 。
双声道BTL 功放中电源电路如图1.5所示。
图1.5 电源电路
此电源输出直流电压为±14V ,采用双电源给TDA2030供电,其中C17和C18可以滤出高频杂波,使获得的直流电压更稳定。
(2)前置放大电路
2
DRM
2U
U
音频功率放大器的作用是将声音输入的信号进行放大,然后输出驱动扬声器。
由于音源的输入信号的电压差别很大,从零点几毫伏到几百毫伏。
一般功率放大器的输入灵敏度是一定的,这些不同的音源信号,如果直接输入到功率放大器,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用。
假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。
所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。
前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。
由于话筒输出信号非常微弱,所以前置放大器输入级的噪声对整个放大器的信
噪比影响很大。
前置放大器的输入级首先采用低噪声电路,我们选用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。
根据音频信号的特点,前置放大器选择由NE5532集成运算放大器构成的电压放大器完成。
NE5532是一种双运放高性能、低噪声运算放大器,其性能指标如下:
①小信号带宽:10MHz
②输出驱动能力:600Ω,10V
③输入噪声电压:5nV/√HZ(典型值)
④DC电压增益:50000
⑤AC电压增益:10KHz时2200
⑥电源带宽:140KHz
⑦转换速率:9V/μS;
⑧电源电压范围:±3~±20V
前置放大器为左、右声道各提供一级同向比例运算放大器(电压串联负反馈电路)进行电压
放大,电路如图1.6所示,放大电路具有输入阻抗高的特点,电压放大倍数为:7.510
47
112423=+=+
=R R A
u
,
电容C27、C28是去耦电容,消除高频杂波。
前置放大器的下限频率由电容C19和电阻R22决定。
图1.6 前置放大电路
(3)功率放大电路
采用集成功放设计功率放大器不仅设计简单,工作稳定,而且组装、调试方便,成本低廉,所以本设计选用集成功放实现。
目前常用的集成功放型号非常多,本设计选取SGS 公司生产的
TDA2030/2030A集成功放,该器件具有输出功率大、谐波失真小、内部设有过热保护,外围电路简单。
TDA2030/2030A的外引线如图1.7所示。
1脚为同相输入端,2脚为反相输入端,4脚为输出端,3脚接负电源,5脚接正电源。
电路特点是引脚和外接元件少。
其主要性能指标为:电源电压范围为6V~18V,静态电流小于60μA,频响为10Hz~140kHz,谐波失真小0.5,在VCC = ±14V,RL=4Ω时,输出功率为14W,在8Ω负载上的输出功率为9W。
TDA2030
12345
相输入相
输
入
-Vs
输
出
端
+Vs
Rp
100k
V02C1
+
10uF R3
22k
1
2
+
_
TDA2030
5
3
4
R1
680
C2+
22uF
R222k
-15V
+15V
+
+
D1
1N4001
D2
1N4001
C3
C4
C5
C6
C3=C4=100uF
C5=C6=0.1uF
R4
1Ω
C7
0.22uF
8Ω
Vo
图 1.7 TDA2030管脚图图 1.8
TDA2030组成的OCL 功率放大器电路
由TDA2030/2030A 构成的OCL 功率放大器电路如图1.8所示。
该电路由TDA2030组成的负反馈电路,其交流电压放大倍数
3368
.022
1121≈+=+
=R R A V 。
二极管D1、D2起保护作用,
一是限制输入信号过大,二是防止电源极性接反。
R4、C2组成输出相移校正网络,使负载接近纯电阻。
电容C1是输入耦合电容,其大小决定功率放大器的下限频率。
电容C3、C6是低频旁路电容,电容C5、C4是高频旁路电容。
电位器RP 是音量调节电位器。
本设计为了获得更大的输出功率,采用两个TDA2030构成BTL 率放大器,其中右声道的电路如图1.9所示。
U1(TDA2030)为同相比例运算放大器,输入音频信号通过交流耦合电容C3馈入同相输入端①脚,交流闭环增益为
3368
.022
11941≈+=+
=R R A V 。
R4 同时又使电路构成直流全
闭环组态,确保电路直流工作点稳定。
U2(TAD2030)为反相比例运算放大器,它的输入信号是由U1输出端的U01 经R10、R19分压器衰减后取得的,并经电容C9后馈给反相输入端②脚,它的交流闭环增益
32
68
.022
//19151019152-≈-≈-≈-
=R R R R A R V 。
由R15=R10,所以U1
与U2的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈Uin·R 4/ R9 ,U02≈-U01·R 15/ R19,由于 R4=R15,R9=R19,所以U02 =-U01。
因此在扬声器上得到的交流电压应为:UO = U01-(-U02)=2U01= 2U02
扬声器得到的功率按下式计算:P U P
O om
R
42
==
BTL 功放电路能把单路功放的输出功率(P O
)扩展4倍,但实际上却受到集成电路本身
功耗和最大输出电流的限制。
图1.9 BTL功率放大器右声道电路
(4)音量控制电路
本音频控制控制电路采用简单的音频电位器控制,主要是通过改变输入音频功放的电压大小,从而改变输出声音大小。
实物制作
TDA2030是许多电脑有源音箱所采用的Hi-Fi功放集成块。
它接法简单,价格实惠。
额定功率为14W。
电源电压为±6~±18V。
输出电流大,谐波失真和交越失真小(±14V/4欧姆,THD=0.5%)。
具有优良的短路和过热保护电路。
其接法分单电源和双电源两种,实物制作如图所示但电源OTL功率放大电路。
元器件规格个数
功放TDA2030 1片
电阻1Ω1个150K 1个
100K 3个4.7K 1个
多圈可调电位器
22K 1个瓷片电容0. 1uF 2个
电解电容100uF 1个
22uF 2个
2200uF 1个
1uF 1个喇叭
8Ω1个。