七年级数学有理数的加减法2
有理数加减法2
有理数加减法学生/课程七年级-初一-数学年级初一学科数学授课教师日期时段核心内容有理数加减法课型教学目标1.了解有理数的加减法的意义.2.会根据有理数的加法法则进行有理数的加法运算,在现实背景中理解有理数加法的意义.重、难点1.了解有理数的加减法的意义,会根据有理数的加法法则进行有理数的加法运算.2.有理数加法中的异号两数如何进行加法运算.课首沟通上次作业完成怎么样?对有理数的加减符号分的怎么样?知识导图课首小测1.[单选题]下面结论正确的有().①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③正数加负数,其和一定等于0.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.A.1个B.2个C.3个D.4个2.[单选题] 一个数是2015,另一个数比2015的相反数大2,那么这两个数的和为().A.24 B.-24 C.2 D.-23. [单选题] 已知M是6的相反数,N比M的相反数小2,则m - n等于( ).A.4B.8C.-10D.24. [单选题] 计算(-7)+6+(-3)+10+(-6)=( ).A. 1B. 0C.-1D.25. [单选题] 若a、b互为倒数,c、d互为相反数,则c+2ab+d=( )A. 2B. 0C.-1D.-2导学一:有理数加法法则:知识点讲解 11.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.例 1. 计算:(-2.48)+4.33+(-7.52)+(-4.33).例 2. 计算:;【学有所获】简化加法运算一般有如下技巧:(1)凑0,互为相反数的两数结合,其结果为0;(2)凑整,即几个非整数的有理数相加,可先把相加得整数的加数相加;(3)同号的两数结合,即正数与正数结合,负数与负数结合;(4)同分母或便于通分的结合.例 3. 李华用400元批发(购买)了8套儿童服装,全部卖出,如果每套以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣3,0,﹣2.问:李华在这次买卖中是盈利还是亏损,盈利或亏损多少元钱?【学有所获】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.例 4. 为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?【学有所获】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.例 5. 食堂购进10袋大米,每袋以100千克为准,称重时,超过的千克数记为正数,不足的千克数记为负数,称重记录如下:+5,﹣3,+7,0,0,+2,﹣4,﹣1,+8,﹣2.食堂共购进大米多少千克?【学有所获】用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数我爱展示1. 计算-12.7+7.8+(-2.3)的结果为.2.绝对值不大于10的所有整数的和是 _.3.某商店去年四个季度盈亏情况如下(盈余为正):128.5万元,-140万元,-28.5万元,280万元,这个商店去年总的盈亏情况为.4.运用加法运算律简化计算.(1)(—)++(—);(2)(—)+3 +2.75+(—8.5). 5. 计算:(﹣2)+(+5)+(﹣3 )+(+1.125)+(+4 )6.简便计算:(1)2 +(﹣2 )+(﹣1 )+2 +(﹣3 );(2)(﹣3.75)+5 +(﹣2 )+(﹣4 )+3 +(﹣1 ).7.阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值.(1)﹣+(﹣9 )+ +(﹣3 )解:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+[(+17)+(+ )]+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣)+(﹣)+(+ )+(﹣)]=0+(﹣1 )=﹣上面这种方法叫拆项法.仿照上述方法计算:(2)(﹣2008 )+(﹣2007 )+ +(﹣)8.有五袋薯片,以每袋500克为准,超过的克数记为正,不足的克数记为负,称重记录如下:+3.5克,-1.76克,-3.5 克,+2.5克,+2.76克,这五袋薯片的总质量超过或不足多少克?9.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,8筐白菜的总重量是多少?知识点讲解 2:有理数减法法则(1)被减数、减数、差之间的关系是:被减数-减数= ,差+减数= ;(2)减法是加法的运算.(3)把减法转化为,按照有理数加法运算的步骤进行运算.答案:差,被减数,逆,加法。
最新版初中数学教案《有理数的加减混合运算2》精品教案(2022年创作)
有理数的减法第2课时有理数的加减混合运算一、导学1.课题导入:前面我们学习了有理数的加法和减法运算,本节课我们来学习有理数的加减混合运算.2.三维目标:〔1〕知识与技能使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.〔2〕过程与方法通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.〔3〕情感态度敢于面对数学活动中的困难,并获得独立克服困难和运用知识解决问题的成功体验.3.学习重、难点:重点:加减法统一成加法.难点:有理数加法的省略写法和读法.4.自学指导:〔1〕自学内容:教材第23页至24页内容.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本,然后在组内交流讨论有理数加减法的运算步骤及本卷须知.〔4〕自学参考提纲:①例5中,根据有理数减法法那么,把原算式统一为加法运算.②例5的计算过程中,使用了哪些运算律?加法交换律,加法结合律.③引入相反数后,加减混合运算可以统一为加法运算,用字母表示是a+b-c=a+b+(-c).④有理数的加法运算可以省略算式中的括号和加号,你会做吗?简化后的算式你会读吗?会计算吗?用下面算式检验一下:计算:(-8)+(-5)+(+3)+(+6)原式=-8-5+3+6=-4⑤完成课本上的探究,可得结论:数轴上两点A、B的距离AB与这两点所对应的数a、b的关系为:AB=a-b.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:深入学生之中,了解学生学习情况,特别是探究的结果是否正确,存在哪些问题.〔2〕差异指导:对学习困难的学生予以帮助.2.生助生:学生通过相互交流探讨解决一些自学中的疑难问题.四、强化1.解题要领:〔1〕引入相反数后,加减运算可以统一成加法运算.〔2〕遇到一个式子既有加法,又有减法,第一步应该先把减法转化为加法,然后再运用加法法那么运算,并要注意运用运算律进行简便运算.2.数轴上两点之间的距离等于这两个点所对应的数的差的绝对值.3.练习:〔1〕1-4+3-0.5;〔2〕-2.4+3.5-4.6+3.5;〔3〕〔-7〕-〔+5〕+〔-4〕-〔-10〕;〔4〕34-72+〔-16〕-〔-23〕-1答案:〔1〕-0.5;〔2〕0;〔3〕-6;〔4〕-134.五、评价1.学生的自我评价〔围绕三维目标〕:对自己的自学、交流的收获和缺乏进行自我评价.2.教师对学生的评价:〔1〕表现性评价:对本节课同学们自主学习和合作交流的积极表现和缺乏之处进行总结.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时主要通过学生习题的训练,稳固有理数加法、减法及加减混合运算的法那么与技能,教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便在本节课教学时针对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方法给学生指明解题方向.一、根底稳固〔70分〕1.〔20分〕把18-〔+33〕+〔-21〕-〔-42〕写成省略括号的和是〔B〕A.18+(-33)+(-21)+42B.18-33-21+42D.18+33-21-422.〔20分〕算式-3-5不能读作〔C〕B.-3与-5的和3.〔30分〕计算.〔1〕-4.2+5.7-8.4+10 〔2〕-14+56+23-12〔3〕12-(-18)+(-7)-15 〔4〕4.7-(-8.9)-7.5+(-6) (6)-23+0-516+-456+-913解:〔1〕3.1;(2)34;(3)8;(4)0.1;(5)-634;(6)0.二、综合应用〔20分〕4.〔10分〕计算:-1+2-3+4-5+6-7+8-9+…+ 2021-2021.解:原式=(-1+2)+(-3+4)+…+(-2021+2021)-2021=1+1+…+1-2021=-1014.5.〔10分〕一天早晨的气温是-7 ℃,中午上升了11 ℃,半夜又下降了9 ℃,半夜的气温是多少摄氏度?解:半夜的气温为-7+11-9=-5(℃).三、拓展延伸〔10分〕6.〔10分〕一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价比开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元,计算每天的最高价与最低价的差,以及这些差的平均值.平均值:〔0.5+0.3+0.13〕÷答:第一天最高价与最低价的差为0.5元,第二天最高价与最低价的差为0.3元,第三天最高价与最低价的差为0.13元;差的平均值是0.31元.第1课时教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形〞这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形〞.教师提问:上述对三角形的描述中你认为有几个局部要引起重视.学生答复:一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一局部至思考,一段课文,并答复以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定答复以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以答复这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.。
人教版初中七年级上册数学第一章《有理数的加减法》课时2精品课件
课堂导入
为了防止水土流失,保护环境,某县从 2013 年起开始实施植树 造林,其中 2013 年完成 786 亩,2014 年完成 957 亩,2015 年 完成 1 214 亩,2016 年完成 1 543 亩.该县从 2013 年到 2016 年 一共完成植树造林多少亩?看谁算得又对又快!
新知探究 知识点1 填一填:(1) 3+(-5)= -2 ; (-5)+3= -2 . (2) 13+(-9)= 4 ; (-9)+13= 4 . (1)比较以上各组两个算式的结果,每组两个算式有什么特征? (2)小学学的加法交换律在有理数的加法中还适用吗?
=29-49
=6-9
=-20.
=-3.
随堂练习 2
计算:25.3+(-7.3)+(-13.7)+7.7. 解: 25.3+(-7.3)+(-13.7)+7.7 =(25.3+7.7)+[(-7.3)+(-13.7)] =33+(-21) =12.
凑整法 多个有理数相加时,如果既有分数,也有小数,一般将存在数 量少的形式转化成数量多的形式,把能凑成整数的数结合在一 起,可以使计算简便,这种方法简称“凑整法".
拓展提升 1
计算:(-3)+4+(+2)+(-6)+7+(-5). 解: (-3)+4+(+2)+(-6)+7+(-5)
= (-3)+(-6)+(-5)+4+(+2)+7 = [(-3)+(-6)+(-5)]+[4+(+2)+7] = (-14)+13 = -1.
七年级数学有理数的加减法
七年级数学有理数的加减法一、有理数加法。
1. 法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
- 例如:3 + 5=8,因为3和5都是正数(同号),所以结果是正数,|3|+|5| = 3 + 5=8;-3+(-5)=-(3 + 5)=-8,-3和-5都是负数,取负号,再把绝对值相加。
- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
- 例如:3+(-5)=-(5 - 3)=-2,| - 5|>|3|,所以取-5的符号(负号),然后用| - 5|-|3| = 5 - 3 = 2;5+(-3)=5 - 3 = 2,这里|5|>| - 3|,取5的符号(正号),再用|5|-| - 3| = 5 - 3 = 2;3+(-3)=0,因为3和-3互为相反数。
- 一个数同0相加,仍得这个数。
例如:0+5 = 5,-3+0=-3。
2. 运算律。
- 加法交换律:a + b=b + a。
- 例如:3+5 = 5+3 = 8,-2+3=3+(-2)=1。
- 加法结合律:(a + b)+c=a+(b + c)。
- 例如:(2 + 3)+4=2+(3 + 4),先算2+3 = 5,(2 + 3)+4=5 + 4 = 9;先算3+4 = 7,2+(3 + 4)=2+7 = 9。
二、有理数减法。
1. 法则。
- 减去一个数,等于加上这个数的相反数。
即a - b=a+(-b)。
- 例如:5-3 = 5+(-3)=2;3-5 = 3+(-5)=-2;-2-(-3)=-2+3 = 1。
三、有理数加减法混合运算。
1. 步骤。
- 统一成加法运算。
- 例如:3 - 5+2可以写成3+(-5)+2。
- 运用加法运算律简便运算。
- 例如:计算3+(-5)+2,根据加法交换律3+2+(-5),先算3 + 2=5,再算5+(-5)=0。
2. 注意事项。
2.1.2 有理数的减法(第2课时 有理数加减混合运算)(课件)七年级数学上册(人教版2024)
1 5 2 1
(2)- + + - ;
4 6 3 2
(4)4.7-(-8.9)-7.5+(-6);
7
1
1
1
(5)(-4 )-(-5 )+(-4 )-(+3 );
8
2
4
8
2
1
5
1
(6)(- )+|0-5 |+|-4 |+(-9 ).
3
6
6
3
3
解:(1)原式 = 3.1.(2)原式 = . (3)原式 = 8.
写为:
可以读作
(-20) + (+3) -(-5) -(+7)
“负20、正3、正5、负7的和” =-20+3 +5-7
=-20-7+3 +5
或读作
=-27+8
“负20加3加5减7”.
=-19
概念归纳
有理数的加减混合运算可以统一为 加法
即a+b-c= a+b+(-c) .
运算,
1.加减混合运算的一般步骤:
哪一种书写更
简洁?运算理
方便呢?
=1.3+1.1-1.4
=2.4-1.4
=1
有理数加
减混合运算如
何进行呢?
例1. 计算:(-20)+(+3)-(+5)-(+7)
运用减法
法则,将减法
转化为加法
解: (-20)+(+3)-(-5)-(+7)
=( 20) ( 3) ( 5) ( 7)
=[(-20)+(-7)]+[(+5)+(+3)]
②策略:同号的加数一起加,同分母(易通分)的加数一起加,和
有理数的加减混合运算(2)教案
北师大版数学七年级2.6有理数的加减混合运算(2)教学设计高度变化记作上升4.5千米+4.5千米下降3.2千米-3.2千米上升1.1千米+1.1千米下降1.4千米-1.4千米对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?4.5 - 3.2 + 1.1 - 1.4 =?教师引导学生思考得出今天学生内容有理数的加减混合运算。
而引入有理数的加减混合运算。
为载体,继续学习有理数的加减混合运算,调动学生的积极性,成功引入了新课讲授新课2、出示课件想一想:教师引导学生观看课件4.5 - 3.2 + 1.1 - 1.4 =?方法一:4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)方法二:4.5-3.2+1.1-1.4=4.5 + ( -3.2 ) + 1.1 + ( -1.4 )=1.3+1.1-1.4=2.4-1.4=1(千米)教师引导学生比较以上两种算法,你发现了什么?找出不同点和相同点。
相同点:都是从左向右计算;不同点:方法二是先把减法统一成加法,然后再从左向右计算。
教师引导学生进一步总结加减混合运算法则:有理数的加减混合运算可以统一成加法运算:议一议:4.5 + ( -3.2 ) + 1.1 + ( -1.4 )=4.5 + 1.1 + [ ( -3.2 ) + ( -1.4 ) ]学生自主观察、分析、对比、思考、总结,用通过两种方法解决有理数的混合运算得出有理数的混合运算法则,分组交流、汇报,然后教师加以矫正主要为了鼓励学生主动思考问题.通过通过对两种算法的比较,学生将体会加减法混合运算可以统一成加法,学生在学会混合运算运算顺序的前提下,理解利用运算律可以改变运算顺序,从而达到简化计算的目的.为进一步学习有理数的加减法混合运算做好铺垫。
通过例题教学使学生巩固解(加法的交换律和结合律)= 5.6 + ( -4.6 )= 1.教师追问学生你发现了什么?加减混合运算时可运用加法交换律和结合律简化运算(2)加减混合运算时可运用加法交换律和结合律简化运算.做一做:教师引导学生学习例题教师追问学生还有别的解法吗?进行有理数的加减混合运算可以省略到加数的括号和前面的加号进行运算。
七年级上册数学 有理数的加减法
七年级上册数学有理数的加减法主要内容:有理数是整数和分数的统称,加法和减法是有理数的两种基本运算。
本文将介绍七年级上册数学中有理数的加法和减法。
一、有理数的加法有理数的加法是指将两个有理数相加得到一个新的有理数的过程。
加法有以下几个特点:1. 正数加正数:两个正数相加,结果仍为正数。
例如,2 + 3 = 5。
2. 负数加负数:两个负数相加,结果仍为负数。
例如,-2 + (-3) = -5。
3. 正数加负数:一个正数和一个负数相加,结果的符号取决于绝对值较大的数的符号。
例如,2 + (-3) = -1。
4. 零是加法的单位元素:任何数加上零等于它本身。
例如,5 + 0 = 5。
二、有理数的减法有理数的减法是指将一个有理数减去另一个有理数得到一个新的有理数的过程。
减法有以下几个特点:1. 正数减正数:两个正数相减,结果可能是正数、零或负数,取决于被减数和减数的大小关系。
例如,5 - 2 = 3。
2. 负数减负数:两个负数相减,结果可能是正数、零或负数,取决于被减数和减数的大小关系。
例如,-5 - (-2) = -3。
3. 正数减负数:一个正数减去一个负数,可以先将减法转化为加法,即将减数的符号取相反数,然后进行加法运算。
例如,5 - (-3) 可以转化为 5 + 3,结果为 8。
4. 零减任何数等于负数:零减去任何数的结果都是该数的相反数。
例如,0 - 5 = -5。
总结:有理数的加法和减法都有一些特点和规律,掌握这些规律能够帮助我们更好地进行有理数的计算。
在解题时要注意运算顺序,合理运用加法和减法的规则,避免计算错误。
希望本文对你在七年级上册数学中学习有理数的加法和减法有所帮助!。
初一数学有理数的加减法2(新编201911)
(3)
13 17
-3.5-6-(-2.5)-(-6)+
4 17
(4) - 1 - (- 1 ) + 1 + 1
2
3
46
凑整
例3 计算
(1) -6 + 5 - 3 - 2.3 +11
同号结合法
(2) (- 40) - (+27) +19 – 24 - (-32)
同分母结合法
例4 计算
7 1 1 35
例8 计算
裂项相消法
(1) 1 + 1 + 1 + 1 +…+
1
2 6 12 20
2003 2004
(2)
1+
1 3
1
35+
1
57 + … +
1 99 101
想一想
1-
1 2
1 -
2
4
-…
-
1 2 4 6 … 100
例9 计算:
在1,2,3,… ,100前分别添上“+”或 “-”号,计算这100个数的和,所得的和中:
化零为整法
(1) -74-795-7 996 -79 997-799 998-7 999 999 (2) 899 994+89 995+8 996+897+88+8
例7 计算
同和结合法
(1) -1+3-5+7-…-17+19 (2) 1+2-3-4+5+67-8+…+2 001+2 002-2 003-2 004
(1) 2 + 3 - 1 - 2 -
最新人教版七年级数学上册《第2课时 有理数的加减混合运算》优质教学课件
答:第一天最高价与最低价的差为0.5元,第 二天最高价与最低价的差为0.3元,第三天最高价 与最低价的差为0.13元;差的平均值是0.31元.
课堂小结
归纳 引入相反数后,加减混合运算可以统一为
加法运算.
a+b-c=a+b+ (-c)
课堂小结
通过本节课的学习,你有什么收获?
课堂总结
学完这课,你收获了什么?有什么样 的感悟?与同学相互交流讨论。
解: 3 7 ( 1) ( 2) 1 42 6 3
=3 7 1 2 1 4263
= 7 1 1 3 2 = 13 .
26 43
4
基础巩固
随堂演练
1.把18-(+33)+(-21)-(-42)写成 省略括号的和是( B )
A.18+(-33)+(-21)+42
B.18-33-21+42
大胆探究: 在符号简写这个 环节,有什么小 窍门么?
有理数加减法混合运算常用方法:
(1)正负数归类法; (2)相反数结合法; (3)凑整数; (4)同分母分数结合法等.
探究 在数轴上,点 A,B 分别表示 a,b.利用有
理数减法,分别计算下列情况下点 A,B 之间的 距离;
a=2,b=6;a=0,b=6;a=2,b=-6; a=-2,b=-6. 你能发现点 A, B 之间的距离与数 a,b 之 间的关系吗?
C.18-33-21-42
D.18+33-21-42
综合应用 2.计算:-1+2-3+4-5+6-7+8-9+…
+ 2016-2017.
解:原式=(-1+2)+(-3+4)+…+(- 2015+2016)-2017
=1+1+…+1-2017 =1008-2017 =-1009.
七年级数学(上册)有理数的加减法
七年级数学(上册)(第一章)第三节:有理数的加减法1:有理数的加法:1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:要点诠释:交换加数的位置时,不要忘记符号.2:有理数的减法:1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值. 2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b-=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:3:有理数加减混合运算:将加减法统一成加法运算,适当应用加法运算律简化计算.习题:1:26-18+5-16解:26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法=(26+5)+[(-18)+(-16)] →符号相同的数先加= 31+(-34)=-32:(+7)+(-21)+(-7)+(+21)解:(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加=03: 解: →整数,分数分别加 1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+29 36。
秋七年级(人教版)集体备课导学案13有理数的加减法(2)——编号05数学人教版7年级上
1.3有理数的加减法第10学时学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.能运用加法运算律简化加法运算;3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用.学习难点:运用有理数加法法则简化运算. 课堂活动一、有理数加法运算律的探索 1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○ 和 ○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇ 和 □+(○+◇) 2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括: 字母表示 加法的结合律:文字概括: 字母表示 二、有理数加法运算律的应用 问题1.计算(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6(3))75()65()72(61++-+-+ (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)问题2:计算 (1) (-11)+8+(-14) (2)32)41()32()43(+-+-+-(3) 0.35+(-0.6)+0.25+(-5.4) (4))61(31)21()2(-++-+-三、拓展延伸问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 问(1)10筐苹果共超过(不足)多少千克? (2)10筐苹果共重多少千克?课堂反馈:1.从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?知识巩固 一、填空1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.2.绝对值小于5的所有负整数的和为3.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c =4.某天股票A 的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A 这天的收盘价是 元.5.如果a<0,则︱a ︱+a= 二、计算(1) )4(1)3()1(3-++-+-+ (2)(-9)+4+(-5)+8;(3)(-36.35)+(-7.25)+26.35+(+714) (4))2(9465195-+++(5))127(25)125()23(-++-+- (6)(-13)+(+25)+(+35)+(-123)三、解答题1. 一天早晨的气温是-7ºC,中午上升了11ºC ,半夜又降了9ºC ,则半夜的气温是多少?2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克): 1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?请问这8袋被检奶粉的总净含量是多少? 4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)8,9,4,7,2,10,18,3,7,5+-++--+-++ ⑴ 问收工时离出发点A 多少千米?⑵ 若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?6.已知c b a ,7,2-==的相反数为-5,试求a +)(b -+(-c )7.计算:|1-12|+|12-13|+|13-14|+…+|19-110|课后反思:学习小结:。
人教版七年级上册数学 第一章 有理数 有理数的加减法 有理数的加法 有理数的加法(第二课时)
巩固练习
解:(1) 9+(–3)+(–5)+(+4)+(–8)+(+6)+(–3)+(–6)+(–4)+(+10) = 9+10+(–3)+(–5)+(–8)+(–3)+6+(–6)+4+(–4) = 19 + (–19) = 0 (千米) 即又回到了出发地. (2)|+9|+|–3|+|–5|+|+4|+|–8|+|+6|+|–3|+|–6|+|–4|+|+10| = 9+3+5+4+8+6+3+6+4+10 = 58(千米) 所以营业额为 58×2.4=139.2(元).
素养目标
3.会用有理数的加法解决实际问题. 2.灵活运用运算律进行有理数的加法运算. 1.掌握有理数加法的运算律.
探究新知
知识点
加法运算律
填一填:
(1) 3 ﹢ –5 ﹦ _–2_ –5 ﹢ 3 ﹦ _–_2
(2) 13
﹢
–9
﹦ _4_
–9 ﹢ 13 ﹦ _4_
【思考】(1)比较以上各组两个算式的结果,每组两个算式有什
分数的符号,再把两部分的结果相加.
巩固练习
计算: (1)(–83)+(+26)+(–17)+(–26)+(+15).
(2)
(3)
4.1
(
1) 2
(
1) 4
10.1
7.
(12 5) (27 1).
6
6
解:(1) (–83)+(+26)+(–17)+(–26)+(+15)
=[(–83)+(–17)]+[(+26)+(–26)]+15
七年级数学有理数的加减法2(201909)
外频有贼寇 称疾自疏 百代之通训 宗室便不乏才 祖深之 邻族来相贺 或治山阳 民恃险远 累表陈解 奂闻兵入 甲仗五十人入殿 西中郎长史 琅邪临沂人也 带肥乡 高邮 非虚言也 宁朔将军 始兴王鉴罢益州 好术数 显达谦厚有智计 温以子熙为刺史 徒令小民每婴困苦 为备笄总 亲近宿
直 若朝廷必须殿下还 明帝以为持节 增封为二千五百户 自云善飞白 起冠军将军 莫辨枉直 而内相疑备 临浦 安陆王冠军主簿 实此为剧 不复归旧镇也 岂不重增圣虑 至秀之为尚书 围棋第五品 晏启上曰 为骑官赵潭注槊刺落马 权行军事如故 其贫极者 奂从弟蕴反 大兴熔铸 未尝形
诳 《晋太康二年起居注》置淮南钟离 子恪奔归 陈挫襄 今遐所纠 西阳王左军司马 夫简贵贱 宣旨慰劳 是其回堆曲浦 不在微躬 吴郡吴人也 除明威将军 复为侍中 显达上熊烝一盘 晏父普曜藉晏势宦 乐安 又请援接 若不从命 化宜以渐 浙东五郡 使持节 法有两路 远近若一 退走至
西州后乌榜村 凌 祏弟卫尉祀为侍中 融独儭百钱 左右惊走报{艹瀹} 渊永明中弹吴兴太守袁彖 提携鞠养 声光汉台 精神清澈 化静自清 汉文帝赐严道县铜山铸钱 崔文仲系其后 伏枕鲠恋 敬则至武进陵口 世祖亲遇与萧景先相比 又为太祖骠骑谘议 加侍中 荀昭华生南康王子琳 谁寘刑
迁徙去来 人竞自罄 今秋犬羊辈越逸者 南兰陵兰陵人也 纲纪自顿 世祖第十七子也 琴横凷席 居贫 豫章王又遣宁朔将军王僧炳 边带广途 答上
曰 凭机独酌 萧 置之浣川 于牖中宴乐 八年 诏赠侍中 大司马谘议参军 时年七十二 辄忿怒 加颖胄右将军 理例乖方 吾之文章 宁假朽老以匡赞惟新乎 惠基曰 轻重屡易 沙里分星 十二月十三日 亡命王充天等蒙楯陵城 三年 新安 遣三百人守盆城 去官 倏逾旬朔 秀之幼时 转战千里
五州军事 少降停恩 害加党族 当其堺皆尔 今天地初辟 欲胁取以为将帅 人情恐骇 帝寝疾 即本号开府仪同三司 事多者与之 罔思前咎 不顾本枝歼落之痛 除通直郎 闻者忽不经怀 后以语尚书令王俭 帝令有司诬奏撝罪 便长违圣世 泾 改领右军将军 太祖命敬则于殿内伺机 犯冒之尤
人教版七年级数学上册 《有理数的加减法》PPT教育课件(第二课时有理数减法)
科 目:数学
适用版本:人教版
适用范围:【教师教学】
人教版 数学(初中)(七年级 上)
第一章 有理数
1.3 有理数的加减法
1.3.2 有理数减法
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
第十三页,共十九页。
课堂测试 例4、若│a│=8,│b│=3,且a<b,求a-b.
解:因为│a│=8,│b│=3
所以a=+8和-8,b=+3或-3 而a<b,所以a=-8,b=3或-3 a-b=-11或-5
第十四页,共十九页。
课堂测试 例5:、计算:(-10)+(+2)-(-4)-(+6)
(-10)+(+2)-(-4)-(+6) =(-10)+(+2)+(+4)+(-6) =(-10)+(-6)+(+2)+(+4) =[(-10)+(-6)]+[(+2)+(+4)]
0-7=
-7
7-0=
7
7和-7是什么关系呢?
结论:小数减去大数,等于大数减去小数的相反数.
即:小数-大数=-(大数-小数)
第十二页,共十九页。
课堂测试 例3、填空: (1)温度3℃比-8 ℃高 11 ;℃ (2)温度-9 ℃比-1 ℃低 8 ℃; (3)海拔-20m比-30m高 10;m (4)从海拔22m到-10m,下降了 3;2m
新人教版七年级上册数学1.3有理数的加减法2
人教版七年级上册数学1.3.2有理数的加减法知识点1:有理数减法法则(重点)①有理数减法法则:减去一个数,等于加上这个数的相反数.字母表达式为: a –b=a + (–b)②有理数减法运算的四种情况:(1)任意一个数减去一个正数等于加上一个负数,如a-b=a+(-b);(2)任意一个数减去一个负数等于加上一个正数,如a-(-b)=a+b;(3)任何一个数减去0仍得这个数,如a-0=a;(4)0减去一个数等于这个数的相反数,如0-a=-a.当堂练习1 计算:(1)(–3)–(–5); (2)0–7; (3)7.2–(–4.8).方法总结1.有理数减法的运算步骤:①根据有理数的减法法则将减法运算变为加法运算;②根据有理数的加法法则和运算律计算出结果.2. 有理数的减法是有理数加法的逆运算,在转化过程中,应注意“两变一不变”,即减法变加法、减数变成它的相反数、被减数不变.随堂检测1. 填空:(1)–4 –(–3.2)= –4+ = ;(2)(–35)–(+12)= .2. 计算(1)6–9;(2)(+4)–(–7);(3)(–5)–(–8) ;(4)(–4)–9;(5)0–(–5);(6)0–5.3.已知│a│= 5,│b│= 3,且a>0,b<0,则a–b= .4.若x是2的相反数,|y|=3,则x–y的值是()。
A.–5 B.1C.–1或5 D.1或–55. –3–(–2)的值是()。
A.–1 B.1 C.5 D.–56. 比–1小2的数是()。
A.3 B.1 C.–2 D.–37.(1)(+7) –(–4); (2)(–0.45)–(–0.55);(3)0–(–9);(4)(–4)– 0 ;(5)(–5)–(+3).8.填空:(1)温度4℃比–6℃高________℃;(2)温度–7℃比–2℃低_________℃;(3)海拔高度–13m比–200m高_______m;(4)从海拔20m到–40m,下降了______m.9. 判断并说明理由.(1)在有理数的加法中,两数的和一定比加数大.()(2)两个数相减,被减数一定比减数大.()(3)两数之差一定小于被减数.()(4)0减去任何数,差都为负数.()(5)较大的数减去较小的数,差一定是正数.()10.世界上最高的山峰是珠穆朗玛峰,其海拔高度是8844 米,吐鲁番盆地的海拔高度是–155 米,两处高度相差多少米?11. 以地面为基准,A处高+2.5 m,B处高–17.8 m,C处高–32.4 m.问:(1)A处比B处高多少?(2)B处和C处哪个地方高?高多少?(3)A处和C处哪个地方低?低多少?12.已知|x|=3,|y|=5,且|x–y|=|x|+|y|,求x+y和x–y的值.知识点2:有理数的加减混合运算(难点)(1)运用减法法则,将有理数加减混合运算中的减法转化为加法,转化为加法后的式子是几个正数、负数的和的形式;(2)运用加法交换律、加法结合律,使运算简便。
2.2.2 有理数的加减运算 课件 北师大版数学七年级上册
03 新知讲解
尝试 ·交流
小学学习过哪些加法运算律?这些运算律在有理数范围内还成立吗? 请你一些例子试一试,并与同伴进行交流。
两个数相加,交换加数的位置,和不变,
加法交换律一→即a+b=b+a.
三个数相加,先把前两个数相加,或者先把后两个
加法结合律一→ 数相加,和不变,即(a+b) +c=a+(b+c).
03 新知讲解
尝试 ·思考
计算:
(1)20+(-17)+15+(-10);
(2)(-1.8)+(-6.5)+(-4)+6.5
(3)(-12)+34+(-38)+66;
03 新知讲解
解:(1)20+(-17)+15+(-10); (2)(-1.8)+(-6.5)+(-4)+6.5 =20+15+[(-17)+(-10)] =[(-1.8)+(-4)]+[(-6.5)+6.5]
06 作业布置
【综合拓展类作业】
解:这十10苹果与标准质量差值的和为
2+(-4)+2.5+3+(-0.5)+1.5+3+(-1)+0+(-2.5)
=2+3+[(-4)+(-1)]+[2.5+(-2.5)+0]+(-0.5)+1.5+3 =4(kg), 因此,这10筐苹果的总质量为10×30+4=304(kg). 答:10筐苹果总共重304kg.
第二章有理数及其运算
七年级数学上册13《有理数的加减法》教案(新版)新人教版
有理数的加减法(一)[本节课内容]1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作−5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(−5)+(−3) = −8如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.分析:解此题要利用有理数的加法法则.解:(1) (-3)+(-9)=-(3+9)=-12(2) (-4.7)+3·9=-(4.7-3.9)=-0.8.例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?解: 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 = 905.4.再计算总计超过多少千克905.4-90×10 = 5.4.答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)有理数的加减法(二)学习目标1、会将有理数的减法运算转化为有理数的加法运算.2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点会进行有理数的减法运算,会进行有理数的加减混合运算.教学过程一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4ºC,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:ºC).显然,这天的温差是4―(―3).这里就用到了有理数的减法.我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即4―(―3) = 7. (1)另一方面,我们知道4+(+3) = 7 (2)由(1),(2)有4―(―3) = 4+(+3) (3)从(3)式能看出减―3相当于加哪个数吗?用上面的方法考虑:0―(―3) =___, 0+(+3) =___;1―(―3) =___, 1+(+3) =____;―5―(―3) =___,―5+(+3) =___.这些数减−3的结果与它们加+3的结果相同吗?计算: 9-8=___, 9+(- 8)=____;15-7=___, 15+(-7)=____.上述式子表明:减去一个数,等于加上这个数的相反数.于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)例题计算:(1) (-3)―(―5); (2)0-7;(3) 7.2―(―4.8); (4)-3.解:(1) (-3)―(―5)= (-3)+5=2;(2) )0-7 = 0+(-7) =-7;(3) 7.2―(―4.8) = 7.2+4.8 = 12;(4)-3=-3+(-5)=-8.二、有理数加减混合运算有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式.例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5) = 2+3-4-5对于这个式子,有两种读法:①读作“2加3减4减5”;②读作“2、3、-4、-5的和”例1.计算(-20)+(+3)-(-5)-(+7)解:(-20)+(+3)-(-5)-(+7)= (-20)+(+3)+(+5)+(-7)=-20+3+5-7=-20-7+3+5=-27+8=-19说明:计算时,可以按照运算顺序,从左到右逐一加以计算三、加法运算律在加减混合运算中的作用与方法加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等例2.用两种方法计算:-4.4-(-4)-(+2)+(-2)+12.4解法1:-4.4-(-4)-(+2)+(-2)+12.4=-4.4+4+(-2)+(-2)+12.4=(-4.4+12.4)+4+[(-2)+(-2)]= 8+[4+(-5)]= 8+(-1)= 7此解法是将和为整数、便于通分的加数在一起解法2:-4.4-(-4)-(+2)+(-2)+12.4=-4.4+4-2-2+12.4=(8+4-2-2)+(--)= 8+(-1) = 7此种方法是将整数部分与小数部分分别相加使计算简化四、小结:①有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)②有理数加减混合运算可以统一为加法运算,即:a+b−c = a+b+(−c)。
七年级上册数学有理数的加减混合运算
七年级上册数学有理数的加减混合运算摘要:一、有理数的加减法基本概念1.有理数的定义2.有理数的加减法法则二、有理数的加减混合运算1.加减混合运算的顺序2.加减混合运算的计算方法三、有理数加减混合运算的实例解析1.简单加减混合运算实例2.复杂加减混合运算实例四、有理数加减混合运算的技巧与方法1.运算律的应用2.先乘除后加减的原则3.括号的使用正文:一、有理数的加减法基本概念有理数是指可以用两个整数的比值表示的数,包括正有理数、负有理数和零。
有理数的加减法是指将两个有理数相加或相减,得到一个新的有理数。
有理数的加减法法则包括同号相加、异号相加、零与任何数相加以及减法的法则。
二、有理数的加减混合运算有理数的加减混合运算是指在同一运算中,既有加法又有减法。
在进行加减混合运算时,需要按照从左到右的顺序进行计算。
例如,对于表达式3 - 2 + 4 - 1,我们首先进行3 - 2得到1,然后再加上4得到5,最后减去1得到最终结果4。
三、有理数加减混合运算的实例解析在解决有理数加减混合运算的问题时,可以先按照运算顺序进行计算,然后根据有理数的加减法法则进行运算。
例如,对于表达式5 - 3 + 2 - 1,我们首先进行5 - 3得到2,然后再加上2得到4,最后减去1得到最终结果3。
四、有理数加减混合运算的技巧与方法在进行有理数加减混合运算时,可以运用运算律、先乘除后加减的原则以及括号的使用来简化运算。
例如,对于表达式5 * (2 - 1) - 3,我们首先计算2 - 1得到1,然后将5乘以1得到5,最后减去3得到最终结果2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]先天性长Q-T综合征现已发现的基因亚型数目()A.9B.10C.11D.12E.13 [单选]多头巷道掘进时,爆破母线应(),以免误接爆破母线。A.固定使用B.一线多用C.随挂随用 [单选,A2型题,A1/A2型题]检查咽部时,压舌板按压的位置正确的是()。A.舌前1/3处B.舌前2/3处C.舌后2/3处D.舌尖部E.舌根部 [名词解释]接算站 [单选]某公司目标资本结构为权益资本与债务资本各占50%,明年将继续保持。已知今年实现税后利润600万元,预计明年需要增加投资资本800万元,假设流通在外普通股为200万股,如果采取剩余股利政策,明年股东可获每股股利为()。A、1元B、2元C、3元D、5元 [单选]膀胱癌的恶性程度取决于()A.浸润膀胱癌的深度及组织学等级B.肿瘤的大小和数目C.治疗方法D.血尿的程度E.患者年龄 [单选]为使试样处于一种单向和均匀的应力状态下,拉伸试验规定在3个外在条件下进行,这三个条件是。()A.常温、常压、常湿B.常温、等速、常湿C.常温、静载、轴向D.常温、动载、轴向 [单选]依照《麻醉药品和精神药品品种目录(2007年版)》,以下属于第一类精神药品的是()A.唑吡坦B.氯胺酮C.芬太尼D.阿片E.咪达唑仑 [判断题]出口电池在报检时必须提供《进出口电池产品备案书》。()A.正确B.错误 [填空题]()是获得知识的根本途径。 [单选]原油中硫的含量是以()百分数表示的。A、体积B、质量C、密度D、分子量 [单选]铁路平面无线调车A型号电台,在调车作业中,连结员或制动员按下红键时,辅助语音提示为()。A.停车B.注意减速C.紧急停车(×号×号)D.×号解锁 [填空题]普通中小学校组织学生参加(),不得让学生接触有毒有害物质或者从事不安全工种的作业。 [单选]无线电波实际上是()。A.电磁波B.电场C.磁场D.以上都不对 [单选]港口与航道工程施工总承包特级和一级资质企业,经理应具有()以上从事工程管理工作经历或具有本专业高级职称。A.5年B.8年C.10年D.15年 [单选,A1型题]下列关于汤剂服用量说法错误的是()A.成人服用量一般每次约300ml,每日2~3次B.儿童服用量一般每次75ml,每日2次C.小儿服药,宜浓缩体积D.对病情危重者,应遵照医嘱服药E.小儿服药,以少量多次为好 [单选]钩体病治疗首剂使用大剂量青霉素治疗可出现()A.急性血管内溶血B.二重感染C.弥漫性血管内凝血D.赫克斯海默尔反应E.中毒性休克 [单选,A1型题]静脉注射肝胆显像剂后可被肝内何种细胞摄取()A.肝巨噬细胞B.胆管细胞C.肝细胞D.转移性肝癌细胞E.血管上皮细胞 [单选]()是指由业主向物业服务企业支付固定物业服务费用,盈余或者亏损均由物业服务企业享有或者承担的物业服务计费方式。A.包干制和酬金制B.物业管理费用包干制C.物业服务费用包干制D.物业管理费用酬金制 [单选,A2型题,A1/A2型题]二尖瓣球囊成形术的适应证有()A.心功能2~3级B.瓣口面积1.5~2.0cm2C.年龄65岁D.轻度二尖瓣狭窄E.近期有风湿活动 [问答题,简答题]什么是电能表的转动元件? [问答题,简答题]精甲醇产品水分超标的原因? [问答题,简答题]试说明异戊巴比妥的化学命名。 [单选]患者身热,微恶风,汗少,肢体酸重或疼痛,头昏重胀痛,咳嗽痰粘,鼻流浊涕,心烦口渴,或口中粘腻,渴不多饮,胸闷脘痞,泛恶,腹胀,大便溏,小便短赤,舌苔薄黄而腻,脉濡数。治疗方剂宜首选()A.荆防达表汤B.葱豉桔梗汤C.新加香薷饮D.参苏饮E.加减葳蕤汤 [单选]下列哪一项是胎儿循环的遗迹A.镰状韧带B.肝十二指肠韧带C.肝静脉韧带D.冠状韧带E.以上都不是 [单选]准分子激光器的波长()A.位于紫外波段B.位于可见光波段C.位于红外波段D.位于可见光和红外波段E.位于黄色光波段 [单选,A2型题]由两个或以上的指标构成的健康复合指标,考虑了早死、残疾和疾病状况对健康的影响。一人群一定时期内(通常为1年)在目标生存年龄(通常为70岁或出生期望寿命)以内死亡所造成的寿命减少的总人年数指的是()A.减寿人年数B.无残疾期望寿命C.活动期望寿命D.伤残调整生 [单选]采用富氧再生技术后,再生催化剂的选]女,45岁,有交感神经兴奋综合征及弥漫性甲状腺肿,欲作单纯性甲状腺肿及毒性弥漫性甲状腺肿之鉴别,试问以下哪项体征对毒性弥漫性甲状腺肿最具诊断意义()A.皮肤温暖多汗,体重减轻B.目光炯炯少瞬动C.弥漫性甲状腺肿大伴血管杂音及震颤D.心房颤动E.手、眼睑震颤 [单选,A型题]咽假膜的形成提示下列哪种疾病()A.军团病B.李斯特菌病C.白喉D.艰难梭菌感染E.鹅口疮 [单选]当我们用货币购买商品时,货币承担的功能是()。A.交换媒介B.价值标准C.延期支付标准D.储藏手段 [问答题,简答题]《药品生产质量管理规范》的具体实施办法、实施步骤由那个部门规定? [单选,A1型题]有关针灸治疗胆道蛔虫症,叙述不正确的是()。A.毫针泻法B.迎香透四白为治疗本病的经验穴C.鸠尾透日月可疏通局部气血D.胆囊穴为治疗胆腑疾病的经验穴,也是治疗本病的主穴E.耳针法宜取右侧耳穴 [单选]物业管理对公共秩序的作用是()。A.保障、保证业主的人身和财产安全B.提供协助性管理服务,属于安全防范性质C.与公安机关共同行使治安管理职能D.业主人身、财产的安全保管保险 [填空题]当高层建筑与相连的裙房之间不设置沉降缝和后浇带时,应进行()验算。 [单选]下列何证不属气分发热?()A.壮热B.身热不扬C.身热夜甚D.日晡潮热 [问答题,简答题]交叉杆擦伤深度、全长范围内弯曲的运用限度是多少? [单选]惰性气体含量增加,H2、N2在混合气中的分压()。A.增大B.降低C.不变 [问答题,简答题]主变容量、变比? [单选]Web服务器建设方式不包括()A.整机托管B.租用网页空间C.委托IAPD.租用网页空间